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Key Points

• PRMT5 inhibition

induces a FOXO1

driven, proapoptotic

program in MCL.

• Combination therapy

with PRMT5 and BCL-

2 inhibition is

synergistic in

preclinical MCL

models, including

those with ibrutinib

resistance.

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of

non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The

average overall survival of patients with MCL is 5 years, and for most patients who progress

on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need

to identify new therapeutic approaches that are well tolerated to improve treatment

outcomes and quality of life. The protein arginine methyltransferase 5 (PRMT5) enzyme is

overexpressed in MCL and promotes growth and survival. Inhibition of PRMT5 drives

antitumor activity in MCL cell lines and preclinical murine models. PRMT5 inhibition

reduced the activity of prosurvival AKT signaling, which led to the nuclear translocation of

FOXO1 and modulation of its transcriptional activity. Chromatin immunoprecipitation and

sequencing identified multiple proapoptotic BCL-2 family members as FOXO1-bound

genomic loci. We identified BAX as a direct transcriptional target of FOXO1 and

demonstrated its critical role in the synergy observed between the selective PRMT5

inhibitor, PRT382, and the BCL-2 inhibitor, venetoclax. Single-agent and combination

treatments were performed in 9 MCL lines. Loewe synergy scores showed significant levels

of synergy in most MCL lines tested. Preclinical, in vivo evaluation of this strategy in

multiple MCL models showed therapeutic synergy with combination venetoclax/PRT382

treatment with an increased survival advantage in 2 patient-derived xenograft models (P ≤

.0001, P ≤ .0001). Our results provide mechanistic rationale for the combination of PRMT5

inhibition and venetoclax to treat patients with MCL.
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Introduction

Mantle cell lymphoma (MCL) is a CD5+/CD19+ B-cell non-
Hodgkin lymphoma, defined by the t(11;14) translocation juxta-
posing CCND1 downstream of the IgH promoter; this results in
cyclin D1 overexpression and cell cycle dysregulation. MCL com-
prises up to 6% of non-Hodgkin lymphoma cases diagnosed
annually1 and is associated with an overall poor prognosis due to
multiple factors, including advanced stage of disease at diagnosis,
resistance to standard immunochemotherapy regimens, and clin-
ical factors.2 Because of the late median age of diagnosis (~70
years of age3), aggressive chemotherapy and stem cell trans-
plantation are often not realistic options.4 Without stem cell
transplant, the average overall survival of patients with MCL is ~6
years,5 and for most of the patients who progressed on targeted
agents like ibrutinib before the recent Food and Drug Administra-
tion approval of brexucabtagene autoleucel chimeric antigen
receptor T-cell therapy,6 survival remained very poor.7 Short of
salvage immunochemotherapy followed by a stem cell transplant,
relapse is virtually universal, and for the most part, MCL is
considered incurable.8 Thus, there is a major unmet need to identify
new therapeutic strategies that are well tolerated by less fit patients
to improve prognosis and quality of life.3

Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT
enzyme that modulates the activity of a wide range of proteins
through symmetric dimethylation of arginine residues (sDMA).9

PRMT5 is required for normal B-cell development and the for-
mation of germinal centers via direct and indirect modulation of
P53 and the spliceosome.10 We and others have documented
the overexpression of PRMT5 and its oncogenic activity in pro-
moting the growth and survival of MCL and other lymphoid
malignancies.11-18 The sDMA activity of PRMT5 regulates many
cellular functions, including alternative splicing, epigenetic control
of gene expression, and survival/growth and death pathways
orchestrated by P53,19,20 NF-κB/p65,11,21 BCL-6,22 and
E2F1.23-25 Inhibition of PRMT5 leads to reduced cancer cell
growth,26,27 abrogation of a stem cell phenotype,28,29 and
increased survival in in vivo models.13,14,26,30 These observations
have led to the development of several unique classes of small-
molecule PRMT5 inhibitors11,14,31-33 that are currently being
explored in clinical trials (#NCT03886831, #NCT04089449,
#NCT05245500, #NCT05094336, and others).

