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Abstract

The Variant Call Format (VCF) is widely used in genome sequencing but scales poorly. For
instance, we estimate a 150,000 genome VCF would occupy 900 TiB, making it both costly and
complicated to produce and analyze. The issue stems from VCF’s requirement to densely
represent both reference-genotypes and allele-indexed arrays. These requirements lead to
unnecessary data duplication and, ultimately, very large files.

To address these challenges, we introduce the Scalable Variant Call Representation (SVCR). This
representation reduces file sizes by ensuring they scale linearly with samples. SVCR achieves
this by adopting reference blocks from the Genomic Variant Call Format (GVCF) and employing
local allele indices. SVCR is also lossless and mergeable, allowing for N+1 and N+K incremental
joint-calling.

We present two implementations of SVCR: SVCR-VCF, which encodes SVCR in VCF format,
and VDS, which uses Hail’s native format. Our experiments confirm the linear scalability of
SVCR-VCF and VDS, in contrast to the super-linear growth seen with standard VCF files. We
also discuss the VDS Combiner, a scalable, open-source tool for producing a VDS from GVCFs
and unique features of VDS which enable rapid data analysis. SVCR, and VDS in particular,
ensure the scientific community can generate, analyze, and disseminate genetics datasets with
millions of samples.

Introduction

The pipeline for high-throughput sequencing involves a series of datatypes and the
transformations between them:

Sequencing DNA to generate unaligned reads, often stored in a FASTQ.

Aligning to a reference genome to generate aligned reads, often stored in a BAM/CRAM.
Variant calling to generate genotype calls and metadata, often stored in a GVCF or VCE.
Joint calling to generate an analysis-ready genotype matrix, often stored in a PVCFE.

= LN

Sequencing, aligning, and variant calling are straightforwardly sample-parallel, but joint calling is
not. The latter necessarily combines multiple sample-oriented files into a single variant-oriented
matrix. In this paper, we focus exclusively on joint calling and its data formats.

As cohort sizes grew so did the challenge of combining many sample-major GVCFs into one
variant-major PVCEF. These challenges have motivated the development of new tools (e.g.
DRAGEN gVCF Genotyper, GLNexus), new representations (e.g. msVCEF, spvcf), new
compressors (e.g. popvcf), and new formats (e.g. Savvy, Genomic Variant Store, GLNexus’s
key-value store, GenomicsDB). These efforts draw from three approaches: sparsity of variant
genotypes, sparsity of alleles, and amenability to sample parallelism. In this paper, we describe
a framework which employs all three techniques to address the above challenges and yield
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exactly linear scaling of size in samples, sample parallelism in generation, incremental N+K
mergeability, and a plaintext VCF representation.

Formats and representations. The common representation of genomic sequences, Project VCF
(PVCEF), is untenable at scale. To see why, consider the addition of a single sample to a
sequencing dataset with N samples. PVCF requires, for every novel variant in the new sample,
an additional row containing one variant genotype and N homozygous reference genotypes.
Furthermore, each new allele that the N+1th sample introduces requires extension of existing
fields to account for the new allele. For instance, the first N samples’ allele depth (AD) fields need
anew “0” (no reads) entry for the new allele. Worse, the Phred-scaled genotype likelihood (PL)
tield grows quadratically in the number of alleles. The result is a repetitive and bloated
representation, where the same uninformative value is stored over and over again, leading to
inefficient use of storage and computational resources.

Throughout this paper we distinguish between a representation and a format. A representation, or
data model, defines the expected set of fields, what they mean, and how they are related. A
format describes a concrete implementation in terms of bytes. We similarly cleave the VCF
Specification into the PVCF representation for cohort-level variant data and the VCF format for
storing a variant-by-sample matrix of arbitrary data types in tab-delimited plaintext.

Specifically, PVCF defines the semantics of fields such as GT, AD, GP, PL, and, for list fields, the
relationship between their length and the number of alternate alleles. VCF, as a format,
describes, for example, how a number or a list is rendered in plaintext. The Variant Call Format
supports representations other than PVCEF: the single-sample Genomic Variant Call Format
(GVCEF) and the structural variant VCF (SV VCF). Analogously, the PVCF representation
supports different formats: VCF and Binary Call Format (BCF).

Variants scale with samples. When discussing the size of a dataset, we focus on the number of
genotype records. The number of genotype records in a GVCF does not vary substantially
across samples. We use K to refer to the average number of non-reference genotype records per
sample, which, at 3-6 million, is much smaller than the number of bases in the human genome
(3 billion).

In a multi-sample dataset, the expected number of loci at which at least one sample has a
non-reference genotype is a function of the number of samples, M(N). We call such loci variant
sites, reserving the term variant to mean a particular allele at a particular locus. We use the term
genotype record to refer to a genotype call and its associated quality metrics. By definition, M(1) =
Kand M(N), for large N, approaches the number of loci in the reference genome. In contrast, the
number of variants is unbounded due to the infinitude of possible insertion and deletion
variants.

