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Abstract 
Parkinson’s Disease (PD) is a progressive neurodegenerative disease that leads to debilitating 
movement disorders and often dementia. Recent evidence, including identification of specific 
peripheral T-cell receptor sequences, indicates the adaptive immune response is associated with 
disease pathogenesis. However, the properties of T-cells in the brain regions where neurons 
degenerate are uncharacterized. We have analyzed the identities and interactions of T-cells in PD 
in post-mortem brain tissue using single nucleus RNA sequencing, spatial transcriptomics and T-
cell receptor sequencing. We found that T-cells in the substantia nigra of PD brain donors exhibit 
a CD8+ resident memory phenotype, increased clonal expansion, and altered spatial relationships 
with astrocytes, myeloid cells, and endothelial cells. We also describe regional differences in 
astrocytic responses to neurodegeneration. Our findings nominate potential molecular and 
cellular candidates that allow a deeper understanding of the pathophysiology of 
neurodegeneration in PD. Together, our work represents a major single nucleus and spatial 
transcriptional resource for the fields of neurodegeneration and PD.  
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Introduction 
Parkinson’s disease (PD) is a common neurodegenerative disease, with an incidence exceeded 
only by Alzheimer’s disease1. PD neuropathology is characterized by the aggregates of alpha-
synuclein in neurons known as Lewy bodies and Lewy neurites2, and a loss of dopaminergic 
neurons in the substantia nigra (SN)3. While current treatments alleviate PD symptoms4, they do 
not slow PD progression, and a better understanding of the disease pathophysiology is needed to 
identify therapeutic strategies. 
 
Neuropathological studies have previously identified autoimmune features associated with PD, 
including an increase in T-cell populations in the SN of PD patients5,6. T-cells in the peripheral 
blood recognize and proliferate in response to an alpha-synuclein antigen challenge in PD 
patients7, and an association between neurodegeneration and microglial activation is well-
established in other neurodegenerative diseases such as Alzheimer’s8,9, but little is known about 
these phenomena in the PD brain. The brain microenvironment in the PD SN is considered to be 
“pro-inflammatory”10, and pro-inflammatory microglia may contribute to the pathogenesis and 
neuronal death in PD11. It has also been suggested that microglia are activated in PD by 
exosomes secreted from neurons with alpha-synuclein aggregates12, and astrocytes have been 
shown to adopt abnormal phenotypes in PD neuropathology that could be associated with 
antigen presentation pathways13,14. Thus, the interaction between brain microenvironment cells 
and cells of the immune system is worth further investigation.  
 
In animal models, mice that overexpress alpha-synuclein exhibit dopaminergic 
neurodegeneration following a bout of enteric infection, and this is associated with a substantial 
entry of peripheral T-cells into the brain15,16. A presentation of mitochondrial antigens has also 
been implicated in adaptive immunity in animal models of PD17,18. 
 
Together, the clinical and basic data point towards an important role for infiltrating T-cells in the 
brain during PD pathogenesis. However, previous studies have mainly focused on the 
characterization of peripheral T-cells in the blood and cerebrospinal fluid19–25, leaving the role T-
cells play centrally in the human SN in PD unknown. Additionally, many studies characterizing 
T-cells of the PD brain rely on IHC and/or murine data5,26–29, and questions of transcriptional 
profiles of T-cells in the human PD brain remain unanswered. As such, there has also been no 
effort to compare peripheral and CNS T-cells in PD. 
 
The goal of this study is to create a resource for T-cell and glial pathology in the human 
postmortem brain. This allows us to characterize the phenotype of the adaptive immune response 
in human PD brain, and the relationship between central and peripheral T-cells and other cells in 
the brain microenvironment, mainly focusing on astrocytes and microglia/myeloid cells. To do 
so, we have analyzed human brain tissue samples from the SN and the cingulate cortex, 
comparing control and PD. We have used multiple cutting-edge technologies paired with 
advanced computational techniques, including molecular analysis of one of the highest numbers 
of PD brain T-cells that have been reported in previous study cohorts30–34.  
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Together, by studying one of the largest numbers of human PD T-cells in the brain to date, we 
present several conclusions. First, we found that T-cells of the PD SN are mainly CD8+, or 
cytotoxic, and display a tissue resident, clonally expanded phenotype. Second, we find that not 
only are T-cells increased in the perivascular spaces as previously reported35, but also in the 
brain parenchyma. We also characterized the phenotypes of astrocytes in the SN and cingulate 
cortex and found marked differences between the two regions. Importantly and unlike the 
cingulate cortex, PD reactive astrocytes showed decreased MT3 expression in the SN, a gene we 
previously showed to be neuroprotective36. Also, we employed spatial transcriptomics and 
described significant changes in the spatial correlation patterns between T-cells and astrocytes. 
Finally, we performed computational analyses to nominate candidate molecular and cellular 
interactions that may perpetuate neurodegeneration in PD. Altogether, our results uncover novel 
insights into the potential roles of glial and T-cell pathology in PD. 

Materials and Methods 
Human Subjects and Brain Tissue 
All study protocols were approved by Columbia University Irving Medical Center Institutional 
Review Board. Postmortem cingulate cortex or SN specimens frozen during autopsy from 
control (individuals whose brains did not show significant neuropathology) and PD/DLB were 
obtained from the New York Brain Bank. The tissue was dissected by a board-certified 
neuropathologist (OAD), or under the supervision of a board-certified neuropathologist. Forty-
four cases were selected for snRNAseq and TCR sequencing, each with RNA integrity numbers 
of >7, and ten of these were selected for spatial transcriptomics analysis. Cortical wedges, 
excluding subcortical white matter, or SN tissue measuring ~ 5 x 4 x 3 mm were dissected on a 
dry ice cooled stage and processed immediately as described below. The demographics of the 
cases used are provided in Table S1. 

 

TCR Sequencing  
To prepare our TCR libraries, we followed the iRepertoire Bulk Reagent Universal User Manual 
(V20200818). The starting material was 500ng RNA per sample. We used 9 barcodes - HTAIvc 
kits (HTAIvc01, HTAIvc02, HTAIvc03, HTAIvc04, HTAIvc05, HTAIvc06, HTAIvc07, 
HTAIvc08 and HTAIvc09). We pooled one library from each of the barcoded kits together for 
each sequencing run. The libraries were pooled with 10% PhiX spike-in and sequenced with 
NextSeq High Output 300 Cycles kits (Illumina) on an Illumina NextSeq 550 (read 1: 155 
cycles; read 2: 155 cycles). Five total sequencing runs were conducted.  
 

TCR Data Processing and QC 
Raw data processing was performed in accordance with Sims et al., 201637. As such, raw paired-
end fastq files were demultiplexed based on the internal 6-nt barcode sequences added during 
library construction. FLASH 1.2.11 (flash –M 250 –O)38 was used to merge the paired reads, 
which were aligned to the human genome (GRCh37) using the Burrows-Wheeler Aligner (bwa-
mem)39. Reads mapping to the T-cell receptor loci (TRA) and associated with V- and J-cassettes 
were extracted and translated in silico in all three readings. Reading frames containing a 
C...FGXG amino acid motif that was uninterrupted by a stop codon were identified as productive 
CDR3 amino acid sequences. For each demultiplexed10 sample, all V- and J-cassettes were then 
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reference-corrected and the number of reads identified with each unique combination of V- and 
J-cassettes encoding a CDR3 amino acid sequence were counted. Further, saturation levels for all 
sample libraries were assessed using the estimate_saturation function from the RNAseQC40 
package in R, at a depth of 200 and using 10 reps, and saturation curves were plotted for each 
sample (Table S2). 
 

Calculating Entropy in TCR Data 
We used Shannon entropy as a measure of diversity in our TCR dataset37,41 for each of the 
components of the clonotype (CDR3 amino acid sequence, VJ combo, whole clonotype, and the 
difference between the whole clonotype and the VJ combo), using their reads as a direct measure 
of their frequency in the repertoire. To do so, the following equation was used: 

���� � ����	��
�����	��
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���

 

where H is Shannon entropy, X is the clonotype, and the probability of X was calculated from 
the frequency of reads for the given clonotype X in the entire repertoire of a given sample. We 
were able to collect entropy values for each sample repertoire, for each clonotype component. 
We then averaged these entropy values for each region and condition for comparison. 
Comparisons between these average values were conducted using linear regression, with formula 
Entropy ~ Region + Condition. 
 

CDR3 Sequence Clustering and Clonal Expansion  
To determine which motifs defined the sequences in our TCR repertoire, we used GLIPH219 to 
extract conserved motifs across CDR3 sequences. We input our CDR3, V, and J sequences and 
their number of reads into the gliph2 function with default parameters. 16,875 global clusters 
(one amino acid substitution at a location in a sequence is allowed) and 3,103 local clusters 
(strings of amino acids with no substitutions) were identified. The clonal expansion metric 
calculated by GLIPH2 represents the likelihood of a given cluster’s depth being generated by 
random chance, as measured through permutation testing. To report these values, we subtracted 
the clonal expansion scores from 1 so that higher clonal expansion scores represent a higher 
likelihood and lower scores represent a lower likelihood of clonal expansion within a cluster. 
 