Previous work has shown that PRMT5 promotes the survival of
lymphoma cells by epigenetically suppressing AXIN2 and WIF1,
supporting the WNT-β-CATENIN pathway, and enhancing AKT
activity.34 AKT phosphorylates protein and lipid kinases, cell cycle
regulators, and transcription factors, among others.35 AKT is also
known to provide progrowth and survival signals through several
pathways, including DNA damage repair,36 cell cycling,37 degra-
dation of p53,38 and receptor tyrosine kinase signal modulation.39

One of the direct targets of AKT is the forkhead box protein O1
(FOXO1), a transcription factor canonically known as a tumor
suppressor40-42 and critical for normal B-cell development.43,44

FOXO1 has been shown to be essential for pro-B cells to
advance to pre-B cells, peripheral blood B cells to traffic to lymph
nodes, and to support immunoglobulin class switching to drive
efficient antibody memory responses.43 In cancer, FOXO1

regulates cell cycle,45,46 autophagy,47,48 and has been correlated
with prognosis in multiple types of cancer.49-51 These functions are
suppressed by AKT activity, where AKT phosphorylates FOXO1,
preventing FOXO1’s transcriptional activity and triggering export
from the nucleus.41 In lymphomas, PRMT5 supports the activity of
AKT through the sDMA of R391 of AKT.34,52,53 We hypothesized
that PRMT5 inhibition may lead to interruption of this pathway and
restore tumor suppressor activity of downstream targets like
FOXO1.

Here, we show how PRMT5 inhibition leads to the dissociation of
AKT and FOXO1, followed by the nuclear translocation of FOXO1
and recruitment to the promoter regions of target genes, including
members of the proapoptotic BCL-2 family. After PRMT5 inhibition,
FOXO1 directly binds to the promoter region of BCL-2–associated
X protein (BAX), leading to its increased expression and decreased
apoptotic threshold in MCL cells. We hypothesized this would drive
a therapeutic vulnerability to BCL-2 inhibition and demonstrated that
treatment with the BCL-2 inhibitor, venetoclax, and the PRMT5
inhibitor, PRT382 leads to synergistic cell death of MCL cells in both
in vitro and in vivo preclinical models. Basal expression of BCL-2
was found to correlate with the synergistic antitumor activity of this
combinatorial strategy. This study provides support for combining
PRMT5 and BCL-2 inhibition in clinical trials for patients with MCL.

Materials and methods

Cell culture, measurement of antitumor activity, and

synergy

Nine cell lines were used in this work: Jeko, Rec-1, SP53, UPN-1,
CCMCL1, Z-138, Mino, Maver-1, and Granta-519. All lines were
cultured at 37◦C, 5% CO2, in RPMI 1640 supplemented with 10%
FBS, 1% glutamax, and 1% penicillin/streptomycin. Cell lines were
validated by short tandam repeats (STR) sequencing. Mycoplasma
testing was performed monthly. PRT382 was supplied by Prelude
Therapeutics (Wilmington, DE). Venetoclax (ABT-199) was pur-
chased from MedChemExpress. Inhibitory concentration (IC50s),
defined as a 50% reduction in the percentage of live cells, were
measured with annexin V/Propidium iodide (PI) staining and flow
cytometry. IC50s were measured at day 9 for PRT382 and day 3
for venetoclax. Synergy was measured via 3-(4,5 dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium
(MTS) assay at day 9 after 6 days of PRT382 pretreatment and
3 days of combination treatment. Synergy scores and plots were
calculated with the Loewe model via Combenefit.54

Chromatin immunoprecipitation sequencing

(ChIP-seq) and quantitative polymerase chain

reaction (q-PCR)

Sample preparation, library construction, and ChIP-seq were per-
formed as described previously.55 Briefly, cells treated with and
without PRT382 were harvested after 48 hours and fixed. Nuclei
were harvested and chromatin sheared via sonication before
immunoprecipitation with 10 μg of anti-FOXO1 (custom-raised
rabbit polyclonal) was performed at 4◦C overnight. The preparation
was cleaned with RNase and proteinase K. DNA was reverse-
crosslinked and extracted via NucleoSpin Gel and a PCR
cleanup DNA extraction kit. Libraries were generated using the
KAPA Hyper Prep kit and 8-cycle PCR amplified, followed by

6212 BROWN-BURKE et al 24 OCTOBER 2023 • VOLUME 7, NUMBER 20

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
h
p
u
b
lic

a
tio

n
s
.o

rg
/b

lo
o
d
a
d
v
a
n
c
e
s
/a

rtic
le

-p
d
f/7

/2
0
/6

2
1
1
/2

0
8
5
1
7
4
/b

lo
o
d
a
_

a
d
v
-2

0
2
3
-0

0
9
9
0
6
-m

a
in

.p
d
f b

y
 g

u
e
s
t o

n
 0

9
 J

a
n
u

a
ry

 2
0
2
4



purification using 1X SPRI beads. Sequencing and postprocessing
of the raw data were performed at the Genomics Core facility at
Weill Cornell Medicine.

