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Abstract 

Techniques that enable precise manipulations of subsets of neurons in the fly central nervous 
system have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 
driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. 
We describe here a collection of 3063 lines targeting a range of cell types in the adult 
Drosophila central nervous system and 1020 lines characterized in third-instar larvae. These 
tools enable functional, transcriptomic, and proteomic studies based on precise anatomical 
targeting. NeuronBridge and other search tools relate light microscopy images of these split-
GAL4 lines to connectomes reconstructed from electron microscopy images. The collections 
are the result of screening over 77,000 split hemidriver combinations. In addition to images and 
fly stocks for these well-characterized lines, we make available 300,000 new 3D images of 
other split-GAL4 lines. 


Introduction 

The ability to manipulate small subsets of neurons is critical to many of the experimental 
approaches used to study neuronal circuits. In Drosophila, researchers have generated genetic 
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lines that express an exogenous transcription factor, primarily GAL4, in a subset of neurons 
(Griûth 2012; Venken et al., 2011). The GAL4 protein then drives expression of indicator or 
eûector genes carried in a separate UAS transgenic construct (Fischer et al., 1988; Brand & 
Perrimon, 1993). This modular approach has proven to be very powerful but depends on 
generating collections of lines with reproducible GAL4 expression limited to diûerent, specific 
subsets of cells. In the 1990s, so-called enhancer trap lines were the method of choice (Bellen 
et al., 1989). In this method, a GAL4 gene that lacks its own upstream control elements is 
inserted as part of a transposable element into diûerent genome locations where its expression 
might come under the control of nearby endogenous regulatory elements. However, the 
resultant patterns were generally broad, with expression in hundreds of cells, limiting their use 
for manipulating specific neuronal cell types (Manseau et al., 1997; Yoshihara & Ito, 2000; Ito et 
al., 2003).


The FlyLight Project Team (https://www.janelia.org/project-team/flylight) was started to address 
this limitation with the overall goal of generating a large collection of GAL4 lines that each 
drove expression in a distinct small subset of neurons—ideally individual cell types. Many labs 
studying the upstream regulatory elements of individual genes in the 1980s and 1990s had 
observed that short segments of DNA located upstream of protein coding regions or in introns, 
when assayed for enhancer function, frequently drove expression in small, reproducible 
subsets of cells (see Levine and Tjian 2003). Pfeiûer et al. (2008) developed an eûcient strategy 
for scaling up such assays of individual DNA fragments and showed that a high percentage of 
2-3 kb genomic fragments, when cloned upstream of a core promoter driving GAL4 
expression, produced distinct patterns of expression. Importantly, these patterns were much 
sparser than those observed with enhancer traps (Pfeiûer et al., 2008). The approach also took 
advantage of newly developed methods for site specific integration of transgenes into the 
genome (Groth et al. 2004), which facilitated the ability to compare constructs by placing them 
in the same genomic context. FlyLight was established in 2009 to scale up this approach. In 
2012, the project reported the expression patterns produced by 6,650 diûerent genomic 
segments in the adult brain and ventral nerve cord (Jenett et al., 2012) and later in the larval 
central nervous system (CNS; Li et al., 2014). In the adult central brain, we estimated that this 
'Generation 1' (Gen1) collection contained 3,850 lines in which the number of labeled central-
brain neurons was in the range of 20 to 5,000. These GAL4 driver lines and a collection of 
similarly constructed LexA lines have been widely used by hundreds of laboratories. However, 
we concluded that less than one percent of our lines had expression in only a single cell type, 
highlighting the need for a better approach to generating cell-type-specific driver lines.


To gain more specific expression the project turned to intersectional methods. These methods 
require two diûerent enhancers be active in a cell to observe expression of a functional GAL4 
transcriptional activator in that cell. We adopted the split-GAL4 approach that was developed 
by Luan et al. (2008) and subsequently optimized by Pfeiûer et al. (2010) in which an enhancer 
drives either the activation domain (AD) or the DNA binding domain (DBD) of GAL4 (or 
optimized alternatives) in separate proteins. When present in the same cell the proteins 
carrying the AD and DBD domains, each inactive in isolation, dimerize to form a functional 
GAL4 transcription factor. 