Consider M(2). The second sample will share many variant sites with the first sample; however,
both samples will have many unshared singletons. As a result, this second sample substantially
increases the number of variant sites in the dataset. In contrast, the millionth sample will add
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significantly fewer variant sites because the previous 999,999 samples are likely to share many
of its sites. Thus, M(N) is non-linear, which we confirm below.

PVCEF represents a collection of sequences as a dense matrix, with one column per sequenced
sample and one row for every variant site. PVCF permits both a multiallelic representation
(wherein each locus appears in at most one row) and a biallelic representation (wherein loci are
repeated such that each row contains one alternate allele). The number of genotype records in a
multiallelic PVCF grows as

O(N x M(N))
the number of genotype records in a biallelic PVCF grows as
O(N x M(N) x A(N))

where A(N) is the expected number of alternate alleles at a variant site in a dataset with N
samples.

Until variants are observed at all loci, each sample brings with it some number of new singleton
sites. We empirically measured the relationship between the number of variant sites and the
number of samples in subsets of the PVCF representation of the HGDP+1kG dataset. We found
that the number of variant sites grows roughly with the square-root of N. Notice that we can
measure the exponential relationship between M and N using a linear model in log-space.

log;o(M) = a + b log;y(N)
M=10"°N*

To explore this relationship, we generated multiallelic PVCFs from subsets of the HGDP+1kG
dataset (Koenig et al. 2023). Figure 1a shows, for HGDP+1kG, M = N**. Figure 1b shows the
effect of this growth on the number of genotypes. The same experiment applied to subsets of
gnomAD v2 found M = N*”. We stress that this is only evidence of an exponential relationship
when N is between one and several thousand. Furthermore, this relationship depends on the
ancestry mix of the dataset: diverse ancestries should increase the rate at which new variant
sites are discovered. As the number of samples grows, the growth of variant sites must
eventually decelerate, but not before sequencing datasets become impractically large.

Fields scale with alleles. In multiallelic PVCFs, not only does the number of genotype records
grow super-linearly, but the size of each genotype record increases with the size of the cohort. In
particular, sequencing datasets store per-allele quality metadata. For example, each genotype
record stores an allele depth (AD) field containing one integer per allele observed at this locus.
This field grows linearly in the number of alleles at the locus even though most genotypes
observe at most two alleles. Even worse, the phred-scaled genotype likelihood (PL) field stores the
likelihood of all possible genotypes given the alleles at this locus. Within the autosomes, which
are diploid, this field grows quadratically in the number of alleles. In practice, particularly in
repetitive regions, a small fraction of loci have thousands to tens of thousands of alleles.
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In summary;, if A(N) is the average number of alleles per site, then the sum-total number of allele
depths in a multiallelic PVCEF file grows as,

O(N x M(N) x A(N))
and the sum-total number of phred-scaled genotype likelihoods grows as,
O(N x M(N) x A(N)*)

In practice, at a small number of sites, we observe thousands of alternate alleles. Sites like these
are particularly challenging to analyze because of the quadratic growth of the PL field. We
conjecture this quadratic growth explains why many PVCFs with more than a few thousand
samples have dropped the PL field entirely or dropped it from multiallelic loci.

Notice that both multiallelic and biallelic datasets suffer from two forms of non-linear growth
(genotypes and alleles). They differ only in where the growth appears. In the multiallelic
representation, both genotype records and allele indexed fields grow super-linearly in the
number of samples. In the biallelic representation, allele-indexed fields are bounded to length
three but the number of genotype records grows even faster because highly multiallelic variant
sites duplicate reference calls across every allele.
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Figure 1. The number of variant sites (a) and total non-reference genotypes (b) scale with the number of
samples. Each new sample brings new variant sites (a) which causes the dense matrix to grow
super-linearly (b) in the number of samples. Dashed line indicates linear fit in log-log space, using all
points with at least 100 individuals.
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Implementation

We propose a new representation for sequenced cohorts: the Scalable Variant Call
Representation or SVCR. This representation is a generalization of GVCF to more than one
sample. SVCR scales linearly in the number of samples. One or more GVCFs can be losslessly
converted to a single SVCR dataset. Two SVCR datasets can be losslessly merged into a new
SVCR dataset comprising samples from both. An SVCR dataset can be stored in many formats
including VCF, Hail native format, and Google BigQuery.

Overview. A dataset in the SVCR representation consists of zero or more variant sites. Variant
sites are indexed and identified by genomic locus. There is at most one variant site per locus.
Variant sites are multi-allelic. A dataset has a set of samples. Every variant site has a genotype
record for every sample. A genotype record is either the unique missing value or a set of fields
and their values. Any field value may be missing. Any value permitted for a VCF FORMAT
field is permitted as a field value in SVCR.

Column-sparsity. Within a single sample, SVCR stores adjacent reference genotype records as
intervals, which are termed “reference blocks”. Each reference block has a locus interval, which
must be contained within a single chromosome. A reference block is stored in the variant site
identified by the interval’s first, or left-hand, locus. The size of the reference block, in base pairs,
is stored in a genotype field named LEN. All reference block intervals for any particular sample
must be disjoint.