Reverse transcription was carried out on 200 ng of total RNA using
the RevertAid RT kit. reverse transcription qPCR was performed on
complementary DNA samples using the PowerUp SYBR Green
Master Mix on the 7500 Fast Real-time PCR system. The
messenger RNA (mRNA) level of each sample was normalized to
that of beta actin (ACTB) mRNA. The relative mRNA level was
presented as unit values of 2

ˇ

dCt (=Ct of ACTB-Ct of gene).

Western blotting and immunofluorescence

Cells were treated with small-molecule inhibitors for up to 9 days,
with media changed completely every 3 days. Doses are listed in
supplemental Table 1 and were chosen to maintain viability above
70% at the time of collection. Cells were harvested by pelleting at
300g for 10 minutes, washed with ice-cold phosphate-buffered
saline, and pelleted at 300g for 8 minutes at 4◦C. Lysates were
made using radioimmunopercipitation assay (RIPA) buffer with
phosphatase and protease inhibition cocktails. Western blots were
run with 20 to 30μg of protein on 4% to 20% sodium dodecyl
sulfate- polyacrylamide gel electrophoresis gels before being
transferred to Polyvinylidene fluoride (PVDF) using the Turbo
Transfer System. Blots were blocked, probed, washed, and imaged
according to LiCor protocols. For immunofluorescence, cells were
fixed with paraformaldehyde and permeabilized with 0.2% TX100.
Incubation with the primary antibody was performed overnight at
4◦C and imaging was completed with an Alexa488-conjugated
donkey anti-rabbit immunoglobulin G (IgG) secondary. FOXO1
localization was determined by quantification of cells with FOXO1-
enriched nuclei by view field. Additional primary and secondary
antibodies are listed in the supplemental Methods.

Knockdown cell lines

BAX and BAK1 knockdown cell lines were created using 2 short
hairpin RNA (shRNA) plasmids (Mission shRNA, Sigma) for each
gene. Briefly, glycerol bacterial stocks were expanded and har-
vested for plasmid. This was transduced with a packaging and
envelope plasmid into Lenti X 293T cell. Virus was produced,
collected, and used to transduce cells of interest. Successfully
transduced cells were selected with puromycin and knockdown
was confirmed via reverse transcription PCR and western blot. A
pLKO.1 empty plasmid SHC001 was used as a control. PRMT5
knockdown cell line details can be found in supplemental Methods.

In vivo studies

Two patient-derived xenograft (PDX) and 2 cell line–derived
xenograft (CDX) models were used in this work. The CCMCL1
CDX, PDX.AA.MCL, and PDX.IR.96069 studies were performed at
the Ohio State University (OSU) under protocol 2009A0094-R4
and institution animal care and use comittee (IACUC) approval.
PDX.AA.MCL was developed by the OSU lymphoma group from
an ibrutinib-resistant patient sample,56 whereas PDX.IR.96069 was
obtained from PROXE57 and tested for continued ibrutinib resis-
tance. The Granta-519 CDX flank model was performed at Crown
Bioscience on behalf of Prelude Therapeutics under their ethical
guidelines. NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) or
NOD.Cg-Prkdcscid/J (NOD SCID) mice (OSU ULAR or LC
Shanghai Lingchang Bio-Technology co, LTD) were engrafted

either via tail vein or on the flank with 10e6 cells. Disease burden
was monitored via flow cytometry or measurement of tumor size.
Mice were dosed variably with the CCMCL1 CDX (refer to sup-
plemental Methods), 4 days on, 3 days off (PDX.AA.MCL and
PDX.IR.96069), or daily (Granta-519 CDX) via oral gavage.

Statistics

Data were analyzed with a two-way analysis of variance, Student
t test, Spearman correlation, or log-rank (Mantel-Cox) test, as
applicable. To compare changes in disease burden over time, we
used generalized estimating equations with autoregressive correla-
tion structure to test the differences in slopes between groups. For
this exploratory preclinical study, P values were not adjusted for
potential multiple comparisons. Error bars show the standard devi-
ation of the data. *P < .05, **P < .01, ***P < .001, ****P < .0001.

