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Abstract

Parkinson’s Disease (PD) is a progressive neuroaeggve disease that leads to debilitating
movement disorders and often dementia. Recent mugdéncluding identification of specific
peripheral T-cell receptor sequences, indicateadaptive immune response is associated with
disease pathogenesis. However, the propertiescefl3-in the brain regions where neurons
degenerate are uncharacterized. We have analyeeddftities and interactions of T-cells in PD
in post-mortem brain tissue using single nucleug\RBquencing, spatial transcriptomics and T-
cell receptor sequencing. We found that T-celthesubstantia nigra of PD brain donors exhibit
a CD8+ resident memory phenotype, increased ckxpnsion, and altered spatial relationships
with astrocytes, myeloid cells, and endothelialscéNe also describe regional differences in
astrocytic responses to neurodegeneration. Ounfischominate potential molecular and
cellular candidates that allow a deeper understgnali the pathophysiology of
neurodegeneration in PD. Together, our work repitese major single nucleus and spatial
transcriptional resource for the fields of neurcategration and PD.
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Introduction

Parkinson’s disease (PD) is a common neurodegéredisease, with an incidence exceeded
only by Alzheimer's disea$ePD neuropathology is characterized by the aggesgsf alpha-
synuclein in neurons known as Lewy bodies and Leenrite$, and a loss of dopaminergic
neurons in the substantia nigra ($NYhile current treatments alleviate PD symptdrtteey do

not slow PD progression, and a better understarafittge disease pathophysiology is needed to
identify therapeutic strategies.

Neuropathological studies have previously iderdiitoimmune features associated with PD,
including an increase in T-cell populations in 8¢ of PD patienfs’. T-cells in the peripheral
blood recognize and proliferate in response tolimeasynuclein antigen challenge in PD
patient$, and an association between neurodegeneratiomandglial activation is well-
established in other neurodegenerative diseasbsasutlzheimer®®, but little is known about
these phenomena in the PD brain. The brain micicamwent in the PD SN is considered to be
“pro-inflammatory™®, and pro-inflammatory microglia may contributettie pathogenesis and
neuronal death in PR It has also been suggested that microglia aneased in PD by
exosomes secreted from neurons with alpha-synuatgiregates, and astrocytes have been
shown to adopt abnormal phenotypes in PD neurofmghohat could be associated with
antigen presentation pathwd¥ys’ Thus, the interaction between brain microenvirenntells
and cells of the immune system is worth furtheestigation.

In animal models, mice that overexpress alpha-dgimuexhibit dopaminergic
neurodegeneration following a bout of enteric itifag, and this is associated with a substantial
entry of peripheral T-cells into the brain® A presentation of mitochondrial antigens has also
been implicated in adaptive immunity in animal med# PDH*8

Together, the clinical and basic data point towamsmportant role for infiltrating T-cells in the
brain during PD pathogenesis. However, previoudiesthave mainly focused on the
characterization of peripheral T-cells in the ble@od| cerebrospinal fluld?> leaving the role T-
cells play centrally in the human SN in PD unknowdditionally, many studies characterizing
T-cells of the PD brain rely on IHC and/or murirea?*2° and questions of transcriptional
profiles of T-cells in the human PD brain remaimmswered. As such, there has also been no
effort to compare peripheral and CNS T-cells in PD.

The goal of this study is to create a resourcdfoell and glial pathology in the human
postmortem brain. This allows us to characterieegpthenotype of the adaptive immune response
in human PD brain, and the relationship betweerrakand peripheral T-cells and other cells in
the brain microenvironment, mainly focusing on @sjtes and microglia/myeloid cells. To do

so, we have analyzed human brain tissue samplestiie SN and the cingulate cortex,
comparing control and PD. We have used multiplérgedge technologies paired with
advanced computational techniques, including méde@nalysis of one of the highest numbers
of PD brain T-cells that have been reported in e study cohorf§3*
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Together, by studying one of the largest numbetsuaian PD T-cells in the brain to date, we
present several conclusions. First, we found theglls of the PD SN are mainly CD8+, or
cytotoxic, and display a tissue resident, clonakpanded phenotype. Second, we find that not
only are T-cells increased in the perivascular spas previously report&dbut also in the

brain parenchyma. We also characterized the phpestyf astrocytes in the SN and cingulate
cortex and found marked differences between thedégmns. Importantly and unlike the
cingulate cortex, PD reactive astrocytes showededsedViT3 expression in the SN, a gene we
previously showed to be neuroprotectfvéiso, we employed spatial transcriptomics and
described significant changes in the spatial catiat patterns between T-cells and astrocytes.
Finally, we performed computational analyses to imate candidate molecular and cellular
interactions that may perpetuate neurodegeneratiBD. Altogether, our results uncover novel
insights into the potential roles of glial and Tteathology in PD.

Materials and Methods

Human Subjects and Brain Tissue

All study protocols were approved by Columbia Unsity Irving Medical Center Institutional
Review Board. Postmortem cingulate cortex or SNtispens frozen during autopsy from
control (individuals whose brains did not show gigant neuropathology) and PD/DLB were
obtained from the New York Brain Bank. The tissueswlissected by a board-certified
neuropathologist (OAD), or under the supervisioma dbard-certified neuropathologist. Forty-
four cases were selected for snRNAseq and TCR senpgg each with RNA integrity numbers
of >7, and ten of these were selected for spatiaktriptomics analysis. Cortical wedges,
excluding subcortical white matter, or SN tissueasuwging ~ 5 x 4 x 3 mm were dissected on a
dry ice cooled stage and processed immediatelgssitied below. The demographics of the
cases used are providedTiable S1.

TCR Sequencing

To prepare our TCR libraries, we followed the iR#piee Bulk Reagent Universal User Manual
(V20200818). The starting material was 500ng RNAgaenple. We used 9 barcodes - HTAIvc
kits (HTAIvc01, HTAIvc02, HTAIvc03, HTAIvc04, HTAIe05, HTAIvc06, HTAIvcO7,
HTAIvc08 and HTAIvc09). We pooled one library fraeach of the barcoded kits together for
each sequencing run. The libraries were pooled 10& PhiX spike-in and sequenced with
NextSeq High Output 300 Cycles kits (lllumina) anldlumina NextSeq 550 (read 1: 155
cycles; read 2: 155 cycles). Five total sequenaing were conducted.

TCR Data Processing and QC

Raw data processing was performed in accordanteSiits et al., 208 As such, raw paired-
end fastq files were demultiplexed based on thexmad 6-nt barcode sequences added during
library construction. FLASH 1.2.11 (flash —M 250)38vas used to merge the paired reads,
which were aligned to the human genome (GRCh3Tgusie Burrows-Wheeler Aligner (bwa-
memY®°. Reads mapping to the T-cell receptor loci (TRAJ associated with V- and J-cassettes
were extracted and translated in silico in all ¢hmeadings. Reading frames containing a
C...FGXG amino acid motif that was uninterruptedastop codon were identified as productive
CDR3 amino acid sequences. For each demultiplésathple, all V- and J-cassettes were then
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reference-corrected and the number of reads idehtifith each unique combination of V- and
J-cassettes encoding a CDR3 amino acid sequeneecawented. Further, saturation levels for all
sample libraries were assessed using the estinaatieaion function from the RNAse3¢C
package in R, at a depth of 200 and using 10 eepksaturation curves were plotted for each
sample Table S2).

Calculating Entropy in TCR Data

We used Shannon entropy as a measure of divensityri TCR datas&t*! for each of the
components of the clonotype (CDR3 amino acid secpievi] combo, whole clonotype, and the
difference between the whole clonotype and thednilm), using their reads as a direct measure
of their frequency in the repertoire. To do so,ftiiwing equation was used:

H(X) = = ) P(x)log,P(x)

i=1

where H is Shannon entropy, X is the clonotype, taedorobability of X was calculated from
the frequency of reads for the given clonotype Xhim entire repertoire of a given sample. We
were able to collect entropy values for eaample repertoire, for each clonotype component.
We then averaged these entropy values for eacbrregid condition for comparison.
Comparisons between these average values wereateddising linear regression, with formula
Entropy ~ Region + Condition.

CDR3 Sequence Clustering and Clonal Expansion

To determine which motifs defined the sequencesimiTCR repertoire, we used GLIPH2o0
extract conserved motifs across CDR3 sequencesapMeour CDR3, V, and J sequences and
their number of reads into the gliph2 function wd#fault parameters. 16,875 global clusters
(one amino acid substitution at a location in ausege is allowed) and 3,103 local clusters
(strings of amino acids with no substitutions) welentified. The clonal expansion metric
calculated by GLIPH2 represents the likelihood given cluster’s depth being generated by
random chance, as measured through permutatiangesb report these values, we subtracted
the clonal expansion scores from 1 so that higloerat expansion scores represent a higher
likelihood and lower scores represent a lower iile@d of clonal expansion within a cluster.

To calculate clonal expansion scores for individiwdljects, we first filtered our clonotypes by
counting the occurrence, or number of reads, di eimotype. We calculated the mean and
variance of each clonotype occurrence across adimia. We then filtered out clonotypes with a
mean occurrence less than 1, and variance les2tHdre filtered-out clonotypes served as our
background. This was a necessary step for randonplsey, as the majority of clonotypes in
these repertoires comprised just one or two readsreade it difficult to generate interpretable
data.

To generate a quantitative measurement of clonresion, we performed random sampling of
1,000 clonotypes from the filtered data and dispdaghe histogram on a log scale. The
histogram revealed two distinct distributions: Baekground distribution (a right-skewed
distribution which contained clonotypes that oconly a handful of times but are abundant by
nature), and the signal distribution (a left-skewletribution which contained clonotypes
occurring at far higher frequency and thus morelyiko be actively involved in clonal
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expansion). To extract the signal clonotypes, wgiired the log frequency of the clonotypes to
be greater than 3. We then extracted the signabtypes from each patient and generated 100
random distributions as described above and peddranKS test, which generated a D-value
that we collected across all patients and groupseéd on condition and brain region. We
directly compared each subject’'s D-value, groupelbrhain region and condition, by unpaired t-
test. We repeated this 100 times to generate 2@0ues to further test the hypothesis of
increased clonal expansion. The code used foattas/sis can be found at:
https://github.com/dalhoomist/T-cell_and_glial_patdygy in_PD.

Extraction of Nuclei and snRNAseq Procedure

Nuclei were isolated from frozen postmortem brdiires in accordance with established
protocolé®*® Libraries were prepared using Chromium Next GERg® Cell 3' Reagent Kit
v3.1 (PN 120237), with Chromium Single Cell A CIjt, 48 runs (PN 120236). Target cell
recovery was 10,000 cells per sample for cingudataples and 20,000 cells for SN samples.
The final number of nuclei was calculated from élverage of three counts on a Countess Il or
Il (ThermoFisher©) using DAPI as a nuclear markiére index plate used was 10X Dual Index
Kit TT Set A (PN 1000215). Chromium Next GEM Sin@lell 3™ Reagent Kit v3.1 user guide
(CG000315 Rev C) was followed/e used 10X Chromium v2 chemistry.

