

Deficiency in ribosome biogenesis causes streptomycin resistance and impairs motility in *Salmonella*

Zhihui Lyu¹, Yunyi Ling¹, Ambro van Hoof², Jiqiang Ling^{1*}

¹Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA

²Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA

*Correspondence should be addressed to:

Jiqiang Ling: +1 (301) 405-1035; Email: jiling12@umd.edu

1 **Abstract**

2 The ribosome is the central hub for protein synthesis and the target of many antibiotics. Whereas
3 the majority of ribosome-targeting antibiotics inhibit protein synthesis and are bacteriostatic,
4 aminoglycosides promote protein mistranslation and are bactericidal. Understanding the
5 resistance mechanisms of bacteria against aminoglycosides is not only vital for improving the
6 efficacy of this critically important group of antibiotics but also crucial for studying the molecular
7 basis of translational fidelity. In this work, we analyzed *Salmonella* mutants evolved in the
8 presence of the aminoglycoside streptomycin (Str) and identified a novel gene *rimP* to be involved
9 in Str resistance. RimP is a ribosome assembly factor critical for the maturation of the 30S small
10 subunit that binds Str. Deficiency in RimP increases resistance against Str and facilitates the
11 development of even higher resistance. Deleting *rimP* decreases mistranslation and cellular
12 uptake of Str, and further impairs flagellar motility. Our work thus highlights a previously unknown
13 mechanism of aminoglycoside resistance via defective ribosome assembly.

14

15

16 **Keywords:** Pathogen, antibiotic failure, ribosomal fidelity

17

18

19 **Introduction**

20 Antibiotic resistance has become an urgent threat to the global healthcare system. A recent study
21 shows that bacterial antimicrobial resistance is associated with 4.95 million human deaths in 2019
22 (1). Aminoglycoside antibiotics have been historically used to treat infections caused by many
23 pathogens, such as *Mycobacterium tuberculosis*, *Salmonella enterica*, and *Yersinia pestis*, and
24 are currently listed as critically important antimicrobials for human therapy by the World Health
25 Organization (2, 3). Aminoglycosides target the bacterial ribosomes and cause protein
26 mistranslation (4, 5). It is proposed that mistranslated proteins primes aminoglycoside uptake in
27 an energy-dependent process, leading to irreversible inhibition of the ribosome and cell death (6,
28 7).

29 Streptomycin (Str) is one of the first discovered and most extensively studied
30 aminoglycosides (8-13). Structural analyses reveal that Str binds to the decoding center of the
31 ribosomal small subunit comprising the 16S rRNA and ribosomal protein uS12 (RpsL) and
32 stabilizes a closed conformation to promote codon-anticodon mismatch (13, 14). Mutations
33 leading to Str resistance have been mapped to *rpsL*, *rrs*, and *rsmG* (*gidB*) genes (15-20). The *rrs*
34 operon encodes rRNAs, whereas RsmG methylates G527 (*E. coli* numbering) of 16S rRNA near
35 the decoding center (21, 22). These known mutations thus appear to directly affect the binding
36 site of Str on the ribosome. In this study, we have identified *rimP* as a novel gene involved in Str
37 resistance. RimP is a conserved bacterial protein contributing to the assembly of the 30S small
38 ribosomal subunit (23, 24). We show that deleting *rimP* increases Str resistance 8-fold in both
39 *Salmonella enterica* and *Escherichia coli*, and promotes evolution of higher resistance. The Δ *rimP*
40 mutant also exhibits a lower rate of mistranslation in the presence of Str and a decreased level of
41 Str uptake. Our work reveals that ribosome assembly impacts aminoglycoside action.

42

43

44 **Results**

45 **Spontaneous Str-resistant mutants evolve rapidly in *Salmonella* culture**

46 Bacteria acquire antibiotic resistance through horizontal gene transfer or spontaneous mutations
47 (25). In animal hosts, Str-resistant *Salmonella* strains often arise through the acquisition of *strA*
48 and *strB* genes (encoding Str-inactivating enzymes) from other bacterial species (26). In our study,
49 we aim to explore the intrinsic mechanisms leading to Str resistance using *Salmonella enterica*
50 Serovar Typhimurium as a model pathogen. We first performed evolution experiments with an
51 increasing concentration of Str in Luria-Bertani (LB) broth. Wild-type (WT) *Salmonella* (ATCC
52 14028s) cells were inoculated in parallel experiments in LB with 0-128 μ g/ml Str and grown to
53 saturation. The cultures grown in the highest Str concentration were further inoculated in fresh
54 media with Str. The WT *Salmonella* strain has a minimal inhibitory concentration of 16 μ g/ml for
55 Str (Fig. 1 and Table 1). After three rounds of evolution, all nine parallel lineages were able to
56 grow in the presence of 128 μ g/ml Str, indicating that Str-resistant strains evolve rapidly without
57 horizontal transfer of foreign genes.

58 **Mutations in *rimP* and *rsmG* promote Str resistance**

59 We next performed whole-genome sequencing in an effort to identify the mutations responsible
60 for Str-resistance in the evolved strains. Mutations in Str-resistant strains most frequently occur
61 in *rsmG*, and are also found in *aadA*, *sbmA*, *ubiD*, the *phn* operon (including *thil*), *rimP*, and *cyoB*
62 (Table 1). To validate the mutations contributing to Str resistance, we constructed knock-out
63 strains of the above genes. Deleting *rimP* or *rsmG* increased the minimal inhibitory concentration
64 (MIC) for Str 8-fold from 16 to 128 μ g/ml (Fig. 1 and Table 1). Single deletion mutants of *aadA*,
65 *sbmA*, *ubiD*, and *thil* did not affect the MIC of Str, whereas deleting *cyoB* increased the MIC 2-
66 fold. The higher Str resistance in the evolved strains might have resulted from polar effects, a
67 combination of mutations, or unidentified mutations. To test whether mutations in *rimP* and *rsmG*
68 promote evolution of high Str resistance, we plated WT, Δ *rimP*, and Δ *rsmG* cells on LB agar with
69 or without 512 μ g/ml Str. Compared with the WT, both the Δ *rimP* and Δ *rsmG* strains exhibited
70 significantly more spontaneous mutants that were resistant to 512 μ g/ml Str (Fig. 2). Mutations in
71 *rsmG* have been frequently identified in Str-resistant *Mycobacteria* and *Salmonella* strains (15,
72 18, 27), yet to our knowledge, *rimP* has not been previously shown to affect aminoglycoside
73 resistance. This prompts us to further investigate the role of *rimP* and ribosome biogenesis in Str
74 action in cells.