Results

Selective inhibition of PRMT5 with PRT382 is

cytotoxic against MCL cells in vitro and in vivo

To selectively target PRMT5 activity in MCL, we used PRT382
(Prelude Therapeutics), a novel S-adenosyl methionine competitive,
selective small-molecule inhibitor of PRMT5 enzymatic activity58

(supplemental Figure 1A). In vitro anti-MCL activity was demon-
strated in 9 cell lines, which showed IC50s ranging from 44.8 to
1905.5 nM, with the maximal effect occurring on day 9 (Figure 1A;
supplemental Figure 1B). This compound was found to be more
potent than EPZ015666 (GSK3235025), a well-described PRMT5
inhibitor58 (supplemental Figure 1C). In vivo, PRT382 demon-
strated a favorable oral bioavailability and pharmacokinetic profile in
mice (area under curve, 1175 h*kg*ng/mL per mg at 10 mg/kg)
(supplemental Figure 1D). The human MCL CDX, CCMCL1, was
used to evaluate a range of doses and schedules for evaluation of
toxicity and antitumor activity. A dose of 10 mg/kg every other day
showed the lowest efficacy compared with a dose of 5 mg/kg daily
or 10 mg/kg 4 days on, 3 days off (4D/3D), demonstrating the
importance of a dosing schedule for this compound (Figure 1B-C).
PRT382 delivered on a dose and schedule of 10 mg/kg 4D/3D off
achieved a prolonged significant reduction in circulating disease
and extended median survival from 37 to 87 days (Figure 1B-C;
P < .01). This schedule avoided dose-limiting toxicities, defined as
greater than 10% body weight loss in a week (supplemental
Figure 1E), and provided robust antitumor activity. Despite the
significant survival advantage, all treated mice eventually reached
early removal criteria (ERC) because of the MCL disease burden,
prompting consideration of combination strategies.

PRMT5 inhibition promotes reactivation and

relocalization of FOXO1 in MCL

We and others have previously reported that PRMT5 directly and
indirectly supports AKT activity.34,53 We hypothesized that the
reduced AKT activity occurring because of PRMT5 inhibition would
lead to perturbation of the AKT:FOXO1 interaction, FOXO1
nuclear translocation, and modulation of genes with tumor sup-
pressor activity. Using CCMCL1 and Z-138 as representative MCL
cell lines, we confirmed that the PRMT5 inhibition disrupted the
physical interaction between AKT and FOXO1 (Figure 2A).
We evaluated the nuclear localization of FOXO1 in CCMCL1
and Z-138 with immunofluorescence, comparing control and

24 OCTOBER 2023 • VOLUME 7, NUMBER 20 SYNERGY BETWEEN PRMT5 AND BCL2 INHIBITION IN MCL 6213

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
h
p
u
b
lic

a
tio

n
s
.o

rg
/b

lo
o
d
a
d
v
a
n
c
e
s
/a

rtic
le

-p
d
f/7

/2
0
/6

2
1
1
/2

0
8
5
1
7
4
/b

lo
o
d
a
_

a
d
v
-2

0
2
3
-0

0
9
9
0
6
-m

a
in

.p
d
f b

y
 g

u
e
s
t o

n
 0

9
 J

a
n
u

a
ry

 2
0
2
4



PRMT5-inhibited cells. Within the nuclear compartment, we saw
increased levels of FOXO1 after PRMT5 inhibition (both P < .001)
(Figure 2B). This observation led us to explore FOXO1 recruitment
among potential target promoters.

FOXO1 reactivation promotes the expression of

proapoptotic BCL-2 family proteins

To determine the downstream response of FOXO1 activation,
CCMCL1 cells were treated with PRT382 for 48 hours and then
processed for ChIP sequencing. Among those genes associated
with FOXO1 peaks and sites of active transcription, genes in the
BCL-2 family were of particular interest (Figure 2C; supplemental
Table 2). This collection of proteins containing a BH3 motif
includes both proapoptotic and prosurvival proteins, where the
balance of concentrations and interactions determines whether a
cell enters intrinsic apoptosis. We found FOXO1 to be associated
with the proapoptotic genes BAX, BAK1, BIK, and BBC3

(Figure 2C). These genes either produce direct effectors of

apoptosis, as in the case of BAX and BAK1, or mediate apoptotic
activity, as in the case of BIK and BBC3. In support of the ChIP-seq
data, we identified the presence of a FOXO1 consensus–binding
motif (5′-GTAAA(T/C)A-3’)59 in the BAX gene promoter
(Figure 2D). ChIP q-PCR confirmed that FOXO1 was significantly
enriched on the BAX gene promoter in Z-138, Maver-1, and SP53
cell lines after PRT382 treatment (Figure 2E). ChIP qPCR on
Z-138, CCMCL1, and Maver-1 cell lines also confirmed increased
enrichment for FOXO1 binding to the active regulatory regions of
BAK1, BIK, or NOXA1 when PRMT5 was inhibited (supplemental
Figure 2A-C).

