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De novo annotation of the wheat pan-genome reveals complexity and diversity within the
hexaploid wheat pan-transcriptome
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Abstract

Wheat is the most widely cultivated crop in the world with over 215 million hectares grown
annually. However, to meet the demands of a growing global population, breeders face the
challenge of increasing wheat production by approximately 60% within the next 40 years. The
10+ Wheat Genomes Project recently sequenced and assembled the genomes of 15 wheat
cultivars to develop our understanding of genetic diversity and selection within the pan-
genome of wheat. Here, we provide a wheat pan-transcriptome with de novo annotation and
differential expression analysis for nine of these wheat cultivars, across multiple different
tissues and whole seedlings sampled at dusk/dawn. Analysis of these de novo annotations
facilitated the discovery of genes absent from the Chinese Spring reference, identified genes
specific to particular cultivars and defined the core and dispensable genomes. Expression
analysis across cultivars and tissues revealed conservation in expression between a large core
set of homoeologous genes, but also widespread changes in sub-genome homoeolog
expression bias between cultivars. Co-expression network analysis revealed the impact of
divergence of sub-genome homoeolog expression and identified tissue-associated cultivar-
specific expression profiles. In summary, this work provides both a valuable resource for the
wider wheat community and reveals diversity in gene content and expression patterns between
global wheat cultivars.

Introduction

Wheat (Triticum aestivum) is the most widely grown crop and is cultivated in 12 mega-
environments across the world!, with 777.7 metric tonnes harvested globally in 2021/22
(www.fao.org). Pressures of climate change, political instability, a move to more sustainable
farming and a reduction in agricultural land are putting increasing demand on international
wheat harvests?. Efforts to overcome these pressures can be accelerated by understanding the
genetic diversity of global wheat cultivars and their pan-transcriptional variation.

Wheat has a large (15Gb) allohexaploid (BBAADD) genome, derived from a series of relatively
recent hybridisation events3. Its size, evolutionary history, and high repeat content, despite
hindering genome assembly, make wheat an interesting model for the evolution of large
polyploid genomes. Step changes in technology have enabled the chromosome-level assembly
of nine high-quality wheat genomes by a global consortium. These genomes revealed evidence
of widespread structural rearrangements, introgression from wild relatives and the impacts of
parallel international breeding programmes®. To date, these genomes were annotated only by
projecting Chinese Spring gene models across the new assemblies. The generation of de novo
annotations for these genomes provides a key insight into gene gain and loss, reveals novel
gene models across wheat cultivars and facilitates comparative gene expression analysis
between cultivars.

Previous analyses of the wheat transcriptional landscape described tissue-specific changes in
gene expression in two cultivars, using a common Chinese Spring reference genome>.
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88  Polyploidy leads to complex effects on gene expression resulting from structural variation, gene

89  duplication, deletion and neofunctionalization, ultimately increasing variation in gene

90 expression and the plasticity of the species. To date, studies of plant pan-transcriptomes either

91 rely on read alignment to a single reference genome which can result in reference bias, or

92 generate de novo transcript assemblies from short read data that can accumulate errors and

93  technical artefacts®.

94

95 Here, we generate de novo gene annotations, incorporating long reads for the nine assembled

96  wheat cultivars, providing a valuable resource for wheat researchers and breeders. We identify

97  evidence of widespread gene duplication and deletion, revealing the population structures

98 imposed by repeated hybridisations from wild relatives and different breeding programmes.

99  We define the hexaploid wheat core and dispensable transcriptome and our analysis of gene
100 expression and gene networks across different tissues and between cultivars reveals
101 conservation and divergence in expression balance across homoeologous sub-genomes. We
102  exemplify the value of these analyses through an in-depth investigation of the pan-genome
103  variability of prolamin gene content and expression; a key trait for quality and health aspects in

104  wheat.
105
106 Results

107  De-novo gene annotations of the pan-cultivars define the core and accessory gene sets

108 To precisely assess the gene content and differences in gene expression, copy number and the
109 presence/absence of genes between the wheat cultivars, we generated a de novo gene

110  annotation for each of the nine pan-cultivars. We used an established automated annotation
111 pipeline which built evidence-based gene model predictions using a comprehensive

112  transcriptomic dataset. This dataset was made up of Iso-Seq data from roots and shoots (390-
113 700 K reads per sample), and RNA-seq data (150 bp paired-end read, 56-85 M pairs of reads per
114  sample) obtained for each cultivar from five distinct tissue types and whole aerial organs

115  sampled at dawn and dusk (Figure 1A, see methods for a full description and Extended Data
116  Figure 1 for details of quality control). In addition to the transcriptomic dataset, the gene

117  annotation pipeline also used protein homology and ab initio prediction. Finally, a gene

118  consolidation procedure (Extended Data Figure 2A) was developed to identify and correct for
119  missed gene models. This step ensures the best possible comparability between the wheat
120 genomes and gene repertoire’.

121

122  The number of high-confidence gene models identified ranges from 140,178 for CDC Landmark
123  to 145,065 for Norin 61 (Figure 1B). Low-confidence genes, primarily representing gene

124  fragments, pseudogenes and gene models with only weak support, are inthe range of 315,390
125 (Mace) to 405,664 (SY Mattis). With a maximal difference of 3.5%, the number of high-

126  confidence (HC) genes appears to be similaracross cultivars, whereas most of the differences in
127  gene number observed can be attributed to the low-confidence gene set. For around 70% of
128  the HC genes we obtained evidence for transcription in at least one condition.

129

130  We benchmarked the quality of the de novo gene predictions against BUSCO v5.1.2 with the
131 poales_odb10 lineage dataset, representing 4,896 Poales near-universal single-copy orthologs.
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132  On average, we found more than 99.8% of the BUSCO genes represented at least one complete
133  copy and 86% by three complete copies (Figure 1B). This is an improvement in complete BUSCO
134  genes over the gene projections from Chinese Spring used in the first study of the wheat pan-
135 genome* and can be explained by the de novo gene annotation strategy applied here, which
136  included comparable RNA-seq and Iso-Seq datasets and ab initio prediction, as well as the final
137  consolidation step. The de novo annotations are available in Ensembl Plants release 52.
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139  Figure 1. Study design, de-novo gene annotations and orthologous framework. A. Overview of
140 transcriptome data generated for this study of the wheat pan-cultivars. 1 & 2: whole aerial

141 organs sampled at dawn and dusk, 3: root, 4: complete spike at heading (GS59), 5: flag leaf 7
142  days post anthesis (GS71), 6: whole grains 15 days post anthesis (GS77). B. De novo gene

143  prediction results for each pan-cultivar (left side, “genes”, separated for A, B and D sub-

144  genome) as well as a summary of the BUSCO completeness assessment of gene models (right
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side, “BUSCO”). C. GENESPACE construction and visualisation of orthologous genes within the
wheat pan-genome, using de novo predicted gene models.