Reference blocks are a form of column-sparsity by run-length encoding. At each locus, the
genotype record of samples with a homozygous reference genotype is encoded in the
underlying format as a missing value. The actual value is implicitly given by that sample’s
overlapping reference block. Preservation of the reference blocks enables the combination of
two or more SVCR datasets into a new SVCR dataset.

Local alleles. Consider a highly polymorphic low-complexity insertion-deletion locus with
1,000 alternate alleles in a PVCF with 100,000 whole genomes. The VCF spec mandates that the
allelic depth field AD has one value per allele including the reference (R-numbered), so AD
records at this site must contain 1,000 elements denoting the depth of reads supporting each
allele. For any particular sample, it is likely that at most one or two of these alternate alleles are
observed. In the PVCF representation, the AD field for such a sample would contain between
998 and 999 zeros. The GVCF representation, in contrast, contains at most three entries. As
described previously, this problem is significantly worse for fields like Phred-scaled genotype
likelihoods (PL), which have one value for each possible genotype configuration (G-numbered).
Data generators have mitigated this problem with approaches such as truncating the list of
alternate alleles at any given locus to a maximum number, or disseminating PVCFs with only
genotype (GT) fields and no quality metadata. Each of these approaches has drawbacks:
truncating alternate alleles removes potentially pathogenic information from the dataset and
masks information from short tandem repeats (STRs), and dropping all quality fields makes
quality control much more difficult.
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SVCR introduces a new entry-level field, local alleles (LA). At each locus, for each sample, an LA
field indicates which alleles were observed in this sample. The global alleles refers to the set of
alleles observed in any sample at this locus. Concretely, the LA field is an injective function from
local allele indices to global allele indices (Figure 2). Since the number of local allele indices is
finite (in a diploid genotype, there are two), we represent the LA field as an array. For example,
at a locus with 1,000 global alleles, an LA value of [0, 4, 5] indicates that the first local allele
corresponds to the zeroth (or reference) global allele, the second local allele corresponds to the
fourth global allele, and the third local allele corresponds to the fifth global allele. For
convenience, we require the first element of LA to always be zero.

For each genotype-level allele-indexed field from the VCF spec, we define a new field whose
name begins with “L”. The field only contains the elements corresponding to this sample’s local
alleles. Consider a variant site with five alleles, A, AA, AAA, AAAA, AAAAA, and a sample
with the genotype AA/AAAA with 14 reads supporting AA and 16 reads supporting AAAA.
The local alleles array will be [0, 1, 3], the allelic depth will be [0, 14, 0, 16, 0], and the local allelic
depth array will be [0, 14, 16].

Although the GT field is not problematic, we strongly recommend using an LGT field in SVCR.
In particular, when removing a sample, an implementation of SVCR may wish to remove global
alleles which no longer appear in any samples. Removing a global allele requires modifying
every local alleles entry and also updating any globally-indexed fields, such as the GT.
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VCF
Ref  Alt AD

A C’T [7! 0: 5]

\_/

SVCR

Ref Alt LAD LA
A C’T [71 5] [0! 2]
~_ 7

Figure 2. Local alleles. The AD field is an array field containing one element per allele, including the
reference. The AD field entries indicate, for each allele, the number of informative reads. The arrows
terminating at an allele indicate to which allele each value corresponds. The LAD field is a locally indexed
array field storing the same data. Note that we need not store information for the unobserved C allele, and
that the two-step paths lead to the same alleles as the one-step path.
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SVCR-VCE We encode SVCR in VCF by requiring two FORMAT fields: LA, an array of
integers, and LEN, an integer (described above). Reference blocks must have a non-missing
LEN, should have a non-missing DP & GQ, may have a non-missing LGT, and should have a
missing LA, LPL, and LAD. When a sample has an overlapping reference block at a locus, all of
that sample’s FORMAT field values must be missing. Non-reference genotypes must have a
missing LEN, must have a non-missing LA, and should have a non-missing DP, GQ, LGT, LAD,
and LPL.

SVCR introduces three new settings for the “Number” of a VCF list field:

e LOCAL-A numbered fields should have one list element for each allele present in LA
minus one (to exclude the reference). For example: LEC.

o LOCAL-R numbered fields should have one list element for each allele present in LA
(including the reference). For example: LAD.

e LOCAL-G numbered fields should have one list element for each possible genotype
depending on the number of alleles N; , and the ploidy of the genotype call. If diploid,
(Nia * (Npa+1)) / 2. If haploid, Ny 4. For example: LPL.

Figure 3 demonstrates the equivalent representation of twenty base pairs of two samples in
GVCE, PVCE and SVCR-VCE

VDS. We also encode SVCR in a Hail native format called Variant Dataset or VDS (unrelated to
the Hail 0.1 VariantDataset except in name). A VDS comprises two Hail matrix tables. One Hail
matrix table contains reference data the other contains variant data. The reference matrix table
has rows keyed by locus, columns keyed by sample identifier, and exactly three entry fields:
LEN (int32), DP (int32), and GQ (int32). Entries which are not the start of a reference block are
missing values.