75

76 **RimP is critical for Str uptake**

77 Previous studies suggest that mistranslated membrane proteins in the presence of
78 aminoglycosides lead to membrane disruption and a faster phase of uptake (6, 7, 28). We used
79 the fluorescent dye DiBAC₄(3) (28, 29) to probe membrane potential and integrity of WT, Δ *rimP*,
80 and Δ *rsmG* cells in the presence and absence of Str. As a control, we also included the *rpsL*^{*}
81 strain (carrying a K42N mutation in uS12) with high Str resistance (Fig. 1 and Table 1). The
82 fluorescence signal of DiBAC₄(3) is induced upon entry to the cytoplasm. Our flow cytometry
83 analyses revealed that Str treatment substantially increased DiBAC₄(3) fluorescence in WT cells,
84 similar to treatment with the ionophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (Fig.
85 3A). The fraction of DiBAC₄(3)-positive cells in the Δ *rimP*, Δ *rsmG*, and *rpsL*^{*} mutants upon Str
86 treatment was much lower compared with the WT (Fig. 3A), suggesting that the membrane
87 integrity was less disrupted by Str in these mutants. Further fluorescence microscopy and
88 platereader analyses yielded results similar to flow cytometry (Figs. 3B and 3C). Next, we tested
89 the relative concentrations of Str in WT and Δ *rimP* using a zone-inhibition assay as described in
90 (30). The extracts of Str-treated *Salmonella* cells were spotted on LB agar plates with a lawn of
91 Str-sensitive *E. coli*. We found that the Δ *rimP* extract displayed a smaller inhibition zone compared
92 with the WT, indicating that deleting *rimP* lowered the intracellular concentration of Str.

93 The intracellular concentrations of antibiotics are affected by uptake and efflux. A key
94 component of efflux pumps in *Salmonella* and *E. coli* critical for multi-drug resistance is TolC (31).
95 We found that deleting *tolC* in the WT *Salmonella* increased the sensitivity to Str (Fig. S1A),
96 suggesting that TolC played a role in Str efflux. Compared with the Δ *tolC* mutant, the Δ *rimP*/ Δ *tolC*

97 double mutant was still more resistant to Str (Fig. S1A). We further used Nile Red to test the efflux
98 activity. Whereas deleting *toIC* substantially increased intracellular accumulation of Nile Red due
99 to an efflux defect, deleting *rimP* did not affect Nile Red efflux (Fig. S1B). In addition, deleting
100 *rimP* did not increase resistance against tetracycline (Tet), ciprofloxacin (Cip), or ampicillin (Amp)
101 (Fig. S2). Collectively, our data suggest that deleting *rimP* does not affect *ToIC*-dependent efflux,
102 but mainly decreases the uptake of Str.

103

104 **RimP enhances mistranslation in the presence of Str**

105 Mutations in uS12 that lead to Str resistance often improve ribosomal fidelity, which counters the
106 effect of Str to induce mistranslation (32, 33). Deleting *rsmG* also increases ribosomal fidelity in
107 *E. coli* and *M. tuberculosis* (27, 34). Using a dual-fluorescence reporter that our lab previously
108 developed (35, 36), we found that the *Salmonella* $\Delta rsmG$ strain exhibited decreased readthrough
109 of UGA stop codons (Fig. 4), suggesting an improved ribosomal fidelity as in *E. coli* and *M.*
110 *tuberculosis*. Deleting *rimP* slightly increased UGA readthrough in the absence of Str. However,
111 in the presence of Str, the UGA readthrough level was significantly lower in the $\Delta rimP$ strain
112 compared with the WT. Such lower mistranslation could explain the improved membrane integrity
113 in the $\Delta rimP$ mutant upon exposure to Str (Fig. 3).

114

115 **RimP is critical for *Salmonella* motility**

116 Antibiotic resistance is frequently accompanied by a cost of fitness (37). Our previous work shows
117 that some mutations affecting ribosomal fidelity impair flagellar motility (38, 39), prompting us to
118 investigate the motility of Str-resistant *Salmonella* mutants. A soft-agar swimming motility assay
119 shows that eight out of nine evolved Str-resistant strains and the $\Delta rimP$ mutant are defective in
120 flagellar motility (Fig. 5 and Table 1). To probe the expression of flagellar genes, we used a pZS
121 *Ptet-mCherry PflmA-YFP* reporter plasmid in platereader and fluorescence microscopy assays.
122 *FliA* is a sigma factor that controls the expression of class 3 flagellar genes, and the promotore of
123 *fliA* is directly regulated by the master flagellar regulator *FlhDC* (40). Consistent with the motility
124 defect, the *PflmA* activity was substantially decreased upon deletion of *rimP*, suggesting that proper
125 ribosome biogenesis is required for optimal expression of flagellar genes and the motility.

126

127 **Ribosome biogenesis affects Str resistance in *E. coli***

128 RimP is a conserved bacterial protein involved in the early-stage assembly of the 30S subunit (23,
129 41). As in *Salmonella*, deleting *rimP* also increased Str resistance in *E. coli* (Fig. 6). To assess
130 how other ribosome biogenesis factors affect Str resistance, we tested *E. coli* mutants that lack
131 *rbfA* (30S assembly), *rimM* (30S assembly), *rhIE* (50S assembly), *ksgA* (methylation of 16S rRNA),
132 *rsgA* (30S-dependent GTPase), or *srmB* (50S assembly) genes. In addition to *rimP*, deleting *rhIE*,
133 *ksgA*, *rsgA*, or *srmB* also increased resistance to Str, whereas deleting *rbfA* or *rimM* had no effect
134 on Str resistance. These results suggest that multiple, but not all, ribosome biogenesis defects
135 impact resistance to Str.

136 **Discussion**

137 Bacteria develop antibiotic resistance through either the acquisition of foreign resistance genes
138 or mutations of endogenous genes (42). The common resistance mechanisms include (a)
139 prevention of access to target, including decreased uptake and increased efflux, (b) mutation or
140 modification of the antibiotic target, and (c) modification and inactivation of the antibiotic (42, 43).
141 All of the above mechanisms have been shown to result in resistance to aminoglycosides, which
142 bind to the ribosome and cause protein mistranslation (42, 44). Unlike other ribosome-targeting
143 antibiotics that are bacteriostatic, aminoglycosides are bactericidal due to their mistranslation-
144 promoting property (4, 9). A recent study shows that aminoglycosides induce clusters of
145 translational errors following the first mistranslation event (9), which promotes protein misfolding
146 and aggregation (11). Aminoglycoside uptake occurs through two energy-dependent phases
147 (EDP) EDPI and EDPII (7). The slow uptake during EDPI requires the proton motive force (PMF)
148 driven by the membrane potential ($\Delta\psi$) and the proton gradient (ΔpH). The fast uptake during
149 EPDII follows EDPI and depends on the action of aminoglycosides on the ribosome. The
150 commonly accepted model is that aminoglycosides first enter the cytoplasm in EDPI and cause
151 mistranslation of membrane proteins, resulting in membrane leakage and faster uptake in EPDII
152 (6, 7). In the absence of Str, the ΔrimP , ΔrsmG , and rpsL^* mutants exhibit similar $\Delta\psi$ as the WT,
153 as shown by the fluorescence signals of DiBAC₄(3) (Fig. 3C), implying that EDPI is not affected
154 by these mutations. However, in the presence of Str, all three mutants display lower entry of
155 DiBAC₄(3) into the cells, suggesting less membrane leakage. We also show that deleting *rimP* or
156 *rsmG* decreased stop-codon readthrough errors in the presence of Str (Fig. 4). Collectively, our
157 data suggest that RimP and RsmG are critical for sensitizing ribosomes to Str binding and
158 promoting protein mistranslation.