Supporting the relevance of FOXO1 enrichment on these genes,
qPCR showed several proapoptotic BH3 family members were
upregulated on a transcript level after PRMT5 inhibition (Figure 3A-
C). Western blotting showed that BAX, BAK1, and BBC3 protein
levels were all upregulated in multiple MCL cell lines after 6 days of
PRMT5 inhibition (Figure 3D-G). BAX was the most frequently
upregulated and had the greatest fold increase across all cell lines
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Figure 1. PRMT5 inhibition via PRT382 is effective at killing MCL in vitro and in vivo. (A) IC50 of 9 MCL cell lines measured by annexin V/PI staining and flow cytometry

on day 9. (B) Survival of CCMCL1-engrafted NSG mice treated with PRT382 at varying doses and frequencies. PRT382 10 mg/kg 4D3D showed the greatest survival advantage
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significantly delayed disease progression. A log-rank test with significance was used for panel B. *P < .05; **P < .01; ***P < .001; ****P < .0001. Error bars show standard

deviation of the data.
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Figure 3. PRMT5 inhibition promotes apoptosis through the transcription and translation of proapoptotic genes. qPCR measurement of the transcripts of select

BCL-2 family genes in (A) Z-138, (B) CCMCL1, and (C) Maver-1 after 72 hours of 100 nM PRT382 treatment. Quantification of (D) BAX, (E) BAK1, and (F) BBC3 (Puma) protein
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with PRMT5 inhibition (Figure 3D). This increase was confirmed to
be an on-target effect of PRMT5 inhibition and FOXO1 activity
through genetic knockdown (supplemental Figure 2D-E). These
data show that proapoptotic proteins are upregulated with PRMT5
inhibition and suggest that FOXO1 regulates the expression of the
key proapoptotic protein BAX.

PRMT5 and BCL-2 inhibition drive synergistic MCL

cell death

With the upregulation of proapoptotic proteins, including BAX with
PRMT5 inhibition, we looked for an agent that could capitalize on
this shift in intrinsic apoptotic signaling. The protein BCL-2 binds to
and blocks the activity of BAX so we chose to test venetoclax, a
BCL-2 inhibitor approved for the treatment of chronic lymphocytic
leukemia.60 As a single agent, venetoclax produced IC50 values
below 1 μM in 4 of the MCL lines tested (Figure 4A). We evaluated
the synergy of venetoclax in combination with PRTM5 inhibition via
PRT382 using MTS and the Loewe Model of Synergy computed by
Combenefit54,61 (Figure 4B-C; supplemental Figure 3). Z-138 was
found to be the most sensitive to the combination treatment, with
synergy scores reaching as high as 63.9 (Figure 4C), whereas
other lines such as Mino and Jeko were found to be moderately
sensitive. The range of sensitivities across 9 MCL cell lines, as
shown in Figure 4C, shows significant synergy in 6 of the 9 cell
lines tested (synergy score, 12.8-63.9). This led us to explore
why 3 lines showed resistance to this combination and whether
we could determine a biomarker correlative to the degree of
synergy.

BCL2 expression is a biomarker for synergy response

in MCL cells

We explored the basal expression of key proteins to determine if a
correlative pattern of expression was associated with the level of
antitumor synergy observed in cell lines (Figure 4D). Baseline levels
of BCL-2, BAX, FOXO1, and PRMT5 and the ratio of BAX to BCL-
2 expression were all correlated to Loewe synergy scores. BCL-2
expression, with Maver-1 censored as an outlier, provided the
strongest correlation (Spearman r = 0.4524, P = .2675), and
higher expression of BCL-2 resulted in higher synergy scores
(Figure 4E). FOXO1 and PRMT5 expression had negative corre-
lations with synergy score, whereas BAX expression and the ratio
of BAX to BCL-2 resulted in positive correlations (supplemental
Figure 4A-D). Clustering the cell lines by p53 status (wild type or
mutant) showed no difference in synergy scores (Figure 4F, P =
.529). Five patient samples and 2 MCL PDX model cells were also
analyzed for basal expression of BAX, BCL-2, FOXO1, and PRMT5
(Figure 4G). BCL-2 was found to be highly expressed in all sam-
ples tested, suggesting a high level of synergy could be achieved.

