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Abstract 47 

Wheat is the most widely cultivated crop in the world with over 215 million hectares grown 48 

annually. However, to meet the demands of a growing global population, breeders face the 49 

challenge of increasing wheat production by approximately 60% within the next 40 years. The 50 

10+ Wheat Genomes Project recently sequenced and assembled the genomes of 15 wheat 51 

cultivars to develop our understanding of genetic diversity and selection within the pan-52 

genome of wheat. Here, we provide a wheat pan-transcriptome with de novo annotation and 53 

differential expression analysis for nine of these wheat cultivars, across multiple different 54 

tissues and whole seedlings sampled at dusk/dawn. Analysis of these de novo annotations 55 

facilitated the discovery of genes absent from the Chinese Spring reference, identified genes 56 

specific to particular cultivars and defined the core and dispensable genomes. Expression 57 

analysis across cultivars and tissues revealed conservation in expression between a large core 58 

set of homoeologous genes, but also widespread changes in sub-genome homoeolog 59 

expression bias between cultivars. Co-expression network analysis revealed the impact of 60 

divergence of sub-genome homoeolog expression and identified tissue-associated cultivar-61 

specific expression profiles. In summary, this work provides both a valuable resource for the 62 

wider wheat community and reveals diversity in gene content and expression patterns between 63 

global wheat cultivars. 64 

 65 

Introduction 66 

Wheat (Triticum aestivum) is the most widely grown crop and is cultivated in 12 mega-67 

environments across the world1, with 777.7 metric tonnes harvested globally in 2021/22 68 

(www.fao.org). Pressures of climate change, political instability, a move to more sustainable 69 

farming and a reduction in agricultural land are putting increasing demand on international 70 

wheat harvests2. Efforts to overcome these pressures can be accelerated by understanding the 71 

genetic diversity of global wheat cultivars and their pan-transcriptional variation.  72 

 73 

Wheat has a large (15Gb) allohexaploid (BBAADD) genome, derived from a series of relatively 74 

recent hybridisation events3. Its size, evolutionary history, and high repeat content, despite 75 

hindering genome assembly, make wheat an interesting model for the evolution of large 76 

polyploid genomes. Step changes in technology have enabled the chromosome-level assembly 77 

of nine high-quality wheat genomes by a global consortium. These genomes revealed evidence 78 

of widespread structural rearrangements, introgression from wild relatives and the impacts of 79 

parallel international breeding programmes4. To date, these genomes were annotated only by 80 

projecting Chinese Spring gene models across the new assemblies. The generation of de novo 81 

annotations for these genomes provides a key insight into gene gain and loss , reveals novel 82 

gene models across wheat cultivars and facilitates comparative gene expression analysis 83 

between cultivars. 84 

 85 

Previous analyses of the wheat transcriptional landscape described tissue-specific changes in 86 

gene expression in two cultivars, using a common Chinese Spring reference genome5. 87 
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Polyploidy leads to complex effects on gene expression resulting from structural variation, gene 88 

duplication, deletion and neofunctionalization, ultimately increasing variation in gene 89 

expression and the plasticity of the species. To date, studies of plant pan-transcriptomes either 90 

rely on read alignment to a single reference genome which can result in reference bias, or 91 

generate de novo transcript assemblies from short read data that can accumulate errors and 92 

technical artefacts6.  93 

 94 

Here, we generate de novo gene annotations, incorporating long reads for the nine assembled 95 

wheat cultivars, providing a valuable resource for wheat researchers and breeders. We identify 96 

evidence of widespread gene duplication and deletion, revealing the population structures 97 

imposed by repeated hybridisations from wild relatives and different breeding programmes. 98 

We define the hexaploid wheat core and dispensable transcriptome and our analysis of gene 99 

expression and gene networks across different tissues and between cultivars reveals 100 

conservation and divergence in expression balance across homoeologous sub-genomes. We 101 

exemplify the value of these analyses through an in-depth investigation of the pan-genome 102 

variability of prolamin gene content and expression; a key trait for quality and health aspects in 103 

wheat. 104 

 105 

Results 106 

De-novo gene annotations of the pan-cultivars define the core and accessory gene sets 107 

To precisely assess the gene content and differences in gene expression, copy number and the 108 

presence/absence of genes between the wheat cultivars, we generated a de novo gene 109 

annotation for each of the nine pan-cultivars. We used an established automated annotation 110 

pipeline which built evidence-based gene model predictions using a comprehensive 111 

transcriptomic dataset. This dataset was made up of Iso-Seq data from roots and shoots (390-112 

700 K reads per sample), and RNA-seq data (150 bp paired-end read, 56-85 M pairs of reads per 113 

sample) obtained for each cultivar from five distinct tissue types and whole aerial organs 114 

sampled at dawn and dusk (Figure 1A, see methods for a full description and Extended Data 115 

Figure 1 for details of quality control). In addition to the transcriptomic dataset, the gene 116 

annotation pipeline also used protein homology and ab initio prediction. Finally, a gene 117 

consolidation procedure (Extended Data Figure 2A) was developed to identify and correct for 118 

missed gene models. This step ensures the best possible comparability between the wheat 119 

genomes and gene repertoire7. 120 

 121 

The number of high-confidence gene models identified ranges from 140,178 for CDC Landmark 122 

to 145,065 for Norin 61 (Figure 1B). Low-confidence genes, primarily representing gene 123 

fragments, pseudogenes and gene models with only weak support, are in the range of 315,390 124 

(Mace) to 405,664 (SY Mattis). With a maximal difference of 3.5%, the number of high-125 

confidence (HC) genes appears to be similar across cultivars, whereas most of the differences in 126 

gene number observed can be attributed to the low-confidence gene set. For around 70% of 127 

the HC genes we obtained evidence for transcription in at least one condition. 128 

 129 

We benchmarked the quality of the de novo gene predictions against BUSCO v5.1.2 with the 130 

poales_odb10 lineage dataset, representing 4,896 Poales near-universal single-copy orthologs. 131 
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On average, we found more than 99.8% of the BUSCO genes represented at least one complete 132 

copy and 86% by three complete copies (Figure 1B). This is an improvement in complete BUSCO 133 

genes over the gene projections from Chinese Spring used in the first study of the wheat pan-134 

genome4 and can be explained by the de novo gene annotation strategy applied here, which 135 

included comparable RNA-seq and Iso-Seq datasets and ab initio prediction, as well as the final 136 

consolidation step. The de novo annotations are available in Ensembl Plants release 52.  137 

 138 

Figure 1. Study design, de-novo gene annotations and orthologous framework. A. Overview of 139 

transcriptome data generated for this study of the wheat pan-cultivars. 1 & 2: whole aerial 140 

organs sampled at dawn and dusk, 3: root, 4: complete spike at heading (GS59), 5: flag leaf 7 141 

days post anthesis (GS71), 6: whole grains 15 days post anthesis (GS77). B. De novo gene 142 

prediction results for each pan-cultivar (left side, <genes=, separated for A, B and D sub-143 

genome) as well as a summary of the BUSCO completeness assessment of gene models (right 144 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.09.574802doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574802
http://creativecommons.org/licenses/by-nd/4.0/


side, <BUSCO=). C. GENESPACE construction and visualisation of orthologous genes within the 145 

wheat pan-genome, using de novo predicted gene models. 146 

 147 

Genes and gene families exclusive or amplified in a specific cultivar are of major interest in a 148 

pan-genomic context8. While genes present in all compared cultivars are referred to as the core 149 

genome, cloud and shell genes are found only in one (cloud) or shared in a subset of cultivars 150 