159 RsmG (previously known as GidB) is responsible for the m⁷G527 modification in the 530
160 loop of 16S rRNA where Str binds (21, 22). Mutations in *rsmG* have been shown to increase
161 translational fidelity in *M. tuberculosis* and *E. coli* (27, 34, 45) and cause Str resistance in *M. tuberculosis*,
162 *E. coli*, and *S. enterica* (18, 20, 21, 27). It is likely that ribosomes lacking the m⁷G527
163 modification bind Str with a lower affinity. How ribosome assembly factors (e.g., RimP) affect
164 aminoglycoside binding remains unclear. Cryo-electron microscopy structures of the 30S
165 ribosomal subunit show that RimP interacts with KsgA and delays h44 to recruit uS12 in the
166 decoding center, allowing the 30S to properly mature before assembly into the 70S ribosome (24).
167 Interestingly, deleting *ksgA* also increases Str resistance in *E. coli* (Fig. 6). During the assembly
168 of the ribosome, kinetic traps can lead to alternative rRNA conformations (46). It is possible that
169 the 70S ribosomes assembled in the absence of RimP or KsgA may adopt a conformation in the
170 decoding center that decreases the affinity for Str. It would be intriguing to test this model using
171 structural and biophysical analyses in future studies.

172

173

174 **Materials and Methods**

175 **Bacterial strains, plasmids, growth conditions, and reagents.** All *Salmonella* strains used in
176 this study are derived from *S. Typhimurium* ATCC 14028s. Bacterial strains and plasmids are
177 listed in Table S1. Gene deletion mutants were constructed by lambda red-mediated
178 recombination as previously described (47), and the oligonucleotides used are listed in Table S2.
179 Unless otherwise noted, all bacteria used in this study were grown in Luria-Bertani (LB) Lennox
180 media containing 10 g/l tryptone, 5 g/l yeast extract, and 5 g/l NaCl. Antibiotics were added when
181 needed (100 µg/ml ampicillin and 25 µg/ml chloramphenicol).

182

183 **Laboratory evolution of Str-resistant strains.** Briefly, 9 independent populations of *S.*
184 *Typhimurium* ATCC 14028s were propagated in 96-well microtiter plates containing 100 µl LB
185 media with Str concentrations ranging from 0.5 to 128 µg/ml. 2 µl of bacterial culture were
186 transferred every 24 h to fresh LB with increasing concentrations of Str. The experiment halted
187 when the evolving populations reached an up to 16-fold increase in resistance relative to the WT
188 ancestor. The isolated clones (M1-M9) were frozen in glycerol stocks at -80°C for further whole-
189 genome sequencing.

190

191 **Whole-genome sequencing and identification of mutations.** PE150 libraries of the *Salmonella*
192 strains were prepared and sequenced by Novogene. Reads are deposited in Sequence Read
193 Archive (SRA) under accession number SUB14099288. Reads were trimmed using TrimGalore!
194 and mapped to the genome of *S. typhimurium* ATCC 14028 (assembly ASM325338v1) using
195 Bowtie2. To identify mutations, we used FreeBayes (<https://arxiv.org/abs/1207.3907>) for the
196 detection of candidate variants. The Integrated Genome Viewer (<https://software.broadinstitute.org/software/igv/download>) was used to inspect candidate variants. True mutations were
197 differentiated from sequencing errors and preexisting SNPs by being supported by the consensus
198 of the reads in the evolved isolate(s), but not by the reads from the starting WT strain.

199

200 **Growth rate measurement.** Overnight cultures were diluted 1:100 in fresh LB in quadruplicates.
201 The cultures were incubated at 37°C for 16 h with shaking, and A₆₀₀ measurements were taken
202 every 20 min using a platereader (Synergy HTX, BioTek). The growth rates of the exponential
203 phase were calculated.

204

205 **MIC assay.** The *Salmonella* strains were grown overnight in LB medium at 37 °C with shaking.
206 The next day, all cultures were normalized to A₆₀₀ ~2.0, and diluted 1:100 in fresh LB. The MICs
207 for different antibiotics were determined by spotting 5 µL of diluted cultures onto LB agar plates
208 with 2-fold increasing concentrations of Str, tetracycline, ciprofloxacin, or ampicillin. The plates
209 were incubated at 37 °C for 1.5 days, and the MICs were set to the lowest concentration of
210 antibiotic with no visible bacterial lawn formation.

211

212

213 **Spontaneous mutation rates.** The rates of mutations leading to high-Str resistance were
214 estimated using fluctuation tests as described (48). Briefly, the *Salmonella* strains were grown at
215 37°C with continuous shaking. The next day, the normalized cultures were diluted 1:100 in fresh
216 LB and grown aerobically for 2~3 h at 37°C until A_{600} reached 0.2–0.4. The resulting cultures were
217 then diluted in LB to approximately 5,000 cells per ml, transferred into 96-well microtiter plates,
218 and incubated for 24 h at 37°C. The cultures of each well were individually plated on LB agar
219 supplemented with 512 μ g/ml Str to determine the number of spontaneous mutants that arose
220 during growth. In parallel, the diluted cultures were plated on LB agar to determine the total viable
221 cells. The mutation rate of each tested strain was estimated using the number of Str-resistant
222 mutants divided by the total number of cells.

223

224 **Efflux activity assay.** Overnight cultures were diluted 1:100 into fresh LB and incubated for 2~3 h
225 at 37°C. All cultures were normalized to A_{600} ~0.5, and 100 μ l aliquots were transferred to black
226 polystyrene 96-well plates. The cells were incubated with 50 μ g/ml Nile red with agitation for 2~3 h
227 at 37°C. The fluorescence intensity was measured in a platereader (Synergy H1, BioTek) using
228 an excitation wavelength of 549 nm and an emission wavelength of 628 nm.

229

230 **Membrane potential measurement.** Overnight cultures were diluted 1:100 into fresh LB and
231 incubated for 2~3 h at 37°C. All cultures were normalized to A_{600} ~0.5 and treated with or without
232 128 or 1024 μ g/ml Str. DiBAC₄(3) dissolved in dimethyl sulfoxide (DMSO) was then added to a
233 final concentration of 5 μ M, and the fluorescence intensity was monitored every 20 min in a
234 platereader (Synergy H1, BioTek) for 18 h using an excitation wavelength of 493 nm and an
235 emission wavelength of 516 nm. Single-cell fluorescence was measured using the FACSCanto
236 II flow cytometer at a low flow rate. 30,000 events were collected for each sample, and the FlowJo
237 software was used for further data analysis.