To calculate clonal expansion scores for individual subjects, we first filtered our clonotypes by 
counting the occurrence, or number of reads, of each clonotype. We calculated the mean and 
variance of each clonotype occurrence across all patients. We then filtered out clonotypes with a 
mean occurrence less than 1, and variance less than 2. The filtered-out clonotypes served as our 
background. This was a necessary step for random sampling, as the majority of clonotypes in 
these repertoires comprised just one or two reads and made it difficult to generate interpretable 
data.  
 
To generate a quantitative measurement of clonal expansion, we performed random sampling of 
1,000 clonotypes from the filtered data and displayed the histogram on a log scale. The 
histogram revealed two distinct distributions: the background distribution (a right-skewed 
distribution which contained clonotypes that occur only a handful of times but are abundant by 
nature), and the signal distribution (a left-skewed distribution which contained clonotypes 
occurring at far higher frequency and thus more likely to be actively involved in clonal 
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expansion). To extract the signal clonotypes, we required the log frequency of the clonotypes to 
be greater than 3. We then extracted the signal clonotypes from each patient and generated 100 
random distributions as described above and performed a KS test, which generated a D-value 
that we collected across all patients and grouped based on condition and brain region. We 
directly compared each subject’s D-value, grouped by brain region and condition, by unpaired t-
test. We repeated this 100 times to generate 100 p values to further test the hypothesis of 
increased clonal expansion. The code used for this analysis can be found at: 
https://github.com/dalhoomist/T-cell_and_glial_pathology_in_PD. 
 

Extraction of Nuclei and snRNAseq Procedure 
Nuclei were isolated from frozen postmortem brain slices in accordance with established 
protocols42,43. Libraries were prepared using Chromium Next GEM Single Cell 3’ Reagent Kit 
v3.1 (PN 120237), with Chromium Single Cell A Chip Kit, 48 runs (PN 120236). Target cell 
recovery was 10,000 cells per sample for cingulate samples and 20,000 cells for SN samples. 
The final number of nuclei was calculated from the average of three counts on a Countess II or 
III (ThermoFisher©) using DAPI as a nuclear marker. The index plate used was 10X Dual Index 
Kit TT Set A (PN 1000215). Chromium Next GEM Single Cell 3� Reagent Kit v3.1 user guide 
(CG000315 Rev C) was followed. We used 10X Chromium v2 chemistry. 
 

Sequencing and raw data analysis 
Sequencing of the resultant libraries was performed on an Illumina NOVAseq 6000 platform V4, 
150�bp paired end reads, 150 cycles. Read alignment was performed using the CellRanger 
pipeline (v6.1.2−10X genomics) to reference GRCh38.p12 (refdata-cellranger-GRCh38-1.2.0 
file provided by 10x Genomics). Count matrices were generated from BAM files using default 
parameters of the CellRanger pipeline44. Filtering and QC was performed using DecontX13, with 
default parameters, for the cingulate dataset, and CellBender45 for the SN dataset. CellBender 
(version 0.2.0) was run to remove ambient RNA with the addition of the '-cuda' flag to expedite 
the processing. Parameters were set with an expected cell count of 10,000, total droplets included 
at 30,000, FPR (false-positive rate) at 0.01, and a learning rate of 0.0001, utilizing 150 epochs. 
The total runtime for each sample ranged from 30 minutes to 1 hour, with acceleration achieved 
through the use of the NVIDIA A5000 GPU. Decontamination of background was not necessary 
in cingulate samples. Nuclei with percent reads aligning to mitochondrial genes >14% were 
excluded. Genes were filtered by keeping features with >500 counts per row in at least 100 cells. 
Doublets were identified using scDblFinder46 and then removed. 
 

Pre-clustering and clustering and classification of nuclei 
Preclustering of nuclei was performed using Seurat’s shared nearest neighbor smart local moving 
algorithm. First, data was normalized using SCTransform47,48, regressing out percent 
mitochondrial genes and donor. Data integration across donors was achieved using the 
Harmony49 package which effectively regressed out donor effects. Harmony embeddings were 
used in the FindNeighbors step. Elbow plots based on PCA for each data set were used to 
determine optimal number of principal components, and the Clustree package50 was used to 
determine optimal resolution values for the FindClusters() step. Seurat’s51 FindAllMarkers() 
function was used to determine basic cluster markers, which were then used to assign broad 
lineage identities to each cluster (astrocyte, neuron, oligodendrocyte, OPC, myeloid, endothelial, 
vascular, T-cell). To assist with cell type sublineage assignment, we employed EnrichR52, 
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enabling us to garner information from multiple databases based on our representative genes. 
Cingulate cortex neurons were assigned in line with Paryani et. al 202336. Nuclei that did not 
conform to cell types were presumed to be doublets or artifactual noise and removed. The entire 
process was iteratively repeated for each lineage to remove aberrant cells and to assign 
subclusters, or sublineages/subtypes, within each lineage/cell type. 
 
Differential gene expression analysis 
To compare differences in gene expression between PD and control for each cell type, we used 
limma53 within each lineage cluster. We controlled for donor, age, and sex in the model formula. 
Thresholds for most lineages were counts greater than 4 in at least 6 cells, and for lineages 
containing less than 1,000 cells, the threshold was lowered to counts greater than 2 in at least 5 
cells. Our dataset did not include any separate batches. Only genes with p-values < 0.05 were 
carried through to downstream analyses.  
 

Gene set enrichment analysis and gene ontology analyses 
Packages fgsea54 and PathfindR55 were used to determine gene sets enriched within our 
differentially expressed genes for each cell type. All differentially expressed genes along with 
their logFC and adjusted p values were used as input in the run_pathfindR function, using the 
KEGG genesets. Parameters specified were 0.05 as the adjusted p value threshold (using the 
adjusted p value output from limma DGE analysis), minimum gene set size 5, and maximum 
gene set size 500. The cluster_enriched_terms function was run, with default parameters, to find 
representative pathways and filter out irrelevant/uninformative pathways. Using the fgsea 
package, we compared our T-cell lineage to a CD8+ memory effector gene set (Table S6). We 
compiled this geneset using marker genes from the literature56–58. All genes in the T-cell 
sequencing object were assigned a logFC value through Seurat’s FindMarkers function, using 
PD as ident.1 and Control as ident.2, with parameters logfc.threshold, min.pct, and min.diff.pct 
set to -Inf to prevent filtering/removal of any genes. These genes, ranked by logFC, were input 
into the fgsea function with default parameters. Normalized enrichment scores and p values were 
reported. 
 
To construct upset plots, we used the UpSetR59 package. All myeloid DEG data frames from 
limma voom were separated into increased (logFC>0) and decreased (logFC<0), and lists of 
increased and decreased DEGs were input separately into the fromList function before running 
the upset function with default parameters. 
 

Hierarchical Poisson factorization 
We used the scHPF package60 for Python to determine interpretable factors within our SN 
snRNAseq dataset. The scHPF command line workflow comprises three fundamental stages: 
"scHPF prep," "scHPF train," and "scHPF score." In the "scHPF prep" phase, the molecular 
count matrix is utilized to generate a matrix market file and a gene list text file. The parameter “-
m” was set to 10, filtering genes to include only those present in 10 or more cells. In the "scHPF 
train" stage, our SN dataset was aligned with each cell type, employing a candidate parameter 
range from K = 7 to 17 with a step of 2. Subsequently, for the extraction of disease factors within 
each cell type, the training was conducted with K values of 3, 5, 7, 9, and 11. Finally, in the 
"scHPF score" phase, the trained models for each K value were employed to assign gene scores 
to individual factors, resulting in the generation of ranked gene lists. We then selected K to 
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prevent significant overlap in gene signatures among factors. This was mainly done by observing 
the factors expressed by each cell type, and the K value lending itself to the most interpretable 
factors (gene sets following canonical gene expression patterns).  
 
Pseudotime analysis 
Determination of single cell trajectories was performed using the Slingshot61 package in R. First, 
differentially expressed genes between fibrous-like and protoplasmic astrocytes were determined 
using Seurat’s FindAllMarkers function on the fibrous-like lineage, and subsetting the list of 
genes to those with an average log2FC greater than 0.2 (only positive log2FC values were 
accepted). We first ran Potential of Heat-diffusion for Affinity-based Trajectory Embedding, or 
PHATE62, dimensionality reduction on the SN astrocytes to construct PHATE embeddings using 
the aforementioned DEGs. 
 
