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Abstract 12 

Lyme disease is a tick-borne infection caused by the spirochete Borrelia 13 

(Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of 14 

a linear chromosome and a constellation of linear and circular plasmids that encode 15 

diverse outer membrane lipoproteins, which facilitate movement of the spirochete 16 

between its tick vector and a vertebrate host in an enzootic cycle. The B. burgdorferi 17 

genome shows evidence of horizontal transfer between strains, but the mechanisms 18 

remain poorly defined. Almost all Lyme disease spirochetes are infected by 32-kp circular 19 

plasmid (cp32) prophages that undergo lytic replication and produce infectious virions 20 

called ×BB-1. In the laboratory, ×BB-1 transduces cp32s and shuttle vectors between 21 

spirochetes. However, the extent that ×BB-1 participates in horizontal gene transfer 22 

between Lyme disease spirochetes is not known. Here, we use proteomics and long-read 23 

sequencing to characterize ×BB-1 virions and the genetic material they package. Our 24 

studies reveal that ×BB-1 packages linear cp32s via a headful mechanism. We identify 25 

the cp32 pac region and show that plasmids containing the cp32 pac region are 26 

preferentially packaged into ×BB-1 virions. Additionally, we find ×BB-1 packages 27 

fragments of the linear chromosome and other plasmids including lp54, cp26, and others. 28 

Furthermore, sequencing of ×BB-1 packaged DNA allowed us to resolve the covalently 29 

closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear 30 

plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the 31 

ubiquitous ×BB-1 phage and further implicates ×BB-1 in the generalized transduction of 32 

diverse genes between spirochetes and the maintenance of genetic diversity in Lyme 33 

disease spirochetes.   34 
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Introduction 35 

The bacterium Borrelia (Borreliella) burgdorferi is the causative agent of Lyme 36 

disease, the most common tick-borne disease in the Northern Hemisphere [1-3]. Lyme 37 

disease spirochetes have complex and highly fragmented genomes composed of a ~900 38 

kb linear chromosome and a constellation of linear and circular plasmids that are similar 39 

but not identical across the genospecies [4-6]. 40 

A key factor in the ability of B. burgdorferi to transmit from its tick vector to a 41 

vertebrate host is the differential expression of several outer membrane lipoproteins that 42 

assist B. burgdorferi in evading both vector and host immune responses [7]. As such, a 43 

large fraction of the B. burgdorferi genome encodes outer membrane lipoproteins, mostly 44 

carried on the plasmids [6, 8, 9].  45 

In natural populations, the recombination rate between genomes of coexisting B. 46 

burgdorferi strains is exceeds the mutation rate and genetic variation in outer membrane 47 

lipoprotein alleles associated with species-level adaptations [6, 8-10]. Variation in outer 48 

membrane lipoprotein alleles across the genospecies is driven primarily by horizontal 49 

gene transfer [5, 11-17]. However, the mechanism(s) by which heterologous B. 50 

burgdorferi strains exchange genetic material are not well defined. 51 

Viruses that infect bacteria (phages) are key drivers of horizontal gene transfer 52 

between bacteria [18]. The genomes of nearly all Lyme disease spirochetes include the 53 

32-kb circular plasmid (cp32) prophages (Fig 1A and B) [4]. The cp32s carry several 54 

outer membrane lipoprotein gene families including bdr, mlp, and ospE/ospF/elp (erps), 55 

which are all involved in immune evasion [19-23] and exhibit sequence variation that is 56 

consistent with historical recombination amongst cp32 isoforms [24-26]. Recent work 57 

indicates that cp32 prophages are induced in the tick midgut during a bloodmeal [9, 27, 58 

28]. When induced, cp32 prophages undergo lytic replication where they are packaged 59 

into infectious virions designated ×BB-1 (Fig 1C) [29-31].  60 

 61 

Figure 1. The B. burgdorferi genome is highly fragmented and is composed of a linear chromosome, 62 

linear and circular plasmids, and cp32 prophages. The genomes of B. burgdorferi strains (A) B31 and 63 

(B) CA-11.2A are shown. (C) The temperate ×BB-1 phage lifecycle is depicted.  64 

In addition to horizontally transferring phage genomes between bacterial hosts 65 

(transduction), phages frequently package and horizontally transfer pieces of the bacterial 66 

chromosome or other non-phage DNA (generalized transduction) [32]. Generalized 67 
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transduction was first observed in the Salmonella phage P22 in the 1950s [33]. Since 68 

then, generalized transduction has been observed in numerous other phage species [32, 69 

34-37]. ×BB-1 is a generalized transducing phage that can horizontally transfer shuttle 70 

vectors carrying antibiotic resistance cassettes between B. burgdorferi strains [29]. 71 

However, to our knowledge, generalized transduction of anything other than engineered 72 

plasmids by ×BB-1 has not been observed.  73 

Here, we define the genetic material packaged by ×BB-1 virions isolated from B. 74 

burgdorferi strain CA-11.2A. Our proteomics studies confirm that ×BB-1 virions are 75 

composed primarily of capsid and other phage structural proteins encoded by the cp32s; 76 

however, putative phage structural proteins encoded by lp54 were also detected. Long-77 

read sequencing reveals that ×BB-1 virions package a variety of genetic material 78 

including cp32 isoforms that are linearized at a region immediately upstream of the erp 79 

locus (ospE/ospF/elp) and packaged into ×BB-1 capsids via a headful genome packaging 80 

mechanism at a packaging site (pac). When introduced to a shuttle vector, the pac region 81 

promotes the packaging of shuttle vectors into ×BB-1 virions, demonstrating the utility of 82 