The work of Jenett et al. (2012) described the expression patterns of thousands of enhancers. 
Using these data, anatomical experts could identify Gen1 enhancers that express in the cell 
type of interest and cross flies that express the AD or DBD half of GAL4 under the control of 
two of the same enhancers and observe the resultant intersected expression pattern. Large 
collections of such AD or DBD genetic drivers, which we refer to as hemidriver lines, were 
generated at Janelia (Dionne et al., 2017) and at the IMP in Vienna (Tirian et al., 2017). In 
~5-10% of such crosses, the cell type of interest was still observed, but now as part of a much 
sparser expression pattern than displayed by either of the initial enhancers. In about 1-2% of 
these genetic intersections, expression appeared to be limited to a single cell type.
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At Janelia, early eûorts were directed at targeting neuronal populations in the optic lobes 
(Tuthill et al., 2013; Nern et al., 2015; Wu et al., 2016) and mushroom bodies (Aso et al., 2014). 
We were encouraged by the fact that we were able to generate lines specific for the majority of 
cell types in these populations. With the involvement of additional collaborating groups, the 
project was extended to several other CNS regions (Table 1). In our initial studies we relied on 
expert human annotators performing extensive visual surveys of expression data to identify 
candidate enhancers to intersect. More recently, two advances have greatly facilitated this 
process. First, we have developed computational approaches (Otsuna et al., 2018, Hirsh et al., 
2020, Mais et al., 2021, Meissner et al., 2023) to search databases of neuronal morphologies 
generated by stochastic labeling (Nern et al., 2015) of several thousand of the Jenett et al. 
(2012) and Tirian et al. (2017) GAL4 lines. Second, electron microscopy (EM) datasets (Scheûer 
et al., 2020; Cheong et al., 2023; Marin et al., 2023; Takemura et al., 2023) have provided 
comprehensive cell type inventories for many brain regions.


In this report, we summarize the results obtained over the past decade.


Results 

Cell-type-specific split-GAL4 line collection 

We describe here a collection of 3063 split-GAL4 lines targeting cell types across the 
Drosophila CNS. All lines were created in collaborations with the FlyLight Project Team at 
Janelia Research Campus from 2013 to 2023, based on examination of over 77,000 split 
combinations. 1036 lines were published previously and are drawn together here as part of the 
larger collection. Table 1 summarizes prior publications. The remaining 2001 lines in the 
collection are described in other in preparation manuscripts or newly reported here as shown in 
Figure 1 Supplemental File 1, which specifies proper citations and other line-specific 
information.


To confirm and consistently document the expression patterns of included lines, all were 
rescreened by crossing to a UAS-CsChrimson-mVenus reporter inserted in at a specific 
genomic location (attP18) (Figure 1; Klapoetke et al., 2014). At least one male and one female 
CNS were dissected, antibody labeled, and imaged per line. Expression patterns were 
validated by manual qualitative comparison to prior data, where available, and scored for 
specificity and consistency (see below and Methods). Male/female diûerences were observed 
in 104 of these 3063 lines, confirming previously reported sexual dimorphisms or suggesting 
potential areas for further study (Figure 1F; Figure 1 Supplemental File 1). For previously 
published lines, more image data is available at https://splitgal4.janelia.org. 


The lines were selected for inclusion based on several factors:

1) Diversity: Where cell type information was available, especially from comparison to EM 
volumes (Scheûer et al., 2020; Cheong et al., 2023; Marin et al., 2023; Takemura et al., 2023), 
we generally limited each cell type to the two best split-GAL4 lines, so as to cover a wider 
range of cell types. 

2) Specificity: 1724 lines were scored as highest quality, well suited to activation-based 
behavioral studies, with strong and consistent labeling of a single identified cell type and 
minimal detected oû-target expression (Figure 2A; Figure 1 Supplemental File 1). 1290 lines 
showed spatially segregated oû-target expression that doesn't interfere with neuron 
visualization for anatomy or physiology (Figure 2B; Figure 1 Supplemental File 1). A control line 
with minimal detected expression was also included. 
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3) Consistency: 46 lines were very specific but showed weaker or less consistent expression 
(Figure 2C; Figure 1 Supplemental File 1). These lines reveal anatomy but may be challenging 
to use for manipulations without examination of expression in each individual fly. 