We added the PHATE embeddings to our original object and ran the slingshot function. As 
parameters for slingshot, we used the sublineage (protoplasmic and fibrous-like assignments) 
meta data for the cluster labels, and the PHATE embeddings as the dimensional reduction. All 
other arguments were used with their default parameters. Ridge plots were then constructed 
using the “slingPseudotime_1” output column, as well as the preexisting sublineage and 
condition meta data columns in the original object. 
 

Spatial transcriptomics 
Following 10x Visium Spatial Protocols – Tissue Preparation Guide (CG000240), OCT 
embedded tissue was scored to the size of the capture area targeting the SN. One 10 µm section 
was mounted on each capture area of the Visium slide. Tissues on the slides were fixed using a 
methanol-containing buffer as per the 10X Visium manual, stained with H&E or antibodies 
NeuN, GFAP, and DAPI (see Table S10 for antibody description) as per the 10X protocol for 
Immunofluorescence Staining & Imaging for Visium Spatial Protocols (CG000312), and then 
imaged. Imaging of whole slides was done at 20X magnification on a Leica DMI8 Thunder 
microscope. After imaging, the slides were de-cover-slipped and the tissue was permeabilized for 
11�minutes (which was empirically determined to yield best results based on the Visium Spatial 
Tissue Optimization Slide & Reagent Kit PN-1000193, as detailed in the protocol provided in 
document CG000238_RevD available in 10X demonstrated protocols). The remaining steps 
were conducted according to the manufacturer’s protocol to prepare the libraries. Briefly, 
libraries were prepared using Visium Spatial Gene Expression Slide & Reagent Kit, 16 reactions 
(PN-1000184). Visium Spatial Gene Expression Reagent Kits user guide (CG000239 Rev G) 
was followed. The libraries were sequenced on NOVAseq (paired end dual-indexed sequencing).  
 
The spatial transcriptomics (ST) samples were prepared using 10X Genomics Space Ranger 
(version 2.1.0) count commands, accompanied by Hematoxylin & Eosin (H&E) images in TIF 
format and a manually-aligned JSON file, generated from Loupe Browser (v7.0) with raw TIF 
images of the tissue. The loupe alignment JSON file was inputted into the loupe-alignment 
argument in Space Ranger along with its respective TIF image file, FASTQ reads, and slide 
numbers. The reference genome used for alignment was built using the Space Ranger function 
spaceranger mkgtf with GRCh38 as the assembly and Ensemble 91 for the transcript annotations. 
All other parameters set to default settings.  
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ST object preprocessing and quality control  
The number of counts per spot per ST sample is shown in Fig. S5a-j. The plots of ST 
experiments shown in Fig. 6a, S5 and S6 were generated using Seurat’s SpatialFeaturePlot and 
SpatialDimPlot functions. A total of 10 samples were analyzed (Table S1). First, any spots with 
zero counts were removed and spot-level gene expression was normalized using SCTransform in 
Seurat.  
 

Cell type deconvolution 
Deconvolution using RCTD63 was used to determine the proportion of each defined cell type in 
each ST spot from our data. As a reference, we used the normalized counts matrix and nUMI 
from our SN snRNAseq object with annotated cell lineages and sublineages. Queries for RCTD 
were generated using coordinates from the “image” and “row” columns in the Seurat object, 
normalized counts, and nUMI for each sample. The function run.RCTD was run with parameter 
doublet_mode=“full”. Otherwise, default parameters were used. 
 

Spatial cross-correlation 
To determine how different cell types were correlated with one another on a spatial plane, we 
implemented spatial cross-correlation analyses43,64. For these analyses, we first created adjacency 
matrices for each sample using the getSpatialNeighbors from the MERINGUE package65 to 
denote which spots were neighbors.  
 
To avoid false neighbor assignment of nearby cells that were not true neighbors (e.g., separated 
by a break in the tissue), adjacency matrices were first created using all spots, whether in tissue 
or not, as listed in the Space Ranger “tissue_positions” csv output file. Next, all spots assigned as 
“in_tissue” were kept for downstream processing, and the rest were removed. This way, spots 
that were not directly next to each other would not risk being labelled as first-order neighbors. 
RCTD cell-type enrichment values per spot, along with each sample’s corresponding adjacency 
matrix, were combined to create spatial cross-correlation metrics by matrix multiplication. We 
used the same principles employed by MERINGUE’s65 spatial cross correlation function, 
however, due to the large sizes of our input matrices, spatial cross-correlation was implemented 
by matrix multiplication in Tensorflow66 to expedite the processing time. Specifically, the local 
measurement of spatial cross-correlation involves multiplying two large matrices and obtaining 
the diagonal elements of the resulting matrix. The speed was further enhanced by utilizing the 
Einsum function in the TensorFlow package, which allows for element-wise computation. The 
code is available at: https://github.com/dalhoomist/T-cell_and_glial_pathology_in_PD. 
 

Spatial transcriptomics clustering 
To assign spatial clusters, we employed the R package BayesSpace67. We first processed our data 
with the spatialPreprocess function, using 7 principal components and 2000 highly variable 
genes for PCA, with log.normalize set to TRUE. We used the qTune function, evaluating q 
values between 2 and 10, and assessed the subsequent qPlot to determine the optimal number of 
clusters, q, defined by the elbow plot inflection point (Table S1). We then used the spatialCluster 
function on the SCT counts for each sample, using the top 7 principal components, error model t, 
and 1000 MCMC iterations with 100 MCMC iterations excluded as a burn-in period. All other 
parameters were used in their defaults.  
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Additionally, we sought to further classify each region of the “Surrounding_Tissue,” or all non-
nigral area. We first merged all ST objects together using scCustomize and normalized them 
using scTransform, all as previously described in our snRNAseq processing methods. We 
extracted all 2000 variable features from the SCT assay. We then returned to our original objects 
(split by sample), and derived the spot-level gene expression values for each of the previously 
defined variable features. We then ran a correlation test using the “cor” function of the stats 
package, and generated a heatmap using the pheatmap68 package in R, using Manhattan distances 
and the ward.D clustering method (Fig. S6k).  
 

Gene set enrichment analysis in spatial data 
To determine which cell types were most correlated with the Nigra and Surrounding Tissue, we 
employed the previously described GSEA with the package fgsea in R. We determined DEGs for 
each spatial region using limma voom, as described above. By using each cell type’s DEGs 
(logFC>0.2; positive logFC only) as a geneset, we supplied ranked genes from each region. 
 
We also measured the spot-level enrichment values for our T-cell disease factor. We employed 
the fgsea package as described above, comparing each spot’s gene expression to the top 200 
ranked genes from the T-cell disease factor. 
 

Immunohistochemistry and histology 
To validate our findings that T-cells assume a tissue resident memory (TRM) phenotype in 
Parkinson’s disease, we performed immunohistochemical staining for various TRM-specific 
markers69,70 in postmortem control and Parkinson’s human brain sections, 7 mm thick (for 
antibody description, see Table S10). The SN was analyzed in transverse sections of the 
midbrain at the level of the red nucleus. All immunostains were conducted on a Leica© Bond 
RXm automated stainer. For chromogenic DAB stains, a generic IHC protocol was employed as 
per manufacturer protocols. Standard deparaffinization and rehydration steps preceded antigen 
retrieval in Leica ER2 (Cat. No. AR9640) antigen retrieval buffer for 10-20 minutes according to 
manufacturer protocols. Then, a peroxide block was applied for 10 minutes followed by three 
wash steps using bond wash solution (Cat. No. AR9590). A one-hour incubation in a blocking 
buffer in 10% donkey serum containing PBS-based buffer preceded antibody labeling for 1 hour 
at ambient temperature. This was followed by three wash steps after which the Post Primary was 
dispersed for 8 minutes, followed by three wash steps prior to the Polymer being dispersed for 8 
minutes, followed by another three wash steps. The slides were then treated with deionized water 
for one minute prior to incubating in Mixed DAB refined for 10 minutes followed by three 
washes of deionized water. Slides were stained with Hematoxylin for five minutes followed by a 
wash with deionized water, then Bond wash solution and a lastly deionized water wash. For 
multiplexing immunostains using antibodies raised in non-overlapping hosts, we used a generic 
immunofluorescence protocol. Slides were baked in a 65 °C oven for a minimum of 2 hours. The 
following protocol was then used: After a dewaxing step, incubation in BOND Epitope Retrieval 
Solution 2 (Cat. No. AR9640) for 20 minutes was used for heat-induced epitope retrieval. Next, 
the slides were washed in 1X PBS before washing twice in Bond Wash Solution (Cat. No. 
AR9590) – 10 minutes/wash. Next, they were incubated in 10% donkey blocking serum for 60 
minutes followed by the primary antibody diluted in blocking buffer for 60 minutes. After three 
washes, the slides were incubated in the secondary antibody containing buffer for 60 minutes. 
After three washes, a DAPI containing mounting solution (Everbright TrueBlack Hardset 
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Mounting Medium with DAPI, Cat. No. 23018) was used to label nuclei and quench 
autofluorescence prior to cover-slipping. A volume of 150 ml/slide was used for all steps. All 
steps were conducted at ambient temperature. 
 