(shell). The improved gene annotation enabled the construction of a high-density orthologous 151 

framework for wheat. GENESPACE9 was used to derive syntenic relationships between all 152 

chromosomes and sub-genomes, allowing in-detail investigation of macro- and micro-synteny 153 

(Figure 1C) and gene copy number variations. While previously identified rearrangements such 154 

as the chromosome 5B/7B translocation in SY Mattis and ArinaLrFor were confirmed, additional 155 

frequent small-scale structural variations can now be examined in the context of their gene 156 

content. We found a 16 Mb inversion, split into three segments of around 5Mb each, on 157 

chromosome 3D between Canadian cultivars CDC Stanley and CDC Landmark which coincides 158 

with the locations of QTLs related to biomass and grain weight10. 159 

 160 

We identified groups of orthologous genes (referred to as orthogroups) among the wheat high-161 

confidence gene models of all cultivars. A total of 54,865 orthogroups contained 99.7% of all 162 

genes, with 173 orthogroups identified as cultivar-specific and 3,756 genes not clustered in any 163 

orthogroup - defining the cloud genome. Cloud and shell genes have previously been found to 164 

be associated with disease resistance11, adaptation to new environments12, or important 165 

agricultural traits13. Within the shell genome, our analysis identified orthogroups that are 166 

shared only between specific cultivars. Examples include CDC Stanley and CDC Landmark from 167 

Canada, Mace and LongReach Lancer from Australia or ArinaLrFor, SY Mattis and Julius from 168 

Europe (highlighted in yellow in Figure 2A) which all share exclusive sets of genes. These 169 

observed patterns likely reflect the complex breeding history of the selected pan-cultivars 170 

which represent wheat lines from different regions, growth habits and breeding programs. 171 

Inspection of the chromosomal location of these gene groups identified multiple clusters 172 

(Figure 2B and Extended Data Figure 3) that are likely associated with crosses to distinct 173 

material or hybridisations with wild or domesticated relatives; events common in wheat14.  174 

 175 

Proportions of core (genes present in all cultivars), shell (genes  present in 2-8 cultivars) and 176 

cloud (genes found in only one cultivar and unclustered genes) genes were found to be similar 177 

across the pan-cultivars (Figure 2C). On average 76.34% of genes were classified as core, 178 

23.32% as shell, and 0.33% as cloud (Extended Data Figure 2B). Amongst the core gene set, we 179 

found biological functions associated with basic metabolic, catabolic and DNA repair/replication 180 

processes enriched (Supp. Table 1), while stress response and regulation of gene expression 181 

were overrepresented in the shell genes (Supp. Table 2). In the set of cloud genes, functions 182 

related to chromatin organisation and reproductive processes were found to be enriched 183 

(Supp. Table 3). Expression patterns of core, shell and cloud genes revealed pronounced 184 

differences globally, but not between the sub-genomes (Figure 2D). As observed in other pan-185 

genomes15, core genes tend to be higher expressed in all sub-genomes and tissues, as 186 

compared to both shell and cloud genes. 187 
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 188 

Figure 2. The wheat core-, shell-, and cloud- genome and homoelogous expression patterns. 189 

A. UpSet plot showing intersects of orthogroup conservation between pan-cultivars and the 190 

relation to their breeding programs and sowing season. B. A representation of CDC Stanley 191 

chromosome 3B showing the positions of Canadian-specific genes (top bar), heatmaps showing 192 

coverage scores between genes in CDC Stanley and CDC Landmark (middle bar) and coverage 193 

scores between CDC Stanley and Norin 61 (bottom bar). Coverage scores are calculated using 194 

kmers from each CDC Stanley gene to search the genomes of the other cultivar and range from 195 

0 to 1 with values closer to 1 indicating greater similarity. Regions of greater difference are 196 

shown as darker bands. The plot shows the 0-50 Mb region of chromosome 3B (indicated by a 197 

red box). The mean of the coverage score between CDC Stanley genes in this region and genes 198 

in the non-Canadian lines is plotted. A cluster of four Canadian-specific genes (marked by a red 199 

dashed line) lies in a region which is noticeably different between CDC Stanley and the non-200 

Canadian lines potentially representing an introgression. C. Number of genes belonging to core, 201 

shell and cloud ortholog groups across cultivars. D. Violin plots of core, cloud and shell log 202 

average gene expression across all combined cultivars and tissues, in each sub-genome. Higher 203 

mean expression was observed in core genes across all sub-genomes. E. Ternary plots, of stable 204 

(left) and dynamic (right) 30-let expression, where there is a homoeolog present on each sub-205 

genome, of all tissue in all cultivars, combined, showing more overall balanced expression in 206 

stable 30-lets and unbalanced expression in dynamic 30-lets. 207 

 208 
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Duplication of genes has been identified as a major driver of gene function evolution and 209 

adaptation in plants12. In wheat, a large number of tandem duplications was previously found 210 

both in the Chinese Spring (IWGSC v1.1) reference genome and the pan-genome assemblies16,4. 211 

Our full de novo gene annotation of the wheat pan-genome, in combination with the extensive 212 

gene expression data presented in this study, allowed for an in-depth assessment of gene 213 

duplication dynamics across cultivars in hexaploid wheat. 214 

  215 

We identified on average 5,040 tandem arrays (HC genes only) in each cultivar, with the lowest 216 

in CDC Landmark (4,914) and ArinaLrFor as the highest (5,172). In addition, we tested whether 217 

there is a bias in expression towards one member of the array. We found that for 2,520 arrays 218 

one of the two members was biased in its expression with respect to the other member, 219 

whereas for 1,800 arrays both copies were expressed at similar levels or varied depending on 220 

the tissue (Extended Data Figure 2C). 719 tandem arrays were not expressed under the 221 

investigated conditions. Amongst all tandemly duplicated genes in wheat, biological functions 222 

associated with phosphorylation, response to stimulus and stress and reproductive processes 223 

were enriched (Supp. Table 4). We also investigated the conservation of tandem arrays across 224 

all pan-cultivars. Around 69% of the tandem arrays identified in a specific cultivar were found to 225 

be shared with all other pan-cultivars, with the remaining 31% tandems showing varying 226 

conservation (Extended Data Figure 2D). These results highlight the impact of tandemly 227 

duplicated genes as a potential key driver of evolution and adaptation. Besides functional 228 

redundancy of homoeologous genes in hexaploid wheat, tandem genes and their expression 229 

