
Mind the instructions: reward cues are liked first, wanted later 

 

Nicoleta Prutean*1, Luc Vermeylen2, Nanne Kukkonen1, S. Tabitha Steendam1, 

Joshua O. Eayrs1, Ruth M. Krebs1, Jan R. Wiersema3, Eliana Vassena4, C. Nico 

Boehler1, & Wim Notebaert1 

 

1 Department of Experimental Psychology, Ghent University, Belgium 

2 Brain and Cognition, KU Leuven, Belgium 

3 Department of Experimental Clinical and Health Psychology, Ghent University, Belgium 

 
4 Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands 

 

Author note 

*Nicoleta Prutean, corresponding author – Department of Experimental Psychology, Ghent 

University, Henri Dunantlaan, 2, 9000 Gent, Belgium. email: nicoleta.prutean@ugent.be  

Luc Vermeylen – email: luc.vermeylen@kuleuven.be 

Nanne Kukkonen – email: nanne.kukkonen@ugent.be  

S. Tabitha Steendam – email: susannetabitha.steendam@ugent.be 

Joshua O. Eayrs – email: joshua.eayrs@ugent.be 

Ruth M. Krebs – email: ruth.krebs@ugent.be 

Jan R. Wiersema – email: roeljan.wiersema@ugent.be 

Eliana Vassena – email: eliana.vassena@donders.ru.nl 

C. Nico Boehler – email: nico.boehler@ugent.be 

Wim Notebaert – email: wim.notebaert@ugent.be 

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.09.574803doi: bioRxiv preprint 

mailto:nicoleta.prutean@ugent.be
luc.vermeylen@kuleuven.be
mailto:nanne.kukkonen@ugent.be
mailto:susannetabitha.steendam@ugent.be
mailto:joshua.eayrs@ugent.be
mailto:ruth.krebs@ugent.be
mailto:roeljan.wiersema@ugent.be
mailto:eliana.vassena@donders.ru.nl
mailto:nico.boehler@ugent.be
mailto:wim.notebaert@ugent.be
https://doi.org/10.1101/2024.01.09.574803
http://creativecommons.org/licenses/by/4.0/


The present experiment was pre-registered with Preregistration Template from 

AsPredicted.org. The study data and materials are available on Open Science Framework 

(https://osf.io/t3bnx/). These findings were presented as a poster at the 2023 Motivation and 

Cognitive Control conference in Lyon, France. This work was supported by a concerted 

research project awarded to R.M.K, C.N.B., W.N., and J.R.W. (Special Research Fund Ghent 

University, Grant number BOF20-GOA-004). 

Declarations of interest: none. 

 

Authors contribution 

N.P. – Conceptualisation, Methodology, Formal analysis, Investigation, Writing – Original 

draft, Visualisation; L.V. – Conceptualisation, Methodology, Formal analysis, Writing – 

review and editing; N.K. – Conceptualisation, Writing – review and editing; S.T.S – 

Conceptualisation, Writing – review and editing; J.E. – Conceptualisation, Writing – review 

and editing; R.M.K – Conceptualisation, Writing – review and editing, Funding acquisition; 

J.R.W –  Conceptualisation, Writing – review and editing, Funding acquisition; E.V. – 

Conceptualisation, Writing – review and editing; N.C.B - Conceptualisation, Writing – 

Original draft,  Funding acquisition, Supervision; W.N – Conceptualisation, Methodology, 

Writing – Original draft, Project administration, Funding acquisition, Supervision. 

 

 

Abstract 

Current theories propose that mental effort is invested only when the anticipated benefits, such 

as rewards, outweigh the associated costs, like task difficulty. Yet, it remains unclear whether 

this motivational and mitigating aspect of reward processing is reflected in the evaluation of 

reward/difficulty cues as such, and to what extent it depends on task experience. In a pre-
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registered experiment (N=84), we used the affect misattribution procedure (AMP) to gauge 

affective evaluations of nonword cues predicting reward and task difficulty levels. Contrary to 

previous studies, the AMP was administered at the outset, after cue instructions, and after the 

cues were used in a random dot motion (RDM) task. Compared to baseline, cues predicting a 

larger reward were evaluated more positively after RDM task experience, and most 

importantly, already after cue instructions, with no difference between the two phases. This 

evaluative effect manifested in increased performance after larger reward cues in the RDM 

task. Our results suggest that AMP effects may generally capture performance expectations 

which are independent of task experience. Importantly, these instructed expectations of reward 

and difficulty play a crucial role in the evaluation and subsequent investment of mental effort.  