Genes and gene families exclusive or amplified in a specific cultivar are of major interestin a
pan-genomic context®. While genes present in all compared cultivars are referred to as the core
genome, cloud and shell genes are found only in one (cloud) or shared in a subset of cultivars
(shell). The improved gene annotation enabled the construction of a high-density orthologous
framework for wheat. GENESPACE® was used to derive syntenic relationships between all
chromosomes and sub-genomes, allowing in-detail investigation of macro- and micro-synteny
(Figure 1C) and gene copy number variations. While previously identified rearrangements such
as the chromosome 5B/7B translocation in SY Mattis and ArinaLrFor were confirmed, additional
frequent small-scale structural variations can now be examined in the context of their gene
content. We found a 16 Mb inversion, splitinto three segments of around 5Mb each, on
chromosome 3D between Canadian cultivars CDC Stanley and CDC Landmark which coincides
with the locations of QTLs related to biomass and grain weight1°.

We identified groups of orthologous genes (referred to as orthogroups) among the wheat high-
confidence gene models of all cultivars. A total of 54,865 orthogroups contained 99.7% of all
genes, with 173 orthogroups identified as cultivar-specific and 3,756 genes not clustered in any
orthogroup - defining the cloud genome. Cloud and shell genes have previously been found to
be associated with disease resistancel!, adaptation to new environments?, or important
agricultural traits3. Within the shell genome, our analysis identified orthogroups that are
shared only between specific cultivars. Examples include CDC Stanley and CDC Landmark from
Canada, Mace and LongReach Lancer from Australia or ArinaLrFor, SY Mattis and Julius from
Europe (highlighted inyellow in Figure 2A) which all share exclusive sets of genes. These
observed patterns likely reflect the complex breeding history of the selected pan-cultivars
which represent wheat lines from different regions, growth habits and breeding programs.
Inspection of the chromosomal location of these gene groups identified multiple clusters
(Figure 2B and Extended Data Figure 3) that are likely associated with crosses to distinct
material or hybridisations with wild or domesticated relatives; events common in wheat!.

Proportions of core (genes present in all cultivars), shell (genes presentin 2-8 cultivars) and
cloud (genes found in only one cultivar and unclustered genes) genes were found to be similar
across the pan-cultivars (Figure 2C). On average 76.34% of genes were classified as core,
23.32% as shell, and 0.33% as cloud (Extended Data Figure 2B). Amongst the core gene set, we
found biological functions associated with basic metabolic, catabolic and DNA repair/replication
processes enriched (Supp. Table 1), while stress response and regulation of gene expression
were overrepresented in the shell genes (Supp. Table 2). In the set of cloud genes, functions
related to chromatin organisation and reproductive processes were found to be enriched
(Supp. Table 3). Expression patterns of core, shell and cloud genes revealed pronounced
differences globally, but not between the sub-genomes (Figure 2D). As observed in other pan-
genomes?'®, core genes tend to be higher expressed in all sub-genomes and tissues, as
compared to both shell and cloud genes.


https://doi.org/10.1101/2024.01.09.574802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.09.574802; this version posted January 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

16405
3
50404
0es00
ArnaliFor Jagger  Jilus  LandmationgReach LancorMace  Norin61  Stanley  SYMatis
cultivar
4 Q

189  Figure 2. The wheat core-, shell-, and cloud- genome and homoelogous expression patterns.
190  A. UpSet plot showing intersects of orthogroup conservation between pan-cultivars and the
191  relation to their breeding programs and sowing season. B. A representation of CDC Stanley

192 chromosome 3B showing the positions of Canadian-specific genes (top bar), heatmaps showing
193  coverage scores between genes in CDC Stanley and CDC Landmark (middle bar) and coverage
194  scores between CDC Stanley and Norin 61 (bottom bar). Coverage scores are calculated using
195  kmers from each CDC Stanley gene to search the genomes of the other cultivar and range from
196 0 to 1 with values closer to 1 indicating greater similarity. Regions of greater difference are

197  shown as darker bands. The plot shows the 0-50 Mb region of chromosome 3B (indicated by a
198 red box). The mean of the coverage score between CDC Stanley genes in this region and genes
199  in the non-Canadian lines is plotted. A cluster of four Canadian-specific genes (marked by a red
200 dashed line) lies in a region which is noticeably different between CDC Stanley and the non-
201  Canadian lines potentially representing an introgression. C. Number of genes belonging to core,
202  shell and cloud ortholog groups across cultivars. D. Violin plots of core, cloud and shell log

203 average gene expression across all combined cultivars and tissues, in each sub-genome. Higher
204  mean expression was observed in core genes across all sub-genomes. E. Ternary plots, of stable
205  (left) and dynamic (right) 30-let expression, where there is a homoeolog present on each sub-
206 genome, of all tissue in all cultivars, combined, showing more overall balanced expression in
207  stable 30-lets and unbalanced expression in dynamic 30-lets.
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209  Duplication of genes has been identified as a major driver of gene function evolution and

210  adaptation in plants'2. In wheat, a large number of tandem duplications was previously found
211 both in the Chinese Spring (IWGSC v1.1) reference genome and the pan-genome assemblies®4,
212 Our full de novo gene annotation of the wheat pan-genome, in combination with the extensive
213  gene expression data presented in this study, allowed for an in-depth assessment of gene

214 duplication dynamics across cultivars in hexaploid wheat.

215

216  We identified on average 5,040 tandem arrays (HC genes only) in each cultivar, with the lowest
217  in CDC Landmark (4,914) and ArinaLrFor as the highest (5,172). In addition, we tested whether
218  there is a bias in expression towards one member of the array. We found that for 2,520 arrays
219  one of the two members was biased in its expression with respect to the other member,

220  whereas for 1,800 arrays both copies were expressed at similar levels or varied depending on
221  the tissue (Extended Data Figure 2C). 719 tandem arrays were not expressed under the

222  investigated conditions. Amongst all tandemly duplicated genes in wheat, biological functions
223  associated with phosphorylation, response to stimulus and stress and reproductive processes
224  were enriched (Supp. Table 4). We alsoinvestigated the conservation of tandem arrays across
225  all pan-cultivars. Around 69% of the tandem arrays identified in a specific cultivar were found to
226  be shared with all other pan-cultivars, with the remaining 31% tandems showing varying

227  conservation (Extended Data Figure 2D). These results highlight the impact of tandemly

228  duplicated genes as a potential key driver of evolution and adaptation. Besides functional

229 redundancy of homoeologous genes in hexaploid wheat, tandem genes and their expression
230  (bias) are therefore an important target for breeding applications.

231

232  Conservation of Global Expression in the Wheat Pan-Transcriptome

233 Toinvestigate changes in global gene expression across cultivars, biological replicates from

234  whole aerial organs at dusk and dawn, and from flag leaf, root, spike and grain, were used to
235 generate normalised gene expression counts. We observed from principal component analysis
236  of the normalised counts that most of the variance is represented by the first principal

237 component, representing the different developmental stages, and also similar grouping of

238  expression overall (Extended Data Figure 1A, B). We then used these normalised counts from
239  the nine cultivars together with complete de novo annotations for the core, shell, and cloud
240  group genes, to explore differences in expression between tissues across all cultivars. The

241  patterns of expression observed in each individual orthologous class were consistent across
242  tissues, and between sub-genomes, with core genes also showing an overall higher mean

243  expression than either shell or cloud (Figure 2D, Extended Data Figure 4A). Indicating a global
244  conservation of expression, irrespective of tissue type or sub-genome biases.