(bias) are therefore an important target for breeding applications. 230 

 231 

Conservation of Global Expression in the Wheat Pan-Transcriptome 232 

To investigate changes in global gene expression across cultivars, biological replicates from 233 

whole aerial organs at dusk and dawn, and from flag leaf, root, spike and grain, were used to 234 

generate normalised gene expression counts. We observed from principal component analysis 235 

of the normalised counts that most of the variance is represented by the first principal 236 

component, representing the different developmental stages, and also similar grouping of 237 

expression overall (Extended Data Figure 1A, B). We then used these normalised counts from 238 

the nine cultivars together with complete de novo annotations for the core, shell, and cloud 239 

group genes, to explore differences in expression between tissues across all cultivars. The 240 

patterns of expression observed in each individual orthologous class were consistent across 241 

tissues, and between sub-genomes, with core genes also showing an overall higher mean 242 

expression than either shell or cloud (Figure 2D, Extended Data Figure 4A). Indicating a global 243 

conservation of expression, irrespective of tissue type or sub-genome biases. 244 

 245 

The tissue-specific gene index (tau) was employed to assess the degree of gene expression 246 

specificity to flag leaf, root, spike or grain tissues across all cultivars (Extended Data Figure 4B). 247 

We observed the least number of tau genes in flag leaf (1,005 - 3,202 specific genes), that were 248 

significantly less (t-test; p < 0.001) overall compared to either root (4,736 - 8,974 specific 249 

genes), spike (5,453 - 9,323 specific genes) or grain (3,955 - 12,157 specific genes), that showed 250 

no significant difference between each other. However, the number of specific genes showed 251 

the least cultivar variability for flag leaf tissues, compared to the wide range in the number of 252 
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grain-specific genes observed between cultivars. This could be the result of contrasting  253 

transcriptomic complexity between flag leaf and grain tissues, representing different 254 

developmental stages of maturity and metabolic activity. In polyploid crops agricultural traits 255 

are often modulated by an interaction of homoeologous copies of genes5. In wheat, previous 256 

studies have focused on tissue-specific expression across homelogous triads, identifying sets of 257 

triads that are either balanced or unbalanced in their sub-genome expression. Here, we 258 

compared variation in triad expression across cultivars using all 13,521 identified sets of 30-let 259 

genes with a homoeolog present on each sub-genome of the de novo annotated cultivars. Using 260 

previously reported cut-off values5, we observed similar sub-genome expression in these 30-261 

lets, in each of the cultivars, to that reported previously in Chinese Spring, with 102 also being 262 

classed as not expressed (Extended Data Figure 4C)5. However, when comparing the bias of 263 

sub-genome expression, we observed 8,028 (59.37%) of these 30-lets to have a conserved, 264 

8stable9, balanced expression between the three homoeologous copies across all cultivars 265 

(Extended Data Figure 4D). Whereby 8stable9 expression relates to a conserved sub-genome 266 

expression bias between cultivars, as opposed to a 8dynamic9 expression where a change in sub-267 

genome expression bias can be observed in one or more cultivars. 268 

 269 

As well as conservation of the balanced state we also see conservation in dominance or 270 

suppression within triad groups with 276 showing stable suppressed expression and 63 stable 271 

dominant expression. Stably expressed 30-lets showed GO term enrichment for essential 272 

biological processes associated with photosynthesis, translation, DNA replication, exocytosis, 273 

glycolytic process and cell redox homeostasis.(Extended Data Figure 4E). Whilst the 5,052 274 

37.36% 8dynamically9 expressed 30-lets that showed a change in the bias of sub-genome 275 

expression in at least one cultivar were found to be significantly enriched for transmembrane 276 

transport, response to stress, response to oxidative stress, defence response and 277 

photosynthesis. These dynamic 30-lets were observed to be less fixed to a specific sub-genome 278 

expression pattern compared to stably expressed 30-lets, showing a further Euclidean distance 279 

from a, b, c or centroid points (Figure 2E). Across these dynamically expressed 30-lets, 4,467 280 

showed balanced expression in at least one cultivar, with B sub-genome suppression being the 281 

next most represented balance of expression occurring in 1,972 of the dynamic 30-let sets 282 

(Extended Data Figure 4F). Overall, more suppression of expression was seen than dominance. 283 

The Kruskal-Wallis test, applied to assess differences in the mean values of the dynamic 30-let 284 

bias across the cultivars, revealed no significant differences when examining the total 285 

percentage of each expression bias (p > 0.05). This suggests that the bias of dynamic 286 

expression, whilst different for individual 30-lets, has been proportionally conserved across 287 

these cultivars. 288 
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 289 

 290 

Figure 3. Components of the wheat consensus network with functional annotation and UK 291 

cultivar Claire-specific differences A. Number of genes in each module from the seven cultivar 292 

consensus network. B. Hierarchical clustering of 23 consensus module eigengenes identifying 293 

six metamodules. C.  GO-slim terms of biological processes associated with genes in 6 294 

metamodules. Only terms with p<0.05 and >10 significant genes are shown. Bubble colour 295 

indicates the -log2p-value significance from Fisher9s exact test and size indicates the frequency 296 

of the GO-slim term in the underlying EBI Gene Ontology Annotation database (larger bubbles 297 

indicate more general terms).  D. Claire-specific network of 18 genes with divergent expression 298 

patterns compared to all other cultivars. Node size is scaled to the log2 average expression +1 of 299 

each gene in spikelet tissues and edge width reflects the weight of the connection between 300 

nodes. E. Log2 fold change in expression across all tissues, between Claire and remaining 301 

cultivars of 18 Claire-specific genes. 302 

 303 

Conserved patterns of co-expression 304 

In addition to the nine cultivars for which we generated de novo annotations, we also collected 305 

expression data from the same tissues and conditions for the remaining five cultivars included 306 

in the wheat pan-genome. To exploit these additional transcriptomic datasets in the absence of 307 

de novo annotations, we employed the consensus network function of WGCNA17 which uses 308 

expression counts from a single reference (CSv1.1) to enable the identification of gene 309 

expression modules that represent biological pathways conserved across all cultivars.  310 

      311 

To explore how regulatory networks are conserved across tissues and cultivars of the pan-312 

transcriptome, we constructed our consensus co-expression network spanning seven cultivars; 313 
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four with chromosome pseudomolecule assemblies (ArinaLrFor, Julius, Jagger, Norin 61) and 314 

three with scaffold assemblies; two UK derived (Cadenza, Claire) and one key CIMMYT (Weebill) 315 

cultivar. Together these seven cultivars represent a wide range of the genetic variation 316 

observed in the pan-genome4.  317 

  318 

To identify sets of genes with highly correlated expression patterns across cultivars we used 319 

high-confidence genes expressed at greater than five normalised counts in at least three 320 

samples, with less than two standard deviations in normalised counts, between sample 321 

replicates. The resulting 48,337 genes from each cultivar (338,359 genes in total) were used to 322 

construct the consensus network, with modules ranging in size from 84 to 9,183 genes (Figure 323 

3A). This consensus network accounted for 70% (34,069 genes) of the genes from each cultivar 324 

in our original dataset. These modules comprised co-expressed genes that exhibited highly 325 

similar expression patterns across all six developmental stages in all seven cultivars. A 326 

comparison of the consensus module eigengenes (MEs) for these 23 modules demonstrated 327 

the conservation of expression patterns between cultivars (Extended Data Figure 5). We used 328 

hierarchical clustering to further collapse the 23 consensus modules into six consensus 329 

metamodules (Figure 3B); comprising 32,936 genes from each cultivar. GO-slim term analysis 330 

(Figure 3C) and distinct transcription factor superfamily membership (Extended Data Figure 6) 331 

indicated that each metamodule could be associated with distinct biological processes (Supp. 332 