Brightfield images were acquired with a Leica Aperio LSM™ slide scanner under 20X objective. 
All immunofluorescent images were acquired on the Leica Thunder imager DMi8. Images were 
acquired at 20X using a Leica K5 camera. Leica Biosystems LAS X software was used for image 
capture. Tiles covering the cingulate and SN were taken and stitched. Leica Thunder instant 
computational clearing was used to remove out of focus light.  
 

Quantification of IHC 
All image analysis was performed in QuPath 0.4271. Annotations detailing the cingulate, 
peduncle or SN were manually drawn. To detect cells, we used the “cell detection” function 
under the analysis menu, with DAPI as the Detection Channel. We modified the background 
threshold per image to eliminate non-specific detections. We then trained an object classifier to 
classify the detections for the different channels. Training data was created from each image to 
delineate cells that were positive for the specific antigens in question. One classifier per channel 
was trained by calling the “train object classifier” function with the following parameters: type = 
Random Trees, measurements = Cell: Channel X standard deviation, mean, max, and min 
measurements for the channel in question. To increase the accuracy of the classifier, additional 
training annotations were created on the image in question until the classification results matched 
the impression of the observer. Once a classifier was trained for each channel, “create composite 
classifier” was called to create a classifier consisting of multiple individual classifiers, one for 
each channel on the image. Classifiers were trained for each image separately. For the DAB 
stains, positive cell detection was used by detecting optical density sum to detect nuclei for 
CD8+ cells. An object classifier was again trained by using the “train object classifier” function, 
with the following parameters: type=Random Trees, measurements = all measurements, and 
selected classes= CD8+ and CD8-. The number of cells identified as CD8+ were then normalized 
by dividing by the area of the annotation in which the analysis was done. CD103 quantification 
was also performed. The numbers of CD103+ cells in the SN were counted manually by two 
board certified neuropathologists (OAD, JEG). These counts were then divided by the area of the 
respective region. All statistical analyses were conducted in GraphPad® Prism 10. One-tailed or 
two-tailed unpaired t-tests were used to compare PD vs control (Fig. 3, Fig. S7), as indicated in 
the figure legends. One-tailed t-test were used when we had a prior hypothesis informed by the 
transcriptomic data.  
 

Statistical testing 
Statistical testing, aside from IHC analyses above, were conducted using R version 4.2.2. Linear 
model regression analyses seen in Fig. 1c, Fig. 6c, and Fig. S1e were conducted using the lm 
function of the stats package. Prior to linear model testing, data were tested for normality using 
the shapiro.test function from the stats package with default parameters. Wilcox testing seen in 
Fig. 1f was conducted using the wilcox.test function in the stats package with default parameters. 
T tests, as seen in Figure S1c used the t.test function from the stats package to run a Welch Two 
Sample t-test, with the alternative hypothesis being that the true difference in mean between 
group Control and group PD is less than 0. Asymptotic two-sample Kolmogorov-Smirnov seen 
in Fig. 2d and 2h were run using default parameters in ks.test function from stats package. 
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Statistics comparing PD to control for Fig. 3 and Fig. S7 were done using GraphPad® Prism 10 
using one-tailed unpaired t-tests. 
 
To determine modality as seen in Fig. S1i, the function Modes from LaplacesDemon72 R 
package was used on each distribution of clonal expansion scores. Further, we ran an asymptotic 
two-sample Kolmogorov-Smirnov test on the distributions using the ks.test function from the 
stats package with default parameters. 
 

Figure Generation 
All figures were created with Biorender.com, or GIMP version 2.10. 
 

Results 
T-cell receptor sequencing data reveals clonal expansion in the substantia nigra 
of Parkinson’s disease subjects 
The numbers of T-cells are increased in the SN of subjects with PD5,6 and the cortex of Diffuse 
Lewy Body Disease (DLBD)27. To examine whether T-cells in the PD/DLBD brain display 
clonal expansion and/or increased clonal diversity, we compared the T-cell receptor (TCR) 
repertoires in PD/DLBD and control samples using transcriptomics and TCR sequencing (Fig. 
1a) in 44 brain donors.  
 
We compared TCR repertoires in the SN to those in the cingulate cortex, a region commonly 
containing Lewy bodies in advanced PD with dementia (PDD) and DLBD. We chose the 
cingulate cortex in PDD/DLBD because it exhibits neurodegeneration, but to our knowledge has 
not been reported to display increased T-cells in these disorders. We analyzed a total of 44 
samples from 44 patients from either cingulate cortex or SN (see Table S1 for tissue 
demographics. Note, we did not have paired SN and cingulate samples in our cohort. For 
simplicity, we refer to cortical PDD/DLBD as PD thence forward. 
 
Alpha and beta chains of TCRs are highly correlated37, and here we sequenced the TCR alpha 
chain (Fig. 1b). As a quality control step, we determined that all libraries were fully saturated, 
with adequate read depths and numbers of sequences detected rather than producing exorbitant 
numbers of reads on a small number of sequences (Table S2). We first compared the number of 
unique clonotype repertoires in PD and control SN and cingulate using a linear model. There was 
a significantly higher number of unique clonotypes in PD than control in the SN, but no 
significant difference in the cingulate (Fig. 1c). We were also interested in the CDR3 sequences 
that were shared amongst individuals (global sequences)73. We identified some overlap among 
brain regions and conditions in these global CDR3 sequences (Fig. S1a), however most global 
CDR3s were of low abundance (Fig. S1b). Still, SN PD showed more global CDR3 sequences 
compared to controls (Fig. S1c). 
 
We next assessed Shannon entropy levels in our repertoires which, through calculating the 
probability of each CDR3 sequence, determined the diversity of each repertoire74 (see methods 
and supplementary results), and we confirmed increased entropy in the SN over the cingulate 
(Fig. S1d-e). Together, these data all indicate that there are more TCR sequences in the PD SN 
than compared with the cingulate cortex. 
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To determine if T-cells show features of clonal expansion in PD, we plotted the frequency of 
TCR clonotypes at a given read depth against the read depth (Fig. 1d-e). As expected, most 
clonotypes were of low read depth, which is consistent with previous work73,75. Interestingly, we 
found a significant increase in the proportion of most abundant clonotypes (defined as log10 
normalized read depth greater than -6) in PD SN compared to control SN. This was not observed 
in the PD cingulate cortex. Together, these data indicate that PD subjects possess more 
clonotypes that are relatively more abundant in the SN, consistent with clonal expansion.  
 
As another measure of clonal expansion, we devised a measure that leverages the global and 
local distributions of abundance of each repertoire. The patient-level clonal score essentially 
compares the deviation of the observed clonotype abundance from a hypothetical random 
distribution derived from the entire dataset (see methods). For each patient, we compared the 
deviation of the repertoire distribution from a random distribution using a Kolmogorov-Smirnov 
test, and then compared the resulting D-values (clonal expansion scores) across conditions and 
regions. We found increased clonal expansion in PD versus control SN but not in the cingulate 
cortex (Fig. S1e). Further, in assessing the p value distribution from 100 repetitions of testing, 
the data showed a consistent trend of significance in the SN, and insignificance in the cingulate 
(Fig. S1f-g). Together, these data further support that T-cells show features of clonal expansion 
in the PD SN. 
 
In the periphery, T-cells that recognize alpha-synuclein have a broad diversity of TCRs and no 
public clones7. As blood samples were not acquired from the subjects prior to death, we could 
not directly identify which peripheral TCR sequences had been expanded in the brain. To 
analyze the similarity amongst TCRs in our dataset, we employed GLIPH276 analysis to cluster 
CDR3 based on amino acid features homology. This analysis generates clusters/motifs of CDR3 
sequences that can have members derived from different samples and assigns each motif a clonal 
expansion score. We identified 16,875 global motifs, i.e., strings of conserved amino acids with a 
single amino acid substitution, and 3,103 local clusters, i.e., uninterrupted sequences of amino 
acids.  
 
We found extensive diversity in the sizes of the clusters, ranging from the minimum of two 
CDR3 sequences to 4,698 copies with a motif, with a median value of two CDR3 sequences. 
(Table S3). We filtered our results for significance (Fisher score < 0.05), and determined a 
representative condition for each tag, or conserved motif, depending on which condition 
contributed the highest proportion of CDR3 sequences in the tag. We found that PD sequences 
were more likely to exhibit motifs with high clonal expansion scores than were control sequences 
(Wilcox p value 0.0016; Fig. 1f).  
 