 

Keywords: Cognitive effort, affective evaluation, decision making, cognitive control. 
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1. Introduction 

 

Our modern daily lives consist of many mental challenges, ranging from minor tasks 

like remembering to pick up groceries to some bigger tasks like revising a scientific paper. This 

latter task demands considerable mental effort and is typically perceived as a negative 

experience. However, this perception can shift when reward is looming, as it happens, for 

example, when we are about to publish a paper that might be important for our future academic 

career (the reward). In this scenario, the potential reward is evaluated as positive and this 

counterbalances the initial negative evaluation of the effort involved.  

While this scenario is familiar, extensive research in the fields of neuroeconomics (e.g.,  

Westbrook et al., 2013), cognitive (e.g., Kool et al., 2010; Kukkonen et al., 2023) and 

computational neuroscience (Grahek et al., 2023; Shenhav et al., 2013, 2021; Silvestrini et al., 

2023; Verguts et al., 2015) is currently focused on comprehending the precise mechanisms 

underlying how, why, and when we feel motivated to invest mental effort. Researchers concur 

that mental effort comes with an intrinsic cost, whether it be metabolic (Baumeister & 

Heatherton, 1996; Holroyd, 2015), computational (Shenhav et al.; Silvetti et al., 2018) or 

related to missed alternative opportunities (Kurzban et al., 2013). Nevertheless, people exert 

effort whenever potential benefits (e.g., rewards) outweigh the associated costs. This implies 

that effort investment is preceded by a preliminary evaluative phase, during which anticipated 

benefits are evaluated more positively, mitigating the challenges of investing mental effort.  

According to the expected value of control theory (EVC, Shenhav et al., 2013; 2017), 

effort investment is the result of integrating information about costs and benefits from both 

external (e.g., cues, instructions, learned contingencies) and internal sources of information 

(e.g., motivational state). For example, when task difficulty and reward are cued on each trial, 

participants (obviously) perform worse on hard tasks, but they perform better on those trials 
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when large rewards are available (Vassena et al., 2019, Experiment 1; see also Krebs et al., 

2012; Schevernels et al., 2014). Moreover, when given the choice to perform tasks with 

different levels of difficulty and rewards, participants prefer easy tasks, but accept hard tasks 

more often if a larger reward is at stake (Vassena et al., Experiment 2; Westbrook & Braver, 

2013). These results highlight the efficacy of incentives in stimulating motivation, intended as 

goal-directed behaviour aimed at minimising costs and maximising benefits (Berridge, 2004). 

However, Berridge & Robinson (2003) emphasize that there exists a separate and distinct 

(neural) process related to the affective experience tied to a reward (8liking9), which is different 

from the motivation or drive induced by reward prospects (8wanting9). For instance, whilst the 

dopaminergic mesolimbic system has been related to motivated behaviour (e.g., Berridge & 

Robinson, 1998; Krebs et al., 2012; Vassena et al., 2014), its activation or suppression does not 

influence the liking component (Peciña et al., 1997). In the same vein, Devine et al., 2023 have 

shown 8liking9/8disliking9 facial expressions (i.e., decreased/increased corrugator activity, 

respectively) in response to difficulty and reward cues and during task execution, but in the 

absence of any reward modulation of actual task performance. If trial-by-trial affective 

reactions to reward (8liking9) are independent of task performance (8wanting9), it remains to be 

seen whether affective evaluations leading to effort investment reflect broader expectations of 

reward and difficulty prior to task exposure.  

In the current study, we used the affect misattribution procedure (AMP; Payne et al., 

2005) to measure the affective value of reward and difficulty cues before and after experiencing 

their predictive value in a separate task. Similar to other paradigms (e.g., 8affective priming9 in 

Fazio, 2001), the AMP allows estimation of the affective value of a stimulus. In this procedure, 

participants have to judge targets preceded by primes as pleasant/unpleasant. Crucially, the 

target is intended to be an ambiguous stimulus (e.g. a Chinese pictograph presented to non-

Chinese-speaking participants), lacking any intrinsic value. On the contrary, the primes are 
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thought to have an affective dimension, which becomes misattributed (Payne & Lundberg, 

2014) to the contiguous target (AMP effect). Vermeylen et al. (2019, 2022) used the AMP to 

demonstrate that cues predicting (more effortful) task switches were evaluated as more 

negative compared to repetition cues after a task-switching paradigm (Monsell, 2003). 