4) Regions of interest: Lines were generated in collaboration with Janelia labs and collaborators 
studying particular CNS regions or classes of neurons. While this release includes many high-
quality lines across the CNS, most targeting eûorts were directed to regions of interest within 
the CNS (see below and Table 1). 


We examined the distribution of the cell type collection across the male and female CNS. To 
visualize the distribution, we aligned each image to a unisex template and segmented neuron 
patterns from rescreening images into a heat map (Figure 3). The cell type lines show neuronal 
expression across most of the CNS, with 98% of pixels having expression from at least 5 lines, 
94% with 10 or more lines, and 75% with 20 or more lines (Figure 3 Supplemental File 1). 
Prominently labeled areas include the fan-shaped body, lobula, and superior medial 
protocerebrum. Rarely labeled areas include the antennal lobe, anterior ventrolateral 
protocerebrum, and lateral accessory lobe. 


We compared the line distribution between female and male images (Figure 3C-D). We 
observed more female expression in the epaulette, anterior optic tubercle, and abdominal 
ganglion, and more male expression in the antennal mechanosensory and motor center, 
several regions of the mushroom body, and along the dorsal medial tract of the ventral nerve 
cord (VNC). Although the lines used for these comparisons are not a random sample, the areas 
of greatest diûerence are in the vicinity of known sexual dimorphisms (Cachero et al., 2010).


The collection of lines described above has been deposited with Bloomington Drosophila 
Stock Center for availability until at least August 31, 2026. Images and line metadata are 
available at https://splitgal4.janelia.org. Anatomical searching for comparison to other light 
microscopy (LM) and EM data is being made available at https://neuronbridge.janelia.org 
(Clements et al., 2021; Clements et al., 2022). 


Raw image data collection and analysis workflow 

In addition to the line collection described above, we describe a split-GAL4 image data 
resource. It consists of all good quality FlyLight split-GAL4 images and associated metadata 
generated in the project's first nine years of split-GAL4 characterization (Figure 1 Supplemental 
File 4). It includes additional data for the lines described above, together with data for many 
additional split-Gal4 combinations. Many of these represent lower quality lines that label 
multiple nearby cell types (Figure 2D and see below), but the image collection also includes 
additional high quality lines that were not chosen for stabilization or are currently not 
maintained as stable lines (for example, because of similarity to other lines in the collection).


FlyLight's analysis workflow consists of multiple related image-generating pipelines (Figure 4A-
B). Typically, we screened an "Initial Split" (IS) cross temporarily combining the two candidate 
split hemidrivers and reporter before building ("stabilizing") a genetically stable "Stable 
Split" (SS) line. IS and SS data with the same 5-6 digit code reflect the same combination of 
split hemidrivers. Some split-GAL4 lines use region-specific nomenclatures, with names 
prefixed by "MB" (mushroom body), "OL" (optic lobe), or "LH" (lateral horn), and label neurons 
within or nearby those regions. We examined about 77,000 IS crosses and after quick visual 
evaluation chose to image a fly CNS sample from about half of them. 36,033 such IS samples 
(individual flies) are included in this image collection (Figure 4C). About 10% of IS crosses were 
made into SS lines and imaged again, with 8,273 such lines included. 
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Further documentation of the full SS pattern at higher quality with varying levels of pre-synaptic 
labeling is generated by the Polarity pipeline (Aso et al., 2014; Sterne et al., 2021), followed by 
20x imaging and selected regions of interest imaged at 63x, with 37,409 such samples from 
7,039 lines included. Single neuron stochastic labeling by MultiColor FlpOut (MCFO; Nern, et 
al., 2015) reveals single neuron morphology and any diversity latent within the full SS pattern, 
with 54,807 such samples from 7,679 lines included in the image collection. 


In total the raw image collection consists of 46,653 IS/SS combinations, 129,665 samples 
(flies), 612,124 3D image stacks, and 4,371,364 secondary (processed) image outputs, 
together 192 TB in size. The IS data may be particularly valuable for work on understudied 
CNS regions, as it contains biological intersectional results (as opposed to computational 
predictions) that may have specific expression outside our regions of interest. 


Due to the size of the raw image collection, it has not undergone the same level of validation as 
our other image collections, and caution is recommended in interpreting the data therein. We 
believe it is nonetheless of overall good quality. The images are available at https://flylight-
raw.janelia.org and may be made searchable via NeuronBridge. For a further guide to 
interpreting the image data, see Figure 4 Supplemental file 1. 


