

1 **De novo annotation of the wheat pan-genome reveals complexity and diversity within the**
2 **hexaploid wheat pan-transcriptome**

3

4 **Authors**

5 Benjamen White^{1†}, Thomas Lux^{2†}, Rachel L Rusholme-Pilcher^{1†}, Angéla Juhász^{6†}, Gemy
6 Kaithakottil¹, Susan Duncan^{1,3}, James Simmonds³, Hannah Rees¹, Jonathan Wright¹, Joshua
7 Colmer¹, Sabrina Ward¹, Ryan Joynson^{1,4}, Benedict Coombes¹, Naomi Irish¹, Suzanne
8 Henderson¹, Tom Barker¹, Helen Chapman¹, Leah Catchpole¹, Karim Gharbi¹, Moeko
9 Okada^{5,16,17}, Hirokazu Handa¹⁸, Shuhei Nasuda¹⁹, Kentaro K. Shimizu^{5,16}, Heidrun Gundlach²,
10 Daniel Lang², Guy Naamati⁷, Erik J. Legg⁸, Arvind K. Bharti⁸, Michelle L. Colgrave^{6,9}, Wilfried
11 Haerty¹, Cristobal Uauy³, David Swarbreck¹, Philippa Borrill³, Jesse A. Poland¹⁰, Simon
12 Krattinger¹⁰, Nils Stein^{11,15}, Klaus F.X. Mayer^{2,12}, Curtis Pozniak¹³, 10+ Wheat Genome Project,
13 Manuel Spannagl^{1,2}, Anthony Hall^{1,14}

14

15 ¹Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK.

16 ²PGSB Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center
17 for Environmental Health, Neuherberg, Germany.

18 ³John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.

19 ⁴Limagrain Europe, Clermont-Ferrand, Auvergne-Rhône-Alpes, France.

20 ⁵Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich,
21 Switzerland.

22 ⁶Australian Research Council Centre of Excellence for Innovations in Peptide and Protein
23 Science, School of Science, Edith Cowan University, Joondalup, WA, 6027, Australia.

24 ⁷EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.

25 ⁸Syngenta Crop Protection, Research Triangle Park, NC, USA.

26 ⁹CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia.

27 ¹⁰Plant Science Program, Biological and Environmental Science and Engineering Division, King
28 Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi
29 Arabia

30 ¹¹Center of Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen,
31 Germany

32 ¹²School of Life Sciences, Technical University Munich, Freising, Germany.

33 ¹³Crop Development Centre, The University of Saskatchewan, Saskatoon, Canada.

34 ¹⁴School of Biological Sciences, University of East Anglia, Norwich, UK

35 ¹⁵Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland,
36 Germany

37 ¹⁶Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan

38 ¹⁷Graduate School of Science and Technology, Niigata University, Niigata, Japan

39 ¹⁸Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto,
40 Japan

41 ¹⁹Graduate School of Agriculture, Kyoto University, Kyoto, Japan

42

43 [†]These authors contributed equally to this work.

44

45 *Correspondence: manuel.spannagl@helmholtz-muenchen.de, Anthony.Hall@earlham.ac.uk

46

47 **Abstract**

48 Wheat is the most widely cultivated crop in the world with over 215 million hectares grown
49 annually. However, to meet the demands of a growing global population, breeders face the
50 challenge of increasing wheat production by approximately 60% within the next 40 years. The
51 10+ Wheat Genomes Project recently sequenced and assembled the genomes of 15 wheat
52 cultivars to develop our understanding of genetic diversity and selection within the pan-
53 genome of wheat. Here, we provide a wheat pan-transcriptome with *de novo* annotation and
54 differential expression analysis for nine of these wheat cultivars, across multiple different
55 tissues and whole seedlings sampled at dusk/dawn. Analysis of these *de novo* annotations
56 facilitated the discovery of genes absent from the Chinese Spring reference, identified genes
57 specific to particular cultivars and defined the core and dispensable genomes. Expression
58 analysis across cultivars and tissues revealed conservation in expression between a large core
59 set of homoeologous genes, but also widespread changes in sub-genome homoeolog
60 expression bias between cultivars. Co-expression network analysis revealed the impact of
61 divergence of sub-genome homoeolog expression and identified tissue-associated cultivar-
62 specific expression profiles. In summary, this work provides both a valuable resource for the
63 wider wheat community and reveals diversity in gene content and expression patterns between
64 global wheat cultivars.

65

66 **Introduction**

67 Wheat (*Triticum aestivum*) is the most widely grown crop and is cultivated in 12 mega-
68 environments across the world¹, with 777.7 metric tonnes harvested globally in 2021/22
69 (www.fao.org). Pressures of climate change, political instability, a move to more sustainable
70 farming and a reduction in agricultural land are putting increasing demand on international
71 wheat harvests². Efforts to overcome these pressures can be accelerated by understanding the
72 genetic diversity of global wheat cultivars and their pan-transcriptional variation.

73

74 Wheat has a large (15Gb) allohexaploid (BBAADD) genome, derived from a series of relatively
75 recent hybridisation events³. Its size, evolutionary history, and high repeat content, despite
76 hindering genome assembly, make wheat an interesting model for the evolution of large
77 polyploid genomes. Step changes in technology have enabled the chromosome-level assembly
78 of nine high-quality wheat genomes by a global consortium. These genomes revealed evidence
79 of widespread structural rearrangements, introgression from wild relatives and the impacts of
80 parallel international breeding programmes⁴. To date, these genomes were annotated only by
81 projecting Chinese Spring gene models across the new assemblies. The generation of *de novo*
82 annotations for these genomes provides a key insight into gene gain and loss, reveals novel
83 gene models across wheat cultivars and facilitates comparative gene expression analysis
84 between cultivars.

85

86 Previous analyses of the wheat transcriptional landscape described tissue-specific changes in
87 gene expression in two cultivars, using a common Chinese Spring reference genome⁵.

88 Polyploidy leads to complex effects on gene expression resulting from structural variation, gene
89 duplication, deletion and neofunctionalization, ultimately increasing variation in gene
90 expression and the plasticity of the species. To date, studies of plant pan-transcriptomes either
91 rely on read alignment to a single reference genome which can result in reference bias, or
92 generate *de novo* transcript assemblies from short read data that can accumulate errors and
93 technical artefacts⁶.

94
95 Here, we generate *de novo* gene annotations, incorporating long reads for the nine assembled
96 wheat cultivars, providing a valuable resource for wheat researchers and breeders. We identify
97 evidence of widespread gene duplication and deletion, revealing the population structures
98 imposed by repeated hybridisations from wild relatives and different breeding programmes.
99 We define the hexaploid wheat core and dispensable transcriptome and our analysis of gene
100 expression and gene networks across different tissues and between cultivars reveals
101 conservation and divergence in expression balance across homoeologous sub-genomes. We
102 exemplify the value of these analyses through an in-depth investigation of the pan-genome
103 variability of prolamin gene content and expression; a key trait for quality and health aspects in
104 wheat.
105

106 Results

107 ***De-novo* gene annotations of the pan-cultivars define the core and accessory gene sets**

108 To precisely assess the gene content and differences in gene expression, copy number and the
109 presence/absence of genes between the wheat cultivars, we generated a *de novo* gene
110 annotation for each of the nine pan-cultivars. We used an established automated annotation
111 pipeline which built evidence-based gene model predictions using a comprehensive
112 transcriptomic dataset. This dataset was made up of Iso-Seq data from roots and shoots (390-
113 700 K reads per sample), and RNA-seq data (150 bp paired-end read, 56-85 M pairs of reads per
114 sample) obtained for each cultivar from five distinct tissue types and whole aerial organs
115 sampled at dawn and dusk (**Figure 1A**, see methods for a full description and **Extended Data**
116 **Figure 1** for details of quality control). In addition to the transcriptomic dataset, the gene
117 annotation pipeline also used protein homology and *ab initio* prediction. Finally, a gene
118 consolidation procedure (**Extended Data Figure 2A**) was developed to identify and correct for
119 missed gene models. This step ensures the best possible comparability between the wheat
120 genomes and gene repertoire⁷.

121
122 The number of high-confidence gene models identified ranges from 140,178 for CDC Landmark
123 to 145,065 for Norin 61 (**Figure 1B**). Low-confidence genes, primarily representing gene
124 fragments, pseudogenes and gene models with only weak support, are in the range of 315,390
125 (Mace) to 405,664 (SY Mattis). With a maximal difference of 3.5%, the number of high-
126 confidence (HC) genes appears to be similar across cultivars, whereas most of the differences in
127 gene number observed can be attributed to the low-confidence gene set. For around 70% of
128 the HC genes we obtained evidence for transcription in at least one condition.
129

130 We benchmarked the quality of the *de novo* gene predictions against BUSCO v5.1.2 with the
131 poales_odb10 lineage dataset, representing 4,896 Poales near-universal single-copy orthologs.

132 On average, we found more than 99.8% of the BUSCO genes represented at least one complete
133 copy and 86% by three complete copies (**Figure 1B**). This is an improvement in complete BUSCO
134 genes over the gene projections from Chinese Spring used in the first study of the wheat pan-
135 genome⁴ and can be explained by the *de novo* gene annotation strategy applied here, which
136 included comparable RNA-seq and Iso-Seq datasets and *ab initio* prediction, as well as the final
137 consolidation step. The *de novo* annotations are available in Ensembl Plants release 52.