Moreover, participants who were worse on switch trials also evaluated the switch primes more 

negatively, suggesting that the evaluation depended on participants9 experience during the task 

switching paradigm. Interestingly, Van Dessel et al. (2020) showed that mere cue instructions, 

without actual task experience, are sufficient to elicit a similar AMP effect of task switching 

cues. However, in their experiment, AMP was measured after participants had completed a 

short task switching block (although with different cues). Even though it is not possible to 

exclude any impact of experience on the effect, their experiment suggests that expectations 

based on solely instructions can have a role in the affective evaluation of anticipatory task cues.  

Our participants performed a random dot motion task (RDM; Rajananda et al., 2018), 

which allows subtle and individually tailored manipulations of task difficulty. In our task, 

participants responded to the motion direction of a cloud of dots moving coherently towards 

the left or right against a random dot motion background. Task difficulty was determined by 

the percentage of dots moving coherently, and it was adjusted individually through a staircase 

procedure to ensure a consistent level of performance across participants. Crucially, we 

manipulated reward prospect as well to measure their positive impact on mental effort 

evaluation and subsequent investment. Bidimensional nonword cues (e.g., 8OXEYA9) 

prospecting task difficulty (easy or hard) and reward (small or large) were presented before 

each RDM trial. We then used the cues as primes to measure the evaluation (AMP) at the 

beginning of the experiment to account for any a-priori bias in pictograph evaluations (AMP 

baseline), after being instructed on the meaning of the cues, but in the absence of any task 
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experience (AMP instruction), and after experiencing the predictive value of cues in the RDM 

task (AMP experience). 

In the RDM task, we anticipated better performance when large rewards were 

prospected compared to small rewards (i.e., reward effect) and on easy trials compared to hard 

trials (i.e., difficulty effect). Moreover, we predicted a more pronounced impact of reward 

prospects on hard trials, with participants exhibiting their poorest performance when 

anticipating a small reward for a hard trial (i.e., interaction, as in Vassena et al., 2019).  We 

hypothesized that the impact of reward prospects on performance (and potential interaction 

with difficulty) would also be reflected in their evaluations of those cues. Specifically, we 

expected more negative evaluations for cues prospecting small compared to large rewards (i.e., 

reward effect), for hard compared to easy trials (i.e., difficulty effect), and that even more so if 

for a small reward (i.e., interaction; AMP effects). In line with previous studies (Vermeylen et 

al., 2019; 2022), we anticipated AMP effects after experience with the cues in the RDM task 

(AMP experience vs AMP baseline), but, crucially, also based on solely cue instructions (AMP 

instructions vs AMP baseline).  

The hypotheses and methods of the current study were preregistered at 

https://osf.io/nxdvh.   

 

2. Methods 

2.1. Participants  

Our initial sample consisted in 100 participants recruited through SONA system at 

Ghent University (www.ugent.sona-systems.com)1 in exchange for a monetary compensation 

 
1 We deviated from our pre-registration and instead of following a Bayesian sequential 

sampling design with an ultimate stopping rule at 100 participants, for practical constraints, 

we directly collected data from 100 participants to maximise the power of our analyses. 
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(13 euro as base payment + up to 7 euro reward based on performance). All participants were 

required to be between 18-35 years old, right-handed, have normal or corrected-to-normal 

vision, no history of psychiatric/neurological disorders, and no knowledge of Chinese 

characters. After applying our exclusion criteria (see Pre-processing paragraph below), 84 

participants remained (of which 68 females, Mage = 22.5, SDage = 3.6). 

 

2.2. Stimuli and procedure 

 

Figure 1 

Illustration of experimental procedure 

 

 

Note. Example of trial sequences in different experimental phases. Participants performed a 

first AMP before learning the meaning of the cues (AMP baseline). In that phase, catch trials 

tested the identity of the just-displayed cue rather than its meaning. Afterwards, participants 

learned the meaning of cues through an active learning phase, after which the AMP was 
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administered again (AMP instructions). Finally, participants completed the RDM task and the 

AMP again (AMP experience). 