×BB-1 as a tool to genetically manipulate Lyme disease spirochetes. Additionally, full-83 

length contigs of cp26, lp17, lp38, lp54, and lp56 are recovered from packaged reads as 84 

are fragments of the linear chromosome. Finally, long-read sequencing of packaged DNA 85 

allowed us to fully resolve most of the covalently closed hairpin telomeres in the B. 86 

burgdorferi CA-11.2A genome.  87 

Overall, this study implicates ×BB-1 in mobilizing large portions of the B. 88 

burgdorferi genome, which may explain certain aspects of genome stability and diversity 89 

observed in Lyme disease spirochetes. 90 

Results 91 

zBB-1 phage purification, virion morphology, and proteomic analysis  92 

In the laboratory, lytic ×BB-1 replication (Fig 1C) can be induced by fermentation 93 

products such as ethanol [38, 39]. We first measured ×BB-1 titers in early stationary-94 

phase cultures (~1 × 108 cells/mL) of B. burgdorferi B31 or CA-11.2A induced with 5% 95 

ethanol, as described by Eggers et al. [38]. Seventy-two hours after induction, bacteria 96 

were removed by centrifugation and filtering and virions were purified from supernatants 97 

by chloroform extraction and precipitation with ammonium sulfate. Purified virions were 98 

treated overnight with DNase to destroy DNA not protected within a capsid. Phage DNA 99 

was then extracted using a proteinase K/SDS/phenol-chloroform DNA extraction protocol 100 

[30] and qPCR was used to measure packaged cp32 copy numbers. 101 

B. burgdorferi strain CA-11.2A consistently produced ~10 times more phage than 102 

B31 (Fig 2A) and was selected for further study. Imaging of purified virions collected from 103 

CA-11.2A by transmission electron microscopy reveals virions with an elongated capsid 104 

and contractile tail (Fig 2B), which is similar to the Myoviridae morphology of ×BB-1 105 

virions produced by strain B31 in vitro [9, 40, 41] and by a human B. burgdorferi isolate 106 

following ciprofloxacin treatment [42]. 107 

Mass spectrometry analysis of purified virions identified ten capsid and other 108 
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structural proteins encoded by the cp32s (Fig 2C, Table S1). We also detected highly 109 

conserved predicted phage capsid proteins encoded by lp54 (Fig 2D). While the virions 110 

we visualized all appear to have the same elongated capsid morphology, virions with a 111 

notably smaller capsid morphology have been isolated and imaged from B. burgdorferi 112 

CA-11.2A [29]. These observations raise the possibility that there are multiple intact 113 

phages inhabiting the CA-11.2A genome. 114 

 115 

Figure 2. zBB-1 phage titer, virion morphology, and proteomic analysis. (A) Packaged, DNase-116 

protected cp32 copy numbers in bacterial supernatants were measured by qPCR. Data are the SE of the 117 

mean of three experiments, ***P<0.001. (B) Virions were purified from 4-L cultures of B. burgdorferi CA-118 

11.2A and imaged by transmission electron microscopy. Representative images from two independent 119 

preparations are shown. (C and D) HPLC-MS/MS-based proteomics was used to identify proteins in the 120 

two purified virion preparations. The SE of the mean of spectral counts for peptides associated with the 121 

indicated phage structural proteins are shown for each replicate. See also Table S1 for the complete 122 

proteomics dataset. 123 

zBB-1 virions package portions of the B. burgdorferi genome 124 

We performed long-read sequencing on DNA packaged in purified ×BB-1 virions, 125 

as outlined in Figure 3. There is concern that contaminating unpackaged B. burgdorferi 126 

chromosomal or plasmid DNA co-purifies with phage virions. To control for this, we spiked 127 

purified ×BB-1 virions with high molecular weight (> 20 kb) salmon sperm DNA (Fig 4A) 128 

at 1.7 µg/mL, a concentration that approximates the amount of DNA released by 3 × 108 129 

lysed bacterial cells into one milliliter of media [43]. Samples were then treated with 130 

DNase overnight followed by phage DNA extraction using a proteinase K/SDS/phenol-131 

chloroform DNA extraction protocol [30]. Recovered DNA was directly sequenced using 132 

the Nanopore MinION (long read) platform. 133 
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 134 

Figure 3. Workflow for sequencing packaged zBB-1 DNA. 135 

Kraken [44] was used to classify prokaryotic and eukaryote sequences followed by 136 

BLAST to classify reads missed by Kraken (e-value <0.01, query coverage >10%). Reads 137 

less than 700 bp were discarded. Of 110,986 reads >700 bp, 0.14% were classified as 138 

matching salmon sequences (Fig 4B) with an average length of 1.2 kb (Fig 4B), indicating 139 

the DNase treatment step successfully degraded unpackaged DNA. To exclude reads 140 

that may be derived from unpackaged DNA, we removed all reads less than 5 kb from 141 

the dataset, leaving a total of 58,399 reads longer than 5 kb (Fig 4C) with a median length 142 

of 12.3 kb (Fig 4D). Note that cp32 prophages are approximately 32 kb in size and we 143 

detect a high number of ~32 kb reads in each replicate (Fig 4D, dashed line). 144 

 145 

Figure 4. Establishing a 5kb read length cutoff to exclude unpackaged reads. (A) The salmon sperm 146 

DNA used to spike purified phages prior to DNase treatment was run on an agarose gel to estimate its size. 147 

Note that the majority of salmon DNA is larger than the 20-kb high molecular weight marker in the left lane. 148 

(B) 0.14% of 110,986 reads > 700 bp, 0.14% were classified as matching salmon sequences. Reads 149 

classified as salmon were plotted as a function of their length for each replicate. Error bars represent the 150 

SE of the mean of three replicate experiments. All reads except one (arrow) were below 5 kb in length 151 

(dashed line) with an average length of 1.2 kb. (C) Read length cutoff was plotted as a function of the 152 

number of reads remaining in each replicate dataset. In total, 58,399 reads remain after establishing a 5-153 

kb cutoff. (D) Read length for all reads >5 kb in each replicate was plotted. 154 
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Overall, ~99.6% of packaged reads >5 kb were classified as B. burgdorferi (Fig 155 

5A), the majority of which (~79%) were cp32 isoforms (Fig 5B). Cp32-10 and cp32-3 156 

were preferentially packaged (~32% and ~25%, respectively) followed by cp32-13 and 157 

cp32-5 (each at ~10%) (Fig 5B). Reads mapping to cp32-3, cp32-5, cp32-10, and cp32-158 