Table 5).  333 

  334 

We defined a threshold for classifying inter-consensus module relationships and used this to 335 

make pairwise comparisons of the ME for each consensus module and identify modules with 336 

divergent or similar patterns of expression. We then used these module relationships to 337 

compare how the 30-let triads were split across our consensus network. Within the genes used 338 

to build our consensus network, we identified 6,867 of the 10,521 complete triad sets (50.8%). 339 

3,640 (53.0%) of these triads were assigned to modules within the network, with the remaining 340 

3,227 (47%) triads having at least one member present in the unclustered set of genes. This set 341 

of genes that could not be fitted into the consensus network will contain genes with low 342 

variance or low expression across tissues, and genes that do not show the same pattern of 343 

expression across all seven cultivars. Of the 3,640 triads within our network 3,548 (96%) 344 

belonged to either the same or similar expression modules, reflecting the conservation of 345 

expression between the A, B and D sub-genomes. 2,431 of these triads (66.8%) belonged to the 346 

stable category of 30-lets defined previously through comparison of individual triad expression 347 

balance across all tissues and 9 cultivars. The identification of co-expression modules containing 348 

similarly expressed triad members reveals additionally conserved genes, tightly connected to 349 

these stable triads. Using the consensus network, we also observed 146 of the 3,640 triads (4%) 350 

where sub-genome members were split across divergent modules. These triads were 351 

significantly enriched for GO terms associated with the regulation of signal transduction and 352 

DNA metabolic process (Supp. Table 6). 353 

  354 

 355 

Using a consensus network approach to identify cultivar-specific co-expression patterns 356 
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Whilst our consensus network enables robust biological inferences through the identification of 357 

conserved gene sets across all cultivar members of the network, we also report a set of 14,268 358 

unclustered genes that cannot be fitted to the consensus modules. These 14,268 genes may 359 

have an expression profile that correlates with a consensus ME, but as this pattern of 360 

expression is not conserved across all seven cultivars, these genes will not be placed within the 361 

consensus network. Within our unclustered gene set we identified 1,753 such genes where the 362 

pattern of expression for a single cultivar was closely correlated to a consensus ME displaying 363 

an expression profile divergent to the module containing the same gene in the remaining six 364 

cultivars. This enabled us to identify sets of co-expressed cultivar-specific genes (Supp. Table 7). 365 

We visualised 12 of these cultivar-specific network fragments using igraph18 including a set of 366 

18 linked genes with increased expression in spike tissue in Claire compared to other cultivars 367 

(Figure 3D & 3E). The most highly connected gene in this subnetwork (TraesCS7A02G446400) is 368 

a transducin/WD40 repeat protein. These proteins are key regulators of both plant 369 

developmental and stress processes, and are known to participate in histone modification, 370 

transcriptional regulation and signal transduction19. Additional genes in this cluster, are 371 

annotated as protein phosphatases, an eRF1 transcription factor, a calcium-binding EF-hand 372 

domain-containing protein and a polyadenylation specificity factor. We hypothesise that the 373 

cultivar-specific expression pattern observed in Claire linked to increased expression in spike 374 

tissues could be the result of cultivar-specific regulation of a developmental or stress response. 375 

 376 

Co-expression network analysis using de novo gene models   377 

Our consensus network approach, using a common reference, enabled us to identify high 378 

confidence, conserved expression modules and identify cultivar-specific co-expressed gene 379 

sets. However, the use of a common reference meant that we were unable to assess the de 380 

novo contribution of each genome to the consensus network. Of the seven cultivars within 381 

the consensus network, ArinaLrFor, Jagger, Julius and Norin 61 each have corresponding de 382 

novo annotations. We used these de novo gene models to identify a total of 4,682 de novo 383 

annotated genes without a corresponding CSv1.1 orthologue and used expression counts from 384 

these de novo gene models to build a de novo co-expression network of 13 modules (3,975 385 

genes, Supp. Table 8). Each of these 13 modules could be closely correlated with at least one 386 

consensus module from the consensus network (Supp. Table 8), indicating that our de novo 387 

modules were not exhibiting patterns of expression distinct from those previously identified in 388 

the seven-cultivar consensus network. One of these de novo derived modules was significantly 389 

enriched (p<0.000003) for Jagger de novo gene models with increased expression in flag leaf, 390 

spike and root tissues (Extended Data Figure 7). The three most significant GO terms enriched 391 

within this module of 50 genes indicated a role in transcriptional regulation (GO:0065007, 392 

GO:0031323, GO:0050789). 15 of these 50 genes were also annotated as transcription factors 393 

with FHY3/FAR1 DNA binding domains (Supp. Table 8). These domains are known to be 394 

involved in phytochrome signalling in Arabidopsis20 and in wheat are hypothesised to 395 

contribute to the regulation of Ppd-B1a and PhyC known to control photoperiodic sensitivity to 396 

flowering21. 397 

  398 

Our work demonstrates the strength of a consensus network approach in identifying potentially 399 

biologically conserved pathways between cultivars where de novo annotations are not available 400 
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for each member of the network. Using this method we were able to reveal cultivar-specific co-401 

expressed genes for several cultivars including Claire and Weebill, for which we do not currently 402 

have de novo gene models. In addition, further extending our co-expression analysis to include 403 

the de novo gene models of four of the chromosome level assemblies revealed additional de 404 

novo co-expressed modules exhibiting cultivar-specificity, such as the de novo module enriched 405 

for Jagger genes, that would not have been captured in the consensus network.  406 

  407 

Developing de novo annotations for all 14 of the cultivars within the wheat pan-genome17 will 408 

be invaluable in uncovering the complete regulatory network landscape of the wheat pan-409 

transcriptome. Associating these co-expression profiles with the core, shell and cloud 410 

components of the wheat pan-genome will enable us to explore how structural rearrangements 411 

and introgressions across the wheat genome perturb these regulatory networks. 412 

  413 

A case study: Uncovering variation in the prolamin super-family and immune reactive 414 

proteins across the pan-cultivars 415 

Prolamins represent a large superfamily in wheat involved in stress responses, cell growth and 416 

plant development, as well as end-use quality and protein content. Along with HMW-glutenins 417 

they are also potential triggers for various immune reactions in a subset of the human 418 

population. As a case study, we investigated both the qualitative and quantitative differences in 419 

the 687 genes from the prolamin superfamily and HMW-glutenins across the newly generated 420 

wheat pan-genome and pan-transcriptome data. We observed clear expression differences 421 

both for individual developmental stages and also between wheat cultivars for many genes 422 

from the prolamin superfamily highlighting spatiotemporal variation in expression profile 423 

(Figure 4A).  424 

 425 

Comparison of reference grain allergens identified in the Chinese Spring reference genome 426 

(IWGSC v1.1) and across the pan-genome cultivars22,23,24 with the expression patterns of 427 

potentially immune reactive gene products indicated differences in the major allergens  and 428 

antigens (glutenins and gliadins). SY Mattis and LongReach Lancer showed lower gene 429 

expression levels in alpha and gamma gliadins with gene set enrichment analysis of gene 430 

families highlighting gamma gliadins are primarily enriched in the downregulated genes 431 