Participants completed the AMP in three different phases: with meaningless nonword 

cues as primes (AMP baseline), after being instructed (cue instruction phase) on the 

reward/difficulty prediction of the nonword cues (AMP instructions), and after experiencing 

the predictive value of the cues in a RDM task (AMP experience). At the end of the experiment, 

they filled in some questionnaires measuring individual differences (see below).  

In each affect misattribution procedure (Figure 1, left panel), 80 pseudo Chinese 

pictographs (randomly generated via http://generator.lorem-ipsum.info/_chinese) were used as 

targets, and were repeated twice across 4 different blocks (160 trials). Given that people tend 

to associate positive concepts with their dominant body side (Casasanto, 2009), participants 

were asked to evaluate the targets as rather unpleasant or pleasant by pressing the C or N keys 

respectively, with their left or dominant hand. Targets were preceded by non-word cues 

(<AFUBU=, <YOVIN=, <OXEYA= or <UPUSU=), which were previously rated as neutral by 

an independent sample (Mertens et al., 2018) and used in the same paradigm (Van Dessel et 

al., 2020; Vermeylen et al., 2019, 2022). Cues were randomly associated with pictographs and 

evenly presented (40 trials each). Each trial started with a fixation cross (500 ms), followed by 

the cue prime (400 ms), the target pictograph (until response or max 2000 ms) and an interval 

(500 ms). To ensure that the cues were processed, ~ 10% of the trials were catch trials. On 

those trials, instead of evaluating the pictographs, participants had to select among two options 

the one corresponding to the just-presented cue identity (AMP baseline) or cue 

difficulty/reward prediction (AMP instructions, AMP experience). AMP baseline was 

preceded by a short practice phase of 24 trials. 
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In the cue instruction phase (Figure 1, central panel), participants learned about the 

correspondence between the nonword cues and a combination of reward (small or large) and 

difficulty (easy or hard) levels (counterbalanced between participants). To strengthen the 

instructions, they were presented across 24 trials with a two-option display probing one 

dimension of the cue. For example, if the cue anticipated a <hard, small reward= and the reward 

dimension was probed, they had to select between <small= and <large= options by pressing the 

C or N key. Each of these trials started with a fixation cross (500 ms), the cue (1500 ms), the 

two-options display (until response or max 3000 ms) and an interval (500 ms). On a final test 

of 8 trials, they had to reach 100% accuracy or repeat the test again for a maximum three times 

after which they could not continue the experiment. 

The RDM task (Figure 1, right panel) consisted of 160 trials presented across 4 blocks. 

Each trial started with a fixation cross (500 ms), cue (1500 ms), random dot motion target (until 

response or max 1000 ms), feedback (1000 ms), and an interval (500 ms). The target was a 

dynamic display with a percentage of dots moving coherently towards left or right against a 

random dot motion background. Participants had to respond to the coherent motion direction 

by pressing the C or N key respectively. Crucially, the target was preceded by one of the 

instructed cues predicting difficulty and reward levels of each trial (40 trials each). The 

difficulty of the task (percentage motion coherence) was adjusted per subject during practice 

through a staircase procedure converging to 70% accuracy. The resulting coherence was used 

for the hard level (M=16% coherence, SD=8% coherence), and it was doubled for the easy 

level. The reward was based on points system (1 point = small reward, 10 points = large reward) 

which was converted to money at the end of the task (max 7 euro, M=5.82, SD=0.68). 

Participants received points feedback on each trial (+1, +10, 0) and at the end of each block to 

keep track of their reward. To promote cue processing, ~10% of catch trials probed their 

understanding of either the reward or difficulty level at stake.  
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The questionnaires administered at the end of the experiment measured individual 

tendencies to engage and enjoy cognitively demanding tasks (Need For Cognition, NFC, 

Cacioppo & Petty, 1982), individual tendencies to avoid aversive outcomes and approach goal-

oriented outcomes (Behavioral Inhibition System/Behavioral Activation System, BIS/BAS, 

Carver & White, 1994), individual differences in state and trait anxiety (State-Trait Anxiety 

Inventory, STAI, Spielberger, 1983), and individual traits of impulsivity and inattention (Adult 

ADHD Self Report Screen Scale for DSM-5, ASRS-5, Ustun et al., 2017).  