238

239 **Streptomycin uptake assay.** Overnight cultures were diluted 1:100 into fresh LB and incubated
240 for 2~3 h at 37°C. All cultures were normalized to A_{600} ~0.5 and supplemented with 1024 μ g/ml
241 Str. Following 3 h of incubation at 37°C with agitation, 1 ml of each culture was harvested by
242 centrifugation, washed three times with phosphate-buffered saline (PBS), and finally resuspended
243 into 300 μ l PBS. For estimation of Str uptake, bacterial cells were lysed by sonication and 5 μ l of
244 the culture supernatants were spotted on agar plates with an *E. coli* (MG1655) lawn. Plates were
245 incubated at 37 °C for 1.5 days, and the zones of growth inhibition were compared between WT
246 and the $\Delta rimP$ mutant.

247

248 **Fluorescence-based stop-codon readthrough assay.** Stop-codon readthrough rates with or
249 without Str were determined using plasmids pZS-Ptet-m-TGA-y, pZS-Ptet-m-y, and pZS-Ptet-lacZ
250 as described (36).

251

252 **Soft-agar motility assay.** Overnight cultures were diluted 1:100 into fresh LB and incubated for
253 2~3 h at 37°C. All cultures were normalized to $A_{600} \sim 0.5$. 3 μ l of each culture was spotted on LB
254 plates with 0.25% agar, and incubated for 6 h at 37 °C. The diameters of the bacterial rings were
255 measured, and the images were taken in the ChemiDoc Imaging System (Bio-Rad).

256

257 **Measurement of promoter activity with a platereader.** Overnight cultures were diluted 1:100
258 and grown in LB Miller containing 10 g/l tryptone, 5 g/l yeast extract, and 10 g/l NaCl at 37°C with
259 vigorous shaking. The fluorescence was measured every 20 min using a platereader (Synergy
260 HTX, BioTek) for 24 h under the optimal excitation and emission wavelengths for each
261 fluorescence protein (Ex = 575 nm and Em = 620 nm for mCherry; Ex = 508 nm and Em = 560
262 nm for YFP). The gain was set to 40. The *PflA* promoter activity was calculated as the ratio of
263 YFP over mCherry.

264

265 **Fluorescence microscopy.** Overnight cultures carrying the pZS *Ptet*-mCherry *PflA*-YFP *PflC*-
266 eCFP plasmid were diluted 1:50 in LB, and Cells were grown aerobically in LB Miller at 37°C for
267 5 h to the early stationary phase prior to imaging. 1 μ l of each culture was placed on a 1.5%
268 agarose LB pad on a 12-well slide. Fluorescence images were obtained with a 100 X oil lens
269 using BZ-X800 fluorescence microscope (Keyence). Image analysis was performed using
270 ImageJ/Fiji (NIH).

271

272 **Statistical analysis.** The data presented corresponds to the mean with standard deviation (SD)
273 values of at least three biological replicates. The statistical differences were analyzed using One-
274 way ANOVA with Dunnett correction, where $P < 0.05$ was considered significant (*) and $P < 0.001$
275 as highly significant (**).

276

277

278 **Data Availability**

279 Genome sequencing reads are deposited in Sequence Read Archive (SRA) under accession
280 number SUB14099288.

281

282

283 **Supplementary Materials**

284 Tables S1-S2 and Figure S1-S2.

285

286

287 **Acknowledgments**

288 This work was funded by the National Institute of General Medical Sciences (R35GM136213 to
289 J.L. and R35GM141710 to A.v.H.).

290

291 **Author Contributions**

292 Z.L., Y.L., and J.L. designed the project; Z.L. and Y.L. performed the experiments; Z.L., Y.L.,
293 A.v.H., and J.L. analyzed the data and wrote the manuscript.

294

295

296 **Declaration of Interests**

297 The authors declare no conflict of interest.

298 **References**

299 1. Antimicrobial Resistance C. 2022. Global burden of bacterial antimicrobial resistance in
300 2019: a systematic analysis. *Lancet* 399:629-655.

301 2. Bottger EC, Crich D. 2020. Aminoglycosides: time for the resurrection of a neglected
302 class of antibiotics? *ACS Infect Dis* 6:168-172.

303 3. Anonymous. 2018. Critically important antimicrobials for human medicine. World Health
304 Organization:6th revision.

305 4. Wilson DN. 2014. Ribosome-targeting antibiotics and mechanisms of bacterial
306 resistance. *Nat Rev Microbiol* 12:35-48.

307 5. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. 2018. Ribosome-targeting
308 antibiotics: modes of action, mechanisms of resistance, and implications for drug design.
309 *Annu Rev Biochem* 87:451-478.

310 6. Davis BD. 1987. Mechanism of bactericidal action of aminoglycosides. *Microbiol Rev*
311 51:341-50.

312 7. Lang M, Carvalho A, Baharoglu Z, Mazel D. 2023. Aminoglycoside uptake, stress, and
313 potentiation in Gram-negative bacteria: new therapies with old molecules. *Microbiol Mol
314 Biol Rev* doi:10.1128/mmbr.00036-22:e0003622.

315 8. Schatz A, Bugie E, Waksman SA. 2005. Streptomycin, a substance exhibiting antibiotic
316 activity against gram-positive and gram-negative bacteria. 1944. *Clin Orthop Relat Res*
317 doi:10.1097/01.blo.0000175887.98112.fe:3-6.

318 9. Wohlgemuth I, Garofalo R, Samatova E, Gunenc AN, Lenz C, Urlaub H, Rodnina MV.
319 2021. Translation error clusters induced by aminoglycoside antibiotics. *Nat Commun*
320 12:1830.

321 10. Vallabhaneni H, Farabaugh PJ. 2009. Accuracy modulating mutations of the ribosomal
322 protein S4-S5 interface do not necessarily destabilize the rps4-rps5 protein-protein
323 interaction. *Rna* 15:1100-9.

324 11. Ling J, Cho C, Guo LT, Aerni HR, Rinehart J, Söll D. 2012. Protein aggregation caused
325 by aminoglycoside action is prevented by a hydrogen peroxide scavenger. *Mol Cell*
326 48:713-22.

327 12. Davis BD, Chen LL, Tai PC. 1986. Misread protein creates membrane channels: an
328 essential step in the bactericidal action of aminoglycosides. *Proc Natl Acad Sci U S A*
329 83:6164-8.

330 13. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT,
331 Ramakrishnan V. 2000. Functional insights from the structure of the 30S ribosomal
332 subunit and its interactions with antibiotics. *Nature* 407:340-8.

333 14. Demirci H, Murphy Ft, Murphy E, Gregory ST, Dahlberg AE, Jogl G. 2013. A structural
334 basis for streptomycin-induced misreading of the genetic code. *Nat Commun* 4:1355.

335 15. Cohen KA, Stott KE, Munsamy V, Manson AL, Earl AM, Pym AS. 2020. Evidence for
336 expanding the role of streptomycin in the management of drug-resistant *Mycobacterium*
337 *tuberculosis*. *Antimicrob Agents Chemother* 64.