245

246  The tissue-specific gene index (tau) was employed to assess the degree of gene expression

247  specificity to flag leaf, root, spike or grain tissues across all cultivars (Extended Data Figure 4B).
248  We observed the least number of tau genes in flag leaf (1,005 - 3,202 specific genes), that were
249  significantly less (t-test; p < 0.001) overall compared to either root (4,736 - 8,974 specific

250 genes), spike (5,453 - 9,323 specific genes) or grain (3,955 - 12,157 specific genes), that showed
251 no significant difference between each other. However, the number of specific genes showed
252  the least cultivar variability for flag leaf tissues, compared to the wide range in the number of
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253 grain-specific genes observed between cultivars. This could be the result of contrasting

254  transcriptomic complexity between flag leaf and grain tissues, representing different

255  developmental stages of maturity and metabolic activity. In polyploid crops agricultural traits
256  are often modulated by aninteraction of homoeologous copies of genes®. In wheat, previous
257  studies have focused on tissue-specific expression across homelogous triads, identifying sets of
258  triads that are either balanced or unbalanced in their sub-genome expression. Here, we

259  compared variation in triad expression across cultivars using all 13,521 identified sets of 30-let
260 genes with a homoeolog present on each sub-genome of the de novo annotated cultivars. Using
261  previously reported cut-off values®, we observed similar sub-genome expression in these 30-
262 lets, in each of the cultivars, to that reported previously in Chinese Spring, with 102 also being
263 classed as not expressed (Extended Data Figure 4C)>. However, when comparing the bias of
264  sub-genome expression, we observed 8,028 (59.37%) of these 30-lets to have a conserved,

265 ‘stable’, balanced expression between the three homoeologous copies across all cultivars

266 (Extended Data Figure 4D). Whereby ‘stable’ expression relates to a conserved sub-genome
267  expression bias between cultivars, as opposed to a ‘dynamic’ expression where a change in sub-
268 genome expression bias can be observed in one or more cultivars.

269

270  As well as conservation of the balanced state we also see conservation in dominance or

271  suppression within triad groups with 276 showing stable suppressed expression and 63 stable
272  dominant expression. Stably expressed 30-lets showed GO term enrichment for essential

273  biological processes associated with photosynthesis, translation, DNA replication, exocytosis,
274  glycolytic process and cell redox homeostasis.(Extended Data Figure 4E). Whilst the 5,052

275  37.36% ‘dynamically’ expressed 30-lets that showed a change in the bias of sub-genome

276  expression inat least one cultivar were found to be significantly enriched for transmembrane
277  transport, response to stress, response to oxidative stress, defence response and

278  photosynthesis. These dynamic 30-lets were observed to be less fixed to a specific sub-genome
279  expression pattern compared to stably expressed 30-lets, showing a further Euclidean distance
280 from a, b, c or centroid points (Figure 2E). Across these dynamically expressed 30-lets, 4,467
281  showed balanced expression in at least one cultivar, with B sub-genome suppression being the
282  next most represented balance of expression occurring in 1,972 of the dynamic 30-let sets

283 (Extended Data Figure 4F). Overall, more suppression of expression was seen than dominance.
284  The Kruskal-Wallis test, applied to assess differences in the mean values of the dynamic 30-let
285  bias across the cultivars, revealed no significant differences when examining the total

286  percentage of each expression bias (p > 0.05). This suggests that the bias of dynamic

287  expression, whilst different for individual 30-lets, has been proportionally conserved across
288  these cultivars.
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291 Figure 3. Components of the wheat consensus network with functional annotation and UK
292  cultivar Claire-specific differences A. Number of genes in each module from the seven cultivar
293  consensus network. B. Hierarchical clustering of 23 consensus module eigengenes identifying
294  sixmetamodules. C. GO-slimterms of biological processes associated with genes in 6

295 metamodules. Only terms with p<0.05 and >10 significant genes are shown. Bubble colour

296 indicates the -log2p-value significance from Fisher’s exact test and size indicates the frequency
297  of the GO-slimterm in the underlying EBI Gene Ontology Annotation database (larger bubbles
298 indicate more general terms). D. Claire-specific network of 18 genes with divergent expression
299 patterns compared to all other cultivars. Node size is scaled to the log» average expression +1 of
300 eachgene in spikelet tissues and edge width reflects the weight of the connection between
301 nodes. E. Log2 fold change in expression across all tissues, between Claire and remaining

302  cultivars of 18 Claire-specific genes.

303

304 Conserved patterns of co-expression

305 In addition to the nine cultivars for which we generated de novo annotations, we also collected
306 expression data from the same tissues and conditions for the remaining five cultivars included
307  inthe wheat pan-genome. To exploit these additional transcriptomic datasets in the absence of
308 de novo annotations, we employed the consensus network function of WGCNA” which uses
309 expression counts from a single reference (CSv1.1) to enable the identification of gene

310  expression modules that represent biological pathways conserved across all cultivars.

311

312  To explore how regulatory networks are conserved across tissues and cultivars of the pan-

318  transcriptome, we constructed our consensus co-expression network spanning seven cultivars;
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314  four with chromosome pseudomolecule assemblies (ArinalLrFor, Julius, Jagger, Norin 61) and
315  three with scaffold assemblies; two UK derived (Cadenza, Claire) and one key CIMMYT (Weebill)
316  cultivar. Together these seven cultivars represent a wide range of the genetic variation

317  observed in the pan-genome?.

318

319  Toidentify sets of genes with highly correlated expression patterns across cultivars we used
320 high-confidence genes expressed at greater than five normalised counts in at least three

321  samples, with less than two standard deviations in normalised counts, between sample

322  replicates. The resulting 48,337 genes from each cultivar (338,359 genes in total) were used to
323  construct the consensus network, with modules ranging in size from 84 to 9,183 genes (Figure
324  3A).This consensus network accounted for 70% (34,069 genes) of the genes from each cultivar
325 inour original dataset. These modules comprised co-expressed genes that exhibited highly
326 similarexpression patterns across all six developmental stages in all seven cultivars. A

327  comparison of the consensus module eigengenes (MEs) for these 23 modules demons trated
328 the conservation of expression patterns between cultivars (Extended Data Figure 5). We used
329  hierarchical clustering to further collapse the 23 consensus modules into six consensus

330 metamodules (Figure 3B); comprising 32,936 genes from each cultivar. GO-slim term analysis
331  (Figure 3C) and distinct transcription factor superfamily membership (Extended Data Figure 6)
332 indicated that each metamodule could be associated with distinct biological processes (Supp.
333 Tableb).