Larval split-GAL4 line release 

We include 1020 split-GAL4 lines and 350 Generation 1 LexA lines selected for specific 
expression in the third-instar larval CNS (see Figure 1 Supplemental file 1). Nine more lines 
were in both the larval and adult lists. 


We selected larval lines based on the following criteria: 1) The projection pattern had to be 
sparse enough for individual neurons in a line to be identifiable; 2) The line had to be useful for 
imaging of neural activity or patch-clamp recording; and 3) the line had to be useful for 
establishing necessity or suûciency of those neurons in behavioral paradigms. We thus 
selected lines with no more than 2 neurons per brain hemisphere or per subesophageal zone 
(SEZ) or VNC hemisegment. When there are more neurons in an expression pattern, overlap in 
projections makes it hard to uniquely identify these neurons. Also, interpreting neural 
manipulation results in behavioral experiments becomes much more challenging. 


For Split-GAL4 and GAL4 lines, we therefore selected lines that had no more than 2 neurons 
per brain hemisphere or per SEZ or VNC hemisegment. If lines had sparse expression in the 
brain or SEZ but also had expression in the VNC (sparse or not), we nevertheless considered 
them useful for studying the brain or SEZ neurons because 1) the brain neurons could be 
identified; 2) the line could be used for imaging or patch-clamp recording in the brain; and 3) 
the split-GAL4 line could be cleaned up for behavioral studies, using teashirt-killer-zipper to 
eliminate VNC expression (Dolan et al., 2017). Similarly, lines that were sparse in VNC but dirty 
in the brain or SEZ were still useful for imaging and behavioral studies in the VNC, because a 
loss of phenotype following teashirt-killer-zipper could establish causal involvement of VNC 
neurons. For Lex-A lines, we included a few with 3 or more neurons per hemisphere or per 
hemisegment because there are fewer Lex A lines overall and they could still be used for 
functional connectivity studies.


The images of all of the selected lines will be made available at Virtual Fly Brain (VFB; https://
www.virtualflybrain.org/). In the future all of the neurons in these lines will be uniquely identified 
and linked to neurons reconstructed in the electron microscopy volume of the larval nervous 
system.
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Discussion 

This collection of cell-type-specific split-GAL4 lines and associated image resource is a toolkit 
for studies of many Drosophila neurons. The cell-type-specific line collection covers many 
identified cell types, and the images are being made instantly searchable for LM and EM 
comparisons at NeuronBridge, enabling selection of existing or new combinations of genetic 
tools for specific targeting based on anatomy. In total, the Janelia FlyLight Project Team has 
contributed 540,000 3D images of 230,000 GAL4, LexA, and split-GAL4 fly CNS samples. As of 
this publication, Janelia and Bloomington Drosophila Stock Center have distributed FlyLight 
stocks 300,000 times to thousands of groups in over 50 countries. We have also released 
standardized protocols for fly dissection and immunolabeling at the FlyLight protocols website 
https://www.janelia.org/project-team/flylight/protocols. 


Several caveats should be kept in mind when using these tools. Many split-GAL4 lines still 
have some oû-target expression (see Figure 2). It is always good practice to validate results 
using multiple lines labeling the same neurons. In most cases, the oû-target expression will not 
be present in multiple lines, supporting assigning a phenotype to the shared neurons. The less 
precise a set of lines, the more lines and other supporting evidence should be used. Diûerent 
eûectors and genomic insertion sites also vary in strength and specificity of expression and 
should be validated for each application (Pfeiûer et al., 2010; Aso et al., 2014). For example, 
MCFO images can have brighter single neurons than in full split-GAL4 patterns. UAS-
CsChrimson-mVenus allows for a direct correlation between labeling and manipulation that 
isn't available for every eûector. Fly age should also be controlled, as expression can vary over 
fly development, and eûectors may take time to mature after expression. 