Taken together, this analysis revealed a significant increase in the patient-level clonal expansion 
score in PD SN (Fig. S1f-g), indicating T-cells are clonally expanded in the PD SN. 
 

Single nucleus RNA sequencing reveals cell-type specific DEGs in PD  
We then examined the T-cell gene signatures with single nucleus RNA sequencing (snRNAseq) 
(Table S1). The SN dataset includes 207,859 nuclei, with 96,244 derived from PD subjects 
(including 831 SN T-cells, 535 being from PD donors), and the cingulate dataset comprises 
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57,425 nuclei, 32,442 from PD subjects. We projected these nuclei in UMAP space and assigned 
cell types/lineages (Fig. 2a and Fig. 2e, respectively), and by donor and sex (Fig. S2a and Fig. 
S2e, respectively). The expression of select canonical marker genes per lineage for the SN and 
cingulate is shown Fig. 2b and Fig. 2f and cluster markers are reported in Table S4. 
 
We determined the differentially expressed genes (DEGs) between PD and control in each 
lineage in the SN and cingulate (Table S4 and Table S5). Interestingly, astrocytes showed 
increased MT3 expression in the cingulate in PD (Fig. 2d), as we have shown for Huntington’s 
disease (HD)36. We validated this finding in our supplemental IHC data (Fig. S7g). As expected, 
SN neurons exhibited reduced expression of the dopamine synthetic enzyme tyrosine 
hydroxylase (TH) (Fig. 2h), consistent with previous studies3. We found that the largest number 
of altered DEGs in PD were in neurons and oligodendrocytes in both SN and the cingulate 
(Fig.2c and Fig. 2g). There were also high numbers of DEGs in astrocytes and myeloid cells in 
both regions, and in T-cells in the SN.  
 
Prior studies have detailed neuronal and glial pathology in PD at the single nucleus level3,31,34, 
including recent preprints32,33,77. We described our results detailing neuronal pathology in the SN 
(Fig. S2b-d) and the cingulate cortex (Fig. S2f-h) in the supplementary results. Briefly, the 
highest number of DEGs were found in TH+ neurons in the SN and layer 2-3 CUX2+ 
glutamatergic neurons in the cingulate cortex (Fig. 2d and Fig. 2h, respectively), and we 
implicated several pathways involved in neurodegeneration and synaptic vesicle cycle that were 
shared between the two most affected neuronal populations (Fig. S3a-d).  

 

Single nucleus RNA sequencing defines a T-cell PD disease signature and CD8+ 
resident memory phenotype 
We analyzed our dataset using a recently developed approach called single cell Hierarchical 
Poisson Factorization60 (scHPF; see methods). This method derives factors, or gene sets, that 
capture the sources of gene expression variability in the dataset, which could be lineage related, 
disease related, or related to other factors. When we applied scHPF to the SN snRNAseq dataset, 
we retrieved factors that corresponded to cell types (Fig. 2i). An example of the gene score of 
select factors is shown in Fig. 2j, where genes from astrocytic, TH+ neuron, and T-cell factors 
are shown, underscoring the power and validity of the technique. Additionally, T-cells in our 
dataset were mostly CD8+ (Fig. 2f), consistent with previous reports78,79 and our validation 
studies (see below; Fig. 3a-d). 
 
We then used scHPF to extract a PD “disease factor” (Table S7) in T-cells with higher scores for 
PD than control subjects (Fig. 2k). Factor 1 was higher in control T-cells, while PD T-cells had 
higher scores in factor 5, nominating this factor as a “disease factor”. The top genes in factor 5 
are implicated in IL-2 signaling (UBC, SOS1, CD2, JAK3, LCK, BIRC3, DOK2, HIST1H2AC) 
and NFkB signaling (TNFAIP3, RIPK1, CFLAR, PLCG2, LCK). Given the known effects of IL-2 
signaling on CD8+ T-cell fates, including effector and memory phenotypes80, we performed 
GSEA analysis to measure enrichment of a T-cell resident memory (TRM) gene set81–91 (Table 
S6; Fig. 2l) in the T-cell disease factor 5. We found that the gene set was enriched in the T-cell 
disease factor. Also, the expression of multiple genes from the TRM gene set were significantly 
increased in PD T-cells, including T-cell memory genes such as IL7R and CD6985,92 (Fig. 2m). 
As expected, the TRM gene set was significantly enriched in the gene expression of PD T-cells 
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ranked by the log-fold change (logFC) from control T-cells (Fig. 2n). We also assessed the 
enrichment of a general memory T-cell gene set, encompassing central memory, effector 
memory, and peripheral memory T-cell genes93–95 in T-cells genes ranked by their gene-wise 
logFC in PD vs control (Table S6; Fig. S1j), and a found a similar enrichment, further 
corroborating our findings that T-cells demonstrate a TRM phenotype in the PD SN. 
 
Taken together, these results indicate that PD SN T-cells demonstrate a more prominent memory 
phenotype, which we interpret as being more antigen-experienced.  
 

Validation of T-cell phenotypes in the post-mortem substantia nigra  
To independently test the finding that PD T-cells are memory CD8+ cells, we performed IHC 
using a CD8 antibody and found that the numbers of CD8+ T-cells were higher in the SN 
parenchyma and in the white matter (cerebral peduncle) in PD brains compared to controls (Fig. 
3a-d), consistent with previous reports showing that CD8+ T-cells infiltrate the PD brain5,6. The 
cerebral peduncle is useful in these analyses, as blood vessels enter the SN from the 
subarachnoid space around the midbrain via the peduncle, and many CD8+ T-cells can be found 
around these vessels in the peduncle and peduncular tissue itself. We did not count cells around 
vessels, thus, the T-cells we quantified in the SN and in the white matter were parenchymal.  
 
To validate the memory phenotype of CD8+ T-cells in PD SN, we used IHC for CD103, which 
is expressed in TRMs69. The density of CD103+ cells was higher in PD compared to controls in 
the SN (Fig. 3e-f), supporting the transcriptomic results indicating that T-cells in the PD SN 
adopt a memory resident phenotype. 
 

Myeloid cells in the PD SN show increased enrichment in neuroinflammatory 
pathways 
We then analyzed SN myeloid/immune cells in isolation through subclustering and DGE 
analysis. We identified three myeloid states: baseline/homeostatic myeloid cells, activated 
microglia/myeloid cells, and monocyte-like myeloid cells/border-associated macrophages 
(BAMs) (Fig. 4a). Select markers of each subcluster are shown in Fig. 4b (Table S4). We found 
that activated microglia/myeloid cells exhibited the highest number of DEGs in PD, and that 
baseline myeloid cells and monocytes/BAMs demonstrated lower numbers of DEGs (Fig 4c; 
Table S4). A recent preprint identified heterogeneous transcriptional states in the PD SN through 
higher resolution clustering32. For this study, we find it expedient to compare the broad classes of 
myeloid cells highlighted herein. 
 
To determine how SN myeloid cells are affected in PD, we compared activated, baseline, and 
monocyte/BAM subtypes to the myeloid cells of the cingulate (Fig. 4d-e; Table S5). The 
cingulate cortex saw much higher numbers of DEGs across all myeloid lineages. Relatively, the 
activated myeloid cells had the highest number of DEGs in the SN, and baseline myeloid cells 
and monocytes/BAMs had the highest number of DEGs in the cingulate (Fig. 4f; all cingulate 
DEGs Table S5).  
 
To compare the response of myeloid cells in the cingulate and SN, we examined the patterns of 
overlap between positive and negative DEGs in Upset plots (Fig. 4g-h; see methods). We found 
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that the majority of DEGs were region-specific: in the cingulate there were 142 DEGs (79 
increased and 63 decreased) shared between all cortical myeloid cells and no SN myeloid cells 
(the DEGs, both increased and decreased, shared between myeloid lineages in the cortex and SN 
can be found in Table S9). The SN had much lower numbers of DEGs in general, with just 10 
DEGs (3 increased and 7 decreased) specific to SN myeloid cells. Most other DEGs were shared 
across cell types or brain regions. This data points to a region-specific myeloid gene signature in 
the cingulate cortex in PD, but a more generalized inflammatory response in the PD SN (Fig. 34-
h; Table S9). 
 
To decipher these gene sets, we performed gene set enrichment analysis of all KEGG pathways 
with the pathfindR package (Fig. 4i). We found that SN monocytes/BAMs exhibited the highest 
enrichment in Th17 cell differentiation, PI3K-Akt signaling pathway, MAPK signaling pathway, 
and endocytosis. As PI3K-Akt and MAPK signaling are involved in neuroinflammation in 
neurodegeneration and are potential therapeutic targets in PD96–98, these data suggest that 
monocytes/BAMs in the SN participate in neuroinflammation and immune signaling in PD.  
 