Sequencing and raw data analysis

Sequencing of the resultant libraries was perfororedn Illlumina NOVAseq 6000 platform V4,
150 /bp paired end reads, 150 cycles. Read alignmenperdsrmed using the CellRanger
pipeline (v6.1.2-10X genomics) to reference GRCh3B3.(refdata-cellranger-GRCh38-1.2.0
file provided by 10x Genomics). Count matrices wggaerated from BAM files using default
parameters of the CellRanger pipefh&iltering and QC was performed using Decdrittith
default parameters, for the cingulate datasetCeilBendef for the SN dataset. CellBender
(version 0.2.0) was run to remove ambient RNA ik addition of the '-cuda’ flag to expedite
the processing. Parameters were set with an expeeliecount of 10,000, total droplets included
at 30,000, FPR (false-positive rate) at 0.01, alehming rate of 0.0001, utilizing 150 epochs.
The total runtime for each sample ranged from 3@uteis to 1 hour, with acceleration achieved
through the use of the NVIDIA A5000 GPU. Decontaation of background was not necessary
in cingulate samples. Nuclei with percent readgnaig to mitochondrial genes >14% were
excluded. Genes were filtered by keeping featurds »500 counts per row in at least 100 cells.
Doublets were identified using scDbIFintfamd then removed.

Pre-clustering and clustering and classification of nuclei

Preclustering of nuclei was performed using Sesiisttared nearest neighbor smart local moving
algorithm. First, data was normalized using SCTiams'"*® regressing out percent
mitochondrial genes and donor. Data integrationsecdonors was achieved using the
Harmony® package which effectively regressed out donorcesfeHarmony embeddings were
used in the FindNeighbors step. Elbow plots bageB®@A for each data set were used to
determine optimal number of principal components] #he Clustree packatjevas used to
determine optimal resolution values for the Find®#us() step. Seurat'sFindAlIMarkers()
function was used to determine basic cluster maykenich were then used to assign broad
lineage identities to each cluster (astrocyte, a@unligodendrocyte, OPC, myeloid, endothelial,
vascular, T-cell). To assist with cell type subdige assignment, we employed EnrichR
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enabling us to garner information from multipleatsses based on our representative genes.
Cingulate cortex neurons were assigned in line Rihyani et. al 2023 Nuclei that did not
conform to cell types were presumed to be doulbletstifactual noise and removed. The entire
process was iteratively repeated for each lineagerhove aberrant cells and to assign
subclusters, or sublineages/subtypes, within aaehge/cell type.

Differential gene expression analysis

To compare differences in gene expression betwBeand control for each cell type, we used
limma> within each lineage cluster. We controlled for oigrage, and sex in the model formula.
Thresholds for most lineages were counts greaser 4hin at least 6 cells, and for lineages
containing less than 1,000 cells, the thresholdlesasred to counts greater than 2 in at least 5
cells. Our dataset did not include any separatghlat Only genes with p-values < 0.05 were
carried through to downstream analyses.

Gene set enrichment analysis and gene ontology analyses

Packages fgs&aand Pathfind® were used to determine gene sets enriched within o
differentially expressed genes for each cell tyxedifferentially expressed genes along with
their logFC and adjusted p values were used as ingihe run_pathfindR function, using the
KEGG genesets. Parameters specified were 0.0 aslfsted p value threshold (using the
adjusted p value output from limma DGE analysighimum gene set size 5, and maximum
gene set size 500. The cluster_enriched_termsifumafas run, with default parameters, to find
representative pathways and filter out irrelevambformative pathways. Using the fgsea
package, we compared our T-cell lineage to a CD8enany effector gene sel §ble S6). We
compiled this geneset using marker genes fromitérature®>2 All genes in the T-cell
sequencing object were assigned a logFC valueghr8eurat’'s FindMarkers function, using
PD as ident.1 and Control as ident.2, with pararadtgfc.threshold, min.pct, and min.diff.pct
set to -Inf to prevent filtering/removal of any g@sn These genes, ranked by logFC, were input
into the fgsea function with default parameterstrialized enrichment scores and p values were
reported.

To construct upset plots, we used the Up&gpBckage. All myeloid DEG data frames from
limma voom were separated into increased (logF@n@)decreased (logFC<0), and lists of
increased and decreased DEGs were input sepairdteine fromList function before running
the upset function with default parameters.

Hierarchical Poisson factorization

We used the scHPF pack&Yyfer Python to determine interpretable factors imithur SN
snRNAseq dataset. The scHPF command line workflawarises three fundamental stages:
"scHPF prep," "scHPF train," and "scHPF scorethik"scHPF prep"” phase, the molecular
count matrix is utilized to generate a matrix mafke and a gene list text file. The parameter “-
m” was set to 10, filtering genes to include otigde present in 10 or more cells. In the "scHPF
train" stage, our SN dataset was aligned with eatlltype, employing a candidate parameter
range from K = 7 to 17 with a step of 2. Subsedyeftr the extraction of disease factors within
each cell type, the training was conducted withakies of 3, 5, 7, 9, and 11. Finally, in the
"scHPF score" phase, the trained models for eacalle were employed to assign gene scores
to individual factors, resulting in the generatmfrranked gene lists. We then selected K to
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prevent significant overlap in gene signatures agrfantors. This was mainly done by observing
the factors expressed by each cell type, and thalle lending itself to the most interpretable
factors (gene sets following canonical gene expragsatterns).

Pseudotime analysis

Determination of single cell trajectories was perfed using the SlingsHdtpackage in R. First,
differentially expressed genes between fibrous-dilkd protoplasmic astrocytes were determined
using Seurat’s FindAlIMarkers function on the fibsslike lineage, and subsetting the list of
genes to those with an average log2FC greatert2afonly positive log2FC values were
accepted). We first ran Potential of Heat-diffusionAffinity-based Trajectory Embedding, or
PHATE®, dimensionality reduction on the SN astrocytesawostruct PHATE embeddings using
the aforementioned DEGs.

We added the PHATE embeddings to our original dlgad ran the slingshot function. As
parameters for slingshot, we used the sublineageéofpasmic and fibrous-like assignments)
meta data for the cluster labels, and the PHATEeeldimgs as the dimensional reduction. All
other arguments were used with their default pararseRidge plots were then constructed
using the “slingPseudotime_1" output column, ad aglthe preexisting sublineage and
condition meta data columns in the original object.

Spatial transcriptomics

Following 10x Visium Spatial Protocols — Tissuegmation Guide (CG000240), OCT
embedded tissue was scored to the size of thereagteia targeting the SN. One 10 pm section
was mounted on each capture area of the Visiura.slidsues on the slides were fixed using a
methanol-containing buffer as per the 10X Visiummoed, stained with H&E or antibodies
NeuN, GFAP, and DAPI (s€kable S10 for antibody description) as per the 10X protdool
Immunofluorescence Staining & Imaging for Visiuma8al Protocols (CG000312), and then
imaged. Imaging of whole slides was done at 20Xmifegtion on a Leica DMI8 Thunder
microscope. After imaging, the slides were de-celigmped and the tissue was permeabilized for
11/ 'minutes (which was empirically determined to yib&bt results based on the Visium Spatial
Tissue Optimization Slide & Reagent Kit PN-1000188 detailed in the protocol provided in
document CG000238_RevD available in 10X demonstratetocols). The remaining steps
were conducted according to the manufacturer'sopmtto prepare the libraries. Briefly,

libraries were prepared using Visium Spatial Gexgréssion Slide & Reagent Kit, 16 reactions
(PN-1000184). Visium Spatial Gene Expression Real§is user guide (CG000239 Rev G)

was followed. The libraries were sequenced on NGA¢gAPaired end dual-indexed sequencing).

The spatial transcriptomics (ST) samples were pegpasing 10X Genomics Space Ranger
(version 2.1.0) count commands, accompanied by lieyliin & Eosin (H&E) images in TIF
format and a manually-aligned JSON file, gener#tmoh Loupe Browser (v7.0) with raw TIF
images of the tissue. The loupe alignment JSONwds inputted into the loupe-alignment
argument in Space Ranger along with its respedtivemage file, FASTQ reads, and slide
numbers. The reference genome used for alignmenbui#t using the Space Ranger function
spaceranger mkgtf with GRCh38 as the assembly asdrible 91 for the transcript annotations.
All other parameters set to default settings.
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ST object preprocessing and quality control

The number of counts per spot per ST sample is showig. S5a-j. The plots of ST
experiments shown iRig. 6a, S5 andS6 were generated using Seurat’'s SpatialFeaturePdbt an
SpatialDimPlot functions. A total of 10 samples &vanalyzedTable S1). First, any spots with
zero counts were removed and spot-level gene esipres/as normalized using SCTransform in
Seurat.

Cell type deconvolution

Deconvolution using RCTH was used to determine the proportion of each dédfaell type in
each ST spot from our data. As a reference, we thgedormalized counts matrix and nUMI
from our SN snRNAseq object with annotated celtdiges and sublineages. Queries for RCTD
were generated using coordinates from the “imagéd™gow” columns in the Seurat object,
normalized counts, and nUMI for each sample. Tinetion run.RCTD was run with parameter
doublet_mode="full’. Otherwise, default parameterse used.

Spatial cross-correlation

To determine how different cell types were coresdiatvith one another on a spatial plane, we
implemented spatial cross-correlation anal{s¥sFor these analyses, we first created adjacency
matrices for each sample using the getSpatialNeightoom the MERINGUE packaffeto

denote which spots were neighbors.

To avoid false neighbor assignment of nearby tledis were not true neighbors (e.g., separated
by a break in the tissue), adjacency matrices Vuestecreated using all spots, whether in tissue
or not, as listed in the Space Ranger “tissue_ipasit csv output file. Next, all spots assigned as
“in_tissue” were kept for downstream processingl e rest were removed. This way, spots
that were not directly next to each other wouldnigk being labelled as first-order neighbors.
RCTD cell-type enrichment values per spot, alonidp wach sample’s corresponding adjacency
matrix, were combined to create spatial cross-tirom metrics by matrix multiplication. We
used the same principles employed by MERINGEpatial cross correlation function,
however, due to the large sizes of our input megrispatial cross-correlation was implemented
by matrix multiplication in Tensorflo%f to expedite the processing time. Specifically, Izl
measurement of spatial cross-correlation involvagtiplying two large matrices and obtaining
the diagonal elements of the resulting matrix. $peed was further enhanced by utilizing the
Einsum function in the TensorFlow package, whidbved for element-wise computation. The
code is available at: https://github.com/dalhooffisell_and_glial_pathology_in_PD.

Spatial transcriptomics clustering

To assign spatial clusters, we employed the R mrcBayesSpaék We first processed our data
with the spatialPreprocess function, using 7 ppatcomponents and 2000 highly variable
genes for PCA, with log.normalize set to TRUE. V8edithe gTune function, evaluating g
values between 2 and 10, and assessed the subisgBiatrio determine the optimal number of
clusters, g, defined by the elbow plot inflectiarirg (Table S1). We then used the spatialCluster
function on the SCT counts for each sample, usiegdp 7 principal components, error model t,
and 1000 MCMC iterations with 100 MCMC iterationkided as a burn-in period. All other
parameters were used in their defaults.
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Additionally, we sought to further classify eackyion of the “Surrounding_Tissue,” or all non-
nigral area. We first merged all ST objects togetistng scCustomize and normalized them
using scTransform, all as previously describedunsmRNAseq processing methods. We
extracted all 2000 variable features from the S€3ag. We then returned to our original objects
(split by sample), and derived the spot-level gex@ession values for each of the previously
defined variable features. We then ran a correlatst using the “cor” function of the stats
package, and generated a heatmap using the ph&&paakage in R, using Manhattan distances
and the ward.D clustering methded. S6k).