Despite extensive eûorts, we have not developed specific lines for every cell type in the fly 
CNS. Moreover, the peripheral nervous system and the rest of the body were beyond the 
scope of this eûort. Our hemidrivers likely do not eûectively label some CNS cell types 
(discounting extremely broad expression), as they are based on Generation 1 collections that 
together may only label about half of all biological enhancers. As a rule of thumb, we estimate 
being able to use these tools to create precise split-GAL4 lines for one third of cell types, 
imprecise lines for another third, and no usable line for the remaining third of cell types. This 
often is enough to characterize key circuit components. Continued iteration with the existing 
toolset is expected to lead to diminishing returns on improved CNS coverage. 


An ideal toolkit with complete coverage of cell types with specific lines would require additional 
development. Capturing a full range of enhancers requires alternatives to our model of short 
genetic fragments inserted into a small number of genomic locations. Predicting enhancer 
combinations based on transcriptomic data and capturing them at their native location holds 
promise (e.g., Pavlou et al., 2016; Chen et al., 2023), though high-quality transcriptomics data 
with cell type resolution are not yet available for much of the CNS. Insertions throughout the 
genome bring their own challenges of unpredictable side-eûects, however, and specific 
targeting of every cell type remains a challenge. Further restriction by killer zipper, GAL80, Flp, 
or other intersectional techniques will likely remain an area of development (Pavlou et al., 2016; 
Dolan et al., 2017; Ewen-Campen et al., 2023). 


The Janelia FlyLight Project Team has achieved its goal of developing tools to study the 
Drosophila nervous system. The team and collaborators have delivered GAL4/LexA lines 
labeling many neurons, single-neuron images enabling correlation with EM and the prediction 
of split-GAL4 lines, this collection of cell-type-specific split-GAL4 lines, an image resource of 
many more split combinations, and a series of focused studies of the nervous system.
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Materials and methods 

Fly driver stocks: Included split-GAL4 driver stocks and references are listed in Figure 1 
Supplemental File 1. See Figure 4C for counts of driver stocks available from Bloomington 
Drosophila Stock Center. 


Fly reporter stocks: Rescreening of the cell type collection made use of a 20XUAS-
CsChrimson-mVenus in attP18 reporter (Klapoetke et al, 2014). Reporters for other crosses are 
listed in Figure 1 Supplemental File 4. 


Fly crosses and dissection: Flies were raised on standard cornmeal molasses food typically 
between 21 and 25 C and 50% humidity. Crosses with hs-Flp MCFO were at 21-22 C, except 
for a 10-60 minute 37 C heat shock. Other crosses were typically at 25 C for most of 
development and 22 C in preparation for dissection. Flies were typically 1-5 days old at 
dissection for the cell type collection rescreening, 1-8 days old for other non-MCFO crosses 
and 3-8 days old for MCFO. Dissection and fixation were carried out as previously described 
(Aso et al., 2014; Nern et al., 2015). Protocols are available at https://www.janelia.org/project-
team/flylight/protocols.


Immunohistochemistry, imaging, and image processing: Immunohistochemistry, imaging, 
and image processing were carried out as previously described (Aso et al., 2014; Nern et al., 
2015; Sterne et al., 2021; Meissner et al., 2023). Additional details of image processing, 
including source code for processing scripts, are available at https://data.janelia.org/pipeline. 
See Figure 4 Supplemental Figure 1 for a user guide to interpreting the image data. 


Cell type collection rescreening: If inconsistencies were observed in expression between 
rescreened images and older image data for a line, the cross was repeated. If still inconsistent, 
the other copy of the stock (all are kept in duplicate) was examined. If only one of the two stock 
copies gave the expected expression pattern, it was used to replace the other copy. Repeated 
problems with expression pattern, except for stochasticity within a cell type, were grounds for 
removal. If sex diûerences were observed, crosses were also repeated. Lines reported with sex 
diûerences showed the same diûerence at least twice. We could not eliminate the possibility of 
stock issues appearing as sex diûerences by coincidentally appearing diûerent between sexes 
and consistent within them. 


Line quality levels: Cell type lines were qualitatively scored by visual examination of averaged 
color depth Maximum Intensity Projection (MIP) CNS images (a version of Figure 1 
Supplemental File 2 with less image compression; Otsuna et al., 2018). Scores were applied as 
described in Figure 2. As images were taken from a variety of reporters, an eûort was made to 
discount background specific to the reporters, especially 5XUAS-IVS-myr::smFLAG in 
VK00005.  