334

335  We defined a threshold for classifying inter-consensus module relationships and used this to
336 make pairwise comparisons of the ME for each consensus module and identify modules with
337  divergent or similar patterns of expression. We then used these module relationships to

338 compare how the 30-let triads were split across our consensus network. Within the genes used
339  to build our consensus network, we identified 6,867 of the 10,521 complete triad sets (50.8%).
340 3,640 (53.0%) of these triads were assigned to modules within the network, with the remaining
341 3,227 (47%) triads having at least one member present in the unclustered set of genes. This set
342  of genes that could not be fitted into the consensus network will contain genes with low

343  variance or low expression across tissues, and genes that do not show the same pattern of

344  expression across all seven cultivars. Of the 3,640 triads within our network 3,548 (96%)

345  belonged to either the same or similar expression modules, reflecting the conservation of

346  expression between the A, B and D sub-genomes. 2,431 of these triads (66.8%) belonged to the
347  stable category of 30-lets defined previously through comparison of individual triad expression
348  balance across all tissues and 9 cultivars. The identification of co-expression modules containing
349  similarly expressed triad members reveals additionally conserved genes, tightly connected to
350 these stable triads. Using the consensus network, we also observed 146 of the 3,640 triads (4%)
351  where sub-genome members were split across divergent modules. These triads were

352  significantly enriched for GO terms associated with the regulation of signal transduction and
353 DNA metabolic process (Supp. Table 6).

354

355

356  Using a consensus network approach to identify cultivar-specific co-expression patterns
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357  Whilst our consensus network enables robust biological inferences through the identification of
358 conserved gene sets across all cultivar members of the network, we also report a set of 14,268
359 unclustered genes that cannot be fitted to the consensus modules. These 14,268 genes may
360  have an expression profile that correlates with a consensus ME, but as this pattern of

361  expression is not conserved across all seven cultivars, these genes will not be placed within the
362  consensus network. Within our unclustered gene set we identified 1,753 such genes where the
363  pattern of expression for a single cultivar was closely correlated to a consensus ME displaying
364  an expression profile divergent to the module containing the same gene in the remaining six
365 cultivars. This enabled us to identify sets of co-expressed cultivar-specific genes (Supp. Table 7).
366  We visualised 12 of these cultivar-specific network fragments using igraph'® including a set of
367 18 linked genes with increased expression in spike tissue in Claire compared to other cultivars
368  (Figure 3D & 3E). The most highly connected gene in this subnetwork (TraesCS7A02G446400) is
369 atransducin/WD40 repeat protein. These proteins are key regulators of both plant

370  developmental and stress processes, and are known to participate in histone modification,

371  transcriptional regulation and signal transduction?®. Additional genes in this cluster, are

372  annotated as protein phosphatases, an eRF1 transcription factor, a calcium-binding EF-hand
373 domain-containing protein and a polyadenylation specificity factor. We hypothesise that the
374  cultivar-specific expression pattern observed in Claire linked to increased expression in spike
375  tissues could be the result of cultivar-specific regulation of a developmental or stress response.
376

377  Co-expression network analysis using de novo gene models

378  Our consensus network approach, using a common reference, enabled us to identify high

379 confidence, conserved expression modules and identify cultivar-specific co-expressed gene

380 sets. However, the use of a common reference meant that we were unable to assess the de
381  novo contribution of each genome to the consensus network. Of the seven cultivars within

382  the consensus network, ArinaLrFor, Jagger, Julius and Norin 61 each have corresponding de
383  novo annotations. We used these de novo gene models to identify a total of 4,682 de novo

384  annotated genes without a corresponding CSv1.1 orthologue and used expression counts from
385 these de novo gene models to build a de novo co-expression network of 13 modules (3,975

386 genes, Supp. Table 8). Each of these 13 modules could be closely correlated with at least one
387  consensus module from the consensus network (Supp. Table 8), indicating that our de novo
388 modules were not exhibiting patterns of expression distinct from those previously identified in
389 the seven-cultivar consensus network. One of these de novo derived modules was significantly
390 enriched (p<0.000003) for Jagger de novo gene models with increased expression in flag leaf,
391  spike and root tissues (Extended Data Figure 7). The three most significant GO terms enriched
392  within this module of 50 genes indicated a role in transcriptional regulation (GO:0065007,

393 G0:0031323, GO:0050789). 15 of these 50 genes were also annotated as transcription factors
394  with FHY3/FAR1 DNA binding domains (Supp. Table 8). These domains are known to be

395 involved in phytochrome signalling in Arabidopsis?® and in wheat are hypothesised to

396  contribute to the regulation of Ppd-B1a and PhyC known to control photoperiodic sensitivity to
397 flowering?l.

398

399  Our work demonstrates the strength of a consensus network approach inidentifying potentially
400 biologically conserved pathways between cultivars where de novo annotations are not available
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401  for each member of the network. Using this method we were able to reveal cultivar-specific co-
402  expressed genes for several cultivars including Claire and Weebill, for which we do not currently
403  have de novo gene models. In addition, further extending our co-expression analysis to include
404  the de novo gene models of four of the chromosome level assemblies revealed additional de
405 novo co-expressed modules exhibiting cultivar-specificity, such as the de novo module enriched
406  for Jaggergenes, that would not have been captured in the consensus network.

407

408 Developing de novo annotations for all 14 of the cultivars within the wheat pan-genome?!’ will
409 be invaluable in uncovering the complete regulatory network landscape of the wheat pan-

410  transcriptome. Associating these co-expression profiles with the core, shell and cloud

411 components of the wheat pan-genome will enable us to explore how structural rearrangements
412  andintrogressions across the wheat genome perturb these regulatory networks.

413

414 A case study: Uncovering variation in the prolamin super-family and immune reactive

415  proteins across the pan-cultivars

416  Prolamins represent a large superfamily in wheat involved in stress responses, cell growth and
417  plant development, as well as end-use quality and protein content. Along with HMW-glutenins
418  they are also potential triggers for various immune reactions in a subset of the human

419  population. As a case study, we investigated both the qualitative and quantitative differences in
420 the 687 genes from the prolamin superfamily and HMW-glutenins across the newly generated
421  wheat pan-genome and pan-transcriptome data. We observed clear expression differences
422  both for individual developmental stages and also between wheat cultivars for many genes
423  from the prolamin superfamily highlighting spatiotemporal variation in expression profile

424  (FiguredA).

425

426  Comparison of reference grain allergens identified in the Chinese Spring reference genome

427  (IWGSC v1.1) and across the pan-genome cultivars?2-2324 with the expression patterns of

428  potentially immune reactive gene products indicated differences in the major allergens and
429 antigens (glutenins and gliadins). SY Mattis and LongReach Lancer showed lower gene

430 expression levels in alpha and gamma gliadins with gene set enrichment analysis of gene

431  families highlighting gamma gliadins are primarily enriched in the downregulated genes

432  (Extended Data Figure 8, Supp. Table 9&10).