The variant matrix table has rows keyed by locus and alleles, columns keyed by sample id, and
at least two entry fields, LA (array<int32>) and LGT (call), and usually also has LAD
(array<int32>), LPL (array<int32>), DP (int32), GQ (int32), and gucf_info (struct<...>). The latter
contains all the GVCF INFO fields for that sample.

For data interchange, we recommend a format that uses a single file. For analysis, we
recommend storing reference and variant data in two files for three reasons:

1. The schemas for reference and variant records differ; therefore, a combined
representation pays the overhead of mixing these schemas. We observed a roughly 10%
size reduction in both VCF and VDS from a split format.

2. The split representation makes it easier to filter variants without inadvertently removing
reference blocks.

3. Analytical and quality control methods that operate on the smaller variant-only table are
faster and cheaper because they read substantially less data. For example, the
newly-developed CHARR (Lu et al., 2023) achieves substantial speedups as it only needs
to access variant data (homozygous genotypes).
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Sparsity in representation versus sparsity in format. It should be noted that while SVCR is
sparse—only a small number of matrix entries contain information—both the GZIP-compressed
VCF and Hail VDS realizations of SVCR contain high numbers of explicit “missing” sentinel
values. Both formats use compression techniques which rapidly & efficiently compress and
decompress these repeated values, reducing the gain from switching to an explicitly sparse
format. We anticipate substantial reductions in analysis cost and time from a system that stores
and computes directly on the sparse representation.

Densification. The reference information for all samples at some locus L is not contained within
a single row of the matrix at L. Instead, this information is stored in overlapping reference
blocks that appear at their start location, which is necessarily some previous locus. We call
producing a single row containing all reference and variant information for all samples at a
particular locus densification. In general, densifying a locus requires searching all previous loci
until an overlapping reference block for every sample has been identified.

Mitigation by periodic reference checkpoints. We propose two strategies to bound the size of
each reference block and thus bound the search distance. Reference blocks could either be split
at some fixed size limit or at fixed intervals over the genome. Both strategies add reference
blocks and therefore trade increased space for reduced densification time. Both strategies have a
parameter K such that, at a particular variant site, for all samples, all overlapping reference
blocks begin no further than K base pairs prior.
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(3a)

#CHROM  POS ID REF ALT QUAL FILTER INFO FORMAT 01

chrl 3330 . C <NON_REF> . . END=3330 GT:DP:GQ:AD:PL ©/0:10:30:N/A:N/A
chril 3331 . T G, <NON_REF> . . . GT:DP:GQ:AD:PL ©/1:10:99:6,4:100,0,105
chril 3332 . C <NON_REF> . . END=3349 GT:DP:GQ:AD:PL ©/0:11:30:N/A:N/A
chrl 3350 . A C, <NON_REF> . . . GT:DP:GQ:AD:PL 1/1:15:55:0,15:1002,55,0
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT 02

chril 3330 . C <NON_REF> . . END=3334 GT:DP:GQ:AD:PL @/@:9:30:N/A:N/A
chril 3335 G C, <NON_REF> . . . GT:DP:GQ:AD:PL 1/1:7:22:0,7:154,22,0
chril 3336 . T <NON_REF> . . END=3349 GT:DP:GQ:AD:PL ©/0:10:30:N/A:N/A
chrl 3350 . A T, <NON_REF> . . . GT:DP:GQ:AD:PL ©0/1:12:99:7,5:154,0,102
(3b)

#CHROM  POS 0] REF ALT QUAL FILTER INFO FORMAT 01 02

chrl 3331 @ T G & @ & GT:DP:GQ:AD:PL 0/1:10:99:6,4:100,0,105|0/0:9:99:9,0:0,100,200

chri 3335 . G € % & 3 GT:DP:GQ:AD:PL 0/0:11:99:11,0:0,100,200 1/1:7:22:0,7:154,22,0

chrl 3350 3 A C,T p 5 3 GT:DP:GQ:AD:PL 1/1:15:55:0,15,0:1002,55,1002,0,55,1002  ©/2:12:99:7,0,5:154,154,0,154,102,102
(3c)

#CHROM  POS D REF ALT QUAL FILTER INFO FORMAT 01 02

chrl 3330 . C <NON_REF> . . . LA:LGT:DP:GQ:LAD:LPL:END

chrl 3331 T G, <NON_REF> . . . LA: L:END

chri 3332 C <NON_REF> - . # LA: L:END

chrl 3335 G C, <NON_REF> - . . LA: L:END

chrl 3336 T <NON_REF> . . . LA: L:END

chri 3350 A C, T, <NON_REF> . . . LA:LGT:DP:GQ:LAD:LPL:END 0/1:12:99:7,5:154,0,102: .

Figure 3. Representing sequences. In each panel, two different samples, 01 and 02, are shown in different
representations, including a) two GVCF files, b) a PVCF file, and c) an SVCR-VCF file.
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Splitting at a fixed period. Split reference blocks at every K bases. Store reference blocks for all
non-variant samples at each split location. If this dataset is also partitioned into K-sized
partitions, the information necessary to realize any partition’s dense sub-matrix of genotypes is
fully contained in that partition. This approach inflates the reference data by splitting every
reference block that spans the K-th locus even if that reference block is already tiny. As shown
below, this inflation relative to the next strategy is very modest.