13 had a mean coverage of over 1,000× (Fig 5C). Cp32-1 reads accounted for only about 159 

one percent of all packaged reads (Fig 5B) and had lower mean coverage of 160 

approximately 36× (Fig 5C), suggesting that cp32-1 was not undergoing lytic replication. 161 

Read length distributions for the cp32s indicate that full-length ~32 kb molecules were 162 

frequently recovered for each cp32 isoform, except for cp32-10 (Fig 5D).  163 

Additionally, 11.6% of reads > 5 kb mapped to the linear chromosome and ~6.3% 164 

of reads >5 kb mapped to lp54 (Fig 5B). The remaining reads mapped to B. burgdorferi 165 

plasmids cp26, lp17, lp36/lp28-4, lp38, lp56, and lp28-3 at 132% each (Fig 5B). De novo 166 

assembly of packaged reads produced full-length contigs of all cp32s, lp17, cp26, lp36, 167 

lp38, lp54, and lp56 (Fig S1), suggesting that full-length versions of these plasmids are 168 

packaged by ×BB-1.  169 

Of note, the CA-11.2A genome was reported to contain a unique plasmid, 170 

lp36/lp28-4, that is thought to have arisen from the fusion of lp36 with lp28-4 [45]. De 171 

novo assembly of packaged reads resolved lp36/lp28-4 into individual lp36 and lp28-4 172 

contigs (Fig S1E and F). Additionally, whole genome sequencing of our CA-11.2A strain 173 

confirmed that lp36 and lp28-4 are separate as no reads that span the lp36-lp28-4 junction 174 

were observed and coverage depth was notably different between lp36 and lp28-4 (~200× 175 

vs. 25×, respectively, Fig S2A). Furthermore, PCR confirmed the sequencing results (Fig 176 

S2B-D). These data indicate that the lp36/lp28-4 plasmid is two distinct episomes in our 177 

CA-11.2A strain. 178 

Collectively, these results indicate that in addition to cp32 molecules, ×BB-1 is 179 

capable of packaging non-cp32 portions of the B. burgdorferi genome. We discuss the 180 

major packaged DNA species in the following sections. 181 
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 182 

Figure 5. zBB-1 virions package cp32 isoforms, chromosome fragments, lp54, and other plasmids. 183 

(A) Kraken and BLAST were used to determine the taxonomic affiliation of reads >5kb. Note that no 184 

eukaryotic reads were identified. (B and C) The (B) percent and (C) mean coverage for reads affiliated with 185 

the indicated B. burgdorferi plasmid or linear chromosome are shown for each replicate. Error bars 186 

represent the SE of the mean. (D) Read length distributions for the indicated plasmids or chromosome are 187 

shown. 188 

 189 

Figure S1. Packaged read depth across the de novo CA-11.2A genome assembly. De novo assembly 190 

of packaged reads >5kb produced the indicated contigs. Read coverage was then mapped to each contig. 191 

(A3H) Read coverage across the CA-11.2A chromosome or indicated plasmids are shown. Coverage maps 192 

for the cp32s and lp54 are shown in Figures 6 and 9, respectively. 193 

 194 
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 195 

Figure S2. Whole genome sequencing of the CA-11.2A genome reveals that plasmid lp36/lp28-4 196 

resolves into two separate episomes. (A) The CA-11.2A genome was sequenced using long-read 197 

technology. Reads were aligned to the lp36/lp28-4 reference sequence (NC_012202.1) and read depth 198 

plotted. (B) Schematic of PCR design. Primers 1 and 2 flank the lp36/lp28-4 junction, with primer 1 199 

annealing to lp36 and primer 2 annealing to lp28-4, creating a 620 bp product if joined. Primers 3 and 4 200 

anneal to lp36 DNA, creating an 813 bp product if present. Primers 5 and 6 anneal to lp28-4 DNA, creating 201 

a 1,115 bp product if present. (C) The presence or absence of lp36, lp28-4, or lp36/lp28-4 was confirmed 202 

by PCR. 203 

cp32 molecules are linearized near the erp locus and packaged via a headful mechanism 204 

Our sequencing data provide insight into how ×BB-1 packages cp32 molecules. 205 

Many phage species package linear double-stranded DNA genomes that circularize after 206 

being injected into a host [46] and packaged cp32s are thought to be linearized [30]. We 207 

used PhageTerm [47] to predict the linear ends of packaged DNA. Native DNA termini 208 

are present once per linear DNA molecule, but non-native DNA ends produced during 209 

sequencing are distributed randomly along DNA molecules. Thus, reads that start at 210 

native DNA terminal positions occur more frequently than anywhere else in the genome. 211 

PhageTerm takes advantage of this to resolve DNA termini and predict phage packaging 212 

mechanisms [47]. PhageTerm identified the termini of packaged cp32 molecules at 213 

approximately 26 kb in a region lying immediately upstream of the erp (ospE/ospF/elp) 214 

loci (Fig 6A). In agreement with the PhageTerm results, when packaged reads were used 215 

to map the physical ends of packaged cp32 molecules, a sharp boundary in coverage 216 

depth is observed upstream of the ospE/ospF/elp loci in all cp32s (Fig 6B3F). Notably, 217 

the intergenic region upstream of the erp loci is conserved across the cp32 isoforms found 218 

in diverse strains of Lyme disease spirochetes (Fig 6G) [15] and the linear cp32 ends 219 

identified by long-read sequencing converge on the same terminal sequence motif (Fig 220 

6H).  221 
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 222 

Fig 6. cp32s are linearized upstream of the erp loci. (A) PhageTerm was used to predict the linear ends 223 

of packaged cp32 molecules. (B3F) Nanopore reads were mapped to the indicated cp32s. Note the sharp 224 

boundary just upstream of the erp loci (highlighted in red). The yellow triangles indicate the PhageTerm 225 

predicted linear ends. (G) Alignments of the intergenic region upstream of the erp loci is shown for each 226 

cp32. The black line indicates the pac region that was cloned into a shuttle vector, as described in Figure 227 