338 16. Nair J, Rouse DA, Bai GH, Morris SL. 1993. The *rpsL* gene and streptomycin resistance
339 in single and multiple drug-resistant strains of *Mycobacterium tuberculosis*. *Mol Microbiol*
340 10:521-7.

341 17. Allen PN, Noller HF. 1991. A single base substitution in 16S ribosomal RNA suppresses
342 streptomycin dependence and increases the frequency of translational errors. *Cell*
343 66:141-8.

344 18. Mikheil DM, Shippy DC, Eakley NM, Okwumabua OE, Fadl AA. 2012. Deletion of gene
345 encoding methyltransferase (*gidB*) confers high-level antimicrobial resistance in
346 *Salmonella*. *J Antibiot (Tokyo)* 65:185-92.

347 19. Dai R, He J, Zha X, Wang Y, Zhang X, Gao H, Yang X, Li J, Xin Y, Wang Y, Li S, Jin J,
348 Zhang Q, Bai J, Peng Y, Wu H, Zhang Q, Wei B, Xu J, Li W. 2021. A novel mechanism
349 of streptomycin resistance in *Yersinia pestis*: Mutation in the *rpsL* gene. *PLoS Negl Trop*
350 Dis 15:e0009324.

351 20. Wistrand-Yuen E, Knopp M, Hjort K, Koskineni S, Berg OG, Andersson DI. 2018.
352 Evolution of high-level resistance during low-level antibiotic exposure. *Nat Commun*
353 9:1599.

354 21. Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y,
355 Ochi K. 2007. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers
356 low-level streptomycin resistance in bacteria. *Mol Microbiol* 63:1096-106.

357 22. Watson ZL, Ward FR, Meheust R, Ad O, Schepartz A, Banfield JF, Cate JH. 2020.
358 Structure of the bacterial ribosome at 2 Å resolution. *Elife* 9.

359 23. Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. 2022. Protein assistants
360 of small ribosomal subunit biogenesis in bacteria. *Microorganisms* 10.

361 24. Schedlbauer A, Iturrioz I, Ochoa-Lizarralde B, Diercks T, Lopez-Alonso JP, Lavin JL,
362 Kaminishi T, Capuni R, Dhimole N, de Astigarraga E, Gil-Carton D, Fucini P, Connell
363 SR. 2021. A conserved rRNA switch is central to decoding site maturation on the small
364 ribosomal subunit. *Sci Adv* 7.

365 25. Baym M, Stone LK, Kishony R. 2016. Multidrug evolutionary strategies to reverse
366 antibiotic resistance. *Science* 351:aad3292.

367 26. Pezzella C, Ricci A, DiGiannatale E, Luzzi I, Carattoli A. 2004. Tetracycline and
368 streptomycin resistance genes, transposons, and plasmids in *Salmonella enterica*
369 isolates from animals in Italy. *Antimicrob Agents Chemother* 48:903-8.

370 27. Wong SY, Javid B, Addepalli B, Piszczek G, Strader MB, Limbach PA, Barry CE, 3rd.
371 2013. Functional role of methylation of G518 of the 16S rRNA 530 loop by GidB in
372 *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother* 57:6311-8.

373 28. Goltermann L, Good L, Bentin T. 2013. Chaperonins fight aminoglycoside-induced
374 protein misfolding and promote short-term tolerance in *Escherichia coli*. *J Biol Chem*
375 288:10483-9.

376 29. Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, Dewachter L, Michiels
377 JE, Fu Q, David CC, Fierro AC, Marchal K, Beirlant J, Versee W, Hofkens J, Jansen M,
378 Fauvert M, Michiels J. 2015. Obg and membrane depolarization are part of a microbial
379 bet-hedging strategy that leads to antibiotic tolerance. *Mol Cell* 59:9-21.

380 30. Lv B, Huang X, Lijia C, Ma Y, Bian M, Li Z, Duan J, Zhou F, Yang B, Qie X, Song Y,
381 Wood TK, Fu X. 2023. Heat shock potentiates aminoglycosides against gram-negative
382 bacteria by enhancing antibiotic uptake, protein aggregation, and ROS. *Proc Natl Acad
383 Sci U S A* 120:e2217254120.

384 31. Koronakis V, Eswaran J, Hughes C. 2004. Structure and function of TolC: the bacterial
385 exit duct for proteins and drugs. *Annu Rev Biochem* 73:467-89.

386 32. Bjorkman J, Samuelsson P, Andersson DI, Hughes D. 1999. Novel ribosomal mutations
387 affecting translational accuracy, antibiotic resistance and virulence of *Salmonella*
388 *Typhimurium*. *Mol Microbiol* 31:53-8.

389 33. Agarwal D, Gregory ST, O'Connor M. 2011. Error-prone and error-restrictive mutations
390 affecting ribosomal protein S12. *J Mol Biol* 410:1-9.

391 34. Lyu Z, Villanueva P, O'Malley L, Murphy P, Augenstreich J, Briken V, Singh A, Ling J.
392 2023. Genome-wide screening reveals metabolic regulation of stop-codon readthrough
393 by cyclic AMP. *Nucleic Acids Res* doi:10.1093/nar/gkad725.

394 35. Fan Y, Thompson L, Lyu Z, Cameron TA, De Lay NR, Krachler AM, Ling J. 2019.
395 Optimal translational fidelity is critical for *Salmonella* virulence and host interactions.
396 *Nucleic Acids Res* 47:5356-5367.

397 36. Fan Y, Evans CR, Barber KW, Banerjee K, Weiss KJ, Margolin W, Igoshin OA, Rinehart
398 J, Ling J. 2017. Heterogeneity of stop codon readthrough in single bacterial cells and
399 implications for population fitness. *Mol Cell* 67:826-836.

400 37. Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to
401 reverse resistance? *Nat Rev Microbiol* 8:260-71.

402 38. Fan Y, Evans CR, Ling J. 2016. Reduced protein synthesis fidelity inhibits flagellar
403 biosynthesis and motility. *Sci Rep* 6:30960.

404 39. Lyu Z, Yang A, Villanueva P, Singh A, Ling J. 2021. Heterogeneous flagellar expression
405 in single *Salmonella* cells promotes diversity in antibiotic tolerance. *mBio* 12:e0237421.

406 40. Chilcott GS, Hughes KT. 2000. Coupling of flagellar gene expression to flagellar
407 assembly in *Salmonella enterica* serovar *Typhimurium* and *Escherichia coli*. *Microbiol
408 Mol Biol Rev* 64:694-708.

409 41. Shajani Z, Sykes MT, Williamson JR. 2011. Assembly of bacterial ribosomes. *Annu Rev
410 Biochem* 80:501-26.

411 42. Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. 2023.
412 Molecular mechanisms of antibiotic resistance revisited. *Nat Rev Microbiol* 21:280-295.

413 43. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. 2015. Molecular mechanisms
414 of antibiotic resistance. *Nat Rev Microbiol* 13:42-51.

415 44. Ramirez MS, Tolmasky ME. 2010. Aminoglycoside modifying enzymes. *Drug Resist
416 Updat* 13:151-71.