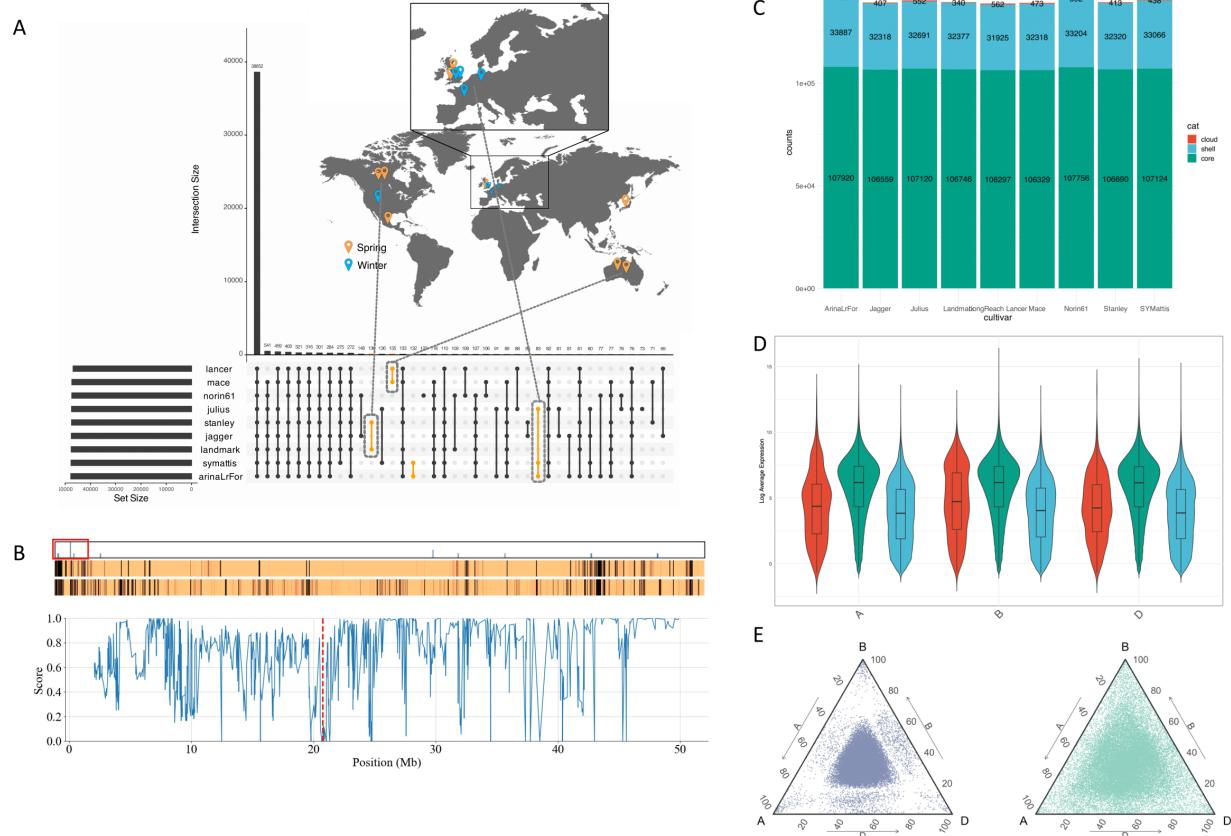
138
139 **Figure 1. Study design, de-novo gene annotations and orthologous framework.** A. Overview of
140 transcriptome data generated for this study of the wheat pan-cultivars. 1 & 2: whole aerial
141 organs sampled at dawn and dusk, 3: root, 4: complete spike at heading (GS59), 5: flag leaf 7
142 days post anthesis (GS71), 6: whole grains 15 days post anthesis (GS77). B. *De novo* gene
143 prediction results for each pan-cultivar (left side, “genes”, separated for A, B and D sub-
144 genome) as well as a summary of the BUSCO completeness assessment of gene models (right)

145 side, “BUSCO”). **C.** GENESPACE construction and visualisation of orthologous genes within the
146 wheat pan-genome, using *de novo* predicted gene models.

147
148 Genes and gene families exclusive or amplified in a specific cultivar are of major interest in a
149 pan-genomic context⁸. While genes present in all compared cultivars are referred to as the core
150 genome, cloud and shell genes are found only in one (cloud) or shared in a subset of cultivars
151 (shell). The improved gene annotation enabled the construction of a high-density orthologous
152 framework for wheat. GENESPACE⁹ was used to derive syntenic relationships between all
153 chromosomes and sub-genomes, allowing in-detail investigation of macro- and micro-synteny
154 (**Figure 1C**) and gene copy number variations. While previously identified rearrangements such
155 as the chromosome 5B/7B translocation in SY Mattis and ArinaLrFor were confirmed, additional
156 frequent small-scale structural variations can now be examined in the context of their gene
157 content. We found a 16 Mb inversion, split into three segments of around 5Mb each, on
158 chromosome 3D between Canadian cultivars CDC Stanley and CDC Landmark which coincides
159 with the locations of QTLs related to biomass and grain weight¹⁰.

160
161 We identified groups of orthologous genes (referred to as orthogroups) among the wheat high-
162 confidence gene models of all cultivars. A total of 54,865 orthogroups contained 99.7% of all
163 genes, with 173 orthogroups identified as cultivar-specific and 3,756 genes not clustered in any
164 orthogroup - defining the cloud genome. Cloud and shell genes have previously been found to
165 be associated with disease resistance¹¹, adaptation to new environments¹², or important
166 agricultural traits¹³. Within the shell genome, our analysis identified orthogroups that are
167 shared only between specific cultivars. Examples include CDC Stanley and CDC Landmark from
168 Canada, Mace and LongReach Lancer from Australia or ArinaLrFor, SY Mattis and Julius from
169 Europe (highlighted in yellow in **Figure 2A**) which all share exclusive sets of genes. These
170 observed patterns likely reflect the complex breeding history of the selected pan-cultivars
171 which represent wheat lines from different regions, growth habits and breeding programs.
172 Inspection of the chromosomal location of these gene groups identified multiple clusters
173 (**Figure 2B and Extended Data Figure 3**) that are likely associated with crosses to distinct
174 material or hybridisations with wild or domesticated relatives; events common in wheat¹⁴.

175
176 Proportions of core (genes present in all cultivars), shell (genes present in 2-8 cultivars) and
177 cloud (genes found in only one cultivar and unclustered genes) genes were found to be similar
178 across the pan-cultivars (**Figure 2C**). On average 76.34% of genes were classified as core,
179 23.32% as shell, and 0.33% as cloud (**Extended Data Figure 2B**). Amongst the core gene set, we
180 found biological functions associated with basic metabolic, catabolic and DNA repair/replication
181 processes enriched (**Supp. Table 1**), while stress response and regulation of gene expression
182 were overrepresented in the shell genes (**Supp. Table 2**). In the set of cloud genes, functions
183 related to chromatin organisation and reproductive processes were found to be enriched
184 (**Supp. Table 3**). Expression patterns of core, shell and cloud genes revealed pronounced
185 differences globally, but not between the sub-genomes (**Figure 2D**). As observed in other pan-
186 genomes¹⁵, core genes tend to be higher expressed in all sub-genomes and tissues, as
187 compared to both shell and cloud genes.



188
189 **Figure 2. The wheat core-, shell-, and cloud- genome and homoelogous expression patterns.**
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

A. UpSet plot showing intersects of orthogroup conservation between pan-cultivars and the relation to their breeding programs and sowing season. **B.** A representation of CDC Stanley chromosome 3B showing the positions of Canadian-specific genes (top bar), heatmaps showing coverage scores between genes in CDC Stanley and CDC Landmark (middle bar) and coverage scores between CDC Stanley and Norin 61 (bottom bar). Coverage scores are calculated using kmers from each CDC Stanley gene to search the genomes of the other cultivar and range from 0 to 1 with values closer to 1 indicating greater similarity. Regions of greater difference are shown as darker bands. The plot shows the 0-50 Mb region of chromosome 3B (indicated by a red box). The mean of the coverage score between CDC Stanley genes in this region and genes in the non-Canadian lines is plotted. A cluster of four Canadian-specific genes (marked by a red dashed line) lies in a region which is noticeably different between CDC Stanley and the non-Canadian lines potentially representing an introgression. **C.** Number of genes belonging to core, shell and cloud ortholog groups across cultivars. **D.** Violin plots of core, cloud and shell log average gene expression across all combined cultivars and tissues, in each sub-genome. Higher mean expression was observed in core genes across all sub-genomes. **E.** Ternary plots, of stable (left) and dynamic (right) 30-let expression, where there is a homoeolog present on each sub-genome, of all tissue in all cultivars, combined, showing more overall balanced expression in stable 30-lets and unbalanced expression in dynamic 30-lets.

209 Duplication of genes has been identified as a major driver of gene function evolution and
210 adaptation in plants¹². In wheat, a large number of tandem duplications was previously found
211 both in the Chinese Spring (IWGSC v1.1) reference genome and the pan-genome assemblies^{16,4}.
212 Our full *de novo* gene annotation of the wheat pan-genome, in combination with the extensive
213 gene expression data presented in this study, allowed for an in-depth assessment of gene
214 duplication dynamics across cultivars in hexaploid wheat.
215

216 We identified on average 5,040 tandem arrays (HC genes only) in each cultivar, with the lowest
217 in CDC Landmark (4,914) and ArinaLrFor as the highest (5,172). In addition, we tested whether
218 there is a bias in expression towards one member of the array. We found that for 2,520 arrays
219 one of the two members was biased in its expression with respect to the other member,
220 whereas for 1,800 arrays both copies were expressed at similar levels or varied depending on
221 the tissue (**Extended Data Figure 2C**). 719 tandem arrays were not expressed under the
222 investigated conditions. Amongst all tandemly duplicated genes in wheat, biological functions
223 associated with phosphorylation, response to stimulus and stress and reproductive processes
224 were enriched (**Supp. Table 4**). We also investigated the conservation of tandem arrays across
225 all pan-cultivars. Around 69% of the tandem arrays identified in a specific cultivar were found to
226 be shared with all other pan-cultivars, with the remaining 31% tandems showing varying
227 conservation (**Extended Data Figure 2D**). These results highlight the impact of tandemly
228 duplicated genes as a potential key driver of evolution and adaptation. Besides functional
229 redundancy of homoeologous genes in hexaploid wheat, tandem genes and their expression
230 (bias) are therefore an important target for breeding applications.
231

232 **Conservation of Global Expression in the Wheat Pan-Transcriptome**

233 To investigate changes in global gene expression across cultivars, biological replicates from
234 whole aerial organs at dusk and dawn, and from flag leaf, root, spike and grain, were used to
235 generate normalised gene expression counts. We observed from principal component analysis
236 of the normalised counts that most of the variance is represented by the first principal
237 component, representing the different developmental stages, and also similar grouping of
238 expression overall (**Extended Data Figure 1A, B**). We then used these normalised counts from
239 the nine cultivars together with complete *de novo* annotations for the core, shell, and cloud
240 group genes, to explore differences in expression between tissues across all cultivars. The
241 patterns of expression observed in each individual orthologous class were consistent across
242 tissues, and between sub-genomes, with core genes also showing an overall higher mean
243 expression than either shell or cloud (**Figure 2D, Extended Data Figure 4A**). Indicating a global
244 conservation of expression, irrespective of tissue type or sub-genome biases.
245