Gene set enrichment analysis in spatial data

To determine which cell types were most correlatét the Nigra and Surrounding Tissue, we
employed the previously described GSEA with thekpge fgsea in R. We determined DEGs for
each spatial region using limma voom, as describede. By using each cell type’s DEGs
(logFC>0.2; positive logFC only) as a geneset, wapied ranked genes from each region.

We also measured the spot-level enrichment valwesur T-cell disease factor. We employed
the fgsea package as described above, comparihgpats gene expression to the top 200
ranked genes from the T-cell disease factor.

Immunohistochemistry and histology

To validate our findings that T-cells assume augs®sident memory (TRM) phenotype in
Parkinson’s disease, we performed immunohistochartaining for various TRM-specific
marker§®"°in postmortem control and Parkinson’s human bsairtions, 7 mm thick (for
antibody description, séeable S10). The SN was analyzed in transverse sectionseof th
midbrain at the level of the red nucleus. All immstains were conducted on a Leica© Bond
RXm automated stainer. For chromogenic DAB starggneric IHC protocol was employed as
per manufacturer protocols. Standard deparaffimaand rehydration steps preceded antigen
retrieval in Leica ER2 (Cat. N@&R9640) antigen retrieval buffer for 10-20 minugesording to
manufacturer protocols. Then, a peroxide block agdied for 10 minutes followed by three
wash steps using bond wash solution (Cat. No. ABR5® one-hour incubation in a blocking
buffer in 10% donkey serum containing PBS-basetebptreceded antibody labeling for 1 hour
at ambient temperature. This was followed by thvash steps after which the Post Primary was
dispersed for 8 minutes, followed by three washssfwior to the Polymer being dispersed for 8
minutes, followed by another three wash steps.slides were then treated with deionized water
for one minute prior to incubating in Mixed DAB meéd for 10 minutes followed by three
washes of deionized water. Slides were stained Métmatoxylin for five minutes followed by a
wash with deionized water, then Bond wash solugiot a lastly deionized water wash. For
multiplexing immunostains using antibodies raisedaon-overlapping hosts, we used a generic
immunofluorescence protocol. Slides were bakedGh &C oven for a minimum of 2 hours. The
following protocol was then used: After a dewaxstgp, incubation in BOND Epitope Retrieval
Solution 2 (Cat. No. AR9640) for 20 minutes wasdufe heat-induced epitope retrieval. Next,
the slides were washed in 1X PBS before washingetwi Bond Wash Solution (Cat. No.
AR9590) — 10 minutes/wash. Next, they were incubatel 0% donkey blocking serum for 60
minutes followed by the primary antibody dilutedolocking buffer for 60 minutes. After three
washes, the slides were incubated in the secomualityody containing buffer for 60 minutes.
After three washes, a DAPI containing mounting solu(Everbright TrueBlack Hardset
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Mounting Medium with DAPI, Cat. No. 23018) was usedabel nuclei and quench
autofluorescence prior to cover-slipping. A voluaidl50 ml/slide was used for all steps. All
steps were conducted at ambient temperature.

Brightfield images were acquired with a Leica ApdtBM™ slide scanner under 20X objective.
All immunofluorescent images were acquired on tee& Thunder imager DMi8. Images were
acquired at 20X using a Leica K5 camera. Leica Witsns LAS X software was used for image
capture. Tiles covering the cingulate and SN wakern and stitched. Leica Thunder instant
computational clearing was used to remove out @igdight.

Quantification of IHC

All image analysis was performed in QuPath 6"4&nnotations detailing the cingulate,
peduncle or SN were manually drawn. To detect oceltsused the “cell detection” function
under the analysis menu, with DAPI as the Deted@lbannel. We modified the background
threshold per image to eliminate non-specific detas. We then trained an object classifier to
classify the detections for the different chann€taining data was created from each image to
delineate cells that were positive for the speafiigens in question. One classifier per channel
was trained by calling the “train object classifiemction with the following parameters: type =
Random Trees, measurements = Cell: Channel X stwéxiation, mean, max, and min
measurements for the channel in question. To iserda accuracy of the classifier, additional
training annotations were created on the imagei@stion until the classification results matched
the impression of the observer. Once a classifés trained for each channel, “create composite
classifier” was called to create a classifier cstisg of multiple individual classifiers, one for
each channel on the image. Classifiers were trdimreglach image separately. For the DAB
stains, positive cell detection was used by detgatptical density sum to detect nuclei for
CD8+ cells. An object classifier was again traibgdising the “train object classifier” function,
with the following parameters: type=Random Treesasurements = all measurements, and
selected classes= CD8+ and CD8-. The number «f ickdhtified as CD8+ were then normalized
by dividing by the area of the annotation in whilsh analysis was done. CD103 quantification
was also performed. The numbers of CD103+ celtaenSN were counted manually by two
board certified neuropathologists (OAD, JEG). Thements were then divided by the area of the
respective region. All statistical analyses wenedtated in GraphPad® Prism 10. One-tailed or
two-tailed unpaired t-tests were used to compare$€bntrol (Fig. 3, Fig. S7), as indicated in
the figure legends. One-tailed t-test were usechwhe had a prior hypothesis informed by the
transcriptomic data.

Statistical testing

Statistical testing, aside from IHC analyses abwsere conducted using R version 4.2.2. Linear
model regression analyses seefiim 1c, Fig. 6¢, andFig. Sle were conducted using the Im
function of the stats package. Prior to linear nhoelting, data were tested for normality using
the shapiro.test function from the stats packadle default parameters. Wilcox testing seen in
Fig. 1f was conducted using the wilcox.test function m $kats package with default parameters.
T tests, as seen kigure Slc used the t.test function from the stats packageri@a Welch Two
Sample t-test, with the alternative hypothesis ¢pémat the true difference in mean between
group Control and group PD is less than 0. Asymptato-sample Kolmogorov-Smirnov seen

in Fig. 2d and2h were run using default parameters in ks.test fondtiom stats package.
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Statistics comparing PD to control férg. 3 andFig. S7 were done using GraphPad® Prism 10
using one-tailed unpaired t-tests.

To determine modality as seenfifg. Sli, the function Modes from LaplacesDenitR

package was used on each distribution of clonahesipn scores. Further, we ran an asymptotic
two-sample Kolmogorov-Smirnov test on the distribas using the ks.test function from the
stats package with default parameters.

Figure Generation
All figures were created with Biorender.com, or GlMersion 2.10.

Results

T-cell receptor sequencing data reveals clonal expansion in the substantia nigra
of Parkinson’s disease subjects

The numbers of T-cells are increased in the SNibjests with PD° and the cortex of Diffuse
Lewy Body Disease (DLBDBY. To examine whether T-cells in the PD/DLBD braispiay
clonal expansion and/or increased clonal diversigycompared the T-cell receptor (TCR)
repertoires in PD/DLBD and control samples usiagscriptomics and TCR sequenciifig(
1a) in 44 brain donors.

We compared TCR repertoires in the SN to thoskercingulate cortex, a region commonly
containing Lewy bodies in advanced PD with demefRlaD) and DLBD. We chose the
cingulate cortex in PDD/DLBD because it exhibitsireglegeneration, but to our knowledge has
not been reported to display increased T-cellbése disorders. We analyzed a total of 44
samples from 44 patients from either cingulateecodr SN (sed able Sl for tissue
demographics. Note, we did not have paired SN argltate samples in our cohort. For
simplicity, we refer to cortical PDD/DLBD as PD tiee forward.

Alpha and beta chains of TCRs are highly correftethd here we sequenced the TCR alpha
chain Fig. 1b). As a quality control step, we determined thhliladaries were fully saturated,

with adequate read depths and numbers of sequdataxted rather than producing exorbitant
numbers of reads on a small number of sequei@®d S2). We first compared the number of
unique clonotype repertoires in PD and control 8N @ngulate using a linear model. There was
a significantly higher number of unique clonotype®D than control in the SN, but no
significant difference in the cingulat€if. 1c). We were also interested in the CDR3 sequences
that were shared amongst individuals (global seces}i. We identified some overlap among
brain regions and conditions in these global CD&isncesHig. Sla), however most global
CDR3s were of low abundandeig. S1b). Still, SN PD showed more global CDR3 sequences
compared to control$={g. S1c).

We next assessed Shannon entropy levels in outogps which, through calculating the
probability of each CDR3 sequence, determined iersity of each repertoifé(see methods
and supplementary results), and we confirmed isee&ntropy in the SN over the cingulate
(Fig. S1d-e). Together, these data all indicate that theraramee TCR sequences in the PD SN
than compared with the cingulate cortex.
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To determine if T-cells show features of clonalaxgion in PD, we plotted the frequency of
TCR clonotypes at a given read depth against @ depth Eig. 1d-€). As expected, most
clonotypes were of low read depth, which is coesistith previous work'"> Interestingly, we
found a significant increase in the proportion afstrabundant clonotypes (defined as log10
normalized read depth greater than -6) in PD SNpaoed to control SN. This was not observed
in the PD cingulate cortex. Together, these datzate that PD subjects possess more
clonotypes that are relatively more abundant inSNe consistent with clonal expansion.

As another measure of clonal expansion, we dedsedasure that leverages the global and
local distributions of abundance of each repertdite patient-level clonal score essentially
compares the deviation of the observed clonotyp@@ddnce from a hypothetical random
distribution derived from the entire dataset (sethwods). For each patient, we compared the
deviation of the repertoire distribution from adam distribution using a Kolmogorov-Smirnov
test, and then compared the resulting D-values@tlexpansion scores) across conditions and
regions. We found increased clonal expansion irv&Bus control SN but not in the cingulate
cortex Fig. Sle). Further, in assessing the p value distributromf100 repetitions of testing,
the data showed a consistent trend of significamtiee SN, and insignificance in the cingulate
(Fig. S1f-g). Together, these data further support that Tsclbw features of clonal expansion
in the PD SN.

In the periphery, T-cells that recognize alpha-sjgin have a broad diversity of TCRs and no
public clone& As blood samples were not acquired from the sttbjerior to death, we could

not directly identify which peripheral TCR sequesibad been expanded in the brain. To
analyze the similarity amongst TCRs in our datasetemployed GLIPH? analysis to cluster
CDR3 based on amino acid features homology. Thasysis generates clusters/motifs of CDR3
sequences that can have members derived fromatiffeamples and assigns each motif a clonal
expansion score. We identified 16,875 global motiés, strings of conserved amino acids with a
single amino acid substitution, and 3,103 locastts, i.e., uninterrupted sequences of amino
acids.

We found extensive diversity in the sizes of thestdrs, ranging from the minimum of two

CDR3 sequences to 4,698 copies with a motif, withealian value of two CDR3 sequences.
(Table S3). We filtered our results for significance (Fislseore < 0.05), and determined a
representative condition for each tag, or consemetif, depending on which condition
contributed the highest proportion of CDR3 sequsmiicehe tag. We found that PD sequences
were more likely to exhibit motifs with high clonakpansion scores than were control sequences
(Wilcox p value 0.0016Fig. 1f).

Taken together, this analysis revealed a significarease in the patient-level clonal expansion
score in PD SNKig. S1f-g), indicating T-cells are clonally expanded in B2 SN.