417 45. Bi Z, Su HW, Hong JY, Javid B. 2021. Ribosomal RNA methylation by GidB is a
418 capacitor for discrimination of mischarged tRNA. *bioRxiv*:2021.03. 02.433644.

419 46. Woodson SA. 2000. Recent insights on RNA folding mechanisms from catalytic RNA.
420 *Cell Mol Life Sci* 57:796-808.

421 47. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in
422 *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* 97:6640-5.

423 48. Swings T, Van den Bergh B, Wuyts S, Oeyen E, Voordeckers K, Verstrepen KJ, Fauvert
424 M, Verstraeten N, Michiels J. 2017. Adaptive tuning of mutation rates allows fast
425 response to lethal stress in *Escherichia coli*. *Elife* 6.

426

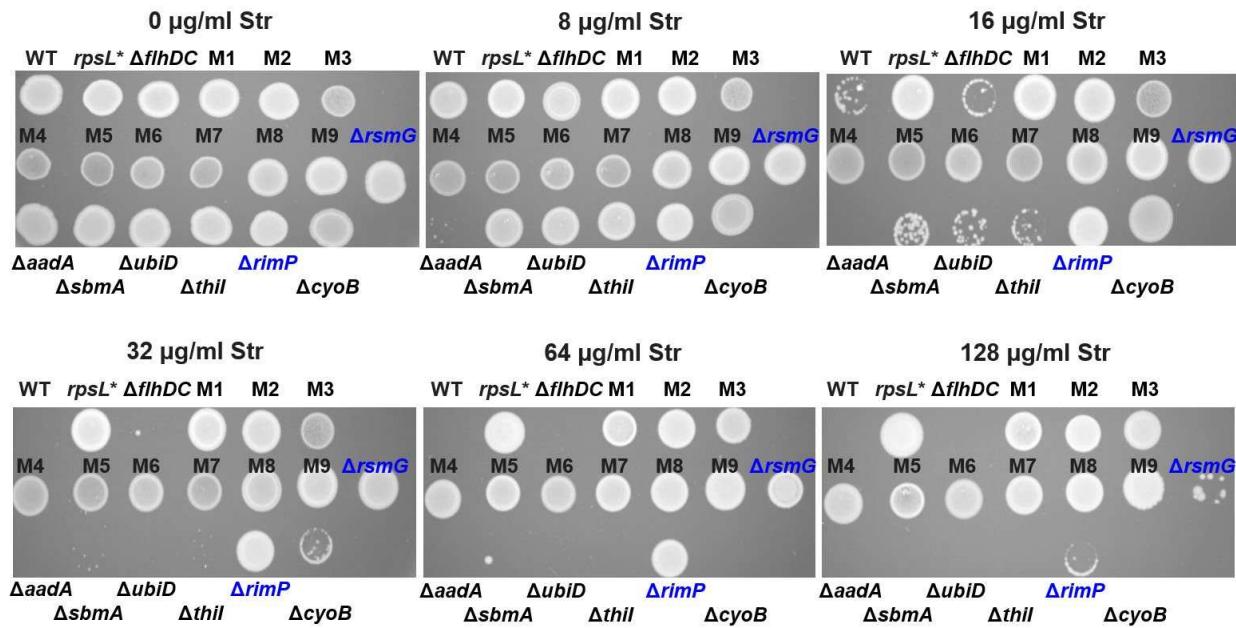
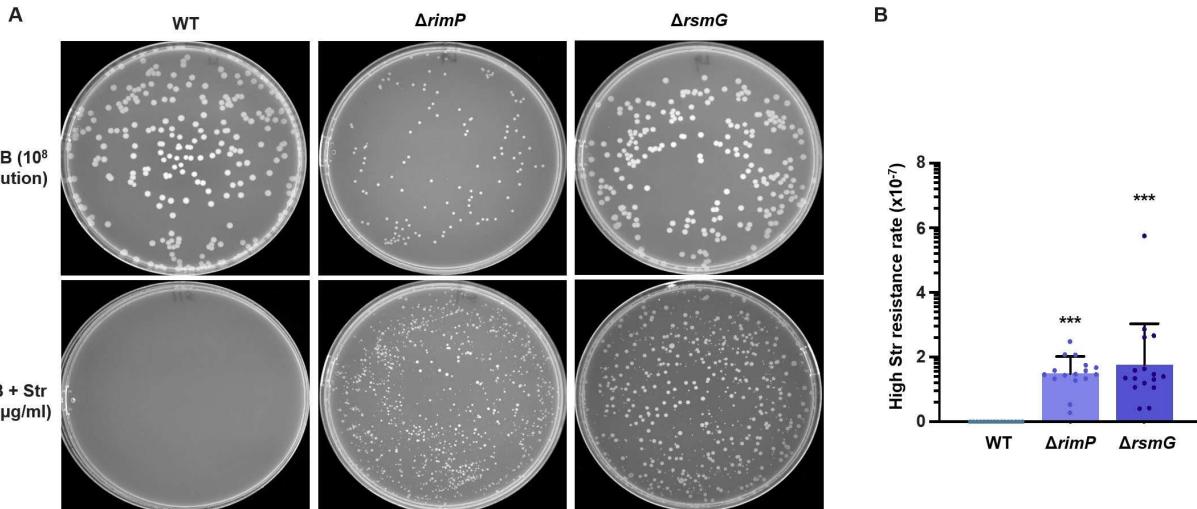