433

434  Detailed analysis of celiac disease (CD) related epitopes encoded in the gliadin and glutenin
435 genes inthe pan-genome revealed variability in their expression patterns. We found lower

436  expression of HLA-DQ epitope containing genes in SY Mattis and LongReach Lancer and higher
437  values in Cadenza and Jagger. Cultivar-specific analysis showed that ArinaLrFor and SY Mattis
438 contained lower alpha gliadin DQ epitope expressions due to significant differences inthe

439  expression activities of the three sub-genomes which might be affected by differences in the
440 related transcription factor gene expression profiles (Figure 4B, 4C, Supp. Table 11&12,

441 Extended Data Figure 9). While sub-genome specific expression patterns of gamma gliadin DQ
442  epitopes did not reveal significant variation, the expression of alpha-gliadin genes with DQ

443  epitopes originating from the A genome was lower in SY Mattis and LongReach Lancer, while
444  the highly immunogenic D genome alpha gliadin epitope expression levels were lower in the
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445  cultivar ArinalrFor (Extended Data Figure 10A). Our results indicate that fine-tuned sub-
446  genome-specific balance in the expression profiles may be associated with differences in the
447  regulatory transcription factor profiles (Figure 4B, 4C).

448
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449
450  Figure 4. Gene and expression variation in the prolamin family across the wheat pan-

451  cultivars. A. Prolamin superfamily gene expression across cultivars; B. Celiac disease epitope
452  expression across cultivars. Epitope expression profiles were calculated as sum of gene

453  expression profiles with the highlighted HLA-DQ epitopes for each sub-genome. C. Relative
454  proportion of cumulative expression profiles of transcription factor families showing strong co-
455  expression pattern (Pearson correlation values > 0.8) with the epitope-coding prolamin genes.
456  Results show significant differences in the NAC, AP2/EREBP and MYB transcription factor gene
457  expressions, major regulators of storage protein gene expression. D. Representation of the
458  variation graph for the region of 6D containing the alpha gliadin locus (Extended Data Figure
459  10B). Horizontal coloured lines depict paths through the graph for each cultivar; Norin 61 (6D:
460 26,703,647-27,222,360 bp), CDC Stanley (6D: 28,164,601-28,660,350 bp) and Mace (6D:

461  26,808,846-27,298,593bp), with SY Mattis (6D: 26,645,382-27,096,594 bp) and Julius (6D:

462  26,983,100-27,437,565 bp) sharing a single path. Rectangular blocks (a-p) represent individual
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463 genes at corresponding locations across cultivars (blue: in common to all 4 cultivars, orange:
464  occurring inone cultivar and purple: in common to 2 cultivars). Gene d is present as a single
465  copy in Norin 61, and duplicated in CDC Stanley, SY Mattis, Julius and Mace. This duplication is
466 represented as a loop in the path through the graph for these cultivars (Extended Data Figure
467 11).

468

469 Gliadinand glutenin loci were found to be highly conserved in all cultivars, with some variation
470  due to the presence of pseudogenes and gene duplications (Extended Data Figure 10B).

471 Reverse translated consensus sequences of the known CD-specific T-cell epitopes were mapped
472  to the genomes of all cultivars to determine the number and location of gliadin and glutenin
473  genes containing CD-related immune reactive peptide regions (Extended Data Figure 10B,
474  Supp.Table 13). The number or combination of epitopes in the loci was not significantly

475  different between the pan-cultivars. However, the gamma-gliadin and alpha-gliadin gene

476  models with a high number of epitopes were found in cultivars ArinaLrFor, Norin 61 and Mace,
477  respectively (Extended Data Figure 10B, Supp. Table 13).

478

479  Although highly conserved in their locus structure on chromosome 6D, alpha-gliadin genes
480 encoding highly immunogenic proteins showed copy number variation within the wheat pan-
481 genome. We constructed a localised pan-genome graph from five cultivars (Norin 61, CDC

482  Stanley, SY Mattis, Julius, Mace) and extracted the subgraph of the alpha gliadin-containing
483  locus (Figure 4D, Extended Data Figure 11). Inspection of the subgraph helped to resolve the
484  complex structure of the locus, with copy number variation observed as a loop in the paths of
485  SY Mattis, Julius, CDC Stanley, and Mace (2 copies of alpha-gliadin genes) but not within the
486  Norin 61 path (single alpha gliadin copy). While in total 4 to 6 epitopes were identified in the
487  alpha-gliadins of the wheat pan-genome cultivars, 8 epitopes were detected in cultivars Mace
488 and Norin 61 (Extended Data Figure 10B). These results indicate that gene copy number

489  expansion primarily affected the centre of the locus and resulted in the increase of gene

490 variants with high epitope counts. Comparison of promoter profiles indicates differences in the
491  expression regulation when epitope-poor and epitope-rich gene copy variants of the same
492  chromosome 6D locus are compared. While genome-wide construction and interpretation of
493  pan-genome graphs remains a daunting task for complex genomes such as wheat, we found
494  localised subgraphs, augmented by our de novo annotations, particularly helpful in resolving
495  complex loci, and uncovering structural variation as also demonstrated in the current draft
496  human pan-genome?°.

497

498

499  Discussion

500 We have built de novo gene annotations for nine wheat assemblies representative of global
501 breeding programs*. Our consolidated gene annotation approach generated a robust set of
502 core, high-confidence genes shared across the pan-cultivars. It also identified genes and gene
508 families that are found exclusively in or amplified in cultivars derived from specific breeding
504  programmes. ltis likely that some of this variation has come through widespread introgression
505 events?®, often associated with adaptation to biotic or abiotic stress13. Our annotations also
506 identified cultivar-specific variation in tandem gene duplication. Novel gene content, gene
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507 duplication and neo-functionalisation together with gene expression patterns will have an
508 impact on researchers and breeders as they identify genes underlying traits, manipulate gene
509 expression or incorporate and track new genetic variation.

510

511 Our analysis of global gene expression identified sets of genes with stable homoeologous

512  expression patterns between cultivars, demonstrating tightly regulated key biological

513  processes. We also identified homoeologous triads diverging in their expression patterns

514  between cultivars, revealing genes enriched for processes associated with biotic and abiotic
515  stress. Understanding the regulatory networks driving these altered patterns will provide

516  important targets for manipulating these processes. Using network analysis, we identified

517  widespread conservation of expression patterns across tissues and cultivars before focusing on
518 cultivar-specific gene sets, to reveal networks of genes involved in stress responses in the

519  developing grain and the photoperiodic control of flowering. These cultivar-specific network
520 changes may be the result of wheat breeding programmes targeted to local environments. We
521 alsodemonstrated the utility of our new resources by investigating genomic variation in the
522  prolamin superfamily, focusing on immunogenic potential.

523

524 In conclusion, this study reveals layers of hidden diversity spanning our modern wheat cultivars.
525  Previously overlooked, this diversity is likely to underpin the agronomic success of wheat over a
526  wide range of global mega-environments.