Line distribution analysis: 3,029 cell type split-GAL4 lines were analyzed, each including 
images of one male and one female fly sample from rescreening. 6,215 brains and 6,213 VNCs 
were included. Images were aligned to the JRC2018 Unisex template (Bogovic et al., 2020) and 
segmented using Direction-Selective Local Thresholding (DSLT; Kawase et al., 2015). DSLT 
weight value, neuron volume percentage, MIP ratio against the aligned template, and MIP-
weight ratio were adjusted to refine segmentation. DSLT connected fragmented neurons with 
up to a 5 µm gap, enhancing neuronal continuity. Noise was eliminated and objects were 
separated into individual neurons using a connecting component algorithm. The algorithm 
distinguishes individual neurons by recognizing connected voxel clusters as distinct entities 
based on DSLT 3D segmentation, followed by removal of objects smaller than 30 voxels. 
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The segmentation produced 19,313 non-overlapping brain objects and 18,860 VNC objects, 
consisting of neurons, trachea, debris, and antibody background. Most non-neuronal objects 
and some very dim neurons were eliminated using color depth MIP-based 2D shape filters and 
machine learning filters, followed by visual inspection, yielding 12,737 brain and 10,238 VNC 
objects. Background was further manually removed from 74 brain objects using VVDViewer. 
Neuron masks were combined into a single volume heat map with a new Fiji plugin 
“Seg_volume_combine_to_heatmap.jar” (https://github.com/JaneliaSciComp/3D-fiber-auto-
segmentation/tree/main). Voxel brightness indicates the number of objects (at most one per 
line) within each voxel. 
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Table 1. Publications reporting split-GAL4 lines from the cell-type-specific collection. 

Publications are listed by year. The number of lines from the collection in each publication is 
listed, along with the CNS regions and/or cell types most commonly labeled. Many of these 
publications describe additional lines that were not included in the collection described here.


Publication DOI First author(s) Year

Split-

GAL4 

lines Anatomical region/cell types for lines

10.1002/cne.24512 Wolû 2018 46 Central complex

10.1016/j.cub.2019.01.009 Jovanic 2019 2 Larval anemotaxis & adult descending neuron

10.1016/j.cub.2020.07.083 Wang, Wang 2020 5 Descending neurons DNp13

10.1016/j.cub.2022.01.008 Namiki, Ros 2022 9 Descending neurons flight

10.1016/j.cub.2022.06.019 Baker 2022 28 Central brain AMMC, WED, AVLP, PVLP

10.1016/j.neuron.2013.05.024 Tuthill, Nern 2013 22 Lamina (optic lobe)

10.1016/j.neuron.2017.03.010 Strother 2017 9 T4 neurons & inputs (optic lobe)

10.1016/j.neuron.2017.05.036 von Reyn 2017 1 Lobula columnar neuron LC4 (optic lobe)

10.1016/j.neuron.2020.08.006 Turner-Evans 2020 2 Central complex

10.1016/j.neuron.2022.02.013 Klapoetke 2022 2 Lobula LC18 & LC25 neurons (optic lobe)

10.1038/nature24626 Klapoetke 2017 3 LPLC2 neurons & inputs (optic lobe)

10.1038/s41467-020-19936-x Feng 2020 80 Leg motor MDN targets

10.1038/s41586-020-2055-9 Wang, Wang 2020 10 Descending neurons oviDN

10.1038/s41586-020-2972-7 Wang, Wang 2021 7 Descending neurons vpoDN vpoEN

10.1038/s41586-023-06271-6 Vijayan 2023 2 Descending neurons oviDN

10.1101/2021.07.23.453511 Mais 2021 1 Central brain pC1e

10.1101/2021.11.03.467132 Longden 2021 1 L1 neurons (optic lobe)

10.1101/2022.12.14.520178 Zhao 2022 1 H2 neurons (optic lobe)

10.1101/2023.05.31.542897 Ehrhardt, Whitehead 2023 164 Dorsal VNC

10.1101/2023.06.07.543976 Cheong, Eichler, Stuerner 2023 9 VNC premotor

10.1101/2023.06.07.544074 Cheong, Boone, Bennett 2023 1 Ascending neurons flight

10.1101/2023.06.21.546024 Isaacson 2023 6 Lobula plate LPC & LLPC (optic lobe)