246 The tissue-specific gene index (tau) was employed to assess the degree of gene expression
247 specificity to flag leaf, root, spike or grain tissues across all cultivars (**Extended Data Figure 4B**).
248 We observed the least number of tau genes in flag leaf (1,005 - 3,202 specific genes), that were
249 significantly less (t-test; $p < 0.001$) overall compared to either root (4,736 - 8,974 specific
250 genes), spike (5,453 - 9,323 specific genes) or grain (3,955 - 12,157 specific genes), that showed
251 no significant difference between each other. However, the number of specific genes showed
252 the least cultivar variability for flag leaf tissues, compared to the wide range in the number of

253 grain-specific genes observed between cultivars. This could be the result of contrasting
254 transcriptomic complexity between flag leaf and grain tissues, representing different
255 developmental stages of maturity and metabolic activity. In polyploid crops agricultural traits
256 are often modulated by an interaction of homoeologous copies of genes⁵. In wheat, previous
257 studies have focused on tissue-specific expression across homologous triads, identifying sets of
258 triads that are either balanced or unbalanced in their sub-genome expression. Here, we
259 compared variation in triad expression across cultivars using all 13,521 identified sets of 30-let
260 genes with a homoeolog present on each sub-genome of the *de novo* annotated cultivars. Using
261 previously reported cut-off values⁵, we observed similar sub-genome expression in these 30-
262 lets, in each of the cultivars, to that reported previously in Chinese Spring, with 102 also being
263 classed as not expressed (**Extended Data Figure 4C**)⁵. However, when comparing the bias of
264 sub-genome expression, we observed 8,028 (59.37%) of these 30-lets to have a conserved,
265 'stable', balanced expression between the three homoeologous copies across all cultivars
266 (**Extended Data Figure 4D**). Whereby 'stable' expression relates to a conserved sub-genome
267 expression bias between cultivars, as opposed to a 'dynamic' expression where a change in sub-
268 genome expression bias can be observed in one or more cultivars.
269
270 As well as conservation of the balanced state we also see conservation in dominance or
271 suppression within triad groups with 276 showing stable suppressed expression and 63 stable
272 dominant expression. Stably expressed 30-lets showed GO term enrichment for essential
273 biological processes associated with photosynthesis, translation, DNA replication, exocytosis,
274 glycolytic process and cell redox homeostasis. (**Extended Data Figure 4E**). Whilst the 5,052
275 37.36% 'dynamically' expressed 30-lets that showed a change in the bias of sub-genome
276 expression in at least one cultivar were found to be significantly enriched for transmembrane
277 transport, response to stress, response to oxidative stress, defence response and
278 photosynthesis. These dynamic 30-lets were observed to be less fixed to a specific sub-genome
279 expression pattern compared to stably expressed 30-lets, showing a further Euclidean distance
280 from a, b, c or centroid points (**Figure 2E**). Across these dynamically expressed 30-lets, 4,467
281 showed balanced expression in at least one cultivar, with B sub-genome suppression being the
282 next most represented balance of expression occurring in 1,972 of the dynamic 30-let sets
283 (**Extended Data Figure 4F**). Overall, more suppression of expression was seen than dominance.
284 The Kruskal-Wallis test, applied to assess differences in the mean values of the dynamic 30-let
285 bias across the cultivars, revealed no significant differences when examining the total
286 percentage of each expression bias ($p > 0.05$). This suggests that the bias of dynamic
287 expression, whilst different for individual 30-lets, has been proportionally conserved across
288 these cultivars.

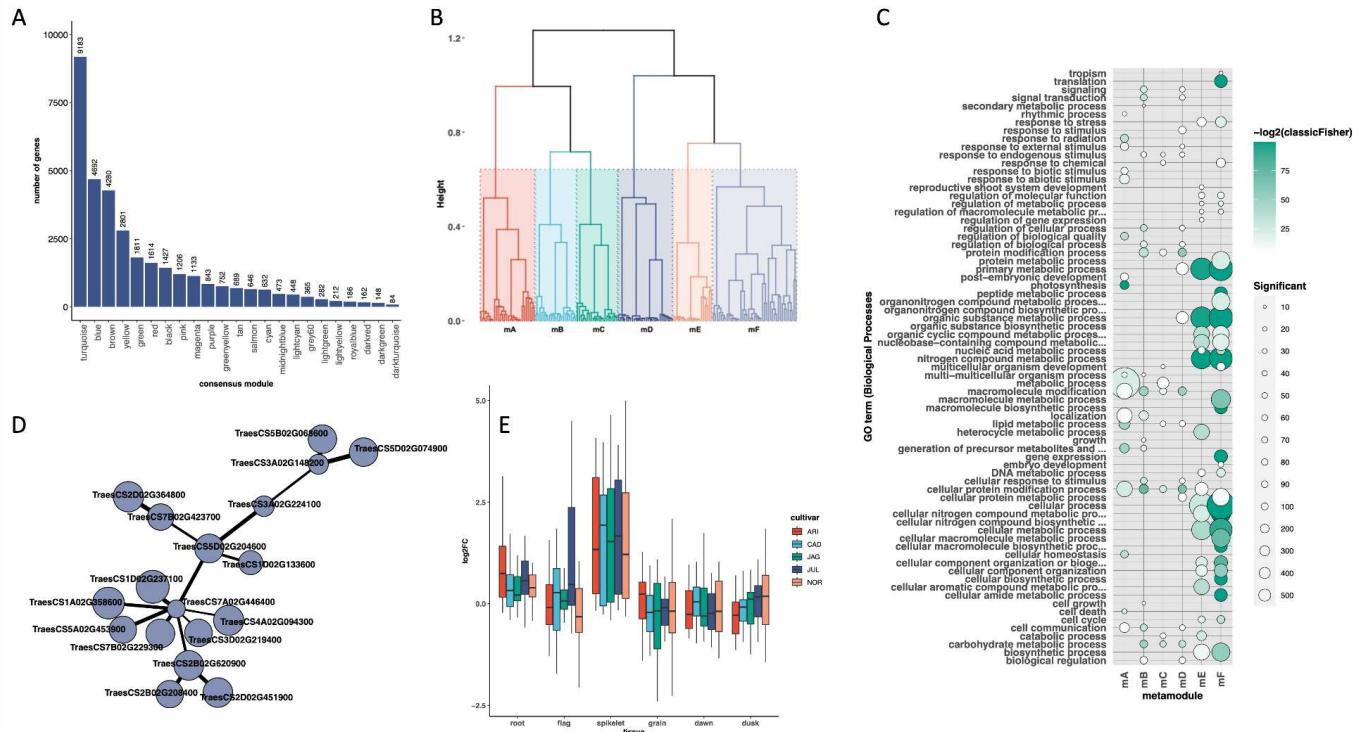


Figure 3. Components of the wheat consensus network with functional annotation and UK cultivar Claire-specific differences **A.** Number of genes in each module from the seven cultivar consensus network. **B.** Hierarchical clustering of 23 consensus module eigengenes identifying six metamodules. **C.** GO-slim terms of biological processes associated with genes in 6 metamodules. Only terms with $p < 0.05$ and > 10 significant genes are shown. Bubble colour indicates the $-\log_2 p$ -value significance from Fisher's exact test and size indicates the frequency of the GO-slim term in the underlying EBI Gene Ontology Annotation database (larger bubbles indicate more general terms). **D.** Claire-specific network of 18 genes with divergent expression patterns compared to all other cultivars. Node size is scaled to the \log_2 average expression +1 of each gene in spikelet tissues and edge width reflects the weight of the connection between nodes. **E.** \log_2 fold change in expression across all tissues, between Claire and remaining cultivars of 18 Claire-specific genes.

Conserved patterns of co-expression

In addition to the nine cultivars for which we generated *de novo* annotations, we also collected expression data from the same tissues and conditions for the remaining five cultivars included in the wheat pan-genome. To exploit these additional transcriptomic datasets in the absence of *de novo* annotations, we employed the consensus network function of WGCNA¹⁷ which uses expression counts from a single reference (CSv1.1) to enable the identification of gene expression modules that represent biological pathways conserved across all cultivars.

To explore how regulatory networks are conserved across tissues and cultivars of the pan-transcriptome, we constructed our consensus co-expression network spanning seven cultivars;

314 four with chromosome pseudomolecule assemblies (ArinaLrFor, Julius, Jagger, Norin 61) and
315 three with scaffold assemblies; two UK derived (Cadenza, Claire) and one key CIMMYT (Weebill)
316 cultivar. Together these seven cultivars represent a wide range of the genetic variation
317 observed in the pan-genome⁴.

318
319 To identify sets of genes with highly correlated expression patterns across cultivars we used
320 high-confidence genes expressed at greater than five normalised counts in at least three
321 samples, with less than two standard deviations in normalised counts, between sample
322 replicates. The resulting 48,337 genes from each cultivar (338,359 genes in total) were used to
323 construct the consensus network, with modules ranging in size from 84 to 9,183 genes (**Figure**
324 **3A**). This consensus network accounted for 70% (34,069 genes) of the genes from each cultivar
325 in our original dataset. These modules comprised co-expressed genes that exhibited highly
326 similar expression patterns across all six developmental stages in all seven cultivars. A
327 comparison of the consensus module eigengenes (MEs) for these 23 modules demonstrated
328 the conservation of expression patterns between cultivars (**Extended Data Figure 5**). We used
329 hierarchical clustering to further collapse the 23 consensus modules into six consensus
330 metamodules (**Figure 3B**); comprising 32,936 genes from each cultivar. GO-slim term analysis
331 (**Figure 3C**) and distinct transcription factor superfamily membership (**Extended Data Figure 6**)
332 indicated that each metamodel could be associated with distinct biological processes (**Supp.**
333 **Table 5**).