Splitting at a size threshold. Split reference blocks spanning more than K bases into two or more
reference blocks spanning at most K bases. For instance, with a value of K=10,000 a reference
block starting at chr1:4500 with length 38000 would be split into reference blocks
chr1:4500-14499, chr1:14500-24499, chr1:24500-34499, chr1:34500-42499. This strategy introduces
the minimum number of new reference blocks to ensure the K invariant; however, in partitioned
datasets, data from previous partitions may be necessary to realize the dense sub-matrix of
genotypes at any partition after the first.

K is a parameter of the dataset. We do not mandate or recommend any particular value of K
because the length distribution of reference blocks substantially depends on experimental
design, variant calling, and reference block bin resolution. For example, whole exome
sequencing produces shorter reference blocks due to the fluctuations in depth from partial
capture of the genome. In contrast, high coverage whole genome sequencing can produce long
blocks of similar-quality reference calls in regions of constant depth. Table 1 and Table 2 present
the measured number of reference blocks after splitting the HGDP+1kG dataset using each
strategy.

In our experience, the granularity of reference block GQ bins has a large impact on the average
length of reference blocks in a given dataset. Whole genome sequencing data also tends to have
longer reference blocks than whole exome data, due to the absence of fixed capture boundaries
and more consistent coverage across the genome.
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K (fixed period) Billions of Reference | Ratio of Split to Unsplit
Blocks after Splitting Reference Blocks

50,000 731 1.0000

10,000 731 1.0002

5,000 73.2 1.0015

1,000 77.7 1.0634

500 87.1 1.1925

100 175.5 2.4013

Table 1. Data size is inversely proportional to the period when splitting at a fixed period. Using this
strategy, a period of 5,000 bases introduces a modest 0.15% increase in size. The increased sizes of other
periods are also shown. At a period of 50,000 bases, only a few hundred reference blocks are added.

Billions of Reference | Ratio of Split to Unsplit
K (maximum size) Blocks after Splitting Reference Blocks
50,000 731 1.0000
10,000 731 1.0002
5,000 73.2 1.0015
1,000 77.7 1.0634
500 87.1 1.1922
100 175.3 2.3985

Table 2. Data size is inversely proportional to the threshold when splitting at a size threshold. In practice,
compared to splitting at a fixed period, this strategy is only mildly more parsimonious.
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Streaming densification. The previous discussion and mitigations address reading one
particular locus. We call this a “point-query”. In contrast, applications that read all or most of
the dataset do not need these mitigations. Instead, streaming densification keeps one
overlapping reference block per sample, swapping in new reference blocks as they appear in the
stream of records. As stated above, this dense matrix is super-linear in size. Although a
streaming application does not reify the entire matrix in memory, if it performs computation on
each dense entry, the compute-time, and thus cost, will grow super-linearly. For example,
computing the allele frequency necessarily inspects averages over every call, even the
homozygous reference calls. A clever implementation would avoid densification entirely.

GVCEF is a single-sample SVCR. SVCR is a multi-sample generalization of GVCEF. Indeed, an
SVCR with one sample is equivalent to a GVCFE. In a GVCE, the global alleles and the local
alleles are the same because there is only one sample. In this setting locally-indexed and
globally-indexed fields are equivalent. Specifically, in a GVCEF, the AD and PL fields must be
equal to the LAD and LPL fields. The lossless transformation between a GVCF and SVCR-VCF is
as simple as (1) adding a field LA to create an identity function of the alleles, (2) adding an “L”
prefix to the name of allele-indexed fields, (3) adding a LEN field to the FORMAT derived from
the position and the END field.

Hierarchical joint calling. An SVCR may be produced in a tree-structured manner because it is
combinable with itself and with GVCFs. This allows some sample-wise parallelism in the
production of an SVCR dataset from GVCFs. Suppose we have 100,000 GVCFs. We may, in
parallel, combine 1,000 groups of 100 GVCFs each into 1,000 SVCR datasets. We may then, in
parallel, combine ten groups of 100 SVCR datasets into ten SVCR datasets. Finally, we may
combine the ten SVCR datasets into one SVCR dataset. This entire process is also fully variant
parallel.


https://doi.org/10.1101/2024.01.09.574205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.09.574205; this version posted January 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

SVCR
lossless
SVCR
SVCR
ef’nj
GVCF || GVCF || &
GVCF || gvCF >
o
GVCF || GVCF =
GvcF || GvCE |
PVCF
Qggé PVCF
PVCF

Figure 4. The graph of interconversion and combination operations. Notice that PVCF is a sink: crucial
information is lost when producing a PVCF—missing data & homozygous reference calls can not be
unambiguously resolved if the quality metrics at non-variant sites are discarded.
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Results

Joint calling & analysis of nearly one million exomes. SVCR has been used since 2019 to
merge, store, and analyze large sequencing cohorts. The Hail library includes a “VDS
Combiner” that can combine zero or more VDSes with zero or more GVCFs into a single VDS in
a parallel and fault-tolerant manner. Five large datasets produced by the VDS Combiner directly
from GVCF files are:

1. gnomAD v3.1. 153,000 genomes. 2019. (Chen, et al. 2020)
Center for Common Disease Genomics (CCDG) exomes. 203,000 exomes. 2021.
(Felsenfeld 2018)

3. CCDG genomes. 136,000 genomes. 2021. (Felsenfeld 2018)

4. gnomAD v4. 955,000 exomes. 2021 (Chao, et al. 2023).