7. (H) A nucleic acid logo was constructed from 207 cp32 sequence alignments. Yellow triangles indicate 228 

the linear end of cp32 isoforms as predicted by PhageTerm and confirmed by long-read sequencing. 229 

PhageTerm predicts that cp32s are packaged by a headful mechanism. This 230 

observation supports the previously proposed headful genome packaging mechanism for 231 

cp32s [39]. Phages that use the headful packaging mechanism generate a concatemer 232 
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containing several head-to-tail copies of their genome (Fig 7A). During headful 233 

packaging, a cut is made at a defined packaging site (pac site) and a headful (a little more 234 

than a full genome) of linear phage DNA is packaged. Once a headful is achieved, the 235 

phage genome is cut at non-defined sites, resulting in variable cut positions and size 236 

variation in packaged DNA, which we observe in packaged cp32 reads downstream of 237 

the initial cut site (Fig 6B3F).  238 

Our results suggest that the cp32 pac site is upstream of the erp (ospE/ospF/elp) 239 

loci. If the cp32 pac site is in this region, then DNA molecules containing the pac sequence 240 

are expected to be packaged into ×BB-1 virions. To test this, we cloned the putative cp32-241 

3 pac site (Fig 6G, black bar) into the pBSV2 shuttle vector [48], transformed B. 242 

burgdorferi strain CA-11.2A, and induced lytic ×BB-1 replication with 5% ethanol. 243 

Supernatants containing virions were collected, filtered, and DNase treated, and 244 

packaged DNA isolated. pBSV2 shuttle vector copy numbers were measured by qPCR 245 

using primers that target the pBSV2 kanamycin resistance (kan) cassette. To control for 246 

possible chromosomal DNA contamination, qPCR was also performed using primers 247 

targeting the flaB gene. Final packaged pBSV2 copy numbers were calculated by 248 

subtracting flaB copy numbers from pBSV2 (kan cassette) copy numbers.  249 

Copy numbers of packaged pBSV2 encoding the cp32-3 pac site were significantly 250 

(P<0.001) higher compared to virions collected from cells either not carrying the pBSV2 251 

vector or cells carrying an empty pBSV2 vector (Fig 7B), indicating that DNA molecules 252 

that contain the pac site are preferentially packaged by ×BB-1 virions. 253 

 254 

Figure 7. Shuttle vectors containing the cp32 pac region are preferentially packaged into ×BB-1 255 

virions. (A) Schematic depicting the headful genome packaging mechanism. (B) After ethanol induction, 256 

×BB-1 virions were collected from CA-11.2A cells not carrying plasmid pBSV2 (No vector), cells 257 

transformed with empty pBSV2, or cells transformed with pBSV2 with the cp32-3 pac site (see Fig 6G for 258 

the cloned pac region). Copy numbers of pBSV2 packaged into ×BB-1 virions were measured by qPCR. 259 

Data are the SE of the mean of three experiments, ***P<0.001. 260 

The cp32 prophages have conserved motifs that occur in a specific arrangement not 261 

found in other DNA sequences packaged by ×BB-1 virions  262 

To identify motif(s) that may be shared between the cp32s and other genomic 263 
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elements that are packaged into ×BB-1 virions (e.g., lp54), we first used an iterative 264 

BLAST search to identify distantly homologous DNA sequences (Fig 8). A non-redundant 265 

list of these diverse DNA sequences were then used as an input dataset for sequence 266 

motif discovery via MEME [49]. All five cp32 isoforms found in B. burgdorferi CA-11.2A 267 

have the same specific arrangement of conserved sequence motifs around the pac region 268 

(Fig 8A and B) and these are conserved in cp32 isoforms across B. burgdorferi (Fig 8C). 269 

However, significant matches to these motifs were not identified in other CA-11.2A genetic 270 

elements packaged by ×BB-1 (Supplementary Data file 1), suggesting that packaging 271 

of non-cp32 DNA may occur spontaneously or through different mechanisms.  272 

The complete or partial arrangement of motifs found around the pac site of B. 273 

burgdorferi cp32 isoforms is conserved in cp32 plasmids and some linear plasmids 274 

originating from several different Borrelia species (Fig. 8C). The iterative BLAST search 275 

also revealed that a diverse set of circular and linear plasmids in a broader set of Borrelia 276 

species share some of the motifs found in B. burgdorferi cp32 isoforms. In total, linear or 277 

circular plasmid sequences from 21 different Borrelia species (both Lyme disease and 278 

relapsing fever spirochetes) had homology to the B. burgdorferi cp32 pac-containing DNA 279 

sequences (Fig 8C). The motifs that are found most broadly, e.g., blue triangle, and green 280 

square, may represent binding sites for conserved host factors that are present in all 281 

these Borrelia species whereas the other motifs may represent protein-binding sites or 282 

regulatory sequences that are specific to given prophage or plasmids. 283 

 284 

 285 

Figure 8. Cp32 prophages have conserved motifs that occur in a specific arrangement around the 286 

pac site. (A) Outline of bioinformatic strategy to identify motifs enriched in the pac-containing DNA 287 

sequence of cp32 isoforms. All B. burgdorferi cp32 isoforms have the same motifs in the pac region. The 288 

cp32 cut site is indicated by the yellow triangle. (B) Sequence logos of the motifs identified in panel A and 289 

schematized in panel C. Nine of the top ten motifs occur at least once in the pac-containing region of cp32 290 

DNA sequences. Motifs represented with right or left facing triangles often occur as direct and/or indirect 291 

repeats. (C) Phylogenetic tree of non-redundant DNA sequences with homology to B. burgdorferi cp32 pac-292 

region identified in panel A. For each clade, the bacterial species and type of plasmid are listed. For clarity 293 

in the figure, bacterial species names have been truncated to a three letter abbreviation consisting of the 294 

first letter of the genus and the first two letters of the species (Borrelia afzelii, Baf; Borrelia andersonii, Ban; 295 

Borrelia bavariensis, Bba; Borrelia bissettiae, Bbi; Borrelia burgdorferi, Bbu; Borrelia coriaceae, Bco; 296 