 

2.3. Data analysis 

2.3.1. Preprocessing 

From the initial sample (N=100), 1 participant was excluded due to a server error, for 

which data was not recorded correctly. We then excluded participants who performed below 

chance level in response to RDM displays or catch trials in either AMP phase (N=11) or RDM 

task (N=1). Chance levels were determined by separate binomial tests. We further excluded 

those who displayed a judgment bias (> 90% negative or positive in either AMP phase as in 

Vermeylen et al., 2019; N=3). We analysed data from the remaining 84 participants. For RT 

analyses we excluded errors, post-error trials, trials with responses faster than 200 ms and trials 

with responses slower or faster than 2.5 SD from the mean RT computed per subject and cue 

condition. RT were log-transformed before analyses. For the accuracy analyses we excluded 

trials preceded by an error. For analyses on AMP task, we excluded trials faster than 200 ms.  

 

2.3.2. Statistical models 

The main statistical analyses were conducted using Bayesian mixed effects models with 

brms package (Bürkner, 2021) in R (R Core Team, 2022). For exploratory correlations, Bayes 

Factors were computed with BayesFactor package. 
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For the main analysis on AMP data, we ran a model predicting pleasantness of judgements 

based on phase (3; AMP baseline, AMP instructions, AMP experience), and cue predictions of 

difficulty (2; easy, hard) and reward (2; small, large). We included random slopes for phase, 

difficulty and reward and their interaction per participant. To test our hypotheses, we coded 

our contrasts to compare AMP experience vs AMP baseline (Phase3vs1 contrast) and AMP 

instructions vs AMP baseline (Phase2vs1 contrast). Pleasantness of judgements was modelled 

with Bernoulli distribution (logit link). 

For the analysis on RDM data, we ran separate models predicting RT and accuracy 

based on cue predictions of difficulty (2; easy, hard) and reward (2; small, large). We included 

random slopes for difficulty and reward and their interaction per participant. Log-transformed 

RTs were modelled with Gaussian distribution (identity link), and accuracy was modelled with 

Bernoulli distribution (logit link). 

For exploratory analyses of individual differences, we included z-transformed scores 

on questionnaires as continuous predictors in the previous models. Simple correlations between 

subject means in AMP/RDM performance and subject scores on questionnaires were also run. 

The relationship between AMP effects and RDM performance was also investigated by the 

means of correlations. 

For all of our analyses we reported the probability of direction (pd) and 95% credible 

intervals (95% CI) excluding 0 to infer existence and significance of effects, respectively, as 

suggested by Makowski et al., 2019.  

3. Results 

3.1. Performance in cued RDM task  

As shown in Figure 2, participants were more accurate (Difficulty, b = -1.36, 95% CI 

[-1.56, -1.18], pd = 100%) and faster (Difficulty, b = -0.08, 95% CI [-0.09, -0.07], pd = 100%) 

on easy trials compared to hard trials. More importantly, they were more accurate on large 
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rewards trials compared to small reward trials (Reward, b = 0.13, 95% CI [0.03, 0.23], pd = 

99.5%), with no concomitant effect on response times (Reward, b = -0.00, 95% CI [-0.01, 0.01], 

pd = 50%). The main effects did not interact, neither in accuracy (Difficulty x Reward (b = -

0.04, 95% CI [-0.26, 0.16], pd = 65.3%) nor response times (Difficulty x Reward (b = -0.00, 

95% CI [-0.01, 0.01], pd = 55%). 

 

Figure 2 

Accuracy and Reaction times results in the RDM task 
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Note. Percentage of correct responses (top) and reaction time measurements (bottom) in 

response to trials prospecting reward and difficulty cues in the RDM task. Error bars 

represent 95% credible intervals. 