5. Blended Genome Exome (BGE) Wave 1. 82,000 exomes. 2023. (Howrigan 2022)

The All of Us research project also used the VDS Combiner, but started from tens of Avro files
each containing 4,000 complete samples in a GVCF-like representation.

6. All of Us, April 2023 data freeze. 245,350 genomes. (All of Us, 2022)

In addition to producing the VDS for each of these datasets, the Hail system was used to
perform quality control and analyze each dataset.

The VDS Combiner is implemented in Hail Query, an open-source, partitioned,
horizontally-scalable, spot-tolerant, dataframe system and genomic analysis library with a
Python API. Hail Query, and therefore the VDS Combiner, can run on any Apache Spark or Hail
Batch cluster. A managed version of the former can be found in all the major clouds including
AWS, Google, Azure, and Alibaba.

Hail Query is pervasively designed to support spot instances. At the time of writing, the cost of
a spot core as a fraction of the non-spot price of general purpose families in AWS was about
40-50%; in GCP, about 21-40%; and in Azure, about 10-25%.

Unlike other joint calling systems, Hail Query is also a general purpose analysis system
supporting relational algebra (e.g. filter, aggregate, group-by, order-by), distributed linear
algebra (e.g. PCA, matrix multiplication), and export to many formats (e.g. BGEN, PLINK, VCE,
TSV). The Hail Query language, which is used to manipulate values within datasets, supports a
wide variety of data types (e.g. integers, floating-point numbers, strings, genomic loci, genotype
calls, arrays, sets, dictionaries, tuples, ndarrays, and structs) and a wide variety of operations on
these types (e.g. random functions, statistical distributions, statistical tests, linear and logistic
regression, linear algebra, collection iteration & aggregation).
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Figure 5. Scaling of dataset size of sequenced whole genomes represented in Hail LZ4-compressed VDS,
gzip-compressed SVCR-VCF and gzip-compressed PVCE. In (a) total size in Gibibytes is plotted on the y
axis, and in (b), plotting the size per sample (total size divided by number of samples) provides a clear
view of the super-linear scaling of PVCF.
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Size in bytes. Consider subsets of the HGDP+1kG dataset in PVCE, SVCR-VCEF, and VDS. The
total size grows super-linearly with sample size for PVCF but linearly for SVCR-VCF and VDS
(Figure 5a). Further confirming this, we see the size per sample increases for PVCE, while
approaching an asymptote for SVCR-VCF and VDS (Figure 5b), as expected since each human
genome contains an approximately fixed amount of information.

It is critical to note that exact figures of size per sample should not be used to compare
representations and formats without additional context that reflects the granularity and type of
information contained. For example, choices in resolution of reference blocks and the selection
of included FORMAT fields can lead to a substantial size difference in single-sample GVCFs for
the same sequencing experiments, and these ratios are preserved in SVCR.

We did not systematically generate PVCFs or SVCR-VCFs for larger sample sizes due to the
high cost of these experiments, but we show that this asymptotic trend persists in a VDS at
larger cohort sizes with subsets of gnomAD (Figure 6), and list a few selected examples of PVCF
and VDS size in Table 3.

Cost of joint calling. As of August 2023, using Hail 0.2.120, a VDS produced from GVCFs costs
approximately 0.005 USD per exome, and in a large-scale application of the VDS combiner for
whole genomes in 2019, we observed a cost of 0.10 USD per genome. These numbers represent
the sum total cost of using a Google Dataproc cluster with nl-standard spot instances to
generate a VDS.

Cost of storage. The VDS is stored as a hierarchy of files or blobs. As mentioned before, the size
of a VDS depends significantly on the granularity of reference blocks. As a concrete example, at
260 MiB per genome or 26 MiB per exome, a VDS costs about 0.0052 USD per genome per
month or 0.00052 USD per exome per month to store in a cloud object store (at a typical cost of
0.02 USD per GiB per month).
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Figure 6. The growth of size in bytes per sample of subsets (a) gnomAD v3.1 exomes and (b) of gnomAD
v4 exomes represented as VDS.
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Description Data type | Year | Samples Size (TiB) Size per sample (MiB)
PVCF |GVCFs| VDS | PVCF | GVCFs| VDS
gnomAD v2 genomes 2016 15,496| 16.00 5.00 1,082.68| 338.34
gnomAD v3.1 genomes 2019 153,030 37.66 258.05
CCDG exomes exomes 2021| 203,664 3.36 17.30
CCDG genomes genomes | 2021| 136,959 108.73 832.45
gnomAD v4 exomes 2021] 955,359 18.30 20.09
BGE Wave 1 exomes 2023 82,000 8.76( 2.07 112.02| 26.47
All of Us April 2023 Data Freeze [genomes 2023| 245,350 292.61( 20.95 1,250.56| 89.54