334
335 We defined a threshold for classifying inter-consensus module relationships and used this to
336 make pairwise comparisons of the ME for each consensus module and identify modules with
337 divergent or similar patterns of expression. We then used these module relationships to
338 compare how the 30-let triads were split across our consensus network. Within the genes used
339 to build our consensus network, we identified 6,867 of the 10,521 complete triad sets (50.8%).
340 3,640 (53.0%) of these triads were assigned to modules within the network, with the remaining
341 3,227 (47%) triads having at least one member present in the unclustered set of genes. This set
342 of genes that could not be fitted into the consensus network will contain genes with low
343 variance or low expression across tissues, and genes that do not show the same pattern of
344 expression across all seven cultivars. Of the 3,640 triads within our network 3,548 (96%)
345 belonged to either the same or similar expression modules, reflecting the conservation of
346 expression between the A, B and D sub-genomes. 2,431 of these triads (66.8%) belonged to the
347 stable category of 30-lets defined previously through comparison of individual triad expression
348 balance across all tissues and 9 cultivars. The identification of co-expression modules containing
349 similarly expressed triad members reveals additionally conserved genes, tightly connected to
350 these stable triads. Using the consensus network, we also observed 146 of the 3,640 triads (4%)
351 where sub-genome members were split across divergent modules. These triads were
352 significantly enriched for GO terms associated with the regulation of signal transduction and
353 DNA metabolic process (**Supp. Table 6**).

354
355
356 **Using a consensus network approach to identify cultivar-specific co-expression patterns**

357 Whilst our consensus network enables robust biological inferences through the identification of
358 conserved gene sets across all cultivar members of the network, we also report a set of 14,268
359 unclustered genes that cannot be fitted to the consensus modules. These 14,268 genes may
360 have an expression profile that correlates with a consensus ME, but as this pattern of
361 expression is not conserved across all seven cultivars, these genes will not be placed within the
362 consensus network. Within our unclustered gene set we identified 1,753 such genes where the
363 pattern of expression for a single cultivar was closely correlated to a consensus ME displaying
364 an expression profile divergent to the module containing the same gene in the remaining six
365 cultivars. This enabled us to identify sets of co-expressed cultivar-specific genes (**Supp. Table 7**).
366 We visualised 12 of these cultivar-specific network fragments using igraph¹⁸ including a set of
367 18 linked genes with increased expression in spike tissue in Claire compared to other cultivars
368 (**Figure 3D & 3E**). The most highly connected gene in this subnetwork (TraesCS7A02G446400) is
369 a transducin/WD40 repeat protein. These proteins are key regulators of both plant
370 developmental and stress processes, and are known to participate in histone modification,
371 transcriptional regulation and signal transduction¹⁹. Additional genes in this cluster, are
372 annotated as protein phosphatases, an eRF1 transcription factor, a calcium-binding EF-hand
373 domain-containing protein and a polyadenylation specificity factor. We hypothesise that the
374 cultivar-specific expression pattern observed in Claire linked to increased expression in spike
375 tissues could be the result of cultivar-specific regulation of a developmental or stress response.
376

377 **Co-expression network analysis using *de novo* gene models**

378 Our consensus network approach, using a common reference, enabled us to identify high
379 confidence, conserved expression modules and identify cultivar-specific co-expressed gene
380 sets. However, the use of a common reference meant that we were unable to assess the *de*
381 *novo* contribution of each genome to the consensus network. Of the seven cultivars within
382 the consensus network, ArinaLrFor, Jagger, Julius and Norin 61 each have corresponding *de*
383 *novo* annotations. We used these *de novo* gene models to identify a total of 4,682 *de novo*
384 annotated genes without a corresponding CSv1.1 orthologue and used expression counts from
385 these *de novo* gene models to build a *de novo* co-expression network of 13 modules (3,975
386 genes, **Supp. Table 8**). Each of these 13 modules could be closely correlated with at least one
387 consensus module from the consensus network (**Supp. Table 8**), indicating that our *de novo*
388 modules were not exhibiting patterns of expression distinct from those previously identified in
389 the seven-cultivar consensus network. One of these *de novo* derived modules was significantly
390 enriched ($p<0.000003$) for Jagger *de novo* gene models with increased expression in flag leaf,
391 spike and root tissues (**Extended Data Figure 7**). The three most significant GO terms enriched
392 within this module of 50 genes indicated a role in transcriptional regulation (GO:0065007,
393 GO:0031323, GO:0050789). 15 of these 50 genes were also annotated as transcription factors
394 with FHY3/FAR1 DNA binding domains (**Supp. Table 8**). These domains are known to be
395 involved in phytochrome signalling in *Arabidopsis*²⁰ and in wheat are hypothesised to
396 contribute to the regulation of *Ppd-B1a* and *PhyC* known to control photoperiodic sensitivity to
397 flowering²¹.

398
399 Our work demonstrates the strength of a consensus network approach in identifying potentially
400 biologically conserved pathways between cultivars where *de novo* annotations are not available

401 for each member of the network. Using this method we were able to reveal cultivar-specific co-
402 expressed genes for several cultivars including Claire and Weebill, for which we do not currently
403 have *de novo* gene models. In addition, further extending our co-expression analysis to include
404 the *de novo* gene models of four of the chromosome level assemblies revealed additional *de*
405 *novo* co-expressed modules exhibiting cultivar-specificity, such as the *de novo* module enriched
406 for Jagger genes, that would not have been captured in the consensus network.
407

408 Developing *de novo* annotations for all 14 of the cultivars within the wheat pan-genome¹⁷ will
409 be invaluable in uncovering the complete regulatory network landscape of the wheat pan-
410 transcriptome. Associating these co-expression profiles with the core, shell and cloud
411 components of the wheat pan-genome will enable us to explore how structural rearrangements
412 and introgressions across the wheat genome perturb these regulatory networks.
413

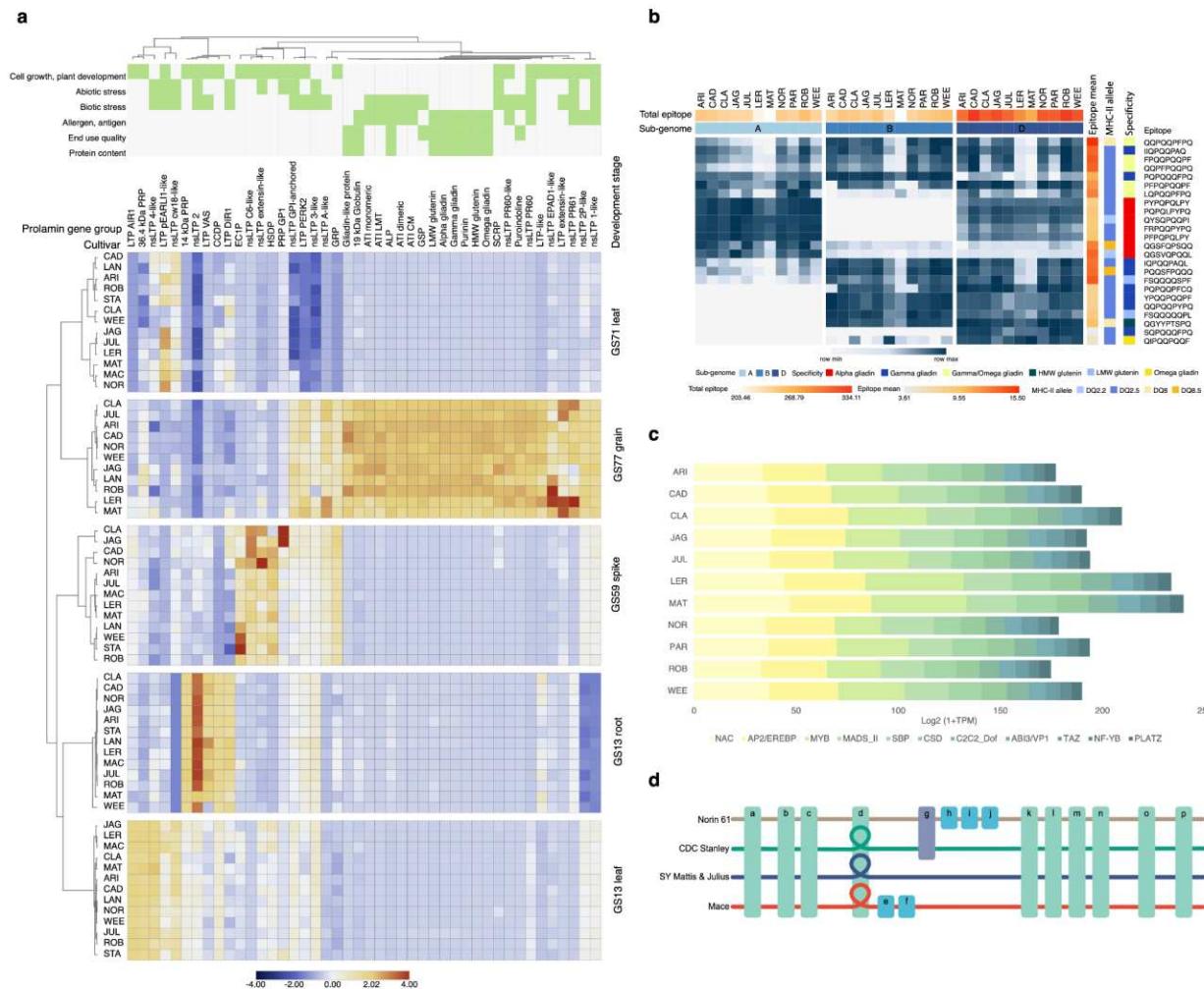
414 **A case study: Uncovering variation in the prolamin super-family and immune reactive 415 proteins across the pan-cultivars**

416 Prolamins represent a large superfamily in wheat involved in stress responses, cell growth and
417 plant development, as well as end-use quality and protein content. Along with HMW-glutenins
418 they are also potential triggers for various immune reactions in a subset of the human
419 population. As a case study, we investigated both the qualitative and quantitative differences in
420 the 687 genes from the prolamin superfamily and HMW-glutenins across the newly generated
421 wheat pan-genome and pan-transcriptome data. We observed clear expression differences
422 both for individual developmental stages and also between wheat cultivars for many genes
423 from the prolamin superfamily highlighting spatiotemporal variation in expression profile
424 (**Figure 4A**).
425