Single nucleus RNA sequencing reveals cell-type specific DEGs in PD

We then examined the T-cell gene signatures withlsinucleus RNA sequencing (snRNAseq)
(Table S1). The SN dataset includes 207,859 nuclei, with@6 derived from PD subjects
(including 831 SN T-cells, 535 being from PD donpand the cingulate dataset comprises
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57,425 nuclei, 32,442 from PD subjects. We progktitese nuclei in UMAP space and assigned
cell types/lineaged-{g. 2a andFig. 2e, respectively), and by donor and sEig( S2a andFig.

S2e, respectively). The expression of select canomaker genes per lineage for the SN and
cingulate is showlrig. 2b andFig. 2f and cluster markers are reported able 4.

We determined the differentially expressed gen&s3§) between PD and control in each
lineage in the SN and cingulatBaple $4 andTable S5). Interestingly, astrocytes showed
increasedM T3 expression in the cingulate in PBig. 2d), as we have shown for Huntington’s
disease (HD¥. We validated this finding in our supplemental lid@a Fig. S7g). As expected,
SN neurons exhibited reduced expression of therdopasynthetic enzyme tyrosine
hydroxylase TH) (Fig. 2h), consistent with previous studie§Ve found that the largest number
of altered DEGs in PD were in neurons and oligodandes in both SN and the cingulate
(Fig.2c andFig. 29). There were also high numbers of DEGs in astescghd myeloid cells in
both regions, and in T-cells in the SN.

Prior studies have detailed neuronal and glialgagy in PD at the single nucleus le¥/&t3*
including recent preprint6®*”” We described our results detailing neuronal gathyoin the SN
(Fig. S2b-d) and the cingulate cortekig. S2f-h) in the supplementary results. Briefly, the
highest number of DEGs were found in TH+ neurornth@SN and layer 2-3 CUX2+
glutamatergic neurons in the cingulate cortexy(2d andFig. 2h, respectively), and we
implicated several pathways involved in neurodeggian and synaptic vesicle cycle that were
shared between the two most affected neuronal ptpos Fig. S3a-d).

Single nucleus RNA sequencing defines a T-cell PD disease signature and CD8+
resident memory phenotype

We analyzed our dataset using a recently develapptbach called single cell Hierarchical
Poisson FactorizatiGh(scHPF; see methods). This method derives faatogene sets, that
capture the sources of gene expression variabilitye dataset, which could be lineage related,
disease related, or related to other factors. Wieeapplied scHPF to the SN snRNAseq dataset,
we retrieved factors that corresponded to cellgypay. 2i). An example of the gene score of
select factors is shown kig. 2j, where genes from astrocytic, TH+ neuron, andTfaetors

are shown, underscoring the power and validityheftechnique. Additionally, T-cells in our
dataset were mostly CD8Fi. 2f), consistent with previous repdft$®and our validation
studies (see belowig. 3a-d).

We then used scHPF to extract a PD “disease falalile S7) in T-cells with higher scores for
PD than control subject&ig. 2k). Factor 1 was higher in control T-cells, while PEells had
higher scores in factor 5, nominating this factoaddisease factor”. The top genes in factor 5
are implicated in IL-2 signalindJBC, SOSL, CD2, JAK3, LCK, BIRC3, DOK2, HIST1H2AC)

and NFkB signalingTNFAIP3, RIPK1, CFLAR, PLCG2, LCK). Given the known effects oE-2
signaling on CD8+ T-cell fates, including effectord memory phenotyp&swe performed
GSEA analysis to measure enrichment of a T-ceiliess memory (TRM) gene $&t°! (Table

S6; Fig. 21) in the T-cell disease factor 5. We found thatgbee set was enriched in the T-cell
disease factor. Also, the expression of multipleegefrom the TRM gene set were significantly
increased in PD T-cells, including T-cell memoryige such ad 7R andCD69%°?(Fig. 2m).

As expected, the TRM gene set was significantlyceed in the gene expression of PD T-cells
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ranked by the log-fold change (logFC) from confratells Fig. 2n). We also assessed the
enrichment of a general memory T-cell gene setpmpassing central memory, effector
memory, and peripheral memory T-cell gefiésin T-cells genes ranked by their gene-wise
logFC in PD vs controlTable S6; Fig. S1j), and a found a similar enrichment, further
corroborating our findings that T-cells demonst&fERM phenotype in the PD SN.

Taken together, these results indicate that PD €8II§ demonstrate a more prominent memory
phenotype, which we interpret as being more antaeerienced.

Validation of T-cell phenotypes in the post-mortem substantia nigra

To independently test the finding that PD T-cefls memory CD& cells, we performed IHC
using a CD8 antibody and found that the numbe@B+ T-cells were higher in the SN
parenchyma and in the white matter (cerebral pdduntPD brains compared to contrdisd.
3a-d), consistent with previous reports showing that CD8gells infiltrate the PD braff. The
cerebral peduncle is useful in these analysedpas bessels enter the SN from the
subarachnoid space around the midbrain via thenmbeluand many CD8+ T-cells can be found
around these vessels in the peduncle and pedunissiae itself. We did not count cells around
vessels, thus, the T-cells we quantified in thea®N in the white matter were parenchymal.

To validate the memory phenotype of CD8+ T-cell®in SN, we used IHC for CD103, which
is expressed in TRMS The density of CD108 cells was higher in PD compared to controls in
the SN Fig. 3e-f), supporting the transcriptomic results indicatihgt T-cells in the PD SN
adopt a memory resident phenotype.

Myeloid cells in the PD SN show increased enrichment in neuroinflammatory
pathways

We then analyzed SN myeloid/immune cells in isotathrough subclustering and DGE
analysis. We identified three myeloid states: bas#iomeostatic myeloid cells, activated
microglia/myeloid cells, and monocyte-like myelaells/border-associated macrophages
(BAMS) (Fig. 4a). Select markers of each subcluster are shovngmb (T able $4). We found
that activated microglia/myeloid cells exhibite@ thighest number of DEGs in PD, and that
baseline myeloid cells and monocytes/BAMs demotedriower numbers of DEGEi(Q 4c;

Table $4). A recent preprint identified heterogeneous tcapsonal states in the PD SN through
higher resolution clusterifiy For this study, we find it expedient to compdre broad classes of
myeloid cells highlighted herein.

To determine how SN myeloid cells are affectedlin We compared activated, baseline, and
monocyte/BAM subtypes to the myeloid cells of thegalate Fig. 4d-e; Table S5). The
cingulate cortex saw much higher numbers of DEG®ssscall myeloid lineages. Relatively, the
activated myeloid cells had the highest number®BEB in the SN, and baseline myeloid cells
and monocytes/BAMs had the highest number of DEEGke cingulateKig. 4f; all cingulate
DEGsTable S5).

To compare the response of myeloid cells in thgudate and SN, we examined the patterns of
overlap between positive and negative DEGs in Uple¢$ Fig. 49-h; see methods). We found
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that the majority of DEGs were region-specificthie cingulate there were 142 DEGs (79
increased and 63 decreased) shared between @btaonieloid cells and no SN myeloid cells
(the DEGs, both increased and decreased, shaneddretnyeloid lineages in the cortex and SN
can be found iTable $9). The SN had much lower numbers of DEGs in geneiih just 10
DEGs (3 increased and 7 decreased) specific to yNomd cells. Most other DEGs were shared
across cell types or brain regions. This data pdmt region-specific myeloid gene signature in
the cingulate cortex in PD, but a more generalinldmmatory response in the PD SNd. 34-

h; Table S9).

To decipher these gene sets, we performed gerasetiment analysis of all KEGG pathways
with the pathfindR packagé€&ig. 4i). We found that SN monocytes/BAMs exhibited thghleist
enrichment in Th17 cell differentiation, PI3K-Akgealing pathway, MAPK signaling pathway,
and endocytosis. As PI3K-Akt and MAPK signaling ameolved in neuroinflammation in
neurodegeneration and are potential therapeugets&in P3°* these data suggest that
monocytes/BAMs in the SN participate in neuroinflaation and immune signaling in PD.

Differential regional dysregulation of astrocytes in PD

Astrocytes play roles in PR We and others have shown that astrocytes caistiegiiished by
CD44 expression into fibrous-like and protoplastfficwe assigned astrocytic nuclei to a
protoplasmic or fibrous-like sublineage and condddGE analysisHig. 5a-c for SN, andFig.
HAa-c for cingulate cortex). Following our previous rasuhat indicated a compensatory
neuroprotective astrocytic response characterigaddseased metallothionein protéir3
expression in HD astrocyf®$? we found thaMT3 was increased in the CD44- (protoplasmic)
cingulate cortex astrocytes but not SN protoplasastcocytes. As expected, expression of
GFAP was increased in both regiosd. 5d).

We next sought to validate these findings with imahistochemical studies in postmortem
brain specimens. To do so, we immunostained citgelartex and SN, PD and control, with
GFAP and MT3Fig. S7a-f). We found that MT3 was significantly increasedaRAP-high
astrocytes in the cingulate cortex in PD, but tiveme no such significant increase in the SN in
PD, confirming our gene expression data. Interghtiwvhen we quantified the proportion of
astrocytes that were GFAP-high — a surrogate fctiree astrocytes — we found that more
astrocytes were GFAP-high in the cingulate, butthetSN. In fact, there was a reduction in the
proportion of GFAP-high astrocytes in the IMig; S7g). This is consistent with previous
report$>that found reduced GFAP protein expression in &SR

We then examined KEGG pathways enriched in the DG increased and decreased) in the
SN fibrous-like and protoplasmic astrocytesy 4e-f, Table S4) and in the cingulate cortex

(Fig SAc, Table S5). In both astrocyte types and both brain regiamsfound enrichment in
multiple immune activation pathways includiig17 signaling and NOD-like receptor signaling
pathways in PD. These were largely driven by DHEtsdased in PD includingOS andJUN,
which are known to be increased by several pathwagkiding stimulation of astrocytes by
interferon gammaL-1, andIL-6 amongst othet&". Other shared pathways include MAPK
signaling and pathways related to stemn@&sbles $4-5). Of note, the latter pathway was driven
by different DEGs in the cortex versus the SN.iRetance, in fibrous-like cingulate astrocytes,
it was driven by downregulation 6GFR2, FGFR3, andBMP receptor-1 genes. Conversely, in


https://doi.org/10.1101/2024.01.08.574736
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.08.574736; this version posted January 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

SN fibrous-like astrocytes, it was driven by uptdegion ofID3, ID4 and downregulation of
LIFR. Interestingly, VEGF-signaling was enriched intbastrocyte types in the cingulaieable
S5) but only fibrous-like astrocytes in the SiNaple $4) — where it was driven by upregulation
of FOS, JUN, VEGF, andPLCG2, and downregulation a&iXNIP, COX2, andCALM2. Further,
enrichment of pathways related to neurodegeneratamhigher in fibrous astrocytes in both
brain regionsKig. 5e-f, Fig. S3c, Tables 4 andS5).