Table 3. Sizes and size per sample of selected large callsets. A blank PV CF cell indicates that a PVCF was
never generated. A blank GVCF cell indicates the sum-total size of the GVCFs is no longer available. The
large variability in size per sample is due to variability in the granularity of reference blocks. In
particular, integer precision GQs produce very large files. GVCF sizes should not be compared directly to

other representations to assess compression, because in many cases some fields are dropped during or after

combining GVCFs.
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Conclusion

A concise, portable, & analyzable representation. We have presented the Scalable Variant Call
Representation, a concise representation of genome sequencing datasets that enables quality
control and analysis of nearly one million whole exome sequences. We reified SVCR in the VCF
format as SVCR-VCE. We also presented the Hail VDS, a format generated and consumed by the
open-source Hail Query library.

Joint calling. “Joint calling” has historically referred to combining samples into one dataset and
also possibly adjusting genotypes given information from other samples. In this paper, we use
the term “joint calling” to mirror conventional descriptions of these processes; however,
“combining” may be more precise. The Hail VDS Combiner does not adjust genotypes nor is the
SVCR format affected by adjustment, although notably, GATK-based “joint calling” pipelines
such as GenotypeGVCFs do not do so either. Instead, SVCR and the VDS Combiner provide a
representation and platform on which genotype adjustment could be implemented, but the
primary challenge at scale is the transposition of single-sample GVCF files into a variant-major
layout.

Standardization. Local allele indexing has been under discussion for a few years at the
hts-specs repository under issue 434 (Farjoun 2019). We hope the release of this paper motivates
finalizing those changes. Further work remains to standardize reference blocks.

Future directions. Sparse representations of genotype matrices offer an efficient way to store
large-scale sequenced cohorts, but many analyses still expect dense matrices as inputs.
Developing new methods for querying and modeling genotype matrices that operate directly on
sparse and /or compressed data will lead to substantial savings of compute time in addition to
storage. Further, representing missing genotypes in VDS or a split SVCR format using a third
table (in addition to reference and variant data) can support efficient analysis when reference
quality information is not necessary by obviating the need to read the reference data; however,
determining the best approach to do so in the context of dynamic filtering makes this
challenging.

Related work.

GLNexus is both a tool and a particular modification of the PVCF format. (Lin, et al. 2018).
GLNexus combines GVCFs into PVCFs in three steps: (1) find a unified set of loci, (2) “project”
genotype-level fields from each GVCF into the PVCE, and (3) adjust genotype calls.

GLNexus proposes a new allele unification algorithm which introduces a new PVCF variant
type: <MONOALLELIC>. This algorithm and new variant are designed to generate variants
that are “completely non-overlapping, with mutually-exclusive alleles”.

GLNexus stores genotype records in a key-value store. GLNexus splits the reference genome
into a disjoint set of 30 kilobase “bins”. Each genotype record is associated with a key pair of the
bin containing this record and the sample identifier. GLNexus uses an LSM-tree based key-value
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store which permits the addition of new samples in amortized linear time and space. Genomic
intervals may also be retrieved in amortized linear time.

(Lin, et al. 2019) and (Yun, et al. 2021) report the runtime and PVCEF size for several applications
of GLNexus to produce a PVCF from GVCFs, including an exome cohort of nearly 250,000
samples and a genome cohort of nearly 23,000 samples. We summarize their results in Table 4.

The innovations of GLNexus and SVCR address different PVCF challenges. SVCR, as defined
above, requires one row per locus; however we believe GLNexus PVCFs are otherwise
compatible with local allele indexing and preservation of reference blocks. The GLNexus
database preserves reference information and effectively uses local allele indexing because it
exactly preserves the GVCF records. The 30 kilobase reference bins resolve the challenge of
point-queries for a dense vector in a manner similar to our “split at fixed periods” approach.
The Hail VDS Combiner does not adjust genotype calls; however we believe the GLNexus
empirical frequency prior could be implemented in Hail Query.
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Description Reference Samples | Time Size
(core-hours / sample) | (MB /sample)

Chromosome 2 of an Lin, et. al 2019 50,000 0.005 Not reported.

exome,

unspecified version

Exome, Lin, et. al 2019 16,521 0.058 Not reported.

standalone GLNexus

Exome, Lin, et. al 2019 | 243,953 0.23 (“thread”-hours) | 28

distributed GLNexus

Genome, Lin, et. al 2019 22,609 7 Not reported.

distributed GLNexus

Genome, Yun, et. al 2021 | 2,504 Not reported. 387

Table 4. GLNexus performance. We collect here the time to generate and size of PVCFs generated by

GLNexus.
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GATK’s GenotypeGVCFs command produces a PVCF from either one or more GVCFs or a
GenomicsDB workspace. The largest callset known to the authors to use GenotypeGVCFs
directly on GVCFs is the 91,796 sample ExAC unfiltered callset (Lek et al. 2016). The largest
callset to use GenomicsDB is the 164,332 individuals with exome sequence data and 20,314
individuals with genome sequence data from the unfiltered gnomAD v2 callset (Karczewski et
al. 2020). GenotypeGVCFs suffers from both of the problems described above: for every variant
site, every sample must have a genotype and for every allele, every genotype must have quality
metrics.