427

TABLE 1 Streptomycin, motility, and growth rates of *Salmonella* variants

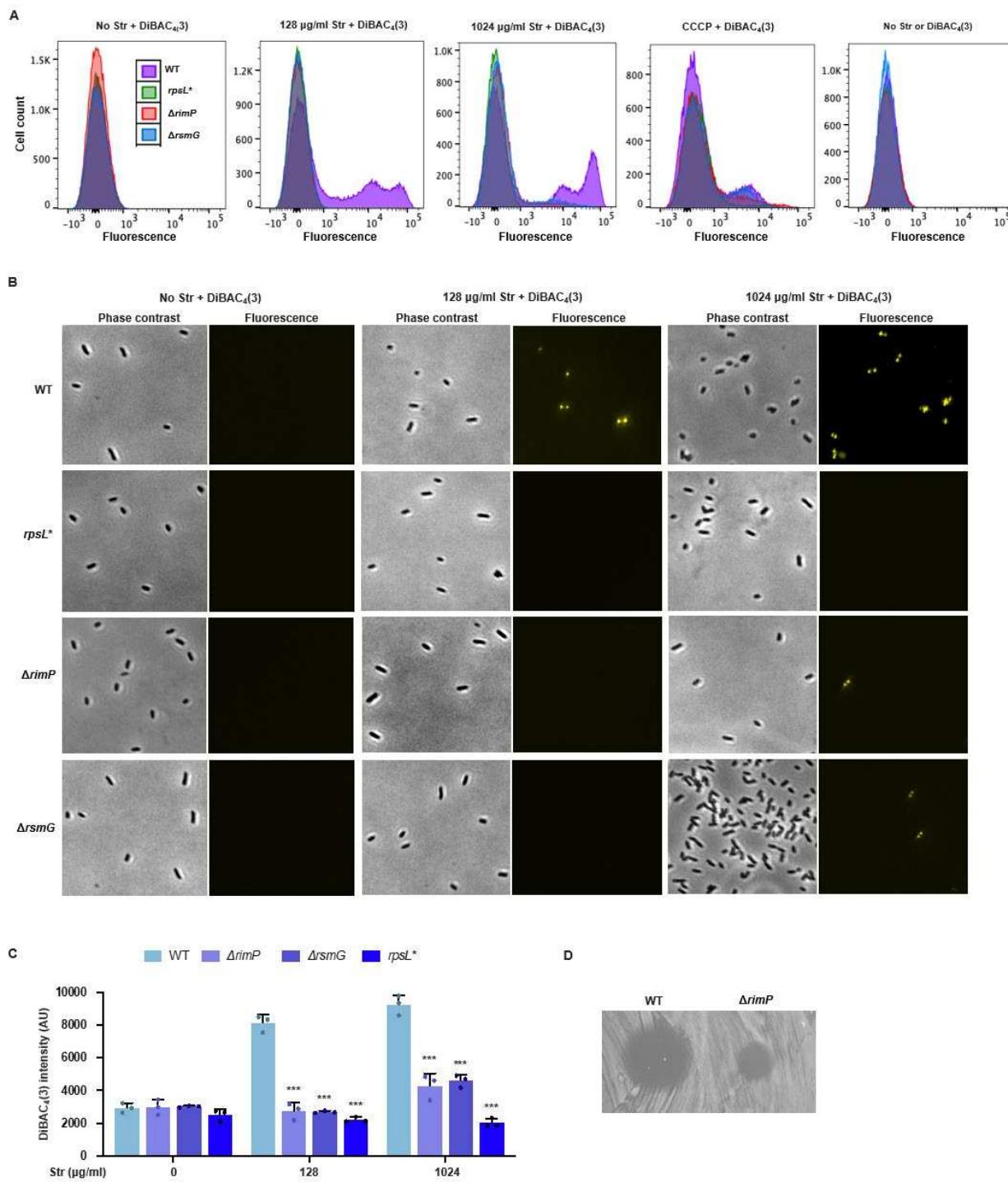
Strain	Genotype	Str MIC (μ g/ml)	Motility (mm)	Growth rate (h^{-1})
WT	<i>S. Typhimurium</i> ATCC 14028s	16	30.0 \pm 2.4	2.56 \pm 0.05
M1	<i>rsmG</i> (G159fs)	2048	32.3 \pm 2.7	2.46 \pm 0.01
M2	<i>rsmG</i> (L168stop), <i>fre</i> (P55L)	256	6.5 \pm 2.6	2.22 \pm 0.14
M3	<i>rsmG</i> (P118fs), <i>ΔispA</i> (partial) <i>ΔxseB</i> , <i>Δthil</i> , <i>ΔphnV</i> , <i>ΔphnU</i> , <i>ΔphnT</i> , <i>ΔphnS</i>	4096	3.3 \pm 0.5	2.56 \pm 0.05
M4	<i>rsmG</i> (G156stop), <i>ubiD</i> (Q78stop)	4096	3.2 \pm 0.2	0.48 \pm 0.05
M5	<i>ubiD</i> (Q78stop), <i>sbmA</i> (R165fs)	512	3.5 \pm 0.4	0.67 \pm 0.07
M6	<i>ubiD</i> (Q78stop), <i>rimP</i> (G31fs)	4096	3.3 \pm 0.2	0.56 \pm 0.007
M7	<i>rsmG</i> (R101W), <i>ubiD</i> (Q78stop)	4096	3.2 \pm 0.2	0.65 \pm 0.07
M8	<i>rsmG</i> (R101L), <i>cyoB</i> (W203stop)	512	12.8 \pm 1.9	2.25 \pm 0.09
M9	<i>rsmG</i> (T22fs), <i>aadA</i> promoter (G to A)	512	30.8 \pm 0.9	2.46 \pm 0.14
Δ <i>rimP</i>	<i>rimP</i> ::Chl	128	3.7 \pm 0.4	1.78 \pm 0.06
Δ <i>rsmG</i>	<i>rsmG</i> ::Chl	128	26.5 \pm 1.2	2.44 \pm 0.03

428


429 Figures

430

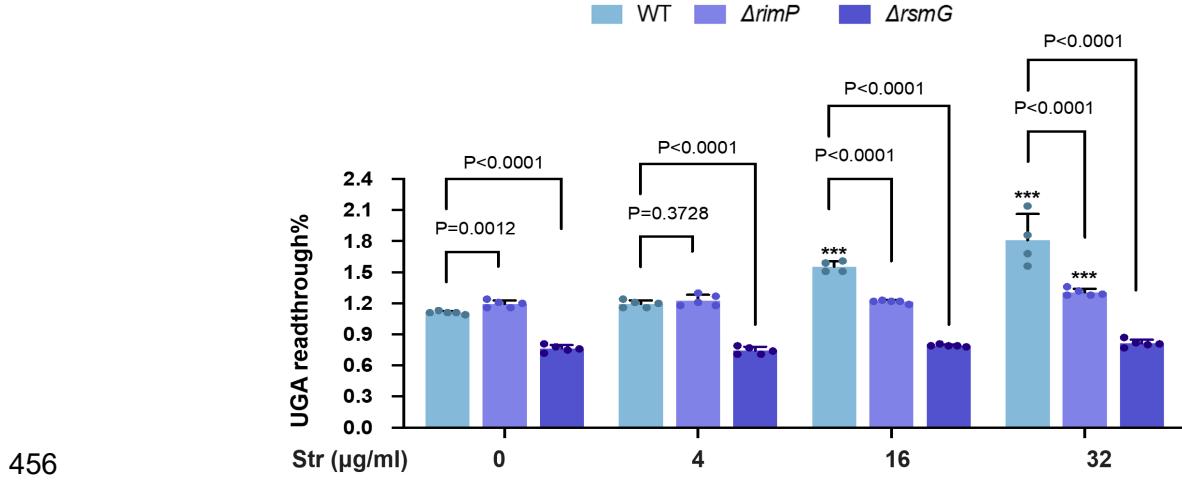
431


432 **Figure 1. Streptomycin resistance in *Salmonella* Typhimurium variants.** Overnight cultures
433 of *Salmonella* variants grown in LB without Str were spotted on LB agar plates with various
434 concentrations of Str. All the evolved strains (M1-M9) and *rpsL** (carrying a K42N mutation in
435 uS12) grew at 128 µg/ml Str. Deleting *flhDC*, the master regulator of flagellar genes, did not
436 increase Str resistance. Deleting *rsmG* or *rimP* increased the MIC 8-fold. These images are
437 representatives of at least three biological replicates.