(Extended Data Figure 8, Supp. Table 9&10).  432 

 433 

Detailed analysis of celiac disease (CD) related epitopes encoded in the gliadin and glutenin 434 

genes in the pan-genome revealed variability in their expression patterns. We found lower 435 

expression of HLA-DQ epitope containing genes in SY Mattis and LongReach Lancer and higher 436 

values in Cadenza and Jagger. Cultivar-specific analysis showed that ArinaLrFor and SY Mattis 437 

contained lower alpha gliadin DQ epitope expressions due to significant differences in the 438 

expression activities of the three sub-genomes which might be affected by differences in the 439 

related transcription factor gene expression profiles (Figure 4B, 4C, Supp. Table 11&12, 440 

Extended Data Figure 9). While sub-genome specific expression patterns of gamma gliadin DQ 441 

epitopes did not reveal significant variation, the expression of alpha-gliadin genes with DQ 442 

epitopes originating from the A genome was lower in SY Mattis and LongReach Lancer, while 443 

the highly immunogenic D genome alpha gliadin epitope expression levels were lower in the 444 
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cultivar ArinaLrFor (Extended Data Figure 10A). Our results indicate that fine-tuned sub-445 

genome-specific balance in the expression profiles may be associated with differences in the 446 

regulatory transcription factor profiles (Figure 4B, 4C). 447 

 448 

 449 

Figure 4. Gene and expression variation in the prolamin family across the wheat pan-450 

cultivars. A. Prolamin superfamily gene expression across cultivars; B. Celiac disease epitope 451 

expression across cultivars. Epitope expression profiles were calculated as sum of gene 452 

expression profiles with the highlighted HLA-DQ epitopes for each sub-genome. C. Relative 453 

proportion of cumulative expression profiles of transcription factor families showing strong co-454 

expression pattern (Pearson correlation values > 0.8) with the epitope-coding prolamin genes. 455 

Results show significant differences in the NAC, AP2/EREBP and MYB transcription factor gene 456 

expressions, major regulators of storage protein gene expression. D. Representation of the 457 

variation graph for the region of 6D containing the alpha gliadin locus (Extended Data Figure 458 

10B). Horizontal coloured lines depict paths through the graph for each cultivar; Norin 61 (6D: 459 

26,703,647-27,222,360 bp), CDC Stanley (6D: 28,164,601-28,660,350 bp) and Mace (6D: 460 

26,808,846-27,298,593bp), with SY Mattis (6D: 26,645,382-27,096,594 bp) and Julius (6D: 461 

26,983,100-27,437,565 bp) sharing a single path. Rectangular blocks (a-p) represent individual 462 
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genes at corresponding locations across cultivars (blue: in common to all 4 cultivars, orange: 463 

occurring in one cultivar and purple: in common to 2 cultivars). Gene d is present as a single 464 

copy in Norin 61, and duplicated in CDC Stanley, SY Mattis, Julius and Mace. This duplication is 465 

represented as a loop in the path through the graph for these cultivars (Extended Data Figure 466 

11). 467 

 468 

Gliadin and glutenin loci were found to be highly conserved in all cultivars, with some variation 469 

due to the presence of pseudogenes and gene duplications (Extended Data Figure 10B). 470 

Reverse translated consensus sequences of the known CD-specific T-cell epitopes were mapped 471 

to the genomes of all cultivars to determine the number and location of gliadin and glutenin 472 

genes containing CD-related immune reactive peptide regions (Extended Data Figure 10B, 473 

Supp. Table 13). The number or combination of epitopes in the loci was not significantly 474 

different between the pan-cultivars. However, the gamma-gliadin and alpha-gliadin gene 475 

models with a high number of epitopes were found in cultivars ArinaLrFor, Norin 61 and Mace, 476 

respectively (Extended Data Figure 10B, Supp. Table 13).  477 

 478 

Although highly conserved in their locus structure on chromosome 6D, alpha-gliadin genes 479 

encoding highly immunogenic proteins showed copy number variation within the wheat pan-480 

genome. We constructed a localised pan-genome graph from five cultivars (Norin 61, CDC 481 

Stanley, SY Mattis, Julius, Mace) and extracted the subgraph of the alpha gliadin-containing 482 

locus (Figure 4D, Extended Data Figure 11). Inspection of the subgraph helped to resolve the 483 

complex structure of the locus, with copy number variation observed as a loop in the paths of 484 

SY Mattis, Julius, CDC Stanley, and Mace (2 copies of alpha-gliadin genes) but not within the 485 

Norin 61 path (single alpha gliadin copy). While in total 4 to 6 epitopes were identified in the 486 

alpha-gliadins of the wheat pan-genome cultivars, 8 epitopes were detected in cultivars Mace 487 

and Norin 61 (Extended Data Figure 10B). These results indicate that gene copy number 488 

expansion primarily affected the centre of the locus and resulted in the increase of gene 489 

variants with high epitope counts. Comparison of promoter profiles indicates differences in the 490 

expression regulation when epitope-poor and epitope-rich gene copy variants of the same 491 

chromosome 6D locus are compared. While genome-wide construction and interpretation of 492 

pan-genome graphs remains a daunting task for complex genomes such as wheat, we found 493 

localised subgraphs, augmented by our de novo annotations, particularly helpful in resolving 494 

complex loci, and uncovering structural variation as also demonstrated in the current draft 495 

human pan-genome25. 496 

 497 

 498 

Discussion 499 

We have built de novo gene annotations for nine wheat assemblies representative of global 500 

breeding programs4. Our consolidated gene annotation approach generated a robust set of 501 

core, high-confidence genes shared across the pan-cultivars. It also identified genes and gene 502 

families that are found exclusively in or amplified in cultivars derived from specific breeding 503 

programmes. It is likely that some of this variation has come through widespread introgression 504 

events26, often associated with adaptation to biotic or abiotic stress 13. Our annotations also 505 

identified cultivar-specific variation in tandem gene duplication. Novel gene content, gene 506 
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duplication and neo-functionalisation together with gene expression patterns will have an 507 

impact on researchers and breeders as they identify genes underlying traits, manipulate gene 508 

expression or incorporate and track new genetic variation.    509 

 510 

Our analysis of global gene expression identified sets of genes with stable homoeologous 511 

expression patterns between cultivars, demonstrating tightly regulated key biological 512 

processes. We also identified homoeologous triads diverging in their expression patterns 513 

between cultivars, revealing genes enriched for processes associated with biotic and abiotic 514 

stress. Understanding the regulatory networks driving these altered patterns wil l provide 515 

important targets for manipulating these processes. Using network analysis, we identified 516 

widespread conservation of expression patterns across tissues and cultivars before focusing on 517 

cultivar-specific gene sets, to reveal networks of genes involved in stress responses in the 518 

developing grain and the photoperiodic control of flowering. These cultivar-specific network 519 

changes may be the result of wheat breeding programmes targeted to local environments. We 520 

also demonstrated the utility of our new resources by investigating genomic variation in the 521 

prolamin superfamily, focusing on immunogenic potential.  522 

 523 

In conclusion, this study reveals layers of hidden diversity spanning our modern wheat cultivars. 524 

Previously overlooked, this diversity is likely to underpin the agronomic success of wheat over a 525 

wide range of global mega-environments. 526 

 527 

Materials and Methods 528 

Plant Materials and Growth Conditions 529 

The 14 cultivars were grown in a Controlled Environment Room (CER) (Conviron BDW80; 530 