 

3.2. Affective evaluation of cues in AMP 

In our main preregistered analysis, we tested whether the AMP effect was already 

present after being instructed on the meaning of the cues or only after experiencing them in a 

separate task compared to baseline. Results showed no main effects. However, as illustrated in 

Figure 3, more negative evaluations were observed for small rewards versus large rewards 

already after AMP instructions (Phase2vs1 x Reward, b = 0.11, 95% CI [0.03, 0.15], pd = 98%) 

as well as after AMP experience compared to baseline (Phase3vs1 x Reward, b = 0.08, 95% CI 

[0.00, 0.16], pd = 100%). These two-way interactions between reward and phase were not 

modulated by difficulty in either contrast (Phase2vs1 x Reward x Difficulty, b = 0.01, 95% CI 

[-0.05, 0.06], pd=60%; Phase3vs1 x Reward x Difficulty, b = -0.02, 95% CI [-0.07, 0.03], pd 

= 75%).  

As an exploratory analysis, we wanted to see whether participants significantly changed 

their evaluations after having experienced the cue in the task compared to instructions only. 

We subtracted the baseline means per condition from the respective means of the other two 

phases and ran a Phase (2; AMP instructions vs AMP experience) x Reward (2; small vs large) 

x Difficulty (2; easy vs hard) Bayesian ANOVA. Results revealed evidence for a reward effect 

(BF10 = 10) against an intercept only model, independent of phase or difficulty conditions (0.3 

<BFs < 1). 

 

Figure 3 

AMP results  
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Note. Percentage of positive evaluations of cues prospecting reward and difficulty levels at 

baseline (before cue instructions or experience), after instructions of cues, and after experience 

of cues in the RDM task. Error bars represent 95% credible intervals. 

 

3.3. Individual differences in the affective evaluation of cues 

We hypothesised a positive correlation between the reward effect observed on accuracy 

in the RDM task and the reward effect in either AMP instruction or AMP experience. However, 

the analyses did not find any evidence for such correlations (all BF10 < 3). 

Likewise, implementing questionnaires scores in models analysing RDM or AMP 

performance did not show any evidence for an impact of either need for cognition, tendency to 

approach/avoid goal-oriented outcomes, trait or state anxiety nor traits of impulsivity and 

inattention on reward effects (all CIs included 0). 

Finally, simple correlations between averaged means per subject between questionnaire 

scores did not show any effect (all BF10 <1)2.  

 
2 We observed a positive correlation between the AMP effect (after instructions as well as after experience) and 

scores on NFC questionnaire (BF=4.81 and BF=8.96, respectively). However, the correlation disappeared 

(BF=0.61, and BF=0.33, respectively) when outliers were accounted for (+-2.5 SD; N=3).  
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4. Discussion 

 

In this pre-registered study, we investigated whether large reward expectations are 

affectively evaluated more positively and mitigate difficulty expectations even in the absence 

of task experience. To this end, we measured affective evaluations (AMP) of cues prospecting 

reward and difficulty levels immediately after cue instructions (i.e., without task experience; 

AMP instructions) as well as after engagement in a random dot motion task (RDM), and we 

contrasted these conditions to a baseline measurement (AMP baseline), in which the cues were 

just meaningless nonwords. Compared to baseline, we expected to observe more negative 

evaluations of small reward cues (possibly even more so on hard trials) not only after task 

experience (as expected based on Vermeylen et al., 2019; 2022), but, crucially, also 

immediately after instructions.  

Performance in the RDM task confirmed that our difficulty manipulation was 

successful and that participants paid attention to, and adapted their performance based on cue 

prospects. In line with previous research investigating the effects of motivation on mental effort 

investment, participants were more accurate on trials prospecting a large reward compared to 

a small reward (e.g., Frömer et al., 2021; Kukkonen et al., 2023; Otto & Vassena, 2021). 

However, reward did not mitigate the effect of task difficulty (no cost/benefit trade-off), nor 

did it have an impact on reaction times, possibly due to the nature of the task. The RDM task 

requires participants to accumulate evidence on the global motion direction, and performance 

is more dependent on the amount of available information (i.e., data-limited) than on the 

resources allocated to the task (i.e., resource-limited, as can be e.g. an arithmetic task; Norman 

& Bobrow, 1975). On the one hand, hard conditions in data-limited tasks could have overall 

been experienced as less aversive and therefore less subjective to the cost-benefit trade-off. On 

the other hand, evidence accumulation could have counteracted a possible speeding effect after 

large reward cues. Regardless of whether participants invested more effort when a larger 
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reward was prospected or simply adapted their performance strategy, results in the RDM task 

confirm that participants used reward cues throughout the task to adjust performance.  