527

528 Materials and Methods

529  Plant Materials and Growth Conditions

530 The 14 cultivars were grown in a Controlled Environment Room (CER) (Conviron BDW80;

531  Conviron, Winnipeg, Canada) setat 16 h day/8 h night photoperiod (300 pmol m= s, lights on
532  at 05:00, lights off at 21:00), temperatures of 20/16 °C, respectively, and 60% relative

533  humidity. Plants were sampled in triplicate at the 3-leaf stage (Zadoks GS13), harvesting whole
534  roots and whole aerial organs separately, four hours after dawn (09:00). Whole aerial organs
535  were alsosampled two hours after dusk (23:00). Plants for subsequent adult plant sampling
536  were treated according to their vernalisation requirements. In the case of spring wheat

537  cultivars (CDC Landmark, CDC Stanley, Paragon, Cadenza, Mace and LongReach Lancer),

538 seedlings were grown as described above. At 3-leaf stage, seedlings were transferred to 1 L
539  pots containing Petersfield Cereal Mix (Petersfield, Leicester, UK) and maintained under the
540 same CER conditions as described previously. For winter wheat cultivars (Norin 61, Julius,

541  Jagger, ArinaLrFor, Robigus, Claire and SY Mattis), seedlings were transferred in 40-well trays (7
542  days after sowing) to a vernalisation CER running at 6 °C with 8 h day/16 h night photoperiod
543  for 61 days. After this period the plants were transferred to 1 L pots containing Petersfield

544  Cereal Mix (Petersfield, Leicester, UK) and moved to the same CER and settings as described for
545  the spring wheat cultivars. For both spring and winter wheat cultivars, three additional samples
546  were harvested: complete spike at heading (GS59), flag leaf 7 days post-anthesis (GS71) and
547  whole grains 15 days post-anthesis (GS77). All samples were harvested four hours after dawn
548  (09:00), and a single plant was used per each of the three biological replicates.
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549  Sample Preparation and Sequencing

550 Total RNA was extracted using Qiagen RNeasy Plant Mini Kit (cat. no. 74904) and DNAse treated
551  using an Invitrogen TURBO DNase kit (cat. no. AM2238) according to the manufacturer’s

552  protocol. Bead purification of the RNA was conducted using the Agencourt RNAClean XP

553 beads.system (cat. no. A63987). Final sample concentrations were verified using a Qubit 4

554  Fluorometer, and the integrity of the RNA was checked on the Agilent 2100 Bioanalyzer, using
555  the RNA 6000 nano kit (Agilent, 5067-1511), running the plant total RNA assay. The directional
556  RNA-seqlibraries were constructed using the NEBNext Ultra Il Directional RNA Library prep for
557  Illumina kit (NEB, E7760L) utilising the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB,
558  E7490L) and NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs) (cat. no.
559  E6440S/L) at a concentration of 10 uM. The final libraries were equimolar pooled, a g-PCR was
560 performed and the pool was sequenced on a Illumina NovaSeq 6000 with 150 bp paired-end
561  reads.

562

563 The Iso-Seq libraries were constructed from 1 ug of total RNA per sample and full-length cDNA
564  were then generated using the SMARTer PCR cDNA synthesis kit (Takara Bio Inc, 639506). The

565 libraries were sequenced on the Sequel Instrument v1, using 1 SMRTcell v2 per library. All

566 libraries had 600-minute movies, 120 minutes of immobilisation time, and 120 minutes of pre-
567 extension time.

568

569 Data Quality Control and Sample Validation

570  We used a set of cultivar specific SNPs to confirm the cultivar origin of each replicate and the
571  developmental stage of each sample was validated through a machine learning approach

572  trained using the pooled RNA-seq samples and then run on the entire set of biological

573  replicates. Principal component analysis of the pooled samples shows them to cluster by

574  developmental stage as expected.

575

576  Alignment and Gene Expression Analysis

577  Samples were aligned to the IWGSC Chinese Spring RefSeq 1.1 reference genome, using HISAT2
578  v2.0.4, acting as a common reference to allow inclusion of UK cultivars and comparison with de
579  novo annotations, and normalised counts were generated using DESeq2 with the RefSeq 1.1
580 geneset?’:16.:28,

581

582 GO term analysis

583  Functional enrichment of differentially expressed genes for biological processes was performed
584  using the gene ontology enrichment analysis package, topGO2° in R (v3.6.0, with the following
585  parameters: nodeSize = 10, algorithm = "parentchild", classicFishertest p < 0.05). GO terms
586 refer to ontology terms for biological processes unless otherwise specified and were obtained
587  from Ensembl Plants 51, using the BioMart tool. Bubble plots were plotted using ggplotin R,
588  adapting code from3°,

589

590 Tissue-Specific Index

591  The specificity of gene expression to developmental stages was determined using the tissue-
592  specificindex 3. Where N is the number of developmental stages (condition), and x; is the
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593  expression profile component for a given gene in each condition, normalised by the maximal
594  expression value of the given gene from all conditions considered. This allowed us to classify
595 genes as being highly specific to one condition (tau => 0.8). Assignment of tau values was

596  performed inR using code adapted from previous work32.

597

598  Sub-genome Expression Bias

599  Analysis of sub-genome expression focused on 30-let homoeologs with a 1:1:1 relationship
600 across all three sub-genomes. Of these, 13,521 were determined to be macrosyntenic,

601 belonging to the same sub-genome in all cultivars (excluding UK cultivars which are not

602 assembled), and 10,653 as microsyntenic, belonging to the same chromosome and sub-genome
603 in all cultivars (excluding UK cultivars). From these 66 30-lets were not taken forward in the
604  analysis due to low expression and/or quality filtering determined by DESeq2 (R package v

605 4.0.3) of atleast one homoeolog in each set. Relative expression of 30-lets across homoeologs
606 and associated sub-genome expression biases were calculated as previously reported, through
607  use of our triad.expression R package (https://github.com/AHallLab/triad.expression).

608

609 Co-expression Analysis

610  Network construction

611  The WGCNA R package®’ (R version 3.6.0) was used to build co-expression networks for seven
612  cultivars (ArinalLrFor, Cadenza, Claire, Jagger, Julius, Norin 61 and Weebill) for which we had
613 triplicate biological replicates for each developmental stage. These cultivars also spanthe range
614  of genetic variation observed in the previously published pan-genome®. The expression matrix
615  for the seven selected cultivars containing DESeq2 normalised counts aligned to 102,443 high
616  confidence CSv1.1 genes was filtered and genes, where the sum of counts across all samples
617  was greater than 5in at least 3 samples, were retained (92,976 genes). To reduce background
618 noise we removed genes where the expression of any replicate was >20 from the mean

619  expression of that sample set. The resulting 48,337 genes were submitted to WGCNA to

620  construct a signed hybrid consensus network using the blockwiseConsensusModules ()

621  function. A soft power threshold of 18 was used, together with the following parameters;

622  minModuleSize = 30, corType = bicor, maxPOutliers = 0.05, mergeCutHeight =0.3,

623 minKMEtoStay =0.2, maxBlockSize = 46,000. Eigengenes were then extracted for each module,
624  per cultivar from the resulting consensus network.