Conviron, Winnipeg, Canada) set at 16 h day/8 h night photoperiod (300 μmol m−2 s−1, lights on 531 

at 05:00, lights off at 21:00), temperatures of 20/16 °C, respectively, and 60% relative 532 

humidity. Plants were sampled in triplicate at the 3-leaf stage (Zadoks GS13), harvesting whole 533 

roots and whole aerial organs separately, four hours after dawn (09:00). Whole aerial organs 534 

were also sampled two hours after dusk (23:00). Plants for subsequent adult plant sampling 535 

were treated according to their vernalisation requirements. In the case of spring wheat 536 

cultivars (CDC Landmark, CDC Stanley, Paragon, Cadenza, Mace and LongReach Lancer), 537 

seedlings were grown as described above. At 3-leaf stage, seedlings were transferred to 1 L 538 

pots containing Petersfield Cereal Mix (Petersfield, Leicester, UK) and maintained under the 539 

same CER conditions as described previously. For winter wheat cultivars (Norin 61, Julius, 540 

Jagger, ArinaLrFor, Robigus, Claire and SY Mattis), seedlings were transferred in 40-well trays (7 541 

days after sowing) to a vernalisation CER running at 6 oC with 8 h day/16 h night photoperiod 542 

for 61 days. After this period the plants were transferred to 1 L pots containing Petersfield 543 

Cereal Mix (Petersfield, Leicester, UK) and moved to the same CER and settings as described for 544 

the spring wheat cultivars. For both spring and winter wheat cultivars, three additional samples 545 

were harvested: complete spike at heading (GS59), flag leaf 7 days post-anthesis (GS71) and 546 

whole grains 15 days post-anthesis (GS77). All samples were harvested four hours after dawn 547 

(09:00), and a single plant was used per each of the three biological replicates. 548 
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Sample Preparation and Sequencing 549 

Total RNA was extracted using Qiagen RNeasy Plant Mini Kit (cat. no. 74904) and DNAse treated 550 

using an Invitrogen TURBO DNase kit (cat. no. AM2238) according to the manufacturer9s 551 

protocol. Bead purification of the RNA was conducted using the Agencourt RNAClean XP 552 

beads.system (cat. no. A63987). Final sample concentrations were verified using a Qubit 4 553 

Fluorometer, and the integrity of the RNA was checked on the Agilent 2100 Bioanalyzer, using 554 

the RNA 6000 nano kit (Agilent, 5067-1511), running the plant total RNA assay. The directional 555 

RNA-seq libraries were constructed using the NEBNext Ultra II Directional RNA Library prep for 556 

Illumina kit (NEB, E7760L) utilising the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, 557 

E7490L) and NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs) (cat. no. 558 

E6440S/L) at a concentration of 10 µM. The final libraries were equimolar pooled, a q-PCR was 559 

performed and the pool was sequenced on a Illumina NovaSeq 6000 with 150 bp paired-end 560 

reads. 561 

 562 

The Iso-Seq libraries were constructed from 1 µg of total RNA per sample and full -length cDNA 563 

were then generated using the SMARTer PCR cDNA synthesis kit (Takara Bio Inc, 639506). The 564 

libraries were sequenced on the Sequel Instrument v1, using 1 SMRTcell v2 per library. All 565 

libraries had 600-minute movies, 120 minutes of immobilisation time, and 120 minutes of pre-566 

extension time. 567 

 568 

Data Quality Control and Sample Validation 569 

We used a set of cultivar specific SNPs to confirm the cultivar origin of each replicate and the 570 

developmental stage of each sample was validated through a machine learning approach 571 

trained using the pooled RNA-seq samples and then run on the entire set of biological 572 

replicates. Principal component analysis of the pooled samples shows them to cluster by 573 

developmental stage as expected.  574 

 575 

Alignment and Gene Expression Analysis 576 

Samples were aligned to the IWGSC Chinese Spring RefSeq 1.1 reference genome, using HISAT2 577 

v2.0.4, acting as a common reference to allow inclusion of UK cultivars and comparison with de 578 

novo annotations, and normalised counts were generated using DESeq2 with the RefSeq 1.1 579 

gene set27,16,28.  580 

 581 

GO term analysis 582 

Functional enrichment of differentially expressed genes for biological processes was performed 583 

using the gene ontology enrichment analysis package, topGO29 in R (v3.6.0, with the following 584 

parameters: nodeSize = 10, algorithm = "parentchild", classicFisher test p < 0.05). GO terms 585 

refer to ontology terms for biological processes unless otherwise specified and were obtained 586 

from Ensembl Plants 51, using the BioMart tool. Bubble plots were plotted using ggplot in R, 587 

adapting code from30. 588 

 589 

Tissue-Specific Index 590 

The specificity of gene expression to developmental stages was determined using the tissue-591 

specific index 31. Where N is the number of developmental stages (condition), and xi is the 592 
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expression profile component for a given gene in each condition, normalised by the maximal 593 

expression value of the given gene from all conditions considered. This allowed us to classify 594 

genes as being highly specific to one condition (tau => 0.8). Assignment of tau values was 595 

performed in R using code adapted from previous work32. 596 

 597 

Sub-genome Expression Bias 598 

Analysis of sub-genome expression focused on 30-let homoeologs with a 1:1:1 relationship 599 

across all three sub-genomes. Of these, 13,521 were determined to be macrosyntenic, 600 

belonging to the same sub-genome in all cultivars (excluding UK cultivars which are not 601 

assembled), and 10,653 as microsyntenic, belonging to the same chromosome and sub-genome 602 

in all cultivars (excluding UK cultivars). From these 66 30-lets were not taken forward in the 603 

analysis due to low expression and/or quality filtering determined by DESeq2 (R package v 604 

4.0.3) of at least one homoeolog in each set. Relative expression of 30-lets across homoeologs 605 

and associated sub-genome expression biases were calculated as previously reported, through 606 

use of our triad.expression R package (https://github.com/AHallLab/triad.expression). 607 

 608 

Co-expression Analysis 609 

Network construction 610 

The WGCNA R package17 (R version 3.6.0) was used to build co-expression networks for seven 611 

cultivars (ArinaLrFor, Cadenza, Claire, Jagger, Julius, Norin 61 and Weebill) for which we had 612 

triplicate biological replicates for each developmental stage. These cultivars also span the range 613 

of genetic variation observed in the previously published pan-genome4. The expression matrix 614 

for the seven selected cultivars containing DESeq2 normalised counts aligned to 102,443 high 615 

confidence CSv1.1 genes was filtered and genes, where the sum of counts across all samples 616 

was greater than 5 in at least 3 samples, were retained (92,976 genes). To reduce background 617 

noise we removed genes where the expression of any replicate was >2σ from the mean 618 

expression of that sample set. The resulting 48,337 genes were submitted to WGCNA to 619 

construct a signed hybrid consensus network using the blockwiseConsensusModules () 620 

function. A soft power threshold of 18 was used, together with the following parameters; 621 

minModuleSize = 30, corType = bicor, maxPOutliers = 0.05, mergeCutHeight = 0.3, 622 

minKMEtoStay = 0.2, maxBlockSize = 46,000. Eigengenes were then extracted for each module, 623 

per cultivar from the resulting consensus network.  624 

 625 

Defining thresholds for classifying inter-module relationships 626 

To classify inter-module relationships and identify modules with divergent or similar patterns of 627 

expression we defined a threshold of module similarity. Initially we calculated the distance 628 

between each pairwise consensus module comparison, using the Pearson correlation dis tance. 629 