426 Comparison of reference grain allergens identified in the Chinese Spring reference genome
427 (IWGSC v1.1) and across the pan-genome cultivars^{22,23,24} with the expression patterns of
428 potentially immune reactive gene products indicated differences in the major allergens and
429 antigens (glutenins and gliadins). SY Mattis and LongReach Lancer showed lower gene
430 expression levels in alpha and gamma gliadins with gene set enrichment analysis of gene
431 families highlighting gamma gliadins are primarily enriched in the downregulated genes
432 (**Extended Data Figure 8, Supp. Table 9&10**).
433

434 Detailed analysis of celiac disease (CD) related epitopes encoded in the gliadin and glutenin
435 genes in the pan-genome revealed variability in their expression patterns. We found lower
436 expression of HLA-DQ epitope containing genes in SY Mattis and LongReach Lancer and higher
437 values in Cadenza and Jagger. Cultivar-specific analysis showed that ArinaLrFor and SY Mattis
438 contained lower alpha gliadin DQ epitope expressions due to significant differences in the
439 expression activities of the three sub-genomes which might be affected by differences in the
440 related transcription factor gene expression profiles (**Figure 4B, 4C, Supp. Table 11&12,**
441 **Extended Data Figure 9**). While sub-genome specific expression patterns of gamma gliadin DQ
442 epitopes did not reveal significant variation, the expression of alpha-gliadin genes with DQ
443 epitopes originating from the A genome was lower in SY Mattis and LongReach Lancer, while
444 the highly immunogenic D genome alpha gliadin epitope expression levels were lower in the

445 cultivar Arina*LrFor* (**Extended Data Figure 10A**). Our results indicate that fine-tuned sub-
 446 genome-specific balance in the expression profiles may be associated with differences in the
 447 regulatory transcription factor profiles (**Figure 4B, 4C**).
 448



449
 450 **Figure 4. Gene and expression variation in the prolamin family across the wheat pan-**
 451 **cultivars. A.** Prolamin superfamily gene expression across cultivars; **B.** Celiac disease epitope
 452 expression across cultivars. Epitope expression profiles were calculated as sum of gene
 453 expression profiles with the highlighted HLA-DQ epitopes for each sub-genome. **C.** Relative
 454 proportion of cumulative expression profiles of transcription factor families showing strong co-
 455 expression pattern (Pearson correlation values > 0.8) with the epitope-coding prolamin genes.
 456 Results show significant differences in the NAC, AP2/EREBP and MYB transcription factor gene
 457 expressions, major regulators of storage protein gene expression. **D.** Representation of the
 458 variation graph for the region of 6D containing the alpha gliadin locus (**Extended Data Figure**
 459 **10B**). Horizontal coloured lines depict paths through the graph for each cultivar; Norin 61 (6D:
 460 26,703,647-27,222,360 bp), CDC Stanley (6D: 28,164,601-28,660,350 bp) and Mace (6D:
 461 26,808,846-27,298,593bp), with SY Mattis & Julius (6D: 26,645,382-27,096,594 bp) and Julius (6D:
 462 26,983,100-27,437,565 bp) sharing a single path. Rectangular blocks (a-p) represent individual

463 genes at corresponding locations across cultivars (blue: in common to all 4 cultivars, orange:
464 occurring in one cultivar and purple: in common to 2 cultivars). Gene d is present as a single
465 copy in Norin 61, and duplicated in CDC Stanley, SY Mattis, Julius and Mace. This duplication is
466 represented as a loop in the path through the graph for these cultivars (**Extended Data Figure**
467 **11**).

468

469 Gliadin and glutenin loci were found to be highly conserved in all cultivars, with some variation
470 due to the presence of pseudogenes and gene duplications (**Extended Data Figure 10B**).
471 Reverse translated consensus sequences of the known CD-specific T-cell epitopes were mapped
472 to the genomes of all cultivars to determine the number and location of gliadin and glutenin
473 genes containing CD-related immune reactive peptide regions (**Extended Data Figure 10B**,
474 **Supp. Table 13**). The number or combination of epitopes in the loci was not significantly
475 different between the pan-cultivars. However, the gamma-gliadin and alpha-gliadin gene
476 models with a high number of epitopes were found in cultivars Arina *LrFor*, Norin 61 and Mace,
477 respectively (**Extended Data Figure 10B, Supp. Table 13**).

478

479 Although highly conserved in their locus structure on chromosome 6D, alpha-gliadin genes
480 encoding highly immunogenic proteins showed copy number variation within the wheat pan-
481 genome. We constructed a localised pan-genome graph from five cultivars (Norin 61, CDC
482 Stanley, SY Mattis, Julius, Mace) and extracted the subgraph of the alpha gliadin-containing
483 locus (**Figure 4D, Extended Data Figure 11**). Inspection of the subgraph helped to resolve the
484 complex structure of the locus, with copy number variation observed as a loop in the paths of
485 SY Mattis, Julius, CDC Stanley, and Mace (2 copies of alpha-gliadin genes) but not within the
486 Norin 61 path (single alpha gliadin copy). While in total 4 to 6 epitopes were identified in the
487 alpha-gliadins of the wheat pan-genome cultivars, 8 epitopes were detected in cultivars Mace
488 and Norin 61 (**Extended Data Figure 10B**). These results indicate that gene copy number
489 expansion primarily affected the centre of the locus and resulted in the increase of gene
490 variants with high epitope counts. Comparison of promoter profiles indicates differences in the
491 expression regulation when epitope-poor and epitope-rich gene copy variants of the same
492 chromosome 6D locus are compared. While genome-wide construction and interpretation of
493 pan-genome graphs remains a daunting task for complex genomes such as wheat, we found
494 localised subgraphs, augmented by our *de novo* annotations, particularly helpful in resolving
495 complex loci, and uncovering structural variation as also demonstrated in the current draft
496 human pan-genome²⁵.

497

498

499 **Discussion**

500 We have built *de novo* gene annotations for nine wheat assemblies representative of global
501 breeding programs⁴. Our consolidated gene annotation approach generated a robust set of
502 core, high-confidence genes shared across the pan-cultivars. It also identified genes and gene
503 families that are found exclusively in or amplified in cultivars derived from specific breeding
504 programmes. It is likely that some of this variation has come through widespread introgression
505 events²⁶, often associated with adaptation to biotic or abiotic stress¹³. Our annotations also
506 identified cultivar-specific variation in tandem gene duplication. Novel gene content, gene

507 duplication and neo-functionalisation together with gene expression patterns will have an
508 impact on researchers and breeders as they identify genes underlying traits, manipulate gene
509 expression or incorporate and track new genetic variation.

510
511 Our analysis of global gene expression identified sets of genes with stable homoeologous
512 expression patterns between cultivars, demonstrating tightly regulated key biological
513 processes. We also identified homoeologous triads diverging in their expression patterns
514 between cultivars, revealing genes enriched for processes associated with biotic and abiotic
515 stress. Understanding the regulatory networks driving these altered patterns will provide
516 important targets for manipulating these processes. Using network analysis, we identified
517 widespread conservation of expression patterns across tissues and cultivars before focusing on
518 cultivar-specific gene sets, to reveal networks of genes involved in stress responses in the
519 developing grain and the photoperiodic control of flowering. These cultivar-specific network
520 changes may be the result of wheat breeding programmes targeted to local environments. We
521 also demonstrated the utility of our new resources by investigating genomic variation in the
522 prolamin superfamily, focusing on immunogenic potential.

523
524 In conclusion, this study reveals layers of hidden diversity spanning our modern wheat cultivars.
525 Previously overlooked, this diversity is likely to underpin the agronomic success of wheat over a
526 wide range of global mega-environments.

527

528 **Materials and Methods**

529 **Plant Materials and Growth Conditions**

530 The 14 cultivars were grown in a Controlled Environment Room (CER) (Conviron BDW80;
531 Conviron, Winnipeg, Canada) set at 16 h day/8 h night photoperiod (300 $\mu\text{mol m}^{-2} \text{ s}^{-1}$, lights on
532 at 05:00, lights off at 21:00), temperatures of 20/16 °C, respectively, and 60% relative
533 humidity. Plants were sampled in triplicate at the 3-leaf stage (Zadoks GS13), harvesting whole
534 roots and whole aerial organs separately, four hours after dawn (09:00). Whole aerial organs
535 were also sampled two hours after dusk (23:00). Plants for subsequent adult plant sampling
536 were treated according to their vernalisation requirements. In the case of spring wheat
537 cultivars (CDC Landmark, CDC Stanley, Paragon, Cadenza, Mace and LongReach Lancer),
538 seedlings were grown as described above. At 3-leaf stage, seedlings were transferred to 1 L
539 pots containing Petersfield Cereal Mix (Petersfield, Leicester, UK) and maintained under the
540 same CER conditions as described previously. For winter wheat cultivars (Norin 61, Julius,
541 Jagger, ArinaLrFor, Robigus, Claire and SY Mattis), seedlings were transferred in 40-well trays (7
542 days after sowing) to a vernalisation CER running at 6 °C with 8 h day/16 h night photoperiod
543 for 61 days. After this period the plants were transferred to 1 L pots containing Petersfield
544 Cereal Mix (Petersfield, Leicester, UK) and moved to the same CER and settings as described for
545 the spring wheat cultivars. For both spring and winter wheat cultivars, three additional samples
546 were harvested: complete spike at heading (GS59), flag leaf 7 days post-anthesis (GS71) and
547 whole grains 15 days post-anthesis (GS77). All samples were harvested four hours after dawn
548 (09:00), and a single plant was used per each of the three biological replicates.

549 **Sample Preparation and Sequencing**

550 Total RNA was extracted using Qiagen RNeasy Plant Mini Kit (cat. no. 74904) and DNase treated
551 using an Invitrogen TURBO DNase kit (cat. no. AM2238) according to the manufacturer's
552 protocol. Bead purification of the RNA was conducted using the Agencourt RNAClean XP
553 beads.system (cat. no. A63987). Final sample concentrations were verified using a Qubit 4
554 Fluorometer, and the integrity of the RNA was checked on the Agilent 2100 Bioanalyzer, using
555 the RNA 6000 nano kit (Agilent, 5067-1511), running the plant total RNA assay. The directional
556 RNA-seq libraries were constructed using the NEBNext Ultra II Directional RNA Library prep for
557 Illumina kit (NEB, E7760L) utilising the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB,
558 E7490L) and NEBNext Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs) (cat. no.
559 E6440S/L) at a concentration of 10 μ M. The final libraries were equimolar pooled, a q-PCR was
560 performed and the pool was sequenced on a Illumina NovaSeq 6000 with 150 bp paired-end
561 reads.