Our analyses on their affective evaluations showed that this performance benefit was 

accompanied by more positive judgements of large reward cues compared to small reward 

cues. Crucially, compared to baseline measurements, the effect was present both following 

instructions on the meaning of the cues (AMP instructions) and after participants had 

experienced the predictive values of cues in the RDM task (AMP experience), with no 

difference between these two phases. To the best of our knowledge this is the first study to 

show evaluative effects of reward anticipations in the absence of any task experience. For 

instance, Van Dessel et al., (2020) observed AMP effects on task switching/repetition cues if 

participants had a short experience of the task with another pair of cues (Experiment 3, Group 

2), whereas the effect disappeared when AMP was measured immediately on the first set of 

cues, in the absence of any experience (Experiment 3, Group 1). Importantly, the cues in Van 

Dessel et al., referred to more abstract 8switching9 and 8repetition9 experiences, for which a 

short task practice might be necessary. On the contrary, in our experiment, the cue instructions 

referred to task difficulty and possible reward gains, which are concepts participants had 

already learned outside the experimental context. Indeed, a prerequisite for rewards to acquire 

affective value and motivational salience is to first learn about relationships among stimuli and 

consequences of actions (Berridge & Robinson, 2003). We are constantly motivated by the 

prospect of reward – kids get a cookie when we they finish the vegetables, adults get 

promotions when they work harder – therefore, it is not surprising that a reward cue is 

appreciated even in the absence of a specific task. Similar to our study, Van Dessel et al., (2017)  

showed evaluative effects based on instructions for nonwords indicating approach or avoidance 

behaviours, which represent typical and adaptive action tendencies in the presence of positive 

or negative stimuli, respectively (Phaf et al., 2014).  
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Nevertheless, we did not observe a comparable evaluative effect for task difficulty as 

we did with reward cues. We can only speculate about the cause of this asymmetry, but we 

assume the relative saliency of both dimensions might differ. Participants were informed from 

the outset about the possibility of winning a concrete amount of reward (up to 7 extra euros), 

whereas the instructions regarding task difficulty (i.e., motion coherence) were less tangible 

and therefore potentially less salient. In addition, previous behavioural and computational 

modelling results suggest that in general participants prioritise reward over difficulty 

information when both are simultaneously cued (Vassena et al., 2019).  

Taken together, the data suggest that instructed beliefs (on top of previously learned 

expectations) play a crucial role in the evaluation process preceding mental effort investment. 

As expected, experiencing the predictive value of cues in a short task did not modulate (i.e., 

strengthen) the affective evaluation of reward cues. Previous studies measuring the AMP only 

after task experience showed that affective evaluations can correlate with performance in the 

main task (Van Dessel et al., 2020; Vermeylen et al., 2019), but not always (Vermeylen et al., 

2022). The lack of a consistent correlation, which we also observed in our study, might be 

attributed to AMP capturing instructed beliefs that remain independent of and unchanged by 

task experience. Future studies should further investigate whether AMP measurements after 

task experience (vs. instructions only) are affected and correlate with task performance when 

more salient manipulations of task difficulty and rewards are used.  

Finally, our findings inform existing theories of mental effort investment, such as the 

EVC, which conceives mental effort as the outcome of an evaluative process weighing costs 

and potential benefits (Shenhav et al., 2013, 2017). A previous study (Devine et al., 2023) has 

shown that actual effort investment (as indexed by task performance) is independent from trial-

by-trial affective reactions to reward and difficulty cues. Our study contributes by suggesting  

that affective evaluations and subsequent effort investment may reflect broader instructed 
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expectations related to reward and task difficulty. These evaluations may remain relatively 

stable and show minimal updates during task performance or even after it. Our suggestion 

aligns with other studies demonstrating that continuously adapting effort signals on trial-by-

trial reward and difficulty information is resource-intensive akin to the costs associated with 

task switching (Grahek et al., 2022), and that participants rather maintain an effort signal based 

on block instructions (Kukkonen et al., 2023).  

In conclusion, the current study demonstrates for the first time that affective evaluations 

of reward and difficulty cues (even after task experience) are primarily influenced by instructed 

expectations related to a task set (e.g., potential rewards, perceived difficulty9s salience) before 

any actual task exposure. Importantly, these instructed expectations significantly impact the 

evaluation and subsequent investment of mental effort. 
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