We used the maximum distance of each of these pairwise comparisons, for each module and 630 

calculated the median of these maxima. Next, we investigated the proportion of 1,663 triads 631 

(from 30-lets) identified as split across the 23 previously defined consensus modules, that 632 

would be classed as divergent using a module similarity threshold of 0-100%. From these results 633 

we selected a module similarity threshold of 75% the median of maximum distances, with 634 

distances above this classed as divergent and distances below, classed as similar.  635 

 636 
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Identifying metamodules 637 

We used the R package clValid33 to determine the optimal number of clusters for the 7 cultivar 638 

23 consensus module eigengenes. The resulting Dunn index34 and silhouette width35 indicated 639 

that the optimum number of clusters for our ME dataset was 6. We calculated the pairwise 640 

Pearson correlation coefficients for all our 161 cultivar consensus ME (cor())  and converted this 641 

to a dissimilarity matrix (as.dist()). We used hierarchical clustering of this dissimilarity matrix 642 

(hclust()) to define consensus metamodules. As the JAG magenta consensus module fell into a 643 

different metamodule to the remaining 6 cultivars we omitted the magenta consensus module 644 

from our metamodule construction and downstream enrichment analysis. We used the 645 

moduleEigengenes() function to compute the ME of each metamodule and carried out GOterm 646 

and TF superfamily enrichment analysis. 647 

 648 

Transcription factor superfamily enrichment 649 

Genes annotated as members of transcription factor (TF) superfamilies 5 were identified in each 650 

metamodule and the frequency of each TF superfamily compared to the frequency observed in 651 

the 32,936  genes used to construct metamodules. TF families were classed as either 652 

significantly under or overrepresented in each module using Fisher9s exact test (p <= 0.05).  653 

 654 

Identifying cultivar-specific expression patterns 655 

We used the consensuskME() function in WGCNA to determine the maximum eigengene-based 656 

connectivity (kME) of each gene within the unclustered gene set of 14,268 genes, to the 657 

consensus ME for each cultivar. Those genes with a positive association greater than 0.7 to a 658 

consensus ME were retained. To reveal putative networks specific to a single cultivar we 659 

identified genes from the 13,708 genes that demonstrated associations greater than 0.7 kME 660 

for at least one cultivar, per gene, where a minimum of 4 out of the 7 cultivars exhibited >0.7 661 

kME and that in pairwise comparison to all other cultivars, for the specific cultivar being 662 

assessed, the gene was assigned to a divergent module.  663 

 664 

Connectivity within each set of genes demonstrating single cultivar-specificity was determined 665 

using the R package igraph18. Using the graph adjacency() function,  graph adjacencies were 666 

created for each specific cultivar set based on the Pearson correlation distances between genes 667 

in a pairwise fashion. These directed graphs were simplified to remove multiple edges  and 668 

loops, and filtered to retain only those connections with an absolute Pearson correlation > 0.8. 669 

The mst() function using the prim algorithm was used to create a minimum spanning tree and 670 

the resulting subgraphs were visualised using plot() with isolated nodes excluded.  671 

 672 

Gene annotation          673 

For the structural gene annotation of the chromosome-scale assembled pan-cultivars, we 674 

combined de novo gene calling and homology-based approaches with RNAseq, Isoseq, and 675 

protein datasets. The RNAseq data were mapped using STAR36 (v2.7.8a) and further assembled 676 

into transcripts by StringTie37 (v2.1.5, parameters -m 150-t -f 0.3). PacBio Iso-Seq transcripts 677 

were derived from the raw reads using PacBio SMRT Link software (v5.1.0.26412rev2, 678 

pbsmrtpipe.pipelines.sa3_ds_isoseq2, default parameters). The Iso-Seq transcripts were 679 

aligned to the genome assemblies using GMAP38 (v2018-07-04). To assist the homology-based 680 
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annotation approach, Triticeae protein sequences from publicly available datasets (UniProt, 681 

https://www.uniprot.org, 05/10/2016) were aligned against the genome sequence assemblies 682 

of all pan-cultivars using GenomeThreader39 (v1.7.1; arguments -startcodon -finalstopcodon -683 

species rice -gcmincoverage 70 -prseedlength 7 -prhdist 4). All transcripts derived from RNAseq, 684 

IsoSeq, and aligned protein sequences were combined using Cuffcompare 40 (v2.2.1). Stringtie 685 

(version 2.1.5, parameters --merge -m150) was employed to merge all sequences into a pool of 686 

candidate transcripts. To identify potential open reading frames and to predict protein 687 

sequences within the candidate transcript set, TransDecoder (version 5.5.0; 688 

http://transdecoder.github.io) was used. 689 

 690 

We used Augustus41 (v3.3.3) for the ab initio gene prediction. Guiding hints based on the 691 

RNAseq, protein, IsoSeq and TE datasets described above were used to counteract potential 692 

over-prediction (details in42). Augustus was run using the wheat model.  693 

 694 

A consolidated set of gene models was selected using Mikado43, as implemented in the Minos 695 

pipeline (https://github.com/EI-CoreBioinformatics/minos), with models scored and selected 696 

based on a combination of intrinsic qualities and support from transcriptome and protein 697 

alignments. 698 

 699 

BLASTP44 (ncbi-blast v2.3.0+, parameters -max_target_seqs 1 -evalue 1e-05) was used to 700 

compare potential protein sequences with a trusted set of reference proteins (Uniprot 701 

Magnoliophyta, reviewed/Swissprot, downloaded on 3 Aug 2016; https://www.uniprot.org). 702 

This approach was employed to differentiate gene candidates into complete and valid genes, 703 

non-coding transcripts, pseudogenes, and transposable elements. This step was assisted by 704 

PTREP (Release 19; http://botserv2.uzh.ch/kelldata/trep-db/index.html), a database of 705 

hypothetical proteins containing deduced amino acid sequences in which internal frameshifts 706 

have been removed in many cases. We selected best hits for each predicted protein from each 707 

of the three databases used. Only hits with an e-value below 10e-10 were considered. 708 

Functional annotation of all protein sequences predicted in our pipeline was performed with 709 

the AHRD pipeline (https://github.com/groupschoof/AHRD). 710 

 711 

We classified predicted proteins into two confidence classes: high and low confidence. Hits with 712 

subject coverage (for protein references) or query coverage (transposon database) greater than 713 