625

626  Defining thresholds for classifying inter-module relationships

627  To classify inter-module relationships and identify modules with divergent or similar patterns of
628  expression we defined a threshold of module similarity. Initially we calculated the distance
629 between each pairwise consensus module comparison, using the Pearson correlation distance.
630 We used the maximum distance of each of these pairwise comparisons, for each module and
631  calculated the median of these maxima. Next, we investigated the proportion of 1,663 triads
632  (from 30-lets) identified as split across the 23 previously defined consensus modules, that

633  would be classed as divergent using a module similarity threshold of 0-100%. From these results
634  we selected a module similarity threshold of 75% the median of maximum distances, with

635 distances above this classed as divergent and distances below, classed as similar.

636
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637  Identifying metamodules

638 We usedthe R package clValid®3 to determine the optimal number of clusters for the 7 cultivar
639 23 consensus module eigengenes. The resulting Dunn index3* and silhouette width3 indicated
640 that the optimum number of clusters for our ME dataset was 6. We calculated the pairwise
641  Pearson correlation coefficients for all our 161 cultivar consensus ME (cor()) and converted this
642  to a dissimilarity matrix (as.dist()). We used hierarchical clustering of this dissimilarity matrix
643  (hclust()) to define consensus metamodules. As the JAG magenta consensus module fell into a
644  different metamodule to the remaining 6 cultivars we omitted the magenta consensus module
645  from our metamodule construction and downstream enrichment analysis. We used the

646  moduleEigengenes() function to compute the ME of each metamodule and carried out GOterm
647  and TF superfamily enrichment analysis.

648

649  Transcription factor superfamily enrichment

650 Genes annotated as members of transcription factor (TF) superfamilies® were identified in each
651 metamodule and the frequency of each TF superfamily compared to the frequency observed in
652 the 32,936 genes used to construct metamodules. TF families were classed as either

653  significantly under or overrepresented in each module using Fisher's exact test (p <= 0.05).

654

655 Identifying cultivar-specific expression patterns

656  We used the consensuskME() function in WGCNA to determine the maximum eigengene-based
657  connectivity (kME) of each gene within the unclustered gene set of 14,268 genes, to the

658 consensus ME for each cultivar. Those genes with a positive association greaterthan 0.7 to a
659 consensus ME were retained. To reveal putative networks specific to a single cultivar we

660 identified genes from the 13,708 genes that demonstrated associations greater than 0.7 kME
661  for atleastone cultivar, per gene, where a minimum of 4 out of the 7 cultivars exhibited >0.7
662 kME and that in pairwise comparison to all other cultivars, for the specific cultivar being

663 assessed, the gene was assigned to a divergent module.

664

665  Connectivity within each set of genes demonstrating single cultivar-specificity was determined
666  using the R package igraph'®. Using the graph adjacency() function, graph adjacencies were
667  created for each specific cultivar set based on the Pearson correlation distances between genes
668 ina pairwise fashion. These directed graphs were simplified to remove multiple edges and

669 loops, and filtered to retain only those connections with an absolute Pearson correlation > 0.8.
670  The mst() function using the prim algorithm was used to create a minimum spanning tree and
671  the resulting subgraphs were visualised using plot() with isolated nodes excluded.

672

673 Gene annotation

674  For the structural gene annotation of the chromosome-scale assembled pan-cultivars, we

675 combined de novo gene calling and homology-based approaches with RNAseq, Isoseq, and
676  protein datasets. The RNAseq data were mapped using STAR3® (v2.7.8a) and further assembled
677  into transcripts by StringTie37 (v2.1.5, parameters -m 150-t -f 0.3). PacBio Iso-Seq transcripts
678  were derived from the raw reads using PacBio SMRT Link software (v5.1.0.26412rev2,

679  pbsmrtpipe.pipelines.sa3_ds_isoseq2, default parameters). The Iso-Seq transcripts were

680 alignedto the genome assemblies using GMAP38 (v2018-07-04). To assist the homology-based
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681  annotation approach, Triticeae protein sequences from publicly available datasets (UniProt,
682  https://www.uniprot.org, 05/10/2016) were aligned against the genome sequence assemblies
683  of all pan-cultivars using GenomeThreader3® (v1.7.1; arguments -startcodon -finalstopcodon -
684  species rice -gcmincoverage 70 -prseedlength 7 -prhdist 4). All transcripts derived from RNAseq,
685 IsoSeq, and aligned protein sequences were combined using Cuffcompare 40 (v2.2.1). Stringtie
686  (version 2.1.5, parameters --merge -m150) was employed to merge all sequences into a pool of
687 candidate transcripts. To identify potential open reading frames and to predict protein

688 sequences within the candidate transcript set, TransDecoder (version 5.5.0;

689  http://transdecoder.github.io) was used.

690

691  We used Augustus?! (v3.3.3) for the ab initio gene prediction. Guiding hints based on the

692 RNAseq, protein, IsoSeq and TE datasets described above were used to counteract potential
693  over-prediction (details in*2). Augustus was run using the wheat model.

694

695 A consolidated set of gene models was selected using Mikado?*3, as implemented in the Minos
696  pipeline (https://github.com/EI-CoreBioinformatics/minos), with models scored and selected
697 basedon a combination of intrinsic qualities and support from transcriptome and protein

698 alignments.

699

700  BLASTP** (ncbi-blast v2.3.0+, parameters -max_target_seqs 1 -evalue 1e-05) was used to

701  compare potential protein sequences with a trusted set of reference proteins (Uniprot

702  Magnoliophyta, reviewed/Swissprot, downloaded on 3 Aug 2016; https://www.uniprot.org).
703  This approach was employed to differentiate gene candidates into complete and valid genes,
704  non-coding transcripts, pseudogenes, and transposable elements. This step was assisted by
705  PTREP (Release 19; http://botserv2.uzh.ch/kelldata/trep-db/index.html), a database of

706  hypothetical proteins containing deduced amino acid sequences in which internal frameshifts
707  have been removed in many cases. We selected best hits for each predicted protein from each
708  of the three databases used. Only hits with an e-value below 10e-10 were considered.

709  Functional annotation of all protein sequences predicted in our pipeline was performed with
710  the AHRD pipeline (https://github.com/groupschoof/AHRD).

711

712  We classified predicted proteins into two confidence classes: high and low confidence. Hits with
713  subject coverage (for protein references) or query coverage (transposon database) greater than
714 80% were considered significant and protein sequences were classified as high-confidence

715  based on following criteria: protein sequence was complete and had a subject and query

716 coverage above the threshold inthe UniMag database or no BLAST hit in UniMag but in UniPoa
717  and not PTREP; a low-confidence protein sequence was incomplete and had a hit in the UniMag
718  or UniPoa database but not in PTREP. Alternatively, it had no hit in UniMag, UniPoa, or PTREP,
719  but the protein sequence was complete. In a second refinement step, low-confidence proteins
720  with an AHRD-score of 3* were promoted to high-confidence.