We then examined evidence for a transition fromqgpiasmic to fibrous-like states in PD, as we
have seen in HD, hypoxia, and seiz8té¥ using pseudotime analysis which is a means to
order cells along a trajectory of gene signature.dfMdered cells on the axis of variation along
the genes that differ between the two astrocytéreedyes [Fig. 5g-h — SN, and~ig. Se-f —
cingulate cortex). We found a trajectory from ppésmic to fibrous-likeKig. 5h — SN, and

Fig. $4f — cingulate cortex), with protoplasmic at the tstdithe trajectory, and fibrous-like at

the end. We found a marked increase in the prapodi PD nuclei at higher pseudotime values,
which correspond to the fibrous-like phenotypehath the SN and the cingulate cortex (two-
sided Mann Whitney test W value 85275076 with ugat2.2e-16 for SNFig. 51, W value
6567552 with p value <2.2e-16 for cingulatéig. $4g), which is consistent with a previous
report’. Together, these results confirm that, as in tBechudate, protoplasmic astrocytes
transition to a fibrous-like state in PD. Furthes,seen in HD, there are regional differences in
astrocytic responses to injury, with the most selyeaiffected regions showing no increase in the
neuroprotective gend T3.

Spatial transcriptomics reveals spatially diverse patterns of pathology in PD

To spatially map the disease signature within tkierde brain microenvironments that harbor
these cells, we conducted spatial transcriptonmica subset of our SN tissue samplag.(Sba-
]). First, to evaluate cell-type-specific gene stgnes in our spatial transcriptomics data, we
employed Robust Cell Type Deconvolution (RCTD) tauatify the relative proportion of each
cell-type/transcriptional state in each locale,gpet-level enrichment values for our T-cell
disease factor, and spatial clusters/transcriptioiches using BayesSpactérig. 6a, Fig S5a-j
and supplementary results).

Through comparison of deconvolved dopaminergic oregell type proportionslable S1) and
TH expression values, complemented by neuropathologweduation of corresponding H&E
images, we annotated the BayesSpace clusterdias 8N or surrounding tissue, which was
predominantly white matter, including both cerelpadluncle and superior cerebellar peduncle
(Fig. S6a-k and supplementary results). The SN region is definelH expression in addition
to high proportions of dopaminergic neurons, agedfby deconvolution (see methods and
Table S1). The surrounding white matter is defibgdhigh proportions of oligodendrocytes. As
expectedTH expression was higher in the SN compared to sudiagrwhite matter (regression
estimate 0.24, p value <2e-16), and lower in theSRDversus controF{g. 6b). We then tested
for enrichment of the T-cell disease factor in 8¢, which showed significantly higher levels in
PD tissue than contraF{g. 6¢c). These data independently validate our snRNAselnigs and
assign the T-cell PD disease factor to the SN.

We then performed DGE analysis between PD and @d®ir capture areas in the two niches
separately, and measured the enrichment of snRNdegeed cell-type specific DEGs in the
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ST-derived niche-specific DEGBi@. 6d; see methods). As expected, genes downregulated in
PD dopaminergic neurons were decreased in both kegions in PD. The enrichment of
fibrous-like astrocyte DEGs was enriched in the BEGSN only, and the activated
microglia/myeloid cell DEGs in the surrounding tiesDEGSs only. In contrast, DEGs of
monocytes/BAMs and the T-cell disease factor (fastlvom above) were significantly enriched
in both niches. This is consistent with our findrigat T-cells are found in both the peduncle
and in the PD SN parenchynfad. 3a-d). We conclude that fibrous-like astrocytes adopt a
disease phenotype in the SN in PD, and that moasi3AMs and activated microglia/myeloid
cells do so in both the SN and the white matter.

Finally, we used an unbiased approach to analyzei@e-specific DEGs and measured the
enrichment of KEGG pathways in the SN and surrcupeihite matterKig. 6€). The results
showed a marked difference in the pathways repteddry each region’s DEGs. Genes involved
in synaptic vesicle recycling and PD were enricimeitie SN niche, which validates the results
from examining TH+ neurons from the snRNAseq datmversely, the white matter exhibited
an increase in genes involved in oxidative phosghtion, antigen processing and presentation,
and mitophagy. There were several pathways, suolkydscin signaling and
glycolysis/gluconeogenesis, that were enrichedth begions. Together, these results suggest
that there are distinct, cell-type specific, sghtidefined pathologic signatures in PD.

PD-enriched spatially defined cell-cell cohabitation and communication patterns

To determine the spatial relationships of cell sypad T-cell disease factor we performed spatial
cross correlation (SCC) analysis on the spot-legitype proportion values in our ST data

(Fig. 7a). SCC allows us to quantify how the cell types@eelated (SCC coefficients), assign
statistical significance to the coefficients usingermutation-based method, and retrieve sample-
level and disease condition-level statistics. If yges are spatially correlated, then positive
SCC values will be retrieved. If they are negatiagatially correlated, negative SCC
coefficients will be retrieved. Since determining@Gacross thousands of ST data points is
computationally intensive and slow, we develop&hg to parallelize the computation,
accelerating it by ~1,200-fold (see methods kit 7b, Table S11) to calculate the change in
SCC between different cell-types/states observétDitompared to contrdF{g. 7c). The

results indicate three major points.

First, we noted increased SCC with increased sggmte between T-cells and oligodendrocytes,
suggesting T-cells are more present in the whitkemaVe had validated this finding by IHC for
CDS8 staining of postmortem PD and control tissuwé,counting the cells in the subarachnoid
space next to vesselBi¢. 3a-b), where we identified increased T-cells in thesbeal peduncle
(white matter), which is rich in both cell typegc®nd, we found high significance in the spatial
relationship between T-cells and the T-cell disd¢astor in PD, and lack of significance in
controls. Third, we identified several cell typerdamnations with increased SCC, including a)
activated microglia/myeloid cells and endotheligls; b) fibrous-like astrocytes and T-cells, ¢)
monocytes/BAMs and fibrous-like astrocytes, and-adells and endothelial cells. A more
detailed interpretation of SCC is provided in thpementary results.
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Taken together with our DGE results, these findimghlight novel, statistically significant
patterns of increased spatial correlation and pmayibetween immune cells, T-cells, and other
glial cells in the human postmortem PD SN.

To investigate potential patterns of altered cell-mteractions in PD, we applied CellCHAta
computational method, to our snRNAseq data andiftkshpotential interactions between pairs
of cell types from inferred direct cell-cell contand from secreted ligand-receptor signaling
(Fig. 7d-g). We identified a potential disease-associatedeotion in cell-cell interaction
between endothelial cells and T-celsd. 7d), and a potential disease-associated connection in
the secreted ligand-receptor communication betwe@mocytes/BAMs and fibrous astrocytes
(Fig. 7f).

Probabilistically, there was an increase in commation strength between endothelial cells,
monocytes/BAMs, and activated microglia/myeloidséb T-cells, characterized by MHC class
| signaling to CD8A(Fig 7€). This interaction independently supports theeased SCC
between endothelial and activated microglia/myetatfs on one hand and, on the other hand,
T-cells in our ST data. Anatomically, it is possilbbr this interaction to be representative of T-
cells in the subarachnoid space around vesselagtplkace outside of the brain.

Turning our attention to astrocytes, we noted #isancreased SCCs between T-cells and
fibrous-like astrocytes, and between fibrous-likg@cytes and monocytes/BAMBI(. 7c), the
latter being predicted to exhibit increased sedrstgnaling strengthHg. 7f). The end-foot
processes of these astrocytes line the pial bqrdiwsving them to respond to soluble molecules
in the cerebrospinal fluid, thus allowing themake part in secreted signaling with cells in the
subarachnoid spat®é'%* Together, our analysis suggests that, in PD,|i§-aad
monocytes/BAMs communicate with fibrous-like asytes through SPP1-CD44 signalirigd.

79).

In summary, our results outline a potential netwairkell-cell interactions in PD that nominate
T-cells, monocytes/BAMs and endothelial cells, glavith fibrous astrocytes, as central players
in facilitating neurodegeneration in the PD SN.

Discussion

Higher levels of T-cells in PD SN than control SiNlaan association of PD with peripheral T-
cells that recognize alpha-synuclein have beeniqusly reported, but there has been little
insight to the characteristics of these centraéllsan PD or analysis of their correspondence
with peripheral T-cells. The analysis of differettyene signatures and response patterns of a
plethora of immune cells, both transcriptionallyapatially, provides insights into the T-cell
roles in the PD SN.

In addition to the 831 human SN T-cells analyzedunsnRNAseq dataset, we were able to
analyze over 50,000 different human T-cell clonet/from the PD and control SN and
cingulate cortex by TCR sequencing of 44 humanesibj Using independent TCR sequencing-
based, computational, amisitu analyses, we now report that T-cells not only ldig@a

cytotoxic CD8+ tissue resident memory phenotypedbetalso selectively clonally expanded in
the PD SN. We further propose that these T-cel® lggnetic and spatial profiles that indicate
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interactions with local activated myeloid cellstrasytes and epithelia within regions of the SN,
and share motifs with peripheral T-cells that retpg alpha-synuclein in PD patients, despite
the majority of those being CD4+ helper cell types.

The spatial analyses yielded several technicakandeptual advances. We adapted our previous
approach to using SCC to define patterns of celdhabitation in infiltrating glionfd with the
novel use of a new computational approach in maksparallel GPU-accelerated fashion, that
yielded computation time up to 1,200 times fastantCPU-based methSd&ee methods and

Fig. 7b, Table S11). By leveraging the spatial data from multiple &ors to statistically-
measured changes in SCC, we constructed a spatitdtyned model of cell-cell interaction in

the niche of PD neurodegeneration.

Our results brought us to propose an immune siggaletwork in PD SN that consists of
interactions between astrocytes, myeloid cellsBigélls Fig. 7h). Our SCC data demonstrate
an increased probability of interaction between Eldlso known as VEGFR1) in endothelial
cells and VEGFA secreted from fibrous-like astresytSuch signaling has been shown to
increase angiogenesis, as well as microglial aiiva > The results also indicate increased
cell-cell contact signaling in the APP-CD74 pathveapween endothelial cells and both
activated myeloid cells and monocytes/BAMs, and HMKC class 1)-CD8A pathway between
endothelial cells and T-cells.

We speculate that &D74 is upregulated in activated myeloid/microglia 8} this interaction
can augment presentation of MHC class | molecalel surface glycoprotein CD8 on T-cells
and drive activation of memory T-cells and clongansiori®®*'? which could underlie our
findings of clonal expansion in the TCR sequendata. As osteopontin (SPRWhich is
secreted by activated myeloid cells and T-celigracts with CD44 to drive downstream VEGF
secretion from CD44+ astrocyté§ we infer that signaling from T-cells may activéitgous-

like astrocyte¥? As a result, SPP1-CD44 signaling to fibrous-istrocytes may activate
VEGF, activatingVEGFR1 in endothelial cells. Previous studies have shdwan t
FLT1/VEGFR1 colocalizes withlLA-DR signal in atherosclerotic plaqué% and that HLA can
stimulate VEGE". These feedback cycles may lead to specific ise®am local SN
neuroinflammation, importantly including the repliion of specific T-cell clonotypes that we
have identified in PD.