438

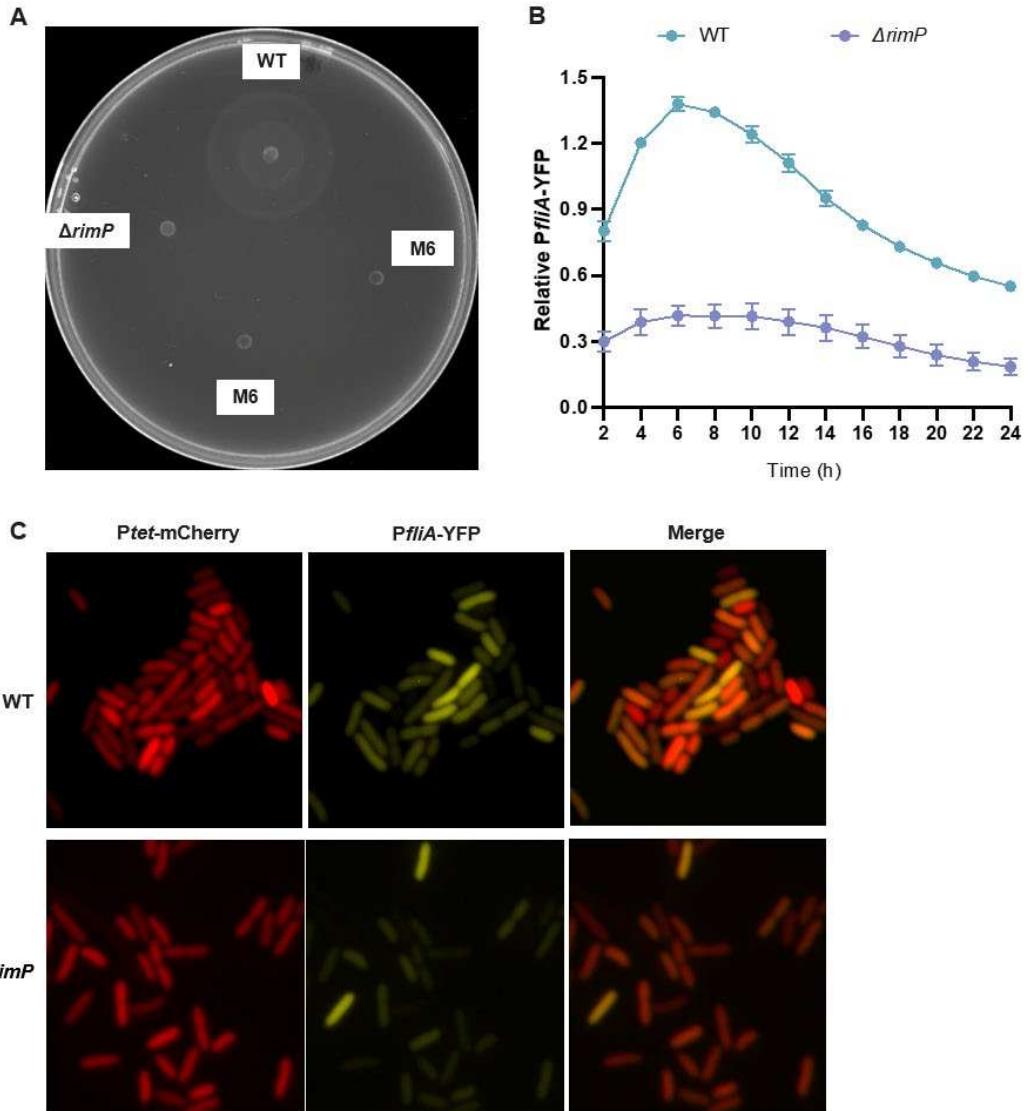
439

440 **Figure 2. Fluctuation tests of Str resistance.** (A) Representative images of colony formation
441 on LB agar with or without Str. WT, $\Delta rimP$, and $\Delta rsmG$ *Salmonella* were grown in LB at 37°C to
442 the stationary phase and plated. (B) High Str resistance rates were calculated using the ratio of
443 colony number on LB + Str over that on LB. Each dot represents one biological replicate. Error
444 bars represent one SD from the mean. The statistical differences between the mutants and the
445 WT were analyzed using One-way ANOVA with Dunnett correction. *** P < 0.001.

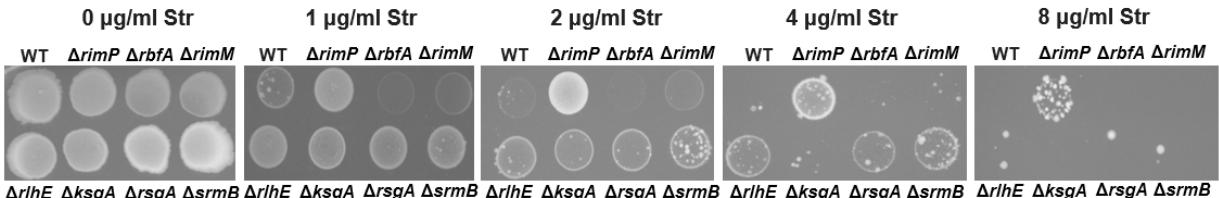


446

447


448 **Figure 3. Membrane depolarization and Str uptake in *Salmonella* variants.** Log-phase
 449 *Salmonella* cells were treated with or without Str at indicated concentrations and DiBAC₄(3). The
 450 fluorescence was determined using (A) flow cytometry, (B) fluorescence microscopy, and (C)
 451 platereader. (D) Zone inhibition of the *E. coli* lawn by the lysates of WT and ΔrimP *Salmonella*
 452 treated with 1024 µg/ml Str. (A), (B), and (D) show representative images of at least three

453 biological replicates. Error bars in (C) represent one SD from the mean. The statistical differences
454 between the mutants and the WT at the same Str concentration were analyzed using One-way
455 ANOVA with Dunnett correction. *** P < 0.001.


456
457

458 **Figure 4. UGA readthrough of *Salmonella* strains.** The UGA readthrough of stationary phase
459 *Salmonella* carrying fluorescence reporters grown in LB with or without Str was calculated as
460 described (36). Error bars represent one SD from the mean. The statistical differences were
461 analyzed using One-way ANOVA with Dunnett correction. *** P < 0.001 comparing the same
462 strain in the presence and absence of Str.

463
464

465 **Figure 5. Motility of WT *Salmonella* and *rimP* mutants.** (A) Soft-agar motility assay. The
466 evolved M6 strain carrying a *rimP* frameshift mutation and the Δ *rimP* strain are both defective in
467 flagellar motility. (B, C) Expression of *PflmA* in WT and Δ *rimP* determined using the platereader or
468 fluorescence microscopy, respectively. *Ptet-mCherry* is constitutively expressed and used for
469 normalization. (A) and (C) show representative images of at least three biological replicates. Error
470 bars in (B) represent one SD from the mean.

471

472

473 **Figure 6. Growth of WT *E. coli* (BW25113) and mutants defective in ribosome biogenesis**
474 **in the presence and absence of Str.** The images are representatives of at least three biological
475 replicates.