Differential regional dysregulation of astrocytes in PD 
Astrocytes play roles in PD99. We and others have shown that astrocytes can be distinguished by 
CD44 expression into fibrous-like and protoplasmic100. We assigned astrocytic nuclei to a 
protoplasmic or fibrous-like sublineage and conducted DGE analysis (Fig. 5a-c for SN, and Fig. 
S4a-c for cingulate cortex). Following our previous results that indicated a compensatory 
neuroprotective astrocytic response characterized by increased metallothionein protein MT3 
expression in HD astrocytes36,42, we found that MT3 was increased in the CD44- (protoplasmic) 
cingulate cortex astrocytes but not SN protoplasmic astrocytes. As expected, expression of 
GFAP was increased in both regions (Fig. 5d).  
 
We next sought to validate these findings with immunohistochemical studies in postmortem 
brain specimens. To do so, we immunostained cingulate cortex and SN, PD and control, with 
GFAP and MT3 (Fig. S7a-f). We found that MT3 was significantly increased in GFAP-high 
astrocytes in the cingulate cortex in PD, but there was no such significant increase in the SN in 
PD, confirming our gene expression data. Interestingly, when we quantified the proportion of 
astrocytes that were GFAP-high – a surrogate for reactive astrocytes – we found that more 
astrocytes were GFAP-high in the cingulate, but not the SN. In fact, there was a reduction in the 
proportion of GFAP-high astrocytes in the SN (Fig. S7g). This is consistent with previous 
reports95 that found reduced GFAP protein expression in the PD SN.   
 
We then examined KEGG pathways enriched in the DEGs (both increased and decreased) in the 
SN fibrous-like and protoplasmic astrocytes (Fig. 4e-f, Table S4) and in the cingulate cortex 
(Fig S4c, Table S5). In both astrocyte types and both brain regions, we found enrichment in 
multiple immune activation pathways including IL-17 signaling and NOD-like receptor signaling 
pathways in PD. These were largely driven by DEGs increased in PD including FOS and JUN, 
which are known to be increased by several pathways, including stimulation of astrocytes by 
interferon gamma, IL-1, and IL-6 amongst others101. Other shared pathways include MAPK 
signaling and pathways related to stemness (Tables S4-5). Of note, the latter pathway was driven 
by different DEGs in the cortex versus the SN. For instance, in fibrous-like cingulate astrocytes, 
it was driven by downregulation of FGFR2, FGFR3, and BMP receptor-1 genes. Conversely, in 
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SN fibrous-like astrocytes, it was driven by upregulation of ID3, ID4 and downregulation of 
LIFR. Interestingly, VEGF-signaling was enriched in both astrocyte types in the cingulate (Table 
S5) but only fibrous-like astrocytes in the SN (Table S4) – where it was driven by upregulation 
of FOS, JUN, VEGF, and PLCG2, and downregulation of TXNIP, COX2, and CALM2. Further, 
enrichment of pathways related to neurodegeneration was higher in fibrous astrocytes in both 
brain regions (Fig. 5e-f, Fig. S3c, Tables S4 and S5). 
 
We then examined evidence for a transition from protoplasmic to fibrous-like states in PD, as we 
have seen in HD, hypoxia, and seizures36,100, using pseudotime analysis which is a means to 
order cells along a trajectory of gene signature. We ordered cells on the axis of variation along 
the genes that differ between the two astrocyte sublineages (Fig. 5g-h – SN, and Fig. S4e-f – 
cingulate cortex). We found a trajectory from protoplasmic to fibrous-like (Fig. 5h – SN, and 
Fig. S4f – cingulate cortex), with protoplasmic at the start of the trajectory, and fibrous-like at 
the end. We found a marked increase in the proportion of PD nuclei at higher pseudotime values, 
which correspond to the fibrous-like phenotype, in both the SN and the cingulate cortex (two-
sided Mann Whitney test W value 85275076 with p value <2.2e-16 for SN - Fig. 5I, W value 
6567552 with p value <2.2e-16 for cingulate - Fig. S4g), which is consistent with a previous 
report31. Together, these results confirm that, as in the HD caudate, protoplasmic astrocytes 
transition to a fibrous-like state in PD. Further, as seen in HD, there are regional differences in 
astrocytic responses to injury, with the most severely affected regions showing no increase in the 
neuroprotective gene MT3.   
 

Spatial transcriptomics reveals spatially diverse patterns of pathology in PD 
To spatially map the disease signature within the diverse brain microenvironments that harbor 
these cells, we conducted spatial transcriptomics on a subset of our SN tissue samples (Fig. S5a-
j). First, to evaluate cell-type-specific gene signatures in our spatial transcriptomics data, we 
employed Robust Cell Type Deconvolution (RCTD) to quantify the relative proportion of each 
cell-type/transcriptional state in each locale, the spot-level enrichment values for our T-cell 
disease factor, and spatial clusters/transcriptional niches using BayesSpace67 (Fig. 6a, Fig S5a-j 
and supplementary results). 
 
Through comparison of deconvolved dopaminergic neuron cell type proportions (Table S1) and 
TH expression values, complemented by neuropathological evaluation of corresponding H&E 
images, we annotated the BayesSpace clusters as either SN or surrounding tissue, which was 
predominantly white matter, including both cerebral peduncle and superior cerebellar peduncle 
(Fig. S6a-k and supplementary results). The SN region is defined by TH expression in addition 
to high proportions of dopaminergic neurons, as defined by deconvolution (see methods and 
Table S1). The surrounding white matter is defined by high proportions of oligodendrocytes. As 
expected, TH expression was higher in the SN compared to surrounding white matter (regression 
estimate 0.24, p value <2e-16), and lower in the PD SN versus control (Fig. 6b). We then tested 
for enrichment of the T-cell disease factor in the SN, which showed significantly higher levels in 
PD tissue than control (Fig. 6c). These data independently validate our snRNAseq findings and 
assign the T-cell PD disease factor to the SN. 
 
We then performed DGE analysis between PD and control ST capture areas in the two niches 
separately, and measured the enrichment of snRNAseq-derived cell-type specific DEGs in the 
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ST-derived niche-specific DEGs (Fig. 6d; see methods). As expected, genes downregulated in 
PD dopaminergic neurons were decreased in both brain regions in PD. The enrichment of 
fibrous-like astrocyte DEGs was enriched in the DEGs of SN only, and the activated 
microglia/myeloid cell DEGs in the surrounding tissue DEGs only. In contrast, DEGs of 
monocytes/BAMs and the T-cell disease factor (factor 5 from above) were significantly enriched 
in both niches. This is consistent with our findings that T-cells are found in both the peduncle 
and in the PD SN parenchyma (Fig. 3a-d). We conclude that fibrous-like astrocytes adopt a 
disease phenotype in the SN in PD, and that monocytes/BAMs and activated microglia/myeloid 
cells do so in both the SN and the white matter.  
 
Finally, we used an unbiased approach to analyze ST niche-specific DEGs and measured the 
enrichment of KEGG pathways in the SN and surrounding white matter (Fig. 6e). The results 
showed a marked difference in the pathways represented by each region’s DEGs. Genes involved 
in synaptic vesicle recycling and PD were enriched in the SN niche, which validates the results 
from examining TH+ neurons from the snRNAseq data. Conversely, the white matter exhibited 
an increase in genes involved in oxidative phosphorylation, antigen processing and presentation, 
and mitophagy. There were several pathways, such as oxytocin signaling and 
glycolysis/gluconeogenesis, that were enriched in both regions. Together, these results suggest 
that there are distinct, cell-type specific, spatially-defined pathologic signatures in PD. 
 

PD-enriched spatially defined cell-cell cohabitation and communication patterns  
To determine the spatial relationships of cell types and T-cell disease factor we performed spatial 
cross correlation (SCC) analysis on the spot-level cell-type proportion values in our ST data 
(Fig. 7a). SCC allows us to quantify how the cell types are correlated (SCC coefficients), assign 
statistical significance to the coefficients using a permutation-based method, and retrieve sample-
level and disease condition-level statistics. If cell types are spatially correlated, then positive 
SCC values will be retrieved. If they are negatively spatially correlated, negative SCC 
coefficients will be retrieved. Since determining SCC across thousands of ST data points is 
computationally intensive and slow, we developed a way to parallelize the computation, 
accelerating it by ~1,200-fold (see methods and Fig. 7b, Table S11) to calculate the change in 
SCC between different cell-types/states observed in PD compared to control (Fig. 7c). The 
results indicate three major points. 
 