Borrelia crocidurae, Bcr; Borrelia duttonii, Bdu; Borrelia fainii, Bfa; Borrelia finlandensis, Bfi; Borrelia garinii, 297 
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Bga; Borrelia hemsii, Bhe; Borrelia japonica, Bja; Borrelia mayonii, Bma; Borrelia miyamotoi, Bmi; Borrelia 298 

parkeri, Bpa; Borrelia puertoricensis, Bpu; Borrelia recurrentis, Bre; Borrelia turicatae, Btu; Borrelia 299 

valaisiana, Bva; Borrelia venezuelensis, Bve). There is variability in the motif architecture between 300 

sequences within a single clade; however, for clarity, a representative motif architecture discovered by 301 

MEME is shown [49]. The top two clades of sequences (outlined in black) are dominated by cp32 isoforms 302 

and the cp32 motif architecture, therefore a single motif scheme is shown for these two clades. The region 303 

of DNA and motifs cloned into the pBSV2 shuttle vector is outlined in dashes. 304 

Deciphering the structure of linear plasmids packaged by ×BB-1 305 

After the cp32s, lp54 is a major DNA species packaged by ×BB-1 (Fig 5C). Lp54 306 

is a linear plasmid with covalently closed telomeric ends [50]. De novo assembly of 307 

packaged lp54 reads produces a 67.4 kb contig consisting of full-length lp54 (54,021 bp, 308 

NC_012194.1) flanked by sequences containing tail-to-tail (7,310 bp) and head-to-head 309 

(6,074 bp) junctions (Fig 9A). Read depth for lp54 was >100 for most of the contig; 310 

however, read depth drops precipitously at both tail-to-tail and head-to-head junctions 311 

(Fig 9A), suggesting that the telomeres of lp54 interfere with sequencing.  312 

B. burgdorferi telomeres contain inverted repeat sequences [51] and we identified 313 

the CA-11.2A lp54 inverted repeat sequence as 523TTTATTAGTATACTAATAAA (Fig 9B 314 

and C, boxed sequences). The 52 inverted repeat of the lp54 reference sequence is 315 

missing seven nucleotides and our data extends and completes this sequence (Fig 9B, 316 

underlined). Further, compared to the lp54 reference sequence, the packaged 52 and 32 317 

junction-spanning sequences each encode an additional 18 bp of sequence (Fig 9B and 318 

C). These sequences, although unique at each end (Fig 9D), form perfect hairpin 319 

structures (Fig 9E and F). Overall, these data suggest that lp54 molecules with complete 320 

telomere sequences are packaged into virions. However, whether linear lp54 with 321 

covalently closed telomeres or lp54 replication intermediates that contain head-to-head 322 

and tail-to-tail junctions are packaged is unclear. 323 

 324 

Figure 9. Full-length lp54 with fully resolved telomeres are recovered from ×BB-1-packaged DNA. 325 

(A) De novo assembly of packaged reads produced a 67,405 bp contig with tail-to-tail and head-to-head 326 
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junctions. (B and C) Sequences at the packaged 52 junction (green) or the 32 junction (cyan) are compared 327 

to the lp54 reference sequence NC_012194.1. The conserved inverted repeat sequence 523328 

TTTATTAGTATACTAATAAA is outlined. (D) Alignments of the tail-to-tail and head-to-head junctions 329 

reveals a variable 18-bp sequence in between the conserved inverted repeats. (E and F) Predicted hairpin 330 

structures are shown for each end of lp54. The loop sequence for each hairpin is underlined in panel D. 331 

The de novo assembly approach applied to lp54 was also successful in resolving 332 

the telomeric ends of other linear elements of the CA-11.2A genome, including the linear 333 

chromosome and plasmids lp17, lp56, and lp38 (Fig 10). Additionally, we were able to 334 

resolve left and right telomeres for lp36 (Fig 10), providing yet further evidence that lp36 335 

is not fused to lp28-4.  336 

 337 

Figure 10. Packaged reads resolve the telomeric ends of the linear chromosome and most linear 338 

plasmids in the CA-11.2A genome. Reads spanning tail-to-tail or head-to-head junctions of the linear 339 

chromosome or the indicated linear plasmids form perfect hairpin structures. Conserved regulatory 340 

elements for each telomere are highlighted [52-57].  341 
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Discussion 342 

In nature, Lyme disease spirochetes exist as diverse populations of closely related 343 

bacteria that possess sufficient antigenic variability to allow them to co-infect and reinfect 344 

non-naïve vertebrate hosts [58-69]. Moreover, horizontal gene transfer between Lyme 345 

disease spirochetes has been extensively documented [70-75]. Nevertheless, the 346 

mechanism underlying horizontal genetic exchange among Lyme disease spirochetes 347 

remains undefined. 348 

Horizontal gene transfer between heterologous spirochetes likely occurs in the tick 349 

midgut during and immediately after a blood meal when spirochete replication rates and 350 

densities are at their highest. ×BB-1 replication is also induced in the tick midgut during a 351 

bloodmeal [9, 27, 28] and homologous recombination between cp32 isoforms [15-17] and 352 

the horizontal transfer of cp32s between Borrelia strains has been documented [25]. 353 

These observations implicate ×BB-1 in mediating horizontal gene transfer between Lyme 354 

disease spirochetes.  355 

Our study further implicates ×BB-1 in mediating horizontal gene transfer between 356 

Lyme disease spirochetes. Our sequencing data indicate that ×BB-1 virions package 357 

portions of the entire B. burgdorferi genome, giving ×BB-1 the potential to mobilize 358 

numerous beneficial alleles during the enzootic cycle via generalized transduction. For 359 

example, the circular cp32 prophages are highly conserved across the Borrelia genus 360 

[22]; however, cp32 isoforms contain variable regions that encode outer membrane 361 

lipoproteins such as Bdr, Mlp, and OspE/OspF/Elp, which are known to facilitate the B. 362 

burgdorferi lifecycle [20, 22, 23, 76]. The linear plasmid lp54 encodes the outer membrane 363 

lipoproteins OspA and OspB, which are required for B. burgdorferi to colonize the tick 364 

midgut [77-79]. The outer membrane lipoprotein OspC, which is required for B. 365 

burgdorferi to infect a vertebrate host, is encoded by the circular plasmid cp26 [58, 74, 366 