The SCC data, coupled with the CellChat data, ftbypropose an immune signaling axis
through which endothelial cells mediate communaabetween T-cells, activated myeloid
cells, monocytes/BAMs, and fibrous-like astrocytBstough cell-cell contact, we speculate that
endothelial cells signal to both T-cells (HLA-CD8and to myeloid cells (APP-CD74), which
are predicted to also signal to T-cells throughtoell contact (HLA-CD8A). Furthermore, we
found secreted increased probability of signalinognf T-cells to fibrous-like astrocytes (SPP1-
CD44), and from astrocytes to endothelial cells @AR), delineating an immune signaling axis
through which endothelial cells mediate communaabetween T-cells, activated myeloid
cells, monocytes/BAMs, and fibrous-like astrocytésally, our analyses also highlighted
increased probability of secreted signaling fronivated monocytes/BAMs and T-cells to
fibrous-like astrocytes (SPP1-CD44). Coupled wité shift from protoplasmic to CD44+
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fibrous-like phenotypes, this signaling pathwagrsattractive candidate to target as a means to
potentially slow down neurodegeneration in PD.

In addition to the increase of clonal T-cells in BN, we observed a transition from
protoplasmic astrocytic phenotypes to a fibrous-kenotype, which was coupled with a
decrease in the neuroprotective protein MT3. Thismilar to our previous findings in Hf)

and highlights a region-specific response of agtescto neurodegeneration, which may result
from, or be more likely to contribute to, neurodegetion. Additional studies are needed to
determine the generalizability of this phenomeramd whether it is a root cause or a result of
neurodegeneration.

Finally, our data showed increased T-cell PTPR@adiggto monocyticMRC1.MRC1 is
important for myeloid plasticity and adaptive imneuresponse’, monocytes/BAMSs, and, in
activated microglia/myeloid cells, can be a madeactivatiort'®. Significantly,
monocytes/BAMs (high expression levelsGi»163 andMRC1) have recently been shown to be
necessary for an alpha-synuclein-induced neuro@eggéon in a mouse model of Pf The
interaction between T-cells and these monocytes/BAM MRC1-PTPRC is consistent with
previous reports identifying increased colocalimatof both cell-types around blood vessels in
postmortem PD.

Taken together, this outlines a potential immunseu&ar-glial signaling axis which includes
fibrous-like astrocytes, endothelial cells, myeloalls (monocytes/BAMs) and T-cells, and
which may have the net effect of eliciting a reaestate in astrocytes, of activation of myeloid
cells, and potentially T-cell clonal expansion ID.Ahough we do not present here experimental
validation for this network, it serves as a uséfamework for future studies investigating the
adaptive immune response in PD.

Limitations

We note several limitations of the current studgstFour TCR sequencing data comprises only
alpha-chain data: single cell TCRseq is needee@fiaitively identify TCR alpha-beta pairs and
provide a basis for functional studies to deternmrexisely which antigens are recognized by
specific TCR andHLA-antigen combinations, and whether the precisenlvesident clonotypes
are represented in the periphery. While this stiithracterizes more PD SN T-cells than
previous studies, the T-cells comprise a minoritthe cells and are too few to conduct single
cell analysis with available technology. Furthereyave do not have paired peripheral blood and
SN samples, which will be important to define whperipheral T-cells become tissue resident
after entering the CNS. Finally, as these studiefineuropathology in subjects with advanced
PD and low number of surviving SN dopaminergic magt we cannot address the issues of
whether T-cells in the PD SN have increased intena€ with neurons or changes in T-cell
characteristics at disease stages when the higitestof neuronal damage occur. As quantified
by a board-certified neuropathologist (JEG), l&sst1% (6 of 1,151) d€D8+ cells in the PD

SN were observed next to neurons, discountingsstal analyses of the phenomenon.
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Figure Legends

Figure 1. T-cell receptor sequencing identifies clonal expansion in T-cells of the
substantia nigra in Parkinson’s.

a) Schematic of the study design. Cingulate corteksabstantia nigra (SN) tissue samples were
dissected from PD and control frozen postmortermbrand then processed by TCR
sequencing, SnRNAseq, and spatial transcriptoraits analyzed computationally) Diagram

of a T-cell receptor. The alpha-chain is shown, ne@héis the variable region, J the joining
region, C the constant region, and CDR3 (compleargptdetermining-3 region). An antigen is
presented by MHC-II complex and recognized by the=lT receptor on the right. A clonotype is
defined as the combination of the V, J, and CDRyfores.c) Bar graph depicting the number of
unique clonotypes detected in the cingulate catekthe SN, PD and control. The difference
between conditions in the cingulate is not sigaiffic(linear regression coefficient estimate —
24.83 and p value 0.689) but is significant in 8 (linear regression coefficient estimate
112.75 and p value 0.047%e) Power law graphs of cingulate cortex and SN clgpex,
respectively, with bins of the log number of librarormalized reads on the x axis, and log of
frequency (library-normalized) of clonotypes fockdin expressed on the y axis. Control
clonotypes are represented in orange, and PD eI ridge plot depicting clonal expansion
score as calculated by GLIPH2 for each region amdlition. Wilcox test derived p value from
comparing the average expansion score of the RIdnisol distribution in the substantia nigra is
0.0016.

Figure 2. Single nucleus RNA sequencing reports differences in gene expression
patterns of PD lineages and identifies a PD T-cell signature.

a) Uniform manifold approximation and projection (UNMAgraphs showing nuclei from the
cingulate cortex, PD and control, grouped by asgigmeage and by conditioh) Dot plot of
select gene (x-axis) marker expression in maj@alges in the cingulate cortex (y axis). Size
indicates percentage expression, and color indicademalized expression levety.Bar plot of
the number of significant differentially expresgghes for all lineages in the cingulate cortex in
PD compared to control, with downregulated genegdtive log fold change — green), and
upregulated genes (positive log fold change - bldieYiolin plot showing the gene expression
of MT3 in control (orange) and PD (blue) in protoplasnstr@cytes in the cingulate cortex
(logFC PD vs control: - 0.468, p value 3.37e-2JSame asg, but for SN nucleif) Same ab

but for the SNg) Same as c, but for the SN. Same asl but forTH SN dopaminergic neurons,
(logFC PD vs control: —0.23, p value 1.35e-28Heatmap showing scores single cell
hierarchical Poisson factorization (scHPF) gen&faqcolumns) projected on lineages (rows).
j) Heatmap showing the normalized gene expressioselect cell type markers in select scHPF
factors.k) Heatmap of average cell score of PD and contraenin each T-cell scHPF factor.
Columns represent factors, rows represent condiBare indicates a low score, red indicates a
high enrichment scoré) Gene set enrichment analysis of @28+ T-cell resident memory
(TRM) gene set in T-cell disease factor (factonv@)h normalized enrichment score (NES) of
1.48 and p value 5.0e-03) Dot plot of genes expressed in PD and controlllB.casterisks (*)
denote genes differentially expressed in RDPre-ranked gene set enrichment analysis of the
CD8+ TRM gene set in the T-cell gene expression ratkedgFC in PD vs control. P value
3.3-e05, and normalized enrichment score (NES).2.04
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Figure 3: Validation of T-cell phenotypes in the SN

a) Immunohistochemical stains for CD8 (red) and C@®wn) in the cerebral peduncle. Scale:
50 um. b) Quantification of the density of CD8 positive sgller unit area in the peduncle.
Unpaired one-tailed T-test with N=6 for control d&P0. P value = 0.0079. Data is shown as
mean +/- SEMc) Immunohistochemical stains for CD8 (red) in the 8\Quantification of the
density of CD8 positive cells per unit area in 8i¢. Unpaired one-tailed T-test with N = 6 for
Control and PD. P value = 0.0239. Data is showmean +/- SEMe) Immunohistochemical
stains for CD103 (brown) in the SN.Quantification of the density of CD103 positivdle@er
unit area in the SN. Unpaired one-tailed T-teshwt= 4 for control and N =5 for PD. P value
= 0.0343. Data is shown as mean +/- SEM.

Figure 4. Patterns of dysregulation of myeloid cells in the substantia nigra and
cingulate cortex.

a) UMAP plots of myeloid cells in the substantia mig6EN) from snRNAseq, grouped by
lineage/sublineage (left), and condition (righm) Dot plot of select gene (x-axis) marker
expression in myeloid lineages in the SN (y ax&2e indicates percentage expression, and
color indicates normalized expression leveJBar plot depicting number of differentially
expressed genes in the PD SN on the y axis andnegeloid lineage on the x axis. Green bars
represent DEGs with a negative logFC, or decreaspression in PD, and blue bars represent
DEGs with a positive logFC, or increased expressid?D.d) Same asg, but for cingulate
cortex myeloid cellse) Same a¥, but for cingulate cortex) Same as c, but for cingulate
cortex.g-h) Upset plot showing the patterns of overlap betw2Efss increasedyf and
decreased| in PD across different myeloid sublineages (rowshe SN and cingulate cortex.
Number of shared DEGs are plotted in blue along/thris — note that BAMs refers to
monocytes/BAMs and has been shortened for impreisedhlization. The cell type
combinations between which the DEGs are sharedispéayed across the x axis, with black
dots representing cell types present in the comibmaand light gray dots representing cell
types not present in the combination. Number @fl toicreased DEGs are plotted to the left of
each cell type namé. Dot plot showing KEGG pathway enrichment scora$ afjusted p
values of select pathways of each myeloid sublie@aghe SN and cingulate cortex. Pathways
are shown on the y axis term names, and the xsariws each myeloid sublineage. The size of
each dot represents its fold enrichment value ta@aolor represents its —log10 p value, with
yellow denoting lower significance and red indingthigher significance.

Figure 5. Single nucleus RNA sequencing of substantia nigra astrocytes in PD
indicates abnormal functioning.

a) UMAP plots of nigral astrocytes, grouped by suidige (left) and condition (righ®)) Dot

plot with select markers genes along the x axisaamtibcyte sublineages on the y axis. Size
percent of expression, and color denotes normaézpdession levels) Bar plot depicting the
number of differentially expressed genes in PDafsirocyte sublineages. Green bars represent
DEGs with a negative logFC, or with decreased esgioa in PD, and blue bars represent DEGs
with a positive logFC, or increased expressionin Fbrous-like astrocytesl) Bar plot of

GFAP andMT3 differential expression in PD in cingulate cortaxd SN protoplasmic
astrocytes. The cingulate cortex is denoted byt lidne bars, the nigra by dark blue b@nf3.3 is
decreased in protoplasmic astrocytes in the PDIGNC —0.09 and p value 1.4e-10), and
increased in PD cingulate protoplasmic astrocyted=C 0.47 and p value 3.4e-270. GFAP is
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increased in both PD SN and cingulate cortex ptasmpic astrocytes (logFC 0.75 and p value
6.4e-290 - SN, logFC 0.31 and p value 7.8e-12 gutate cortex)e-f) KEGG pathway
enrichment analysis of SN fibrous-like) @nd protoplasmid) astrocytes PD DEGSg)
Pseudotime plot of astrocytic nuclei in the SN hvpatotoplasmic astrocytes on the left, and
fibrous-like astrocytes on the right. Nuclei arejpcted on PHATE axes. Color bar indicates
pseudotime value range (red is low and blue is)high) Ridge plot depicting the proportion of
protoplasmic and fibrous-like (h) and PD vs confipat each pseudotime value.