721

722  BUSCO?*® (v5.1.2.) software was used to evaluate the completeness and accuracy of structural
723  gene predictions with the ‘poales_odb10’ database containing a total of 4896 single-copy
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724  genes. The evidence-based part of the annotation pipeline is deposited at

725  https://github.com/PGSB-HMGU/plant.annot.

726

727  Consolidation

728  Pairwise whole genome alignments were generated using lastz*®. The resulting alignments were
729  stitched together into a single whole genome alignment using TBA/multiz*’. The MAF output
730  was converted into HAL format using maf2hal*s.

731  De novo gene annotation from one cultivar was lifted over to all other cultivars using the whole
732  genome alignment and the halLiftover tool, whereas only full-length gene models were kept.
733  Missing gene models in one cultivar were identified using bedtools*°.

734

735 Tandem array detection

736  Tandem arrays were identified using the tandem discovery model from the JCVI package>°.
737  Expression bias was calculated using a modified method described previously>. Here we used
738 normalised read counts instead of TPM values and a cut-off of 0.8. The following categories
739  were assigned: onlyl for tandems with only one gene expressed and no expression data for
740 second gene; expressedl for tandems in which only one gene is expressed under all RNASeq
741  conditions; variable where expression can shift between array members depending on the

742  condition; balanced, where both array members are equally expressed. noExpr states that no
743  expression data was available.

744

745  Orthogroup analysis

746  The longestisoforms from high-confidence genes were used as input for Orthofinder?!.

747  Orthofinder was run using standard parameters. We used the UpSetR in the R package

748  (http://gehlenborglab.org/research/projects/upsetr/) to analyse and visualise how many

749  orthogroups are shared between the cultivars or are unique to a single species. GENESPACE®
750  was used to derive and visualise syntenic relationships between all chromosomes and sub-

751  genomes.

752

753  Analysis of Canadian-specific genes

754  Taking each genome in turn as a reference, kmers of length 51 were identified from genic

755  regions using the annotation for that reference. These kmers were used to search the genomes
756  of the other cultivars and a coverage score was computed®? between each gene inthe

757  reference and every other genome. The coverage score (a value between 0and 1) can be used
758  asa proxy for sequence similarity/difference between genes in different cultivars where values
759  closerto Oindicate greater difference and values closerto 1 indicate similarity. Coverage scores
760 for genes along chromosomes were plotted using the seaborn visualisation library>3 in Jupyter
761 notebook. Coverage scores were also visualised as heatmaps with coverage scores close to 0
762  represented as dark bands.

763

764  Comparative analysis of immune reactive regionsin the wheat pan-genome

765  Reference allergen identification and chromosome 6D comparison

766  Reference allergens in the wheat pan-genome were filtered using blastn algorithm against the
767 identified sequences in the IWGSC v1 gene annotation v1.122, To identify unannotated gliadin
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768  and glutenin gene models and to compare the potential immune reactivity of the wheat

769  cultivars, known coeliac diseases associated HLA-DQ T-cell epitopes were reverse translated
770  and the consensus nucleotide sequences were used for a motif search with 100% sequence
771 identity. The mapped epitope-rich regions were used for the detailed comparison of the alpha
772  gliadinlocus in chromosome 6D. Additional gene models representing complete gene models
773  with DQ epitopes were manually annotated. The locus organisation was compared to the

774  Chinese Spring chromosome 6D alpha gliadin locus in the IWGSC v1 reference genome

775  assembly??,

776

777  Promoter motif enrichment analysis

778 1000 bp 5’-end non-coding sequences were extracted from the chromosome 6D loci and used
779  for motif enrichment analysis in MEME-SEA>*. The JASPAR core plant 2022 motif collection was
780  used as a background database.

781

782  Epitope expression analysis

783  Epitope expression values were calculated using the TPM gene expression values of genes

784  where the reverse translated consensus epitope sequence was detected multiplied by the

785  number of epitopes in each sequence. The obtained values were summed for each epitope type
786  as well as summed for epitope types at genome levels.

787

788  Gene co-expression analysis

789  TPM>1 log2 transformed TPM gene expression data were used to create a grain co-expression
790 network using co-expression cut-off value of 0.8. The resulting network was annotated with the
791  reference allergen-specific information for disease relatedness and gene family. The first

792  neighbour network was visualised in Cytoscape.

793

794  Pan-genome graph construction of 10Mb 6D region

795  We extracted a 10Mb region (20-30Mb) encompassing the alpha gliadin locus from the top of
796  chromosome 6D for the cultivars Norin 61, CDC Stanley, SY Mattis, Julius, and Mace. To

797  estimate the divergence of the input sequences, we used mash-2.2>>, specifically the mash

798  triangle command to calculate a maximum sequence divergence of 0.039. To account for

799  possible underestimation of sequence divergence and localised structural variants we specified
800 a minimum mapping identity value (-p 90) for pan-graph construction using PGGB®® together
801  with segmentsize (-s 30kb), number of mappings (-n 6), minimum length of exact matches (-k
802 311), target sequence length for POA (-G 13117, 13219), mean length of each sequence pad for
803 POA (-0 0.03) and k-mer size for mapping (-K 111). Default settings were used for all other

804  parameters.

805

806  Extracting the alpha-gliadin locus sub pan-graph

807  Using ODGI toolkit>” we extracted the subgraph of the alpha-gliadin locus from our 6D graph
808  build. We used the odgi extract command together with coordinates of the Norin 61 gene

809 models described in Supp. Table 14 extracts the 520.7kb region encompassing the locus (6D:
810  26,703,647-27,222,360bp) and the corresponding paths intersecting with this region in CDC
811  Stanley (6D: 28,164,601-28,660,350 bp), SY Mattis (6D: 26,645,382-27,096,594 bp), Julius (JUL


https://doi.org/10.1101/2024.01.09.574802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.09.574802; this version posted January 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

812 6D:26,983,100-27,437,565 bp), and Mace (6D: 26,808,846—27,298,593 bp). We used odgi sort
813  tosort the resulting subgraph and odgi procbed to adjust the coordinates of the gene models
814  for each cultivar to fit the resulting subgraph. odgi inject allowed us to visualise the placement
815  of these gene models across the graph and identify cultivar-specific haplotypes. We generated
816  agraphical fragment assembly (gfa) of this sub pan-graph using odgi view (Supp. Table 15).
817

818  Data Availability

819  The genome sequence and gene annotations of all wheat cultivars can be viewed and

820 downloaded in Ensembl Plants (https://plants.ensembl.org/index.html). This includes the de
821  novo genes for the chromosome-level cultivars generated within this study and projected genes
822  for all assemblies from the IWGSC RefSeq v1.1 annotation. All raw data used in this study is
823 available at the European Nucleotide Archive under accession PRJEB51827.

824

825 Code Availability

826 Relevant code repositories are referenced throughout the Methods sections.

827

828 Supplementary Tables

829  All supporting tables and associated materials are available at

830  https://opendata.earlham.ac.uk/wheat/under license/toronto/Hall 2024-01-

831 01 wheat pantranscriptome.
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