80]. All these alleles (and many others) are packaged by ×BB-1, which is consistent with 367 

a role for phage-mediated transduction of genes encoding essential membrane 368 

lipoproteins between heterologous spirochetes. 369 

In B. burgdorferi, the linear chromosome is highly conserved as are the circular 370 

plasmids cp32 and cp26 and the linear plasmids lp17, lp38, lp54, and lp56 are 371 

evolutionarily stable [4-6, 16, 81]. However, other plasmids distributed across the 372 

genospecies show considerably more variation and encode mostly (87%) pseudogenes 373 

and are thought to be in a state of evolutionary decay [6]. The plasmids we identified as 374 

packaged by ×BB-1 virions include the cp32s, cp26, lp17, lp38, lp54, and lp56 4the same 375 

plasmids that are evolutionarily stable across the genospecies [4-6, 16, 81]. These 376 

observations suggest that genes encoded on ×BB-1-packaged plasmids are under 377 

positive selection, possibly as a result of transduction between Lyme disease spirochetes 378 

during the enzootic cycle. 379 

In addition to providing evidence that ×BB-1 virions package large portions of the 380 

B. burgdorferi genome, our study provides insight into ×BB-1 virion structure and identifies 381 

virion proteins present in ×BB-1. Using mass spectrometry-based proteomics, we confirm 382 

that putative capsid and other predicted structural genes encoded by cp32s such as the 383 
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major capsid protein P06 are indeed translated and assembled into mature ×BB-1 virions.  384 

Our long-read sequencing studies indicate that ×BB-1 packages full-length linear 385 

cp32 molecules via a headful mechanism using pac sites. The headful packaging 386 

mechanism is used by numerous phages and was first described for E. coli phage T4 in 387 

1967 [82]. After injecting linear DNA into a new host, the phage genome re-circularizes 388 

before continuing its replication cycle. Genes encoded near the ends of linear phage 389 

genomes are subject to copy number variation and recombination as the phage genome 390 

re-circularizes [83]. Our data suggest that the conversion of linear cp32 molecules into 391 

circular cp32 molecules occurs in the vicinity of the erp locus, which could facilitate 392 

recombination with polymorphic erp alleles encoded by other cp32 isoforms in diverse B. 393 

burgdorferi hosts. 394 

In this study, the packaging of specific cp32 isoforms was biased: cp32-3, cp32-5, 395 

cp32-10, and cp32-13 were predominantly packaged while cp32-1 was rarely packaged. 396 

This result is consistent with observations by Wachter et al. where cp32 isoform copy 397 

number and transcriptional activity were not uniform across all cp32 isoforms in B. 398 

burgdorferi strain B31: cp32-1, cp32-3, and cp32-6 were predominantly induced (highest 399 

copy numbers) and had the highest transcriptional activity while cp32-9 was not induced 400 

and was transcriptionally inactive [9]. Variability in the pac region or other regulatory 401 

elements involved in cp32 induction may explain why different cp32 isoforms replicate 402 

and/or are packaged at different rates. 403 

In the intergenic region upstream of the erp loci, we identified a 377-bp region that 404 

contains the cp32 pac signal. Introducing the cp32 pac region to a shuttle vector facilitated 405 

the packaging of the shuttle vector into ×BB-1 virions. Identification of the cp32 pac site 406 

will be useful for the engineering of recombinant DNA that can be packaged into virions 407 

that infect spirochetes, giving ×BB-1 the potential for use as a genetic tool. 408 

After the cp32s, lp54 was the most frequently packaged plasmid. This may be 409 

related to the evolutionary origins of lp54: lp54 contains large blocks of homology with the 410 

cp32s and is thought to have emerged from an ancient recombination event between a 411 

cp32 and a linear plasmid [6]. In addition, lp54 encodes putative phage proteins including 412 

a porin (BBA74) [84] and phage capsid proteins that are highly conserved across the 413 

genospecies [85], which we detected in purified virions by mass spectrometry. While we 414 

observed virions with a distinct elongated capsid morphology, virions with a notably 415 

smaller capsid morphology have been observed after induction in vitro [9, 29, 30]. These 416 

observations raise the possibility that lp54 may be a prophage, although whether lp54 417 

produces its own capsids or relies on cp32-encoded capsids, or if lp54 capsid proteins 418 

assemble with capsid proteins encoded by cp32 to produce chimeric capsids, is not clear. 419 

Our long-read dataset contained reads that spanned head-to-head and tail-to-tail 420 

junctions in lp54. These reads allowed us to define the lp54 telomere sequences; 421 

however, whether full-length lp54 molecules are packaged or at which stage of the 422 

replication cycle lp54 is packaged is unknown. In B. burgdorferi, both the linear 423 

chromosome and linear plasmids have covalently closed hairpin telomeres and replicate 424 

via a telomere resolution mechanism [53, 55, 86, 87]. Examination of a naturally occurring 425 
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lp54 dimer in B. valaisiana isolate VS116 suggests that a circular head-to-head dimer is 426 

produced during lp54 replication prior to telomere resolution and replication completion 427 

[88]. Linear, covalently closed lp54 molecules may be packaged or lp54 replication 428 

intermediates may be packaged. 429 

As obligate vector-borne bacteria, Lyme disease spirochetes live relatively 430 

restrictive lifestyles that might be expected to i) limit their exposure to novel gene pools, 431 

ii) enhance reductive evolution, and iii) favor the loss of mobile DNA elements. A role for 432 

×BB-1 in mediating the transduction of beneficial alleles between heterologous 433 

spirochetes in local vector and reservoir host populations may explain why cp32 434 

prophages are ubiquitous not only among Lyme disease spirochetes, but also relapsing 435 

fever spirochetes. 436 
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Methods 448 

×BB-1 induction. Borrelia burgdorferi B31 or CA-11.2A was grown in BSK-II growth 449 

medium to 7 × 107/mL, transferred to 50 mL tubes and centrifuged at 6,000 × g, 10 min, 450 