First, we noted increased SCC with increased significance between T-cells and oligodendrocytes, 
suggesting T-cells are more present in the white matter. We had validated this finding by IHC for 
CD8 staining of postmortem PD and control tissue, not counting the cells in the subarachnoid 
space next to vessels (Fig. 3a-b), where we identified increased T-cells in the cerebral peduncle 
(white matter), which is rich in both cell types. Second, we found high significance in the spatial 
relationship between T-cells and the T-cell disease factor in PD, and lack of significance in 
controls. Third, we identified several cell type combinations with increased SCC, including a) 
activated microglia/myeloid cells and endothelial cells, b) fibrous-like astrocytes and T-cells, c) 
monocytes/BAMs and fibrous-like astrocytes, and d) T-cells and endothelial cells. A more 
detailed interpretation of SCC is provided in the supplementary results.  
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Taken together with our DGE results, these findings highlight novel, statistically significant 
patterns of increased spatial correlation and proximity between immune cells, T-cells, and other 
glial cells in the human postmortem PD SN.  
 
To investigate potential patterns of altered cell-cell interactions in PD, we applied CellChat102, a 
computational method, to our snRNAseq data and identified potential interactions between pairs 
of cell types from inferred direct cell-cell contact and from secreted ligand-receptor signaling 
(Fig. 7d-g). We identified a potential disease-associated connection in cell-cell interaction 
between endothelial cells and T-cells (Fig. 7d), and a potential disease-associated connection in 
the secreted ligand-receptor communication between monocytes/BAMs and fibrous astrocytes 
(Fig. 7f).  
 
Probabilistically, there was an increase in communication strength between endothelial cells, 
monocytes/BAMs, and activated microglia/myeloid cells to T-cells, characterized by MHC class 
I signaling to CD8A (Fig 7e). This interaction independently supports the increased SCC 
between endothelial and activated microglia/myeloid cells on one hand and, on the other hand, 
T-cells in our ST data. Anatomically, it is possible for this interaction to be representative of T-
cells in the subarachnoid space around vessels, taking place outside of the brain.  
 
Turning our attention to astrocytes, we noted also the increased SCCs between T-cells and 
fibrous-like astrocytes, and between fibrous-like astrocytes and monocytes/BAMs (Fig. 7c), the 
latter being predicted to exhibit increased secreted signaling strength (Fig. 7f). The end-foot 
processes of these astrocytes line the pial borders, allowing them to respond to soluble molecules 
in the cerebrospinal fluid, thus allowing them to take part in secreted signaling with cells in the 
subarachnoid space103,104. Together, our analysis suggests that, in PD, T-cells and 
monocytes/BAMs communicate with fibrous-like astrocytes through SPP1-CD44 signaling (Fig. 
7g). 
 
In summary, our results outline a potential network of cell-cell interactions in PD that nominate 
T-cells, monocytes/BAMs and endothelial cells, along with fibrous astrocytes, as central players 
in facilitating neurodegeneration in the PD SN. 

Discussion  
Higher levels of T-cells in PD SN than control SN and an association of PD with peripheral T-
cells that recognize alpha-synuclein have been previously reported, but there has been little 
insight to the characteristics of these central T-cells in PD or analysis of their correspondence 
with peripheral T-cells. The analysis of differential gene signatures and response patterns of a 
plethora of immune cells, both transcriptionally and spatially, provides insights into the T-cell 
roles in the PD SN.  
 
In addition to the 831 human SN T-cells analyzed in our snRNAseq dataset, we were able to 
analyze over 50,000 different human T-cell clonotypes from the PD and control SN and 
cingulate cortex by TCR sequencing of 44 human subjects. Using independent TCR sequencing-
based, computational, and in situ analyses, we now report that T-cells not only display a 
cytotoxic CD8+ tissue resident memory phenotype but are also selectively clonally expanded in 
the PD SN. We further propose that these T-cells have genetic and spatial profiles that indicate 
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interactions with local activated myeloid cells, astrocytes and epithelia within regions of the SN, 
and share motifs with peripheral T-cells that recognize alpha-synuclein in PD patients, despite 
the majority of those being CD4+ helper cell types. 
 
The spatial analyses yielded several technical and conceptual advances. We adapted our previous 
approach to using SCC to define patterns of cellular cohabitation in infiltrating glioma43 with the 
novel use of a new computational approach in massively-parallel GPU–accelerated fashion, that 
yielded computation time up to 1,200 times faster than CPU-based methods65 (see methods and 
Fig. 7b, Table S11). By leveraging the spatial data from multiple ST donors to statistically-
measured changes in SCC, we constructed a spatially-informed model of cell-cell interaction in 
the niche of PD neurodegeneration.  
 
Our results brought us to propose an immune signaling network in PD SN that consists of 
interactions between astrocytes, myeloid cells and T-cells (Fig. 7h). Our SCC data demonstrate 
an increased probability of interaction between FLT1 (also known as VEGFR1) in endothelial 
cells and VEGFA secreted from fibrous-like astrocytes. Such signaling has been shown to 
increase angiogenesis, as well as microglial activation105,106. The results also indicate increased 
cell-cell contact signaling in the APP-CD74 pathway between endothelial cells and both 
activated myeloid cells and monocytes/BAMs, and HLA (MHC class I)-CD8A pathway between 
endothelial cells and T-cells.  
 
We speculate that as CD74 is upregulated in activated myeloid/microglia cells107, this interaction 
can augment presentation of MHC class I molecules to cell surface glycoprotein CD8 on T-cells 
and drive activation of memory T-cells and clonal expansion108–110, which could underlie our 
findings of clonal expansion in the TCR sequencing data. As osteopontin (SPP1), which is 
secreted by activated myeloid cells and T-cells, interacts with CD44 to drive downstream VEGF 
secretion from CD44+ astrocytes111, we infer that signaling from T-cells may activate fibrous-
like astrocytes112. As a result, SPP1-CD44 signaling to fibrous-like astrocytes may activate 
VEGF, activating VEGFR1 in endothelial cells. Previous studies have shown that 
FLT1/VEGFR1 colocalizes with HLA-DR signal in atherosclerotic plaques113, and that HLA can 
stimulate VEGF114. These feedback cycles may lead to specific increases in local SN 
neuroinflammation, importantly including the replication of specific T-cell clonotypes that we 
have identified in PD. 
 
The SCC data, coupled with the CellChat data, led us to propose an immune signaling axis 
through which endothelial cells mediate communication between T-cells, activated myeloid 
cells, monocytes/BAMs, and fibrous-like astrocytes. Through cell-cell contact, we speculate that 
endothelial cells signal to both T-cells (HLA-CD8A) and to myeloid cells (APP-CD74), which 
are predicted to also signal to T-cells through cell-cell contact (HLA-CD8A). Furthermore, we 
found secreted increased probability of signaling from T-cells to fibrous-like astrocytes (SPP1-
CD44), and from astrocytes to endothelial cells (VEGFA), delineating an immune signaling axis 
through which endothelial cells mediate communication between T-cells, activated myeloid 
cells, monocytes/BAMs, and fibrous-like astrocytes. Finally, our analyses also highlighted 
increased probability of secreted signaling from activated monocytes/BAMs and T-cells to 
fibrous-like astrocytes (SPP1-CD44). Coupled with the shift from protoplasmic to CD44+ 
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fibrous-like phenotypes, this signaling pathway is an attractive candidate to target as a means to 
potentially slow down neurodegeneration in PD.  
 
In addition to the increase of clonal T-cells in PD SN, we observed a transition from 
protoplasmic astrocytic phenotypes to a fibrous-like phenotype, which was coupled with a 
decrease in the neuroprotective protein MT3. This is similar to our previous findings in HD36, 
and highlights a region-specific response of astrocytes to neurodegeneration, which may result 
from, or be more likely to contribute to, neurodegeneration. Additional studies are needed to 
determine the generalizability of this phenomenon, and whether it is a root cause or a result of 
neurodegeneration.   
 
Finally, our data showed increased T-cell PTPRC signaling to monocytic MRC1. MRC1 is 
important for myeloid plasticity and adaptive immune responses115, monocytes/BAMs, and, in 
activated microglia/myeloid cells, can be a marker of activation116. Significantly, 
monocytes/BAMs (high expression levels of CD163 and MRC1) have recently been shown to be 
necessary for an alpha-synuclein-induced neurodegeneration in a mouse model of PD117. The 
interaction between T-cells and these monocytes/BAMs via MRC1-PTPRC is consistent with 
previous reports identifying increased colocalization of both cell-types around blood vessels in 
postmortem PD.  
 
Taken together, this outlines a potential immune-vascular-glial signaling axis which includes 
fibrous-like astrocytes, endothelial cells, myeloid cells (monocytes/BAMs) and T-cells, and 
which may have the net effect of eliciting a reactive state in astrocytes, of activation of myeloid 
cells, and potentially T-cell clonal expansion in PD. Though we do not present here experimental 
validation for this network, it serves as a useful framework for future studies investigating the 
adaptive immune response in PD. 
 