10.1101/2023.06.23.546330 Rubin 2023 21 Mushroom body output neurons

10.1101/2023.08.30.555537 Lillvis 2023 22 VNC song generation

10.1101/2023.09.15.557808 Shuai 2023 168 Mushroom body

10.1101/2023.10.16.562634 Zhao 2023 2 MeLp2 & LPi4b neurons (optic lobe)

10.1101/2023.11.29.569241 Garner, Kind 2023 5 Medulla to AOTU (MeTu) neurons (optic lobe)

10.1371/journal.pone.0236495 Bogovic 2020 1 Brain

10.25378/janelia.23726103 Minegishi 2023 52 Ascending neurons

10.7554/eLife.04577 Aso 2014 63 Mushroom body

10.7554/eLife.16135 Aso 2016 2 Mushroom body

10.7554/eLife.21022 Wu, Nern 2016 52 Lobula columnar neurons (optic lobe)

10.7554/eLife.24394 Takemura 2017 1 CT1 neurons (optic lobe)

10.7554/eLife.34272 Namiki 2018 137 Descending neurons

10.7554/eLife.43079 Dolan 2019 2 Lateral horn

10.7554/eLife.50901 Davis, Nern 2020 38 Optic lobe

10.7554/eLife.57685 Morimoto 2020 10 Central brain targets of lobula LC6 neurons

10.7554/eLife.58942 Schretter 2020 12 Central brain pC1d aIPg

10.7554/eLife.66039
Hulse, Haberkern, 

Franconville, Turner-Evans
2021 1 Central complex

10.7554/eLife.71679 Sterne 2021 67 Subesophageal zone

10.7554/eLife.71858 Kind, Longden, Nern, Zhao 2021 3 R7 & R8 photoreceptor targets (optic lobe)

Dionne et al., in prep Dionne 2024 79 Acessory medulla (optic lobe) and clock

Nern et al., in prep Nern 2024 326 Optic lobe

Rubin et al. in prep Rubin 2024 51 Anterior optic tubercle

Schretter et al. in prep Schretter 2024 4 Aggression circuit

Wolû et al., in prep Wolû 2024 270 Central complex

Previously unpublished 1263

Total 3063
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Figure 1. Example cell-type-specific lines. 

(A) Split-GAL4 line SS52577 is expressed in P-FNv neurons arborizing in the protocerebral 
bridge, fan-shaped body, and nodulus (Wolû & Rubin, 2018). 

(B) Split-GAL4 line MB043C is expressed primarily in PAM-³1 dopaminergic neurons that 
mediate reinforcement signals of nutritional value to induce stable olfactory memory for driving 
wind-directed locomotion and higher-order learning (Aso et al., 2014; Ichinose et al., 2015; Aso 
& Rubin, 2016; Aso et al., 2023; Yamada et al., 2023). 

(C) Split-GAL4 line SS40265 is expressed in members of the 8B(t1) cluster of cholinergic 
neurons that connect the lower tectulum neuropil of the prothorax with the gnathal neuropil and 
the ventral most border of the vest neuropil of the brain ventral complex. 

(D) Split-GAL4 line SS60203 is expressed in ascending neurons likely innervating the wing 
neuropil. 

(E) Split-GAL4 line SS47938 is expressed in LBL40, mediating backwards walking (Feng et al., 
2020; same sample used in Fig 5b, CC-BY license).

(F) Split-GAL4 line SS36564 is expressed in female-specific aIPg neurons (F1) and not 
observed in males (F2; Schretter et al., 2020).

(G) MCFO of split-GAL4 line SS72207 with specific expression in DNg34, a cell type described 
in Namiki et al., 2018. 

Scale bars, 50 µm. See Figure 1 Supplemental file 1 for more line information and Figure 1 
Supplemental file 2 for a movie of all cell-type-specific lines. 
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Figure 1 Supplemental file 1. Spreadsheet of cell-type-specific adult and larval split-GAL4 
lines. 

Lines are listed with available cell type annotations. Where applicable, entries specify the 
appropriate DOI or in preparation manuscript to cite. Cell type annotations and references will 
be updated after 'in preparation' manuscripts become public. 


Figure 1 Supplemental file 2. Movie of cell-type-specific adult split-GAL4 lines. 