562

563 The Iso-Seq libraries were constructed from 1 μ g of total RNA per sample and full-length cDNA
564 were then generated using the SMARTer PCR cDNA synthesis kit (Takara Bio Inc, 639506). The
565 libraries were sequenced on the Sequel Instrument v1, using 1 SMRTcell v2 per library. All
566 libraries had 600-minute movies, 120 minutes of immobilisation time, and 120 minutes of pre-
567 extension time.

568

569 **Data Quality Control and Sample Validation**

570 We used a set of cultivar specific SNPs to confirm the cultivar origin of each replicate and the
571 developmental stage of each sample was validated through a machine learning approach
572 trained using the pooled RNA-seq samples and then run on the entire set of biological
573 replicates. Principal component analysis of the pooled samples shows them to cluster by
574 developmental stage as expected.

575

576 **Alignment and Gene Expression Analysis**

577 Samples were aligned to the IWGSC Chinese Spring RefSeq 1.1 reference genome, using HISAT2
578 v2.0.4, acting as a common reference to allow inclusion of UK cultivars and comparison with *de*
579 *novo* annotations, and normalised counts were generated using DESeq2 with the RefSeq 1.1
580 gene set^{27,16,28}.

581

582 **GO term analysis**

583 Functional enrichment of differentially expressed genes for biological processes was performed
584 using the gene ontology enrichment analysis package, topGO²⁹ in R (v3.6.0, with the following
585 parameters: nodeSize = 10, algorithm = "parentchild", classicFisher test p < 0.05). GO terms
586 refer to ontology terms for biological processes unless otherwise specified and were obtained
587 from Ensembl Plants 51, using the BioMart tool. Bubble plots were plotted using ggplot in R,
588 adapting code from³⁰.

589

590 **Tissue-Specific Index**

591 The specificity of gene expression to developmental stages was determined using the tissue-
592 specific index³¹. Where N is the number of developmental stages (condition), and x_i is the

593 expression profile component for a given gene in each condition, normalised by the maximal
594 expression value of the given gene from all conditions considered. This allowed us to classify
595 genes as being highly specific to one condition ($\tau \geq 0.8$). Assignment of τ values was
596 performed in R using code adapted from previous work³².
597

598 **Sub-genome Expression Bias**

599 Analysis of sub-genome expression focused on 30-let homoeologs with a 1:1:1 relationship
600 across all three sub-genomes. Of these, 13,521 were determined to be macrosyntenic,
601 belonging to the same sub-genome in all cultivars (excluding UK cultivars which are not
602 assembled), and 10,653 as microsyntenic, belonging to the same chromosome and sub-genome
603 in all cultivars (excluding UK cultivars). From these 66 30-lets were not taken forward in the
604 analysis due to low expression and/or quality filtering determined by DESeq2 (R package v
605 4.0.3) of at least one homoeolog in each set. Relative expression of 30-lets across homoeologs
606 and associated sub-genome expression biases were calculated as previously reported, through
607 use of our triad.expression R package (<https://github.com/AHallLab/triad.expression>).
608

609 **Co-expression Analysis**

610 *Network construction*

611 The WGCNA R package¹⁷ (R version 3.6.0) was used to build co-expression networks for seven
612 cultivars (ArinaLrFor, Cadenza, Claire, Jagger, Julius, Norin 61 and Weebill) for which we had
613 triplicate biological replicates for each developmental stage. These cultivars also span the range
614 of genetic variation observed in the previously published pan-genome⁴. The expression matrix
615 for the seven selected cultivars containing DESeq2 normalised counts aligned to 102,443 high
616 confidence CSv1.1 genes was filtered and genes, where the sum of counts across all samples
617 was greater than 5 in at least 3 samples, were retained (92,976 genes). To reduce background
618 noise we removed genes where the expression of any replicate was $>2\sigma$ from the mean
619 expression of that sample set. The resulting 48,337 genes were submitted to WGCNA to
620 construct a signed hybrid consensus network using the blockwiseConsensusModules ()
621 function. A soft power threshold of 18 was used, together with the following parameters;
622 minModuleSize = 30, corType = bicor, maxPOutliers = 0.05, mergeCutHeight = 0.3,
623 minKMEtoStay = 0.2, maxBlockSize = 46,000. Eigengenes were then extracted for each module,
624 per cultivar from the resulting consensus network.
625

626 *Defining thresholds for classifying inter-module relationships*

627 To classify inter-module relationships and identify modules with divergent or similar patterns of
628 expression we defined a threshold of module similarity. Initially we calculated the distance
629 between each pairwise consensus module comparison, using the Pearson correlation distance.
630 We used the maximum distance of each of these pairwise comparisons, for each module and
631 calculated the median of these maxima. Next, we investigated the proportion of 1,663 triads
632 (from 30-lets) identified as split across the 23 previously defined consensus modules, that
633 would be classed as divergent using a module similarity threshold of 0-100%. From these results
634 we selected a module similarity threshold of 75% the median of maximum distances, with
635 distances above this classed as divergent and distances below, classed as similar.
636

637 *Identifying metamodules*

638 We used the R package `clValid`³³ to determine the optimal number of clusters for the 7 cultivar
639 23 consensus module eigengenes. The resulting Dunn index³⁴ and silhouette width³⁵ indicated
640 that the optimum number of clusters for our ME dataset was 6. We calculated the pairwise
641 Pearson correlation coefficients for all our 161 cultivar consensus ME (`cor()`) and converted this
642 to a dissimilarity matrix (`as.dist()`). We used hierarchical clustering of this dissimilarity matrix
643 (`hclust()`) to define consensus metamodules. As the JAG magenta consensus module fell into a
644 different metamodel to the remaining 6 cultivars we omitted the magenta consensus module
645 from our metamodel construction and downstream enrichment analysis. We used the
646 `moduleEigengenes()` function to compute the ME of each metamodel and carried out GOterm
647 and TF superfamily enrichment analysis.

648

649 *Transcription factor superfamily enrichment*

650 Genes annotated as members of transcription factor (TF) superfamilies⁵ were identified in each
651 metamodel and the frequency of each TF superfamily compared to the frequency observed in
652 the 32,936 genes used to construct metamodels. TF families were classed as either
653 significantly under or overrepresented in each module using Fisher's exact test ($p \leq 0.05$).

654

655 *Identifying cultivar-specific expression patterns*

656 We used the `consensuskME()` function in WGCNA to determine the maximum eigengene-based
657 connectivity (kME) of each gene within the unclustered gene set of 14,268 genes, to the
658 consensus ME for each cultivar. Those genes with a positive association greater than 0.7 to a
659 consensus ME were retained. To reveal putative networks specific to a single cultivar we
660 identified genes from the 13,708 genes that demonstrated associations greater than 0.7 kME
661 for at least one cultivar, per gene, where a minimum of 4 out of the 7 cultivars exhibited >0.7
662 kME and that in pairwise comparison to all other cultivars, for the specific cultivar being
663 assessed, the gene was assigned to a divergent module.

664

665 Connectivity within each set of genes demonstrating single cultivar-specificity was determined
666 using the R package `igraph`¹⁸. Using the `graph adjacency()` function, graph adjacencies were
667 created for each specific cultivar set based on the Pearson correlation distances between genes
668 in a pairwise fashion. These directed graphs were simplified to remove multiple edges and
669 loops, and filtered to retain only those connections with an absolute Pearson correlation > 0.8 .
670 The `mst()` function using the `prim` algorithm was used to create a minimum spanning tree and
671 the resulting subgraphs were visualised using `plot()` with isolated nodes excluded.

672

673 **Gene annotation**

674 For the structural gene annotation of the chromosome-scale assembled pan-cultivars, we
675 combined de novo gene calling and homology-based approaches with RNAseq, Isoseq, and
676 protein datasets. The RNAseq data were mapped using STAR³⁶ (v2.7.8a) and further assembled
677 into transcripts by StringTie³⁷ (v2.1.5, parameters -m 150-t -f 0.3). PacBio Iso-Seq transcripts
678 were derived from the raw reads using PacBio SMRT Link software (v5.1.0.26412rev2,
679 `pbsmrtpipe.pipelines.sa3_ds_isoseq2`, default parameters). The Iso-Seq transcripts were
680 aligned to the genome assemblies using GMAP³⁸ (v2018-07-04). To assist the homology-based

681 annotation approach, Triticeae protein sequences from publicly available datasets (UniProt,
682 <https://www.uniprot.org>, 05/10/2016) were aligned against the genome sequence assemblies
683 of all pan-cultivars using GenomeThreader³⁹ (v1.7.1; arguments -startcodon -finalstopcodon -
684 species rice -gcmincoverage 70 -prseedlength 7 -prhdist 4). All transcripts derived from RNAseq,
685 IsoSeq, and aligned protein sequences were combined using Cuffcompare⁴⁰ (v2.2.1). Stringtie
686 (version 2.1.5, parameters --merge -m150) was employed to merge all sequences into a pool of
687 candidate transcripts. To identify potential open reading frames and to predict protein
688 sequences within the candidate transcript set, TransDecoder (version 5.5.0;
689 <http://transdecoder.github.io>) was used.

690

691 We used Augustus⁴¹ (v3.3.3) for the *ab initio* gene prediction. Guiding hints based on the
692 RNAseq, protein, IsoSeq and TE datasets described above were used to counteract potential
693 over-prediction (details in⁴²). Augustus was run using the wheat model.

694

695 A consolidated set of gene models was selected using Mikado⁴³, as implemented in the Minos
696 pipeline (<https://github.com/EI-CoreBioinformatics/minos>), with models scored and selected
697 based on a combination of intrinsic qualities and support from transcriptome and protein
698 alignments.

699

700 BLASTP⁴⁴ (ncbi-blast v2.3.0+, parameters -max_target_seqs 1 -evalue 1e-05) was used to
701 compare potential protein sequences with a trusted set of reference proteins (Uniprot
702 Magnoliophyta, reviewed/Swissprot, downloaded on 3 Aug 2016; <https://www.uniprot.org>).
703 This approach was employed to differentiate gene candidates into complete and valid genes,
704 non-coding transcripts, pseudogenes, and transposable elements. This step was assisted by
705 PTREP (Release 19; <http://botserv2.uzh.ch/kelldata/trep-db/index.html>), a database of
706 hypothetical proteins containing deduced amino acid sequences in which internal frameshifts
707 have been removed in many cases. We selected best hits for each predicted protein from each
708 of the three databases used. Only hits with an e-value below 10e-10 were considered.
709 Functional annotation of all protein sequences predicted in our pipeline was performed with
710 the AHRD pipeline (<https://github.com/groupschoof/AHRD>).