Figure 6. Spatial transcriptomics analyses localize cell-type specific DEGs in

immune cells to local anatomic compartments in the PD substantia nigra

a) Example ST slide image and analysis. On thedeftHi&E image of SN tissue mounted onto a
10X-Visium slide, with neurons demarcated by newlamin (brown). In the middle, expression
values per spot of deconvolved cell type dopaminergurons. On the right, assigned
BayesSpace clusteis) Violin plot of average spot-lev@8H expression across ST tissue samples
showing decreaserH in the PD vs control (logFC faH in the SN is —1.56 with p value 6.3e-
46, and in the surrounding tissue, logFC is —0.ith prvalue 2.02e-94%) Violin plot of

average T-cell disease factor enrichment levelssadPD and control ST tissue samples. The Im
estimate for the surrounding tissue is —0.10, pevai2e-16. The Im estimate for the nigra in PD
is 0.08, p value <2e-1@) Heatmap of normalized enrichment scores from gehenrichment
analysis of the snRNAseq-derived cell-type spe@iteGs. All cell types represent the increased
DEGs (positive logFC), except dopaminergic neurarisch represents decreased DEGs
(negative logFC). On the x axis are the two assigegions SN and Surrounding Tissue, and on
the y axis are cell types from RCTD. P values adicatede) KEGG pathway enrichment
analysis in PD vs control DEGs, in SN and surrongdissue, from ST data.

Figure 7. Spatial cross correlation illuminates cellular communication in PD

a) Schematic explaining how spatial cross correlat®@C) values are calculated in our
analyses. Spots (capture areas) are identifiedtmgere, and RCTD is employed to determine
the cellular composition of each spot. Spot-levaghbor information is encoded in a binary
adjacency matrix, which is then combined with pmipa matrices for each cell type in a
previously defined SCC equation. The output is & $&lue for each cell type combinatidm).
Plot of matrix size (number of elements) by amafritme (seconds) taken to complete SCC
computation using our optimized algorithm conduaisthg the CPU (red), GPU (blue).
Heatmap of change in average SCC values for edletyge combination, PD compared to
control. Increased values (red) denote an incneaSEC in PD compared to control, decreased
values (blue) denote a decrease. “+” symbols reptean increase in SCC significance in PD
compared to control, or a lower aggregated p vakisymbols represent a decrease in
significance. Grayed-out boxes represent relatipissinat either were not significant
(aggregated p value >0.05) in neither PD nor cndrahat lost significance in PD compared to
control.d) Interaction weights for SN cell types in cell-catintact signaling, as derived from
CellChat. On the left is control, on the right i3.mote that here, “monocyte derived myeloid”
refers to monocytes/BAMg&) Diagram of signaling pathways implicated in cgfie

interactions, defined by cell-cell contact. “BAM&fers to monocytes/BAMs, abbreviated for
visual purposed) Same as c but for secreted signalg)gSame as d but for secretory signaling.
h) Schematic of the proposed potential immune-gh#d enodel implicated in PD, as inferred
from CellChat and SCC analyses. Purple arrows septecommunication cell-cell contact, and


https://doi.org/10.1101/2024.01.08.574736
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.08.574736; this version posted January 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

green through secreted signaling. Signaling pateveag coded with red text representing the
sender, and blue text representing the recipienk $2ars denote an increase in SCC in PD.
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Data availability

The human TCR sequencing, SnRNAseq, and spatiadrigtomics datasets will be uploaded to
GEO.

All other datasets are provided in the supplemgntaterial and/or available from the
corresponding author upon request.

The customized code used for analysis in this namiss provided here:
https://github.com/dalhoomist/T-cell_and_glial_pdtgy in_PD

Supplementary Data

Analysis of T-cell repertoire diversity

To analyze our TCR sequencing data, we first cordd that all repertoires were fully saturated.
The saturation plots for each sample can be foafidble S2 (see methods). Once this was
established, we moved on to assessment of entnomyrirepertoires.

Additional inspection of the CDR3 sequence ovebdapveen condition and region showed that
there are 2,215 global CDR3 sequences across thatihts in our cohort, or 14.5% of unique
CDR3s in the entire repertoirEif. Sla).

To further interrogate our TCR repertoires, we difi@ad Shannon entropy as a measure of
diversity (see methods) and partitioned the enttopyiologically known sources of diversify
For each component of the T-cell receptor clonotfpg. S1d), the total entropy can be
attributed to three sources: the CDR3 amino aaddesece, the VJ cassette combination, and
delta between the entire clonotype and the VJ cofbioeach component of the clonotype, we
found that the SN exhibited significantly highetrepy compared to the cingulate, however
there was no significant difference in entropy hestw control and POF{g. S1€). As such, we
could conclude that disease condition had no bgannthe diversity of T-cell receptor
repertoires, as calculated through Shannon entiidpyg.data is consistent with seeing more
clonotypes in total in the SN versus the cingulate.

Comparison of CDR3 Motifs to Alpha-Synuclein-Recognizing Motifs
To determine whether TCRs in the brain resemblgperal TCRs that recognize alpha-
synuclein, we used the brain repertoires as aeneterin GLIPH2, and compared peripheral
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blood derived TCRs that recognize alpha-synuclsingia recent dataset of specific TCR
sequences from CD4+ T-cells in the blood that ratamyalpha-synuclein, and, as a control
group, CD4+ cells that recognize pertussis toxide identified the shared motifs and created a
data frame containing a list of motifs with cloeaipansion scores and contributions from alpha-
synuclein-recognizing CDR3 sequences, pertussegrezing CDR3 sequences, and CDR3
sequences from each of our four conditiohab(e S3). Interestingly, there were no motifs
shared by pertussis-recognizing sequences andrsagsii® our dataset. In contrast, 2,267 global
motifs were shared by peripheral T-cell alpha-sy@inerecognizing sequences and brain T-
cells. Of those, 1,204 sequences were shared wiittnat SN, 1,087 with PD SN, 541 with

control cingulate, and 849 with PD cingulate segesrtig. S1h).

Because the majority of tags with alpha-synucleicegnizing sequences were shared with the
SN, we then analyzed the differences in clonal egpa between PD and control in the SN
within these shared tags. We again assigned asesiegive condition to each tag based on the
condition contributing the highest proportion cdds, and compared the distribution of clonal
expansion scores of these tags. The distributibesares in the control group exhibited a
trimodal distribution, while the PD group exhibitadimodal distribution that was significantly
shifted towards higher clonal expansion score w(#®lmogorov-Smirnov test D value 0.08, p
value 0.006)Kig. Sli), suggesting that while there are more T-cellsgméin PD SN, a higher
fraction of the T-cells in the PD SN have alphauwsubmotifs that share features with known
TCR subunits that recognize alpha-synuclein. We tiwt while many TCR alpha chains are
shared between CB4and CD& T-cells, identical alpha/beta combinations are'tgrand

direct proof of specific PD SN T-cells recognizialgha-synuclein or possessing the same TCR
genes in both an individual’s brain and blood isawrently technically feasible.

Single nucleus RNAseq identifies sublineages of neurons in the substantia nigra
and cingulate cortex

As further characterization of the snRNAseq datagetnote that from the cingulate cortex, a
total of 61,870 cells passed our QC, and in theZB¥,859 cells. The UMAP projections of
these cells, grouped by donor and sex, can beiiségg. S2a andFig. S2e. Donor and sex both
evenly distributed throughout all UMAP clusters amnd therefore corrected for in our batch
correction approach. The number in each cell typEabe (both broad lineages, e.g. astrocytes,
and sublineages, e.g. fibrous-like and protoplagrag well as the number of nuclei assigned to
each cell type from each sample, can be fourichlrie S1.

We next analyzed the neurons from our substangia miataset and found that, as expected,
dopaminergic neurons clustered separatély. S2b), and these neurons were definedlby
andALDH1A1 expression. We also found GABAergic GAD1/2+ insrrons and
MEG3+MEGS8+ neurons, which, unlike dopaminergic oes; express very o8 C6A3,

ROBO2, andCALB2 (Fig. S2c andTable S5). When examining the DEGs across neuronal
clusters, as expected, the highest number of DE€Bs seen in dopaminergic neurons of the SN
(Fig. S2d).

Next, we subclustered neurons of the cingulateezas we have done for the SN. Again, we
found neither donor- nor sex-specific clustéfig(S2e). Sub-clusters were roughly equally
represented in both conditiodsg. S2f). A select subset of markers for each of the sigbefs
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are shown irFig. S2g and provided ifTable S5. Similar to our previous findings analyzing
neurons in the control and HD cingulate coftewe found layer-specific projection neurons and
several inter-neuronal subtypes. Interestinglyfaumd that the highest number of DEGs were
found in layer 22UX2+ glutamatergic neurons. A large number of DEGsevedso noted in
SEMAZE layer 5/6 neurons, which is expected given thaty bodies accumulate more in deep
layerd® (Fig. S2h). Spatial transcriptomic studies are needed tihéninvestigate the

relationship between Lewy body accumulation ancegeqpression changes in PD.

DGE analysis highlights similarities in GABAergic neurons of the cingulate cortex
and substantia nigra in PD

When examining the DEGs in nigral neurons, we fedusn dopaminergic neurons. Consistent
with previous work™ we found that several of the dopaminergic nel&®s we involved in
oxidative phosphorylation, neurodegenerative desgdgsosome, and protein processifig).(
S3a). They also showed enrichment in antigen procgsail presentatioff*** Next, we
examined the DEGs in cingulate neurons, focusimtjqodarly on layer 2/3 CUX2+ neurons. We
found that the corticaCUX2 neurons were also enriched in pathways of neusstEgtion, as
well as ErbB and Wnt signaling, ubiquitin mediagedteolysis, and endocytosisig. S3b).

We compared the genes found to be upregulated@mdrdgulated in PD in cortical CUX2+
neurons and dopaminergic neurons from the Bables $4 and S5). We found a minority of
increased DEGs were shared between increased DEGsse cell types. However, more than
half of the dopaminergic neurons’ decreased DEGeg wleared with those of layer 2 CUX2+
cortical neuronsKig. S3c, Table S9). As such, we analyzed which pathways were enriained
these DEGs using EnrichR and its Appyter extentog S3d). We found that dopaminergic
and CUX2+ neurons downregulated processes invatvegnaptic vesicle cycle, calcium
reabsorption, glycolysis/gluconeogenesis, and mmgenerative diseases. Together, our data
demonstrates that not only does PD pathology affepaminergic neurons in the nigra, but also
layer 2 as well as deeper layer projection neunotise cingulate cortex. That said, we do not
delve into the intricacies of the neuronal pathglogthis study because our focus is on the glia-
immune interaction axis.

Comparison of DEGs in Nigral Myeloid Cells

The UpSet plots ifrig. 3g-h indicated a total of three upregulated genes dhagdveen nigral
activated myeloid cells and monocytes/BAMs in BBT1, TFRC, andNAMPT. The plots
indicated that these genes were not increasedyiotaer myeloid cell type of the nigra or
cingulate cortex. We saw significant p values fbthaee genes in the activated myeloid cells
and monocytes/BAMs of the nigra, however the log&ties were highest in monocytes/BAMs
(Tables $4 and S5). Interestingly, SAT1 has been implicated by poesi studies in PD
pathogenesis, exerting neuroprotective effectsrams affected by alpha-synuclein
toxicity’?>*?® TFR1, encoded bYFRC, is upregulated in myeloid cells in response to
inflammatory pathway signaling such as NF-kB &t-1'%*'% Finally, NAMPT has also been
implicated in neuroinflammation, as it is upregathin response to inflammatory stintéfi*?®
This data further implicates both activated myelmatls and monocytes/BAMs in the substantia
nigra in neuroinflammation and progression of PD.
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Qualification and Classification of ST Data and BayesSpace Clusters

As a quality control step, we confirmed adequatalmer of counts per spot in each tissue
sample before moving on to downstream analysesnlialso be seen that areas with high
numbers of counts correspond to SN tisstig. (Sba-j), consistent with the presence of neurons
in these regions, as neurons express a higher mwhienes compared to glial cells. Each
sample was also assigned a number of BayesSpaterslaccording to their qTune metrics
(Fig. Sba-j; see methods). We asked if the clusters acrofsetit samples can be correlated,
and/or anatomically annotated. Thus, we perfornogcetation analysis of the gene expression in
each of the BayesSpace clusters (see methodsijemtdied three cross-sample spatial meta-
clusters Fig. S6k). The gene markers the meta-clusters are prowd&dble S8. Examining

these gene markers allowed us to classify the theta-clusters as: white matter, SN, and white
matter with high expression of ribosomal gertég.(S6k). Because the white matter could not
be reliably divided into specific, consistent, caical regions, we grouped the two white matter
containing meta-clusters into one category (Sumo Tissue)Kig. S6a-j). We used these
classifications for downstream analyses.