PRMT5 inhibition in combination with venetoclax

induces intrinsic apoptosis dependent on BAX

expression

To determine the mechanism driving cell death with drug treatment,
caspase 3, 8, and 9 expression was examined in cells treated with
DMSO, PRT382 only, venetoclax only, or the combination. The
cleavage of caspase 9, indicating intrinsic apoptosis, was seen as
early as day 2 (supplemental Figure 5), whereas caspase 8
remained relatively unchanged, showing little to no extrinsic
apoptosis signaling. Corresponding with viability measurements,
the greatest cleavage of caspases 3 and 9 was seen in the combo
treatment cohort on day 6 (Figure 5A).

From our western blots, we determined that BAX was the most
commonly and significantly upregulated protein among the proap-
optotic BCL-2 family. To examine the importance of BAX for ven-
etoclax activity and the synergistic response with combination
treatment, we created BAX knockdown lines with Z-138, Jeko,
Granta-519, and Maver-1 using shRNA (Figure 5B; supplemental
Figure 6). As BAK1 is also capable of triggering the mitochon-
drial depolarization that leads to intrinsic apoptosis, we also
created shRNA knockdowns using the same 4 cell lines
(Figure 5B; supplemental Figure 6). Each line was treated with
DMSO, PRT382 only, venetoclax only, or the combination for
4 days. Annexin V/PI staining with flow cytometry was used to
measure the viability of each treatment. As seen in Figure 5C, BAX
knockdown was protective in Z-138 (P < .0001), whereas both
knockdowns of BAX and BAK1 were protective in Jeko (P = .0285,
P = .0102) (Figure 5D). Granta-519 also showed a trend toward
rescue with BAX knockdown (P = .223) (supplemental Figure 6B),
whereas neither protein knockdown rescued Maver-1 cells
(supplemental Figure 6D).

PRMT5 and BCL-2 inhibition is synergistic in vivo

reducing disease burden and improving survival

One CDX and 2 MCL PDX models were used to test the combi-
nation of venetoclax and a PRMT5 inhibitor. The CDX was a flank
model using Granta-519 cells engrafted subcutaneously. The
combination of subtherapeutic PRT543, the clinical PRMT5
inhibitor for which PRT382 is the tool compound, and subthera-
peutic venetoclax showed decreased tumor burden (supplemental
Figure 7) compared with progressive disease in the single-agent
cohorts.

This led us to test the combination in 2 systemic PDX MCL models:
PDX.AA.MCL developed from an ibrutinib-resistant patient sample
by the OSU lymphoma research group,56 and PDX.IR.96069, an
ibrutinib-resistant model obtained from PRoXe.57 NSG mice were
engrafted with the respective cells and monitored weekly by flow

Figure 4. Six of 9 MCL cell lines show synergistic killing with treatment with PRT382 and BCL-2 inhibition, venetoclax. (A) IC50 of 9 MCL cell lines measured with

annexin V/PI and flow cytometry after 72 hours of treatment with venetoclax. Cell lines with an IC50 below 1 μM are starred and considered sensitive. (B) Synergy matrices

calculated through Combenefit54 using the Lowe model of synergy. Values below −10 are antagonistic, −10 to 10 are additive, and values over 10 are synergistic. Significance is

shown by stars at the bottom of each box. *P < .05; **P < .01; *** P < .001. (C) Single synergy values calculated from at least 3 separate replicates for each cell line. The same

levels of synergy are used as with the synergy matrices. (D) Western blot showing the baseline levels of key proteins in MCL cell lines and normal donor B Cells (ND B cells)

without and with IgG stimulation. Values are corrected by the loading control and normalized to Jeko. (E) The correlation between the baseline level of BCL-2 protein and the Lowe

score seen across the MCL cell lines (Maver-1 was censored as an outlier). (F) Correlation between P53 status and synergy score. (G) Western blot showing the baseline levels

of key proteins in Jeko, 5 primary patient peripheral blood mononuclear cells (PBMCS), and 2 PDX murine models of MCL. Values are corrected by the loading control and

normalized to Jeko. A Spearman correlation (E) or Student t test (F) was used to determine significance P < .05; **P < .01 ***P < .001.
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cytometry for circulating huCD19+/huCD5+ cells. Once disease
was detectable by flow cytometry, treatment began, 4 days on,
3 days off for both drugs (Figure 6A; supplemental Methods).
Disease burden continued to be monitored weekly by flow

cytometry and the examination of mice. Body weight was main-
tained during the course of treatment (supplemental Figure 8). The
control and PRT-only cohorts reached a median survival of 58 days
and 66 days in the AA model and 53 and 77 days in the 96069
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Figure 5. Synergistic intrinsic apoptosis is dependent on the BAX protein. (A) Western blot showing caspase activity with control, single agent, and combo-treated Jeko,