GenomicsDB (Datta 2017) and TileDB (Papadapoulos 2016) are projects with a shared origin
which use similar techniques of sparse matrix representations to support better scaling. TileDB
is an open-source multidimensional array storage manager written in C++ with support for
large dense and sparse arrays. TileDB-VCF is an open-source C++ library with Python and
command line interfaces which includes schemas and functionality for variant stores, including
the ability to ingest new samples and query slices. TileDB-VCF stores GVCF variant and
reference block records directly without PL expansion in a sparse array, indicating that
TileDB-VCEF disk footprints will scale linearly in the number of samples. GenomicsDB is a
separately-maintained open-source project originally developed on TileDB with the same data
model described above, and tighter integration with GATK.

The multi-sample VCF (msVCF) and DRAGEN gV CF genotyper were developed by Illumina for
generating and representing a jointly called dataset (Illumina 2023) (Schulz-Trieglaff 2023). The
DRAGEN gVCF genotyper accepts either GVCFs or “multi-sample GVCFs” as input and
produces an msVCF as output. This process involves three steps:

1. DRAGEN aggregates batches of GVCFs into census files and cohort files. A census file
stores variant metadata and per-sample reference blocks for a batch. A cohort file is a
GVCF-like format containing all the samples of a batch.

2. DRAGEN aggregates all census files into a single global census file.

3. DRAGEN uses the global census file to generate, per cohort file, an msVCE.

The first step is parallelizable per batch of GVCFs. If desired, the second and third steps can be
done in a tree-like fashion which allows both scaling of samples as well as incremental addition
of samples. The DRAGEN gVCF genotyper is available both on-sequencer and in the cloud.

The msVCF uses a slight variant of local allele indexing. Instead of “LA” they use “LAA” and
instead of requiring and including an entry for the reference allele, they always elide the
reference allele. In contrast, this paper requires the first entry of LA to always be 0. The msVCF
defines the LPL and LGT fields equivalently to this paper. Similarly to VDS, but unlike
SVCR-VCE DRAGEN stores the reference blocks in a separate file, the census file. We believe a
split version of SVCF-VCF could serve the needs of DRAGEN while also being interoperable
with other tools.
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DRAGEN 4.0 has generated a 500,000 sample cohort (Schulz-Trieglaff 2023). Illumina’s
cloud-based DRAGEN platform, Illumina Connected Analytics, has been tested with cohorts of
at least 100,000 samples. Illumina reports a cost of “0.3 iCredits per sample”. The cost of an
iCredit depends on the volume of iCredits purchased, but is roughly 1 USD as of 2023-11-20.
DRAGEN also supports a “compact GVCF” representation which omits statistics only necessary
for de novo variant calling in pedigrees. This innovation is compatible with the SVCR and VDS
Combiner.

The Genomic Variant Store, developed by the Broad Institute’s Data Sciences Platform (DSP), is a
Google BigQuery based solution to GVCF aggregation and variant storage. The GVS
representation is a variant of SVCR. It consists of three tables: vet (variants), ref_ranges (reference
blocks), and alt_allele (variants). The vet and ref_ranges table are indexed by genomic position.
The alt_allele table is indexed by sample. Much like GLNexus, it preserves GVCF records and
thus effectively uses local allele indexing. GVS stores reference and variant data in distinct
tables; indeed, it inspired the Hail VDS split representation. Storing the variant information
twice, once row-major and once column-major appears unique to GVS and allows for rapid
access to a single sample’s sequence. GVS can export to both PVCF and Hail VDS. As of October
2022, GVS can produce a 10,000 sample joint callset in less than half a day at a cost of 0.06 USD
per genome (Degatano 2022). GVS, using Hail Query and BigQuery together, produced the All
of Us April 2023 freeze callset, a 245,000 whole genome VDS.

Other projects. Multiple projects propose better encodings and compression of PVCF data. Savvy
(LeFaive 2021) is a storage layer and C++ query API for efficient storage and queries of variant
data. Savvy’s data model has the same scaling characteristics as PVCE. Lossless textual
encodings of PVCF files have also been proposed. Lin et al. proposed spVCF which achieves
O(N'") scaling of bytes in samples (Lin 2020). Eggertsson et al. propose popvcf which
demonstrates further improvements over spVCEF but they do not report a scaling factor
(Eggertsson 2022). Unlike Savvy, spVCF, and popvcf, the size in bytes of SVCR and VDS both
scale as O(N) in the samples. Moreover, the VDS is integrated with the scalable Hail Query
dataframe and linear algebra system.

BCFTools supports local allele indexing, albeit using the LAA name and omitting the entry
mapping the local reference allele to the global reference allele (Li 2023). This definition of LAA
matches that of msVCEF, described above.
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