Interpretation of Spatial Cross Correlation Data

SCC is different from traditional Pearson corr@atiThe diagonal of the SCC heatmap is the
autocorrelation of each cell-type. It is notablattthe heatmap shown fig. 7c is not symmetric
along the diagonal. This is because we are shothimgifference in SCC between PD and
controls, aggregated across multiple samples. Alscause the relative abundance of features or
cell types in this spatial dataset is spatiallyatale, this leads to slightly different coefficiant
when comparing the SCC between cell-type A andiBugeSCC of the inverse relationship. In
other words, the relationship of cell-type A told¢gpe B is not entirely equivalent to the inverse
relationship of cell-type B : cell-type A. Thishgcause the weighting variable WHjig. 7a), is
either 1 or 0 based on the proximity of cell A tovhich is determined by the spatial abundance
of each cell type relative to the other. As showhig. 7c, the relationship between T-cells and
oligodendrocytes is not equal when viewed fromeddht axes. This can be interpreted as
follows: T-cells, which are sparse cells, were cal@zed with oligodendrocytes, which are
abundant cells, and were rarely found where oligddecytes where low. Thus, the SCC of T-
cell to oligodendrocytes is positive. However, B@C of oligodendrocyte to T-cells is not
equivalent. This is because the oligodendrocytepegsent in many areas where T-cells are not
present.

Changes in SCC relationships along the diagon&b¢atrelation) are useful to interpret,
especially for sparse cells. In the SN, the TH+oes are evenly dispersed in the control tissue.
In PD, these cells are depleted and are less abyrbas, they become less disperse and more
clustered in PD, especially given the known nigegiion vulnerability of lateral vs medial tiers
of SN TH+ neuron$®. Namely, TH+ neurons are less abundant in theale®N and relatively
less depleted in the medial SN. This neuropatholpgenomenon explains why TH+ neurons
display increased autocorrelation (SCC along tegahal) in PD, i.e., become less dispersed
and more clustered, and therefore more autocoecel@n the other hand, oligodendrocytes are
present within the both the SN and the white matiter distribution of oligodendrocytes was not
apparently altered in our dataset, and thus, thecarrelation was not altered. Likewise, the
spatial distribution of oligodendrocytes relatieefibrous-like astrocytes was not altered. This
includes comparing the abundance of oligodendreagdibrous-like astrocytes and vice-versa.
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This is because both cell-types are more abundaheiwhite matter, which represents a large
fraction of our ST dataset.

Supplementary Figure Legends

Figure S1: TCR entropy and a-syn GLIPH2 results

a) Venn diagram of all CDR3 sequences in the TCR tepes, across all patients, grouped by
region and condition. On the bottom left (purpl@ipvs the cingulate cortex control, top left
(yellow oval) SN control, top right (green oval) $D, and bottom right (pink oval) cingulate
cortex PDb) Ridge plot showing the abundance distributionsesponding to each region and
condition in the global CDR3s (center section imNWeliagram). The log-normalized reads are
on the x axis, and region and condition are orythris. The left side represents sequences with
higher numbers of reads, the right side lower nusmbgreadsc) Bar plot depicting the average
number of CDR3 sequences seen in more than orenpaticontrol (orange) and PD (blue)
samples of the substantia nigq.Entropy values for clonotype components - For each
component, we found that the substantia nigra éeailsignificantly higher entropy (linear
model p values 0.0237, 0.024, 0.0131, and 0.04&pectively), however there was no
significant difference in entropy between contnatidD (linear model p values 0.4487, 0.537,
0.3775, and 0.4010, respectivelg) Bar plot of p values from comparison of entropydach
clonotype component, measured by linear regredsbmeen condition (orange bars) and region
(blue bars). The y axis represents the calculateye, while the x axis shows the clonotype
component being compareg Box plots depicting clonal expansion scores faheaf our four
conditions, calculated from the patient level. Tiexis represents D values derived from
Kolmogorov-Smirnov testing. Values between condéiradl PD in the cingulate cortex were not
significantly different (p value 0.83). SN contidlscores were significantly lower than SN PD,
with p value 0.048g) Plot of significance distributions generated 1@fdtions from patient-

level clonal expansion scores (see methods). Thésxshows the generated p values, and the y
axis shows the density. Values from the SN areessted in blue, cortex in oranyé Pie chart
of the number of GLIPH2 tags/motifs shared betwtbenalpha-synuclein reactive peripheral T-
cells and each of the four specified conditionsnfi@ur dataset) Ridge plot of clonal expansion
scores of GLIPH2 tags/motifs shared between thesagynuclein reactive peripheral T-cells and
control and PD SN, Gene set enrichment of a general memory T-cekkgeinn T-cell gene
expression in PD. Normalized enrichment scoreQ$ @ith p value 7e-05.

Figure S2: Single Nucleus Analysis of Neurons in the Substantia Nigra.

a) UMAP plots of all substantia nigra nuclei, grougmddonor on the left, and by sex on the
right. b) UMAP plots of substantia nigra neuronal nuclegugred by sublineage on the left, and
by condition on the right) Dot plot of select marker genes for each neursuablineage in the
SN. Color represents the average normalized ggmession value, and size represents the
percentage of cells expressing the gel@lumber of differentially expressed genes in each
neuronal sublineage of the SN. Green bars représemumber of genes with negative logFC
values, or downregulated in PD, and blue bars semtethose with positive logFC values, or
upregulated in PDe) Same as a but for the cingulate cort¢6ame as b but for neurons in the
cingulate cortexg) Same as c but for neurons in the cingulate cone®ame as d but for
neurons in the cingulate cortex.
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Figure S3: Comparison of Gene Expression in Neurons and Myeloid Cells

a-b) Pathway enrichment of DEGs from dopaminergic nesira the SNg) and layer 2 CUX2+
neurons in the cingulate cortdy) ( The fold enrichment is represented on the y,afs each
pathway on the y axis. Dot color represents —Igg¥@lues, and dot size represents the number
of genes in the pathwag) Venn diagrams showing the overlap of DEGs, botheased (left)

and decreased (right) between dopaminergic neunahg SN and layer 2 CUX2+ neurons in
the cingulate cortexd) Bar plot showing the KEGG pathways representethbyshared
decreased DEGs between the SN dopaminergic neanahihe cortical layer 2 CUX2+ neurons.

Figure S4: Single Nucleus Analysis of Astrocytes in the Cingulate Cortex.

a) UMAP plots of all cingulate cortex astrocyte nuctgouped by sublineage (protoplasmic in
orange, fibrous-like in blue), condition (contrnlerange, PD in blue), and donby.Number of
DEGs in each astrocytic sublineage in the cingudatéex. Green bars represent the number of
genes with negative logFC values, or downregulatétD, and blue bars represent those with
positive logFC values, or upregulated in RPKEGG pathway enrichment of DEGs in fibrous-
like and protoplasmic astrocytes in the cingulateex.d) Dot plot of select markers genes for
each astrocyte lineage in the cingulate cortexoQ@presents the average normalized gene
expression value and size represents the percenitags expressing the gera@.Pseudotime
plot of astrocytic nuclei in the cingulate corteith astrocytes expressing protoplasmic genes on
the left side in red, and astrocytes expressimgig-like genes on the right in blue. Nuclei are
projected on PHATE axes. Color bar indicates pstndovalue ranged’) Ridge plot depicting
the proportion of protoplasmic and fibrous-likdamv to high pseudotime values. Protoplasmic
astrocytes are depicted in orange, fibrous-likielire.g) Ridge plot depicting the enrichment of
PD and control astrocytes in low to high pseudotaees. PD astrocytes are depicted in blue,
control in orange.

Figure S5: Spatial Transcriptomics and BayesSpace Spot-Level Data.

a-f) From left to right: Original H&E tissue image, nber of counts per spot (normalized by
SCT), and regional tissue classifications for esaninpleg-j) same as a-f, but tissue image is
stained with antibodies NeuN, GFAP, and DAPI.

Figure S6: BayesSpace Clusters and Their Correlations.

a-]) BayesSpace cluster assignments for each spotimsaanplek) Heatmap of correlated
clusters for each sample as defined by correlatiaqyene expression. The large top left cluster is
classified as white matter, the middle clusterudsstantia nigra (SN), and the lower right
clusters as white matter with increased ribosoraakbgexpression. The BayesSpace clusters for
each sample are indicated on the x and y axes. fledrk&olors denote a high correlation value,
and dark blue colors denote a lower correlationedletween variable feature enrichment.

Figure S7: MT3 and GFAP staining in astrocytes

a-b) Cells in the cingulate stained for DAPI (blueigtect nuclei of all cells and GFAP (green)
to detect astrocytes. Scale bar 7uPf. c-d) Cells in the SN stained with DAPI (blue) to detect
nuclei of all cells and GFAP (green) to detect@sttes. Scale bar = 20n. The next row shows
MT3 (red) alone. The last figure is the mergedlotfreiee channels) Example of “GFAP high”
cells shown by arrow$) Example of “GFAP low” cells shown by arrowgy. Quantification of
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the proportion of MT3 positive astrocytes in theispective regions. Unpaired two-tailed T-test
N = 6 for both conditions. P value = 0.0017 for tineportion of MT3 positive GFAP-high
astrocytes in the cingulate, p value = 0.9290 @WSN. The proportion of astrocytes labeled
“GFAP High” in the cingulate has p value = 0.008| Isas p value = 0.0019. Data is shown as
mean +/- SEM.

Supplementary Tables:

Table S1: T-cell Receptor Sequencing, Single Nucleus, andi@paanscriptomics Sample
Metadata.

Table 2: Saturation Plots from TCR Sequencing Repertoires.

Table 3: Expanded CDR3 Sequences and GLIPH2 Results.

Table 4: Substantia Nigra Lineage Cluster Markers, DEGd, RathfindR Results.

Table 5: Cingulate Cortex Lineage Cluster Markers, DEGs, RBathfindR Results.

Table 6: CD8+ Tissue Resident Memory Gene Set and Genezaldvly Geneset.

Table 7: scHPF Cell Scores and Gene Scores.

Table 8: BayesSpace Cluster Correlation Data.

Table 9: Comparison of DEGs in Cingulate Cortex and Sulbistafigra Neurons and Myeloid
Cells.

Table 10: Antibody Descriptions.

Table 11: Comparison of GPU versus CPU SCC Calculations.
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