Z-138, and Mino MCL cell lines (4 days of exposure). Jeko doses PRT382 at 300 nM, venetoclax at 1 μM, Z-138 doses PRT382 at 150 nM, venetoclax at 10 nM, Mino doses

PRT382 at 450 nM, venetoclax at 10 nM. Caspase cleavage was used as an indication of activity, with caspase 8 being indicative of extrinsic apoptosis, caspase 9 of intrinsic

apoptosis, and caspase 3 of general apoptosis. (B) Western blots showing the knockdown of BAX and BAK1 proteins after transfection with shRNA against these transcripts in

Z-138 and Jeko cells. Values are adjusted by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and normalized to the empty vector control. (C) Viability of Z-138 and (D)

Jeko knockdown variants with control, single agent, or combo treatment for 4 days. Doses as in panel A. At least 3 replicates were completed, and data were measured with

annexin V/PI staining and flow cytometry. A 2-way analysis of variance with multiple comparisons was used to determine statistical significance for panels C-D. *P < .05; **P < .01;

***P < .001; ****P < .0001.
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Figure 6. Combination treatment with PRT382 and venetoclax is synergistic in vivo. (A) Schematic showing the setup of in vivo experiments. Mice were engrafted on day

0, and weekly bleeds with flow cytometry were used to assess the circulating disease burden. Once ~1% of the circulating lymphocytes were MCL cells (huCD5+/huCD19+),

treatment began. Mice were treated with each single agent or the combination for 4 days on, 3 days off. (B) Kaplan-Meier curve showing survival of the PDX.AA.MCL model.

Median survival was 58 days for vehicle, 63 days for PRT, 73 days for venetoclax, and the combo did not reach a median survival by the experiment’s end of 101 days P < .0001.

(C) A graph of circulating disease burden over time in the PDX.AA.MCL model is measured as a percentage of huCD5+/huCd19+ cells in the lymphoid compartment. (D) Kaplan-

Meier curve showing the survival of the PDX.IR.96069 model. The median survival was 53 days for vehicle and 77 days for PRT. The venetoclax and combo groups did not reach a

median survival by the experiment’s end at 104 days. (E) A graph of circulating disease burden over time in the PDX.IR.96069 model measured as a percentage of huCD5+/

huCd19+ cells in the lymphoid compartment. (F) Immunohistochemistry of FOXO1 (brown) of a control and PRT382-treated mouse spleen. Scale bars, 100 μm. (G) Western blot

showing BAX expression of cells from vehicle or PRT382-treated mice. Values are adjusted by GAPDH loading control and normalized against lane 1. A log-rank test for trend was

performed on the survival data in panels B,D. Generalized estimating equations with an autoregressive correlation structure were used to compare the disease burden over time in

panels C,E. *P < .05; **P < .01; ***P < .001; ****P < .0001.
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model (Figure 6B,D). The venetoclax only cohort in the AA model
had also reached ERC with a median survival of 73 days
(Figure 6B), whereas a median survival was not reached in the
96069 model (Figure 6D). During the course of the experiment, the
combination treatment reduced the tumor burden in the peripheral
blood below the level of detection via flow cytometry (Figure 6C,E),
which translated into a statistically significant survival advantage as
no mice had reached ERC by the end of the experiment (days 100
and 104) (Figure 6B,D). FOXO1 expression was found to be
increased in PRT382-treated mice (Figure 6F), supporting the role
of FOXO1 in the PRMT5 inhibitor response. As with the in vitro
results, BAX expression was upregulated in PRT382-treated mice,
supporting the role of this protein in the synergistic response
(Figure 6G). These results show significant synergy between
PRMT5 and BCL-2 inhibition, reducing systemic disease burden
and improving survival in 2 MCL PDX models.