35°C. Supernatants were discarded and the pellet resuspended in fresh media to a 451 

density of 2 × 108 cells/mL. 100% EtOH was added to a final concentration of 5% (do not 452 

use 95% EtOH) and incubated at 35°C for 2 hours. The culture was centrifuged at 6,000 453 

x g for 10 min., 35°C. and the pellet resuspended in fresh media to a density of 5 × 107 
454 

cells/mL. The sample was incubated at 35°C for 72 hours followed by filtration through 455 

0.2 µm filter. Samples were stored at 4°C or phage were concentrated using a 10 kDa 456 

MW cutoff filter, replacing culture medium with SM buffer. 457 

cp32 qPCR. Packaged cp32 molecules in DNase-treated supernatants were measured 458 

by qPCR using primers that amplify a conserved cp32 intergenic region between 459 

bbp08 and bbp09 (52-CTTTACACATATCAAGACCTTAAC, 52- 460 

CAAACCACCCAATTTCCAATTCC). Primers that amplify the Bb flaB gene were used to 461 

measure B. burgdorferi chromosomal DNA contamination (52- 462 

TCTTTTCTCTGGTGAGGGAGCT, 52- TCCTTCCTGTTGAACACCCTCT) [89]. Absolute 463 

cp32/×BB-1 copy numbers were determined using a standard curve generated with a 464 

cloned copy of the target sequence. Standard curves were performed in duplicate and 465 

ranged from 1010 copies/well down to 1 copy/well. The lower limit of detection of the assay 466 

is 175 copies/mL with a 1 µL input. qPCR was performed in 10 µl reaction volumes: 5 µL 467 

SYBR green supermix (BioRad), 1 µL primer 1 + primer 2 at 10 µM, 3 µL H2O, 1 ul sample. 468 

Thermocycling parameters were as follows: Step 1: 95° C 1 min, Step 2: 95° C 15 sec., 469 

Step 3: 55° C  30 sec, Step 4: go to step 2, 45 times, Step 6: Melt curve from 65°C to 470 

95°C in 0.5°C increments for 5 seconds. 471 

×BB-1 virion purification. Phages were precipitated using an ammonium sulfate-based 472 

protocol [90] with some modifications. Briefly, cell-free supernatants were filtered and pH 473 

adjusted to 7.5 followed by the addition of 0.5M NaCl. Phages were precipitated by adding 474 

ammonium sulfate (35% w/vol, mix until completely dissolved) and incubated at 4°C for 475 

18 hours. Samples were then centrifuged at 3,000 × g for 10 min at 4ºC. The pellicle on 476 

the surface was collected and resuspended in 1 mL PBS. Where appropriate, samples 477 

were dialyzed using 10-kDa MWCO cassettes against PBS at 4ºC with at least four buffer 478 

exchanges. 479 

×BB-1 virion proteomics. Purified virions (200 µg total protein) were reduced, alkylated, 480 

and purified by chloroform/methanol extraction prior to digestion with sequencing grade 481 

modified porcine trypsin (Promega). Peptides were separated on an Acquity BEH C18 482 

column (100 x 1.0 mm, Waters) using an UltiMate 3000 UHPLC system (Thermo). 483 

Peptides were eluted by a 50 min gradient from 99:1 to 60:40 buffer A:B ratio (Buffer A = 484 

0.1% formic acid, 0.5% acetonitrile. Buffer B = 0.1% formic acid, 99.9% acetonitrile). 485 

Eluted peptides were ionized by electrospray (2.4 kV) followed by mass spectrometric 486 

analysis on an Orbitrap Eclipse Tribrid mass spectrometer (Thermo) using multi-notch 487 

MS3 parameters. MS data were acquired using the FTMS analyzer over a range of 375 488 

to 1500 m/z. Up to 10 MS/MS precursors were selected for HCD activation with 489 

normalized collision energy of 65 kV, followed by acquisition of MS3 reporter ion data 490 

using the FTMS analyzer over a range of 100-500 m/z. Proteins were identified and 491 
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quantified using MaxQuant (Max Planck Institute) TMT MS3 reporter ion quantification 492 

with a parent ion tolerance of 2.5 ppm and a fragment ion tolerance of 0.5 Da.  493 

Packaged ×BB-1 DNA purification. Virions collected from 4-L cultures per replicate were 494 

purified and DNase treated as described above. 10X DNase I reaction buffer (100 mM 495 

Tris-HCl, pH 7.6, 25 mM MgCl2, 5 mM CaCl2) was added to each sample to a final 496 

concentration of 1×. DNase I was added to a final concentration of 0.1 U/1 µL sample, 497 

mixed gently, and incubated at 37°C for 18 h. EDTA was added to a final concentration 498 

of 100 mM followed by SDS to a final concentration of 0.3%. Proteinase K was added to 499 

a final concentration of 100 µg/mL and incubated at 65°C for 20 min. Samples were 500 

extracted twice with an equal volume of phenol-chloroform-isoamyl alcohol (25:24:1) 501 

followed by a single extraction with an equal volume of chloroform-isoamyl alcohol (24:1). 502 

NaCl was added to 200 mM followed by 2.5 volumes of 100% EtOH. After mixing by 503 

inverting the tubes, samples were incubated at -20°C for >30 min. DNA was pelleted by 504 

centrifugation (14,000 × g for 20 min at 4°C), pellets washed with 70% EtOH, and re-spun 505 

for 20 min, at 14,000 × g 4°C. The ethanol supernatant was discarded, and the pellet 506 

gently air-dried followed by resuspension in in Tris-HCl, pH 8. Samples immediately 507 

proceeded to library preparation and sequencing. 508 

Long-read sequencing library preparation. Full-length DNA molecules were ligated with 509 

multiplexing adapters and sequenced directly using the Nanopore MinION platform (FLO-510 