711

712 We classified predicted proteins into two confidence classes: high and low confidence. Hits with
713 subject coverage (for protein references) or query coverage (transposon database) greater than
714 80% were considered significant and protein sequences were classified as high-confidence
715 based on following criteria: protein sequence was complete and had a subject and query
716 coverage above the threshold in the UniMag database or no BLAST hit in UniMag but in UniPoa
717 and not PTREP; a low-confidence protein sequence was incomplete and had a hit in the UniMag
718 or UniPoa database but not in PTREP. Alternatively, it had no hit in UniMag, UniPoa, or PTREP,
719 but the protein sequence was complete. In a second refinement step, low-confidence proteins
720 with an AHRD-score of 3* were promoted to high-confidence.

721

722 BUSCO⁴⁵ (v5.1.2.) software was used to evaluate the completeness and accuracy of structural
723 gene predictions with the 'poales_odb10' database containing a total of 4896 single-copy

724 genes. The evidence-based part of the annotation pipeline is deposited at
725 <https://github.com/PGSB-HMGU/plant.annot>.

726

727 **Consolidation**

728 Pairwise whole genome alignments were generated using lastz⁴⁶. The resulting alignments were
729 stitched together into a single whole genome alignment using TBA/multiz⁴⁷. The MAF output
730 was converted into HAL format using maf2hal⁴⁸.

731 *De novo* gene annotation from one cultivar was lifted over to all other cultivars using the whole
732 genome alignment and the halLiftover tool, whereas only full-length gene models were kept.
733 Missing gene models in one cultivar were identified using bedtools⁴⁹.

734

735 **Tandem array detection**

736 Tandem arrays were identified using the tandem discovery model from the JCVI package⁵⁰.
737 Expression bias was calculated using a modified method described previously⁵. Here we used
738 normalised read counts instead of TPM values and a cut-off of 0.8. The following categories
739 were assigned: only1 for tandems with only one gene expressed and no expression data for
740 second gene; expressed1 for tandems in which only one gene is expressed under all RNASeq
741 conditions; variable where expression can shift between array members depending on the
742 condition; balanced, where both array members are equally expressed. noExpr states that no
743 expression data was available.

744

745 **Orthogroup analysis**

746 The longest isoforms from high-confidence genes were used as input for Orthofinder⁵¹.
747 Orthofinder was run using standard parameters. We used the UpSetR in the R package
748 (<http://gehlenborglab.org/research/projects/upsetr/>) to analyse and visualise how many
749 orthogroups are shared between the cultivars or are unique to a single species. GENESPACE⁹
750 was used to derive and visualise syntenic relationships between all chromosomes and sub-
751 genomes.

752

753 **Analysis of Canadian-specific genes**

754 Taking each genome in turn as a reference, kmers of length 51 were identified from genic
755 regions using the annotation for that reference. These kmers were used to search the genomes
756 of the other cultivars and a coverage score was computed⁵² between each gene in the
757 reference and every other genome. The coverage score (a value between 0 and 1) can be used
758 as a proxy for sequence similarity/difference between genes in different cultivars where values
759 closer to 0 indicate greater difference and values closer to 1 indicate similarity. Coverage scores
760 for genes along chromosomes were plotted using the seaborn visualisation library⁵³ in Jupyter
761 notebook. Coverage scores were also visualised as heatmaps with coverage scores close to 0
762 represented as dark bands.

763

764 **Comparative analysis of immune reactive regions in the wheat pan-genome**

765 *Reference allergen identification and chromosome 6D comparison*

766 Reference allergens in the wheat pan-genome were filtered using blastn algorithm against the
767 identified sequences in the IWGSC v1 gene annotation v1.1²². To identify unannotated gliadin

768 and glutenin gene models and to compare the potential immune reactivity of the wheat
769 cultivars, known coeliac diseases associated HLA-DQ T-cell epitopes were reverse translated
770 and the consensus nucleotide sequences were used for a motif search with 100% sequence
771 identity. The mapped epitope-rich regions were used for the detailed comparison of the alpha
772 gliadin locus in chromosome 6D. Additional gene models representing complete gene models
773 with DQ epitopes were manually annotated. The locus organisation was compared to the
774 Chinese Spring chromosome 6D alpha gliadin locus in the IWGSC v1 reference genome
775 assembly²².

776

777 *Promoter motif enrichment analysis*

778 1000 bp 5'-end non-coding sequences were extracted from the chromosome 6D loci and used
779 for motif enrichment analysis in MEME-SEA⁵⁴. The JASPAR core plant 2022 motif collection was
780 used as a background database.

781

782 *Epitope expression analysis*

783 Epitope expression values were calculated using the TPM gene expression values of genes
784 where the reverse translated consensus epitope sequence was detected multiplied by the
785 number of epitopes in each sequence. The obtained values were summed for each epitope type
786 as well as summed for epitope types at genome levels.

787

788 *Gene co-expression analysis*

789 TPM>1 log2 transformed TPM gene expression data were used to create a grain co-expression
790 network using co-expression cut-off value of 0.8. The resulting network was annotated with the
791 reference allergen-specific information for disease relatedness and gene family. The first
792 neighbour network was visualised in Cytoscape.

793

794 *Pan-genome graph construction of 10Mb 6D region*

795 We extracted a 10Mb region (20-30Mb) encompassing the alpha gliadin locus from the top of
796 chromosome 6D for the cultivars Norin 61, CDC Stanley, SY Mattis, Julius, and Mace. To
797 estimate the divergence of the input sequences, we used mash-2.2⁵⁵, specifically the mash
798 triangle command to calculate a maximum sequence divergence of 0.039. To account for
799 possible underestimation of sequence divergence and localised structural variants we specified
800 a minimum mapping identity value (-p 90) for pan-graph construction using PGGB⁵⁶ together
801 with segment size (-s 30kb), number of mappings (-n 6), minimum length of exact matches (-k
802 311), target sequence length for POA (-G 13117, 13219), mean length of each sequence pad for
803 POA (-O 0.03) and k-mer size for mapping (-K 111). Default settings were used for all other
804 parameters.

805

806 *Extracting the alpha-gliadin locus sub pan-graph*

807 Using ODGI toolkit⁵⁷ we extracted the subgraph of the alpha-gliadin locus from our 6D graph
808 build. We used the odgi extract command together with coordinates of the Norin 61 gene
809 models described in **Supp. Table 14** extracts the 520.7kb region encompassing the locus (6D:
810 26,703,647-27,222,360bp) and the corresponding paths intersecting with this region in CDC
811 Stanley (6D: 28,164,601-28,660,350 bp), SY Mattis (6D: 26,645,382-27,096,594 bp), Julius (JUL

812 6D: 26,983,100–27,437,565 bp), and Mace (6D: 26,808,846–27,298,593 bp). We used odgi sort
813 to sort the resulting subgraph and odgi procbed to adjust the coordinates of the gene models
814 for each cultivar to fit the resulting subgraph. odgi inject allowed us to visualise the placement
815 of these gene models across the graph and identify cultivar-specific haplotypes. We generated
816 a graphical fragment assembly (gfa) of this sub pan-graph using odgi view (**Supp. Table 15**).
817

818 **Data Availability**

819 The genome sequence and gene annotations of all wheat cultivars can be viewed and
820 downloaded in Ensembl Plants (<https://plants.ensembl.org/index.html>). This includes the *de*
821 *novo* genes for the chromosome-level cultivars generated within this study and projected genes
822 for all assemblies from the IWGSC RefSeq v1.1 annotation. All raw data used in this study is
823 available at the European Nucleotide Archive under accession PRJEB51827.
824

825 **Code Availability**

826 Relevant code repositories are referenced throughout the Methods sections.
827

828 **Supplementary Tables**

829 All supporting tables and associated materials are available at
830 https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2024-01-01_wheat_pantranscriptome.
831

832 **Acknowledgements**

833 We would like to acknowledge BBS/E/T/000PR9816 (NC1 - Supporting EI's ISPs and the UK
834 Community with Genomics and Single Cell Analysis) for data generation and BB/CCG1720/1 for
835 the physical HPC infrastructure and data centre delivered via the NBI Research Computing
836 group. Earlham Institute Strategic Programme Grant Decoding Biodiversity BBX011089/1
837 (BBS/E/ER/230002B). Delivering Sustainable Wheat BB/X011003/1 (BBS/E/ER/230003C).
838 Norwich Research Park Biosciences Doctoral Training Partnership grant BB/M011216/1. We
839 also would like to thank the Australian Research Council Centre of Excellence for Innovations in
840 Peptide and Protein Science (CE200100012) and Coeliac Australia (G1005443) as well as MEXT
841 JSPS KAKENHI 22H05179, 22H02316, 22K21352, Swiss National Science Foundation
842 310030_212551, Japan Science and Technology Agency JPMJCR16O3 and URPP Evolution in
843 Action. Helmholtz Munich would like to acknowledge support by BMBF project number
844 031B0190 (de.NBI). We would also like to thank the 10+ Wheat Genome Project for their
845 feedback and guidance.
846

847 **Author Contributions**

848 CP arranged supplying seeds. JS & CU managed growing plants and supplying materials. SD &
849 HR prepared samples and performed extractions for sequencing. NI, SH, TB, HC, LC and KG
850 generated and managed the iso-seq and RNA-seq data production. BW, RJ & JC performed
851 quality control of biological replicate data. SW & BW reworked the existing package for sub-
852 genome expression bias characterisation. BW carried out gene expression analysis, tissue-
853 specific indexing and investigation of sub-genome biases. TL, GK & DS performed *de novo*
854 annotations. TL, DL & HG consolidated *de novo* annotations, generated orthogroups, and
855