Discussion

The discovery of new therapeutic strategies is essential for patients
with MCL because this disease is currently incurable. Although
targeted therapies such as ibrutinib have improved outcomes for
patients with MCL over the last 10 years, patients almost uniformly
develop progressive, resistant disease and have very poor prog-
noses.62,63 Here, we describe novel mechanistic data and provide
rationale for combining PRMT5 and BCL-2 inhibition for treating
patients with MCL. After treatment with a PRMT5 inhibitor, we
observed a physical dissociation of FOXO1 from AKT, freeing it
from inhibition and facilitating its nuclear translocation, where it
promotes the transcription of a key BCL-2 family gene, BAX. This
novel PRMT5-AKT-FOXO1-BCL-2 family axis was observed in
multiple MCL cell lines. Modulation of this axis through the inhibi-
tion of PRMT5 created a sensitivity to the BCL-2 inhibitor ven-
etoclax, as shown by synergistic cell death with combination
treatment in vitro and in vivo.

Currently, patients who relapse on ibrutinib have few available lines
of treatment and a very poor prognosis.63,64 Of the 5 ibrutinib-
resistant cell lines assessed, 3 lines show synergistic cell death
with PRMT5 and BCL-2 inhibition. The 3 murine models used for
the combination studies are also ibrutinib-resistant, as previously
determined by in vitro testing for Granta-519 and in vivo dosing for
the PDX.AA.MCL and PDX.IR.96069 models.56 Our preclinical
data show strong evidence in support of using PRMT5 inhibition in
combination with venetoclax, especially in the setting of ibrutinib
resistance.

With an increased survival advantage and undetectable disease
burden, our in vivo models showed impressive responses to com-
bination treatment. This work should be continued to optimize
treatment strategies and determine what, if any, remaining disease
burden exists in the combination cohort. We are exploring addi-
tional treatment regimens, including increasing the dose of
PRT382 and venetoclax to therapeutic levels, using alternative
PRMT5 inhibitors, and creating a reduced maintenance dosing
regimen for long-term survival studies.

Here, we focused on the BH3 family genes that showed enrich-
ment for FOXO1 recruitment after PRMT5 inhibition. FOXO1 ChIP
sequencing after PRMT5 inhibition revealed over 2000 potential
targets, providing an opportunity to better understand the biologic

relevance of FOXO1 to the pathogenesis of MCL. Interestingly,
attempts to create FOXO1 knockdown cell lines or use a small-
molecule inhibitor resulted in cytotoxicity in all MCL cell lines, a
counterintuitive finding suggesting that FOXO1 is relevant for MCL
survival. FOXO1 likely plays a complex role in MCL, acting as an
oncogene necessary for maintaining the B lymphocyte lineage
transcriptional program to promote MCL survival65 while, in the
context of PRMT5 inhibition, acting as a tumor suppressor.45,46 A
similar dichotomy has been described by Zhao et al in colon cancer
and HeLa cervical cancer cells, in which cytosolic FOXO1 is
essential for stress-induced autophagy but also has the potential to
induce apoptosis.47 Our data suggest that PRMT5 inhibition
reprograms FOXO1 from an oncogene to a tumor suppressor
through its transcriptional program. Further studies are needed to
elucidate the context-dependent cellular roles of FOXO1 in
PRMT5-driven tumors.

Although we found FOXO1 to play a role in the expression of BAX,
it may not be the only player at work, as multiple proapoptotic BCL-
2 family proteins were upregulated with PRMT5 inhibition and
functioned independently of FOXO1. For example, the Z-138 cell
line treated with PRT382 showed induction of BAX, BAK1, BIK,
and BBC3 at the transcript and protein levels, whereas only the
BAX promotor was enriched for FOXO1 interaction. P53 activity,
although not correlative to synergy, could play a role as it is known
as both a target of PRMT5 and a regulator of apoptosis.30 KLF4
has also been shown to be supported by PRMT5 activity and to
repress BAX expression.66 The increased expression seen here is
likely due to promotion from FOXO1 as well as release from
inhibitors like KLF4.

In addition to AKT and FOXO1, there are numerous other targets
of PRMT5; at the time of publication, the NCBI showed PRMT5
directly associates with over 300 proteins, from which there are
numerous downstream targets.67 As we continue to unravel how
PRMT5 orchestrates a malignant, resistant, and stem phenotype in
cancers, following direct targets such as p53 or smD3 to their
effectors will be important. This study shows that PRMT5 inhibition
continues to be a promising target in cancer and supports ongoing
PRMT5 inhibitor clinical trials. Because of the drug-resistant nature
of MCL, combining these novel compounds with secondary ther-
apeutics that can take advantage of an exposed vulnerability may
prove crucial in the treatment of MCL.
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