MIN112 flowcell, sequencing kit SQK-LSK112 and barcoding kit SQK-NBD112.24). 511 

Quality control and adapter trimming was performed with bcl2fastq and porechop. Reads 512 

were deposited in the NCBI BioProject database accession PRJNA1059007 and in 513 

Supplementary Data File 2. 514 

Sequence analysis pipeline. Adapter-trimmed long-reads with quality scores g7 were 515 

used to isolate g 5kb reads using Filtlong (v0.2.1). g5kb reads were mapped to the 516 

reference B. burgdorferi CA-11.2A genome (RefSeq assembly: GCF_000172315.2) with 517 

minimap2 (v2.26-r1175) [91]. Primary mapping reads with MAPQ >20 were isolated by 518 

contig, filtered, and converted to final file formats using Samtools (v1.17) [92] and SeqKit 519 

(v2.5.1) [93]. Read statistics for each replicate were graphed and viewed using GraphPad 520 

Prism (v10.1.1). For each contig, de novo assemblies were created using Trycycler 521 

(v0.5.4) [94], which relied on input assemblies from Flye (v2.9.2-b1786) [95], Raven 522 

(v1.8.3) [96], and Minimap2/Miniasm/Minipolish (v2.26-r1175/v0.3-r179/v0.1.2) [91, 97]. 523 

The long-read de novo assemblies were then polished with short reads using Minipolish 524 

(v0.1.2) [97]. The telomeres of the linear chromosome and linear plasmids were manually 525 

identified in SnapGene (v5.3.3), and the hairpin structures were predicted by the Mfold 526 

webserver (http://www.unafold.org/mfold/applications/dna-folding-form.php) [98]. The 527 

terminal ends of the cp32 prophage genomes were predicted using PhageTerm through 528 

the Galaxy webserver (https://galaxy.pasteur.fr/) [47], via input of the g5kb long-read 529 

sequences. Coverage maps of the primary mapping or primary and supplementary 530 

mapping reads were created by mapping g5kb long-reads to the de novo assembled CA-531 

11.2A genome or the reference B. burgdorferi CA-11.2A genome with Minimap2, 532 

converted to final file formats using Samtools, and viewed using R (v4.3.2) and ggplot2 533 
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(v3.4.4). 534 

Pac site cloning and qPCR. The shuttle vector pBSV2 [48] was digested with NotI to 535 

remove the promoter region and re-ligated. The pac region from CA-11.2A genomic DNA 536 

was amplified using primers 52-TGGGTTGTAGAGTGGCTGTG and 537 

52-TCACCACTTGCGTAATTCTTGC and cloned into the NotI site of digested pBSV2. All 538 

vectors were sequence verified by long-read sequencing (Plasmidsaurus) and 539 

transformed into CA-11.2A. Each clone was grown in triplicate to mid-log in BSK, phage 540 

replication was induced with ethanol, virions purified, and DNase-treated as described 541 

above, followed by qPCR in triplicate using primers that target the Kan resistance gene 542 

on pBSV2 (52-CACCGGATTCAGTCGTCACT, 52-GATCCTGGTATCGGTCTGCG, 120 543 

bp product).  544 

Identification of conserved motifs in B. burgdorferi cp32 isoforms. The roughly 430 545 

nucleotides upstream of the erp26, erpK, erpG, ospE and erpK genes of the B. burgdorferi 546 

CA-11.2A cp32 isoforms cp32-1, cp32-3, cp32-5, cp32-10 and cp32-13 respectively were 547 

used as queries for a discontinuous MegaBLAST against the NCBI Nucleotide collection 548 

database. The results from these first five BLASTs were combined and sequence hits 549 

with more than 80% identity were removed with CD-HIT [99]. The resulting representative 550 

sequences were used as queries for discontinuous MegaBLAST against the NCBI 551 

Nucleotide collection (nt) database, and sequence hits with more than 80% identity were 552 

removed with CD-HIT [99], and this process was iterated twice more for a total of three 553 

MegaBLAST searches with a representative list of 80% identity query sequences. The 554 

sequence hits from the final MegaBLASTs were combined and sequences with more than 555 

95% identity were removed with CD-HIT [99], generating a list of 178 sequences. These 556 

178 sequences were used as an input dataset for the MEME webserver [49], with custom 557 

parameters of <Maximum Number of Motifs= set to <10=, and <Motif Site Distribution= set 558 

to <Any number of sites per sequence=. MEME identified motifs in 160 of the input 559 

sequences. The Position Weight Matrices (PWMs) of the 10 motifs identified by MEME 560 

were used as inputs for FIMO [100] to search for significant sequence matches (q-value 561 

< 0.001) in the B. burgdorferi chromosome and the B. burgdorferi cp32-1, cp32-3, cp32-562 

5, cp32-10, cp32-13, cp26, lp17, lp54 plasmid DNA sequences. The cp32 isoforms had 563 

nine highly conserved sequence motifs, some motifs present in multiple copies and 564 

arranged in a conserved architecture. The cp26, lp17, lp54 and chromosome sequences 565 

did not contain this conserved architecture of nine motifs (see Supplementary Data file 566 

1). The sequence logo of each motif was generated by taking the sequence fragments 567 

that MEME used to make each PWM, and submitting these sequence fragments to the 568 

WebLogo 3.0 webserver [101]. The iterative discontinuous MegaBLAST searches had 569 

introduced eukaryotic sequence fragments into the list of 178 non-redundant sequences, 570 

suggesting that the search likely reached an endpoint and found most of the related 571 

sequences in the NCBI database. To generate a phylogenetic tree, eukaryotic sequence 572 

fragments were first removed, and the remaining 149 non-redundant sequences were 573 

aligned using the MAFFT webserver [102], with custom parameters of <Direction of 574 

nucleotide sequences= set to <Adjust direction according to the first sequence=, and 575 

<Strategy= set to E-INS-2. The resulting aligned sequence fasta file was used as input for 576 
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the IQ-TREE webserver [103, 104], with the following command-line: path_to_iqtree -s  577 

149_aligned_Borrelia__plasmid_sequences.fasta.fasta -st DNA -m TEST -bb 1000 -alrt 578 

1000. TreeViewer was used to display the phylogenetic tree [105]. 579 
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