80% were considered significant and protein sequences were classified as high-confidence 714 

based on following criteria: protein sequence was complete and had a subject and query 715 

coverage above the threshold in the UniMag database or no BLAST hit in UniMag but in UniPoa 716 

and not PTREP; a low-confidence protein sequence was incomplete and had a hit in the UniMag 717 

or UniPoa database but not in PTREP. Alternatively, it had no hit in UniMag, UniPoa, or PTREP, 718 

but the protein sequence was complete. In a second refinement step, low-confidence proteins 719 

with an AHRD-score of 3* were promoted to high-confidence. 720 

 721 

BUSCO45 (v5.1.2.) software was used to evaluate the completeness and accuracy of structural 722 

gene predictions with the 8poales_odb109 database containing a total of 4896 single-copy 723 
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genes. The evidence-based part of the annotation pipeline is deposited at 724 

https://github.com/PGSB-HMGU/plant.annot.  725 

 726 

Consolidation  727 

Pairwise whole genome alignments were generated using lastz46. The resulting alignments were 728 

stitched together into a single whole genome alignment using TBA/multiz47. The MAF output 729 

was converted into HAL format using maf2hal48. 730 

De novo gene annotation from one cultivar was lifted over to all other cultivars using the whole 731 

genome alignment and the halLiftover tool, whereas only full-length gene models were kept. 732 

Missing gene models in one cultivar were identified using bedtools 49. 733 

 734 

Tandem array detection 735 

Tandem arrays were identified using the tandem discovery model from the JCVI package50. 736 

Expression bias was calculated using a modified method described previously5. Here we used 737 

normalised read counts instead of TPM values and a cut-off of 0.8. The following categories 738 

were assigned: only1 for tandems with only one gene expressed and no expression data for 739 

second gene; expressed1 for tandems in which only one gene is expressed under all RNASeq 740 

conditions; variable where expression can shift between array members depending on the 741 

condition; balanced, where both array members are equally expressed. noExpr states that no 742 

expression data was available. 743 

 744 

Orthogroup analysis 745 

The longest isoforms from high-confidence genes were used as input for Orthofinder51. 746 

Orthofinder was run using standard parameters. We used the UpSetR in the R package 747 

(http://gehlenborglab.org/research/projects/upsetr/) to analyse and visualise how many 748 

orthogroups are shared between the cultivars or are unique to a single species. GENESPACE9 749 

was used to derive and visualise syntenic relationships between all chromosomes and sub-750 

genomes. 751 

 752 

Analysis of Canadian-specific genes 753 

Taking each genome in turn as a reference, kmers of length 51 were identified from genic 754 

regions using the annotation for that reference. These kmers were used to search the genomes 755 

of the other cultivars and a coverage score was computed52 between each gene in the 756 

reference and every other genome. The coverage score (a value between 0 and 1) can be used 757 

as a proxy for sequence similarity/difference between genes in different cultivars  where values 758 

closer to 0 indicate greater difference and values closer to 1 indicate similarity. Coverage scores 759 

for genes along chromosomes were plotted using the seaborn visualisation library53 in Jupyter 760 

notebook. Coverage scores were also visualised as heatmaps with coverage scores close to 0 761 

represented as dark bands.  762 

 763 

Comparative analysis of immune reactive regions in the wheat pan-genome 764 

Reference allergen identification and chromosome 6D comparison 765 

Reference allergens in the wheat pan-genome were filtered using blastn algorithm against the 766 

identified sequences in the IWGSC v1 gene annotation v1.122. To identify unannotated gliadin 767 
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and glutenin gene models and to compare the potential immune reactivity of the wheat 768 

cultivars, known coeliac diseases associated HLA-DQ T-cell epitopes were reverse translated 769 

and the consensus nucleotide sequences were used for a motif search with 100% sequence 770 

identity. The mapped epitope-rich regions were used for the detailed comparison of the alpha 771 

gliadin locus in chromosome 6D. Additional gene models representing complete gene models 772 

with DQ epitopes were manually annotated. The locus organisation was compared to the 773 

Chinese Spring chromosome 6D alpha gliadin locus in the IWGSC v1 reference genome 774 

assembly22. 775 

  776 

Promoter motif enrichment analysis 777 

1000 bp 59-end non-coding sequences were extracted from the chromosome 6D loci and used 778 

for motif enrichment analysis in MEME-SEA54. The JASPAR core plant 2022 motif collection was 779 

used as a background database.  780 

  781 

Epitope expression analysis 782 

Epitope expression values were calculated using the TPM gene expression values of genes 783 

where the reverse translated consensus epitope sequence was detected multiplied by the 784 

number of epitopes in each sequence. The obtained values were summed for each epitope type 785 

as well as summed for epitope types at genome levels.  786 

  787 

Gene co-expression analysis 788 

TPM>1 log2 transformed TPM gene expression data were used to create a grain co-expression 789 

network using co-expression cut-off value of 0.8. The resulting network was annotated with the 790 

reference allergen-specific information for disease relatedness and gene family. The first 791 

neighbour network was visualised in Cytoscape.  792 

 793 

Pan-genome graph construction of 10Mb 6D region 794 

We extracted a 10Mb region (20-30Mb) encompassing the alpha gliadin locus from the top of 795 

chromosome 6D for the cultivars Norin 61, CDC Stanley, SY Mattis, Julius, and Mace. To 796 

estimate the divergence of the input sequences, we used mash-2.255, specifically the mash 797 

triangle command to calculate a maximum sequence divergence of 0.039. To account for 798 

possible underestimation of sequence divergence and localised structural variants we specified 799 

a minimum mapping identity value (-p 90) for pan-graph construction using PGGB56 together 800 

with segment size (-s 30kb), number of mappings (-n 6), minimum length of exact matches (-k 801 

311), target sequence length for POA (-G 13117, 13219), mean length of each sequence pad for 802 

POA (-O 0.03) and k-mer size for mapping (-K 111). Default settings were used for all other 803 

parameters. 804 

  805 

Extracting the alpha-gliadin locus sub pan-graph 806 

Using ODGI toolkit57 we extracted the subgraph of the alpha-gliadin locus from our 6D graph 807 

build. We used the odgi extract command together with coordinates of the Norin 61 gene 808 

models described in Supp. Table 14 extracts the 520.7kb region encompassing the locus (6D: 809 

26,703,647-27,222,360bp) and the corresponding paths intersecting with this region in CDC 810 

Stanley (6D: 28,164,601-28,660,350 bp), SY Mattis (6D: 26,645,382-27,096,594 bp), Julius (JUL 811 
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6D: 26,983,100-27,437,565 bp), and Mace (6D: 26,808,846–27,298,593 bp). We used odgi sort 812 

to sort the resulting subgraph and odgi procbed to adjust the coordinates of the gene models 813 

for each cultivar to fit the resulting subgraph. odgi inject allowed us to visualise the placement 814 

of these gene models across the graph and identify cultivar-specific haplotypes. We generated 815 

a graphical fragment assembly (gfa) of this sub pan-graph using odgi view (Supp. Table 15). 816 

 817 

Data Availability 818 

The genome sequence and gene annotations of all wheat cultivars can be viewed and 819 

downloaded in Ensembl Plants (https://plants.ensembl.org/index.html). This includes the de 820 

novo genes for the chromosome-level cultivars generated within this study and projected genes 821 

for all assemblies from the IWGSC RefSeq v1.1 annotation. All raw data used in this study is 822 

available at the European Nucleotide Archive under accession PRJEB51827. 823 

 824 

Code Availability 825 

Relevant code repositories are referenced throughout the Methods sections. 826 

 827 

Supplementary Tables 828 

All supporting tables and associated materials are available at 829 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2024-01-830 

01_wheat_pantranscriptome.  831 
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