856 investigated introgressions and copy number variation. RRP performed co-expression analysis,
857 constructed regulatory networks and gliadin pan-graph, and investigated cultivar-specific
858 expression. JW performed genome kmer comparison. AJ performed an analysis of allergen and
859 prolamin diversity, MG supervised the prolamin analysis. KS investigated Norin-specific gene
860 expression patterns. GN imported and managed data for EnsemblPlants. BW, TL, RRP, JW, CU,
861 MS & AH contributed to preparing the manuscript. PB, WH, BC, CU, NS, SK, JP, KM & CP
862 provided intellectual input. Syngenta provided funding for data generation. The 10+ Wheat
863 Genome Project, EL, AB, AH and MS for conceptualisation of the project.
864

865 **Ethics declarations**

866 The authors declare no competing interests.
867

868 **References**

- 869 1. Braun, H.-J., Rajaram, S. & Ginkel, M. van. CIMMYT's approach to breeding for wide
870 adaptation. *Euphytica* **92**, 175–183 (1996).
- 871 2. Erenstein, O. *et al.* Wheat Improvement, Food Security in a Changing Climate. 47–66 (2022)
872 doi:10.1007/978-3-030-90673-3_4.
- 873 3. Levy, A. A. & Feldman, M. Evolution and origin of bread wheat. *Plant Cell* **34**, 2549–2567
874 (2022).
- 875 4. Walkowiak, S. *et al.* Multiple wheat genomes reveal global variation in modern breeding.
876 *Nature* **588**, 277–283 (2020).
- 877 5. Ramirez-Gonzalez, R. H. *et al.* The transcriptional landscape of polyploid wheat. *Science (New
878 York, NY)* **361**, eaar6089 (2018).
- 879 6. Jin, M. *et al.* Maize pan-transcriptome provides novel insights into genome complexity and
880 quantitative trait variation. *Scientific Reports* **6**, 18936 (2016).
- 881 7. Thind, A. K. *et al.* Chromosome-scale comparative sequence analysis unravels molecular
882 mechanisms of genome dynamics between two wheat cultivars. *Genome Biol.* **19**, 104 (2018).
- 883 8. Khan, A. W. *et al.* Super-Pangenome by Integrating the Wild Side of a Species for Accelerated
884 Crop Improvement. *Trends Plant Sci.* **25**, 148–158 (2020).
- 885 9. Lovell, J. T. *et al.* GENESPACE tracks regions of interest and gene copy number variation
886 across multiple genomes. *eLife* **11**, e78526 (2022).
- 887 10. He, F. *et al.* Genomic variants affecting homoeologous gene expression dosage contribute to
888 agronomic trait variation in allopolyploid wheat. *Nat. Commun.* **13**, 826 (2022).
- 889 11. Leister, D. Tandem and segmental gene duplication and recombination in the evolution of
890 plant disease resistance genes. *Trends Genet.* **20**, 116–122 (2004).
- 891 12. Hanada, K., Zou, C., Lehti-Shiu, M. D., Shinozaki, K. & Shiu, S.-H. Importance of Lineage-
892 Specific Expansion of Plant Tandem Duplicates in the Adaptive Response to Environmental
893 Stimuli. *Plant Physiol.* **148**, 993–1003 (2008).
- 894 13. Bayer, P. E., Golicz, A. A., Scheben, A., Batley, J. & Edwards, D. Plant pan-genomes are the
895 new reference. *Nat. Plants* **6**, 914–920 (2020).

896 14. He, F. *et al.* Exome sequencing highlights the role of wild-relative introgression in shaping
897 the adaptive landscape of the wheat genome. *Nat. Genet.* **51**, 896–904 (2019).

898 15. Gordon, S. P. *et al.* Extensive gene content variation in the *Brachypodium distachyon* pan-
899 genome correlates with population structure. *Nat. Commun.* **8**, 2184 (2017).

900 16. IWGSC, T. I. W. G. S. C. *et al.* Shifting the limits in wheat research and breeding using a fully
901 annotated reference genome. *Science (New York, NY)* **361**, eaar7191 (2018).

902 17. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
903 analysis. *BMC Bioinform.* **9**, 559 (2008).

904 18. Cárdenas, G. & Nepusz, T. The igraph software package for complex network research. in.

905 19. Hu, R. *et al.* Genome-wide identification and analysis of WD40 proteins in wheat (*Triticum*
906 *aestivum* L.). *BMC Genom.* **19**, 803 (2018).

907 20. Li, J., Li, G., Wang, H. & Deng, X. W. Phytochrome Signaling Mechanisms. *Arab. Book* **2011**,
908 e0148 (2011).

909 21. Kiseleva, A. A., Potokina, E. K. & Salina, E. A. Features of Ppd-B1 expression regulation and
910 their impact on the flowering time of wheat near-isogenic lines. *BMC Plant Biol.* **17**, 172 (2017).

911 22. Juhász, A. *et al.* Genome mapping of seed-borne allergens and immunoresponsive proteins
912 in wheat. *Sci. Adv.* **4**, eaar8602 (2018).

913 23. Halstead-Nussloch, G. *et al.* Multiple Wheat Genomes Reveal Novel Gli-2 Sublocus Location
914 and Variation of Celiac Disease Epitopes in Duplicated α -Gliadin Genes. *Front. Plant Sci.* **12**,
915 715985 (2021).

916 24. Shimizu, K. K. *et al.* De Novo Genome Assembly of the Japanese Wheat Cultivar Norin 61
917 Highlights Functional Variation in Flowering Time and Fusarium-Resistant Genes in East Asian
918 Genotypes. *Plant Cell Physiol.* **62**, 8–27 (2020).

919 25. Liao, W.-W. *et al.* A draft human pangenome reference. *Nature* **617**, 312–324 (2023).

920 26. Cheng, H. *et al.* Frequent intra- and inter-species introgression shapes the landscape of
921 genetic variation in bread wheat. *Genome Biol.* **20**, 136 (2019).

922 27. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment
923 and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **37**, 907–915 (2019).

924 28. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
925 RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

926 29. Rahnenfuhrer, A. A. topGO: Enrichment Analysis for Gene Ontology. R package version
927 2.46.0. (2021).

928 30. Vega, J. J. D. *et al.* Differential expression of starch and sucrose metabolic genes linked to
929 varying biomass yield in *Miscanthus* hybrids. *Biotechnol. Biofuels* **14**, 98 (2021).

930 31. Yanai, I. *et al.* Genome-wide midrange transcription profiles reveal expression level
931 relationships in human tissue specification. *Bioinformatics* **21**, 650–659 (2005).

932 32. Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-
933 specificity metrics. *Brief. Bioinform.* **18**, 205–214 (2017).

934 33. Brock, G., Pihur, V., Datta, S. & Datta, S. clValid: An R Package for Cluster Validation. *Journal*
935 *of Statistical Software* **25**, 1–22 (2008).

936 34. Dunn†, J. C. Well-Separated Clusters and Optimal Fuzzy Partitions. *J. Cybern.* **4**, 95–104
937 (1974).

938 35. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster
939 analysis. *J. Comput. Appl. Math.* **20**, 53–65 (1987).

940 36. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

941 37. Kovaka, S. *et al.* Transcriptome assembly from long-read RNA-seq alignments with
942 StringTie2. *Genome Biol.* **20**, 278 (2019).

943 38. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA
944 and EST sequences. *Bioinformatics* **21**, 1859–1875 (2005).

945 39. Gremme, G., Brendel, V., Sparks, M. E. & Kurtz, S. Engineering a software tool for gene
946 structure prediction in higher organisms. *Inf. Softw. Technol.* **47**, 965–978 (2005).

947 40. Ghosh, S. & Chan, C.-K. K. Plant Bioinformatics, Methods and Protocols. *Methods Mol. Biol.*
948 **1374**, 339–361 (2015).

949 41. Hoff, K. J. & Stanke, M. Predicting Genes in Single Genomes with AUGUSTUS. *Curr. Protoc.*
950 *Bioinform.* **65**, e57 (2019).

951 42. Nachtweide, S. & Stanke, M. Gene Prediction, Methods and Protocols. *Methods Mol. Biol.*
952 **1962**, 139–160 (2019).

953 43. Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & Swarbreck, D. Leveraging
954 multiple transcriptome assembly methods for improved gene structure annotation. *GigaScience*
955 **7**, giy093- (2018).

956 44. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search
957 tool. *Journal of molecular biology* **215**, 403–410 (1990).

958 45. Seppey, M., Manni, M. & Zdobnov, E. M. Gene Prediction, Methods and Protocols. *Methods*
959 *Mol. Biol.* **1962**, 227–245 (2019).

960 46. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic
961 sequence comparison. *Genome Res.* **21**, 487–493 (2011).

962 47. Blanchette, M. *et al.* Aligning Multiple Genomic Sequences With the Threaded Blockset
963 Aligner. *Genome Res.* **14**, 708–715 (2004).

964 48. Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for
965 storing and analyzing multiple genome alignments. *Bioinformatics* **29**, 1341–1342 (2013).

966 49. Quinlan, A. R. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Curr. Protoc.*
967 *Bioinform.* **47**, 11.12.1-11.12.34 (2014).

968 50. Tang, H. *et al.* Synteny and Collinearity in Plant Genomes. *Science* **320**, 486–488 (2008).

969 51. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome
970 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.* **16**, 157
971 (2015).

972 52. Clavijo, B. J., Accinelli, G. G., Yanes, L., Barr, K. & Wright, J. Skip-mers: increasing entropy
973 and sensitivity to detect conserved genic regions with simple cyclic q-grams. *bioRxiv* (2017)
974 doi:10.1101/179960.

975 53. Waskom, M. seaborn: statistical data visualization. *J. Open Source Softw.* **6**, 3021 (2021).

976 54. Bailey, T. L. & Grant, C. E. SEA: Simple Enrichment Analysis of motifs. *bioRxiv*
977 2021.08.23.457422 (2021) doi:10.1101/2021.08.23.457422.

978 55. Ondov, B. D. *et al.* Mash: fast genome and metagenome distance estimation using MinHash.
979 *Genome Biol.* **17**, 132 (2016).

980 56. Garrison, E. *et al.* Building pangenome graphs. *Biorxiv Prepr Serv Biology* (2023)
981 doi:10.1101/2023.04.05.535718.

982 57. Guerracino, A., Heumos, S., Nahnsen, S., Prins, P. & Garrison, E. ODGI: understanding
983 pangenome graphs. *Bioinformatics* **38**, btac308- (2022).

984

985