Movie is a sequential display by line name of averaged color depth MIPs from rescreened and 
raw collection SS Screen and Polarity neuron channel images (Otsuna, et al., 2018). Images 
were overlayed on a 2D outline of JRC2018 and composited. 


Figure 1 Supplemental file 3. Spreadsheet of metadata for rescreened cell-type-specific adult 
split-GAL4 lines. 

Images are listed by fly sample. Related brain and VNC images from the same sample have the 
same slide code. Each sample lists its source line, full genotype, sex, etc. 


Figure 1 Supplemental file 4. Spreadsheet of image metadata for broad data release. 

Images are listed by sample as in Figure 1 supplemental file 3. Includes a tab detailing 
genotypes and other information for UAS and LexAop eûectors. 


 of 19 22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.09.574419doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574419
http://creativecommons.org/licenses/by/4.0/


Figure 2. Examples of line quality levels. 

The 3063 cell type lines were scored for expression. 

(A) Quality level 1 (1726 lines): Split-GAL4 line OL0015B (Wu, Nern, et al., 2016) is specifically 
and strongly expressed in a single cell type. Occasional weak expression may be seen in other 
lines. 

(B) Quality level 2 (1293 lines): Split-GAL4 line SS59643 (Wolû, et al., in prep) has expression in 
two unrelated cell types that are easily distinguished anatomically. Other lines may have more 
than two types. 

(C) Quality level 3 (46 lines): Split-GAL4 line SS45635 (Minegishi, et al., 2023) has specific 
expression but weak or variable labeling eûciency. 

(D) Quality level 4: IS36417 is an Initial Split combination not selected for stabilization. Groups 
of neurons are visible, but the cell type of interest was not labeled with suûcient specificity for 
further work. Such lines were only included in the raw image collection. 

Scale bars, 50 µm. 
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Figure 3. Spatial distribution of cell type lines. 

(A and B) Images of one male and one female sample from 3029 cell type rescreening lines 
were aligned to JRC2018 Unisex (Bogovic et al., 2020), segmented from background (see 
Methods), binarized, overlaid, and maximum intensity projected, such that brightness indicates 
the number of lines with expression in the (A) female and (B) male CNS. 

(C) Female image stack minus male, maximum intensity projected. 

(D) Male image stack minus female, maximum intensity projected.

All images were scaled uniformly to a maximum brightness equal to 300 lines on Fiji's "royal" 
LUT (scale inset in D). This saturated a small portion of the male antennal mechanosensory and 
motor center (AMMC) that reached a peak value of 491 lines per pixel, for the purpose of better 
visualizing the rest of the CNS. Scale bars, 50 µm. 


Figure 3 Supplemental file 1. Spreadsheet for coverage analysis.

3D histograms were calculated for the brain and VNC heatmaps in males and females. Percent 
coverage over a specified threshold was calculated. The brain was further subdivided into 
regions with individual histograms and weighted average coverage levels. )
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Figure 4. Split-GAL4 workflow and FlyLight data release statistics

(A) Typical workflow of predicting and characterizing split-GAL4 combinations. 

(B) Example with Split-GAL4 line SS23880 (Garner et al., 2023). 

(C) Summary of FlyLight adult fly line and image releases. Includes descriptions of Jenett et al., 
2012; Dionne et al., 2018; Tirian & Dickson, 2017; publications in Table 1; and stock distribution 
by Bloomington Drosophila Stock Center and Janelia Fly Facility. Section in green is specific to 
publications from Table 1 and this publication. Image counts are unique between categories, 
whereas line counts overlap extensively between categories. "Image tiles" are considered as 
unique 3D regions, with each MCFO tile captured using two LSM image stacks. Stock 
shipments count each shipment of each stock separately. Raw and processed images are 
available at https://www.janelia.org/gal4-gen1, https://gen1mcfo.janelia.org, https://
splitgal4.janelia.org, and many can be searched based on anatomy at https://
neuronbridge.janelia.org. 


Figure 4 Supplemental file 1. Guide to FlyLight data. 

A guide to interpreting the images at https://gen1mcfo.janelia.org and https://
splitgal4.janelia.org describes data organization, labeling, and imaging methods. Images at 
https://www.janelia.org/gal4-gen1 are processed as described in Jenett et al., 2012.
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