Limitations 
We note several limitations of the current study. First, our TCR sequencing data comprises only 
alpha-chain data: single cell TCRseq is needed to definitively identify TCR alpha-beta pairs and 
provide a basis for functional studies to determine precisely which antigens are recognized by 
specific TCR and HLA-antigen combinations, and whether the precise brain resident clonotypes 
are represented in the periphery. While this study characterizes more PD SN T-cells than 
previous studies, the T-cells comprise a minority of the cells and are too few to conduct single 
cell analysis with available technology. Furthermore, we do not have paired peripheral blood and 
SN samples, which will be important to define which peripheral T-cells become tissue resident 
after entering the CNS. Finally, as these studies are of neuropathology in subjects with advanced 
PD and low number of surviving SN dopaminergic neurons, we cannot address the issues of 
whether T-cells in the PD SN have increased interactions with neurons or changes in T-cell 
characteristics at disease stages when the highest rates of neuronal damage occur. As quantified 
by a board-certified neuropathologist (JEG), less than 1% (6 of 1,151) of CD8+ cells in the PD 
SN were observed next to neurons, discounting statistical analyses of the phenomenon. 
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Figure Legends 
Figure 1. T-cell receptor sequencing identifies clonal expansion in T-cells of the 
substantia nigra in Parkinson’s. 
a) Schematic of the study design. Cingulate cortex and substantia nigra (SN) tissue samples were 
dissected from PD and control frozen postmortem brains, and then processed by TCR 
sequencing, snRNAseq, and spatial transcriptomics, and analyzed computationally. b) Diagram 
of a T-cell receptor. The alpha-chain is shown, where V is the variable region, J the joining 
region, C the constant region, and CDR3 (complementarity-determining-3 region). An antigen is 
presented by MHC-II complex and recognized by the T-cell receptor on the right. A clonotype is 
defined as the combination of the V, J, and CDR3 regions. c) Bar graph depicting the number of 
unique clonotypes detected in the cingulate cortex and the SN, PD and control. The difference 
between conditions in the cingulate is not significant (linear regression coefficient estimate –
24.83 and p value 0.689) but is significant in the SN (linear regression coefficient estimate 
112.75 and p value 0.0479). d-e) Power law graphs of cingulate cortex and SN clonotypes, 
respectively, with bins of the log number of library-normalized reads on the x axis, and log of 
frequency (library-normalized) of clonotypes for each bin expressed on the y axis. Control 
clonotypes are represented in orange, and PD in blue. f) A ridge plot depicting clonal expansion 
score as calculated by GLIPH2 for each region and condition. Wilcox test derived p value from 
comparing the average expansion score of the PD vs control distribution in the substantia nigra is 
0.0016. 
 

Figure 2. Single nucleus RNA sequencing reports differences in gene expression 
patterns of PD lineages and identifies a PD T-cell signature. 
a) Uniform manifold approximation and projection (UMAP) graphs showing nuclei from the 
cingulate cortex, PD and control, grouped by assigned lineage and by condition. b) Dot plot of 
select gene (x-axis) marker expression in major lineages in the cingulate cortex (y axis). Size 
indicates percentage expression, and color indicates normalized expression levels. c) Bar plot of 
the number of significant differentially expressed genes for all lineages in the cingulate cortex in 
PD compared to control, with downregulated genes (negative log fold change – green), and 
upregulated genes (positive log fold change - blue). d) Violin plot showing the gene expression 
of MT3 in control (orange) and PD (blue) in protoplasmic astrocytes in the cingulate cortex 
(logFC PD vs control: - 0.468, p value 3.37e-27). e) Same as a, but for SN nuclei. f) Same as b 
but for the SN. g) Same as c, but for the SN. h) Same as d but for TH SN dopaminergic neurons, 
(logFC PD vs control: –0.23, p value 1.35e-28). i) Heatmap showing scores single cell 
hierarchical Poisson factorization (scHPF) gene factors (columns) projected on lineages (rows). 
j) Heatmap showing the normalized gene expression for select cell type markers in select scHPF 
factors. k) Heatmap of average cell score of PD and control nuclei in each T-cell scHPF factor. 
Columns represent factors, rows represent condition. Blue indicates a low score, red indicates a 
high enrichment score. l) Gene set enrichment analysis of the CD8+ T-cell resident memory 
(TRM) gene set in T-cell disease factor (factor 5), with normalized enrichment score (NES) of 
1.48 and p value 5.0e-03. m) Dot plot of genes expressed in PD and control T-cells. Asterisks (*) 
denote genes differentially expressed in PD. n) Pre-ranked gene set enrichment analysis of the 
CD8+ TRM gene set in the T-cell gene expression ranked by logFC in PD vs control. P value 
3.3-e05, and normalized enrichment score (NES) 2.04. 
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Figure 3: Validation of T-cell phenotypes in the SN  
a) Immunohistochemical stains for CD8 (red) and CD68 (brown) in the cerebral peduncle. Scale: 
50 μm. b) Quantification of the density of CD8 positive cells per unit area in the peduncle. 
Unpaired one-tailed T-test with N=6 for control and PD. P value = 0.0079. Data is shown as 
mean +/- SEM. c) Immunohistochemical stains for CD8 (red) in the SN. d) Quantification of the 
density of CD8 positive cells per unit area in the SN. Unpaired one-tailed T-test with N = 6 for 
Control and PD. P value = 0.0239. Data is shown as mean +/- SEM. e) Immunohistochemical 
stains for CD103 (brown) in the SN. f) Quantification of the density of CD103 positive cells per 
unit area in the SN. Unpaired one-tailed T-test with N = 4 for control and N = 5 for PD. P value 
= 0.0343. Data is shown as mean +/- SEM.    
 

Figure 4. Patterns of dysregulation of myeloid cells in the substantia nigra and 
cingulate cortex. 
a) UMAP plots of myeloid cells in the substantia nigra (SN) from snRNAseq, grouped by 
lineage/sublineage (left), and condition (right). b) Dot plot of select gene (x-axis) marker 
expression in myeloid lineages in the SN (y axis). Size indicates percentage expression, and 
color indicates normalized expression levels. c) Bar plot depicting number of differentially 
expressed genes in the PD SN on the y axis and each myeloid lineage on the x axis. Green bars 
represent DEGs with a negative logFC, or decreased expression in PD, and blue bars represent 
DEGs with a positive logFC, or increased expression in PD. d) Same as a, but for cingulate 
cortex myeloid cells. e) Same as b, but for cingulate cortex. f) Same as c, but for cingulate 
cortex. g-h) Upset plot showing the patterns of overlap between DEGs increased (g) and 
decreased (h) in PD across different myeloid sublineages (rows) in the SN and cingulate cortex. 
Number of shared DEGs are plotted in blue along the y-axis – note that BAMs refers to 
monocytes/BAMs and has been shortened for improved visualization. The cell type 
combinations between which the DEGs are shared are displayed across the x axis, with black 
dots representing cell types present in the combination, and light gray dots representing cell 
types not present in the combination. Number of total increased DEGs are plotted to the left of 
each cell type name. i) Dot plot showing KEGG pathway enrichment scores and adjusted p 
values of select pathways of each myeloid sublineage in the SN and cingulate cortex. Pathways 
are shown on the y axis term names, and the x axis shows each myeloid sublineage. The size of 
each dot represents its fold enrichment value, and the color represents its –log10 p value, with 
yellow denoting lower significance and red indicating higher significance. 
 

Figure 5. Single nucleus RNA sequencing of substantia nigra astrocytes in PD 
indicates abnormal functioning. 
a) UMAP plots of nigral astrocytes, grouped by sublineage (left) and condition (right). b) Dot 
plot with select markers genes along the x axis and astrocyte sublineages on the y axis. Size 
percent of expression, and color denotes normalized expression levels. c) Bar plot depicting the 
number of differentially expressed genes in PD for astrocyte sublineages. Green bars represent 
DEGs with a negative logFC, or with decreased expression in PD, and blue bars represent DEGs 
with a positive logFC, or increased expression in PD. Fibrous-like astrocytes. d) Bar plot of 
GFAP and MT3 differential expression in PD in cingulate cortex and SN protoplasmic 
astrocytes. The cingulate cortex is denoted by light blue bars, the nigra by dark blue bars. MT3 is 
decreased in protoplasmic astrocytes in the PD SN (logFC –0.09 and p value 1.4e-10), and 
increased in PD cingulate protoplasmic astrocytes (logFC 0.47 and p value 3.4e-270. GFAP is 
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increased in both PD SN and cingulate cortex protoplasmic astrocytes (logFC 0.75 and p value 
6.4e-290 - SN, logFC 0.31 and p value 7.8e-12 – cingulate cortex). e-f) KEGG pathway 
enrichment analysis of SN fibrous-like (e) and protoplasmic (f) astrocytes PD DEGs. g) 
Pseudotime plot of astrocytic nuclei in the SN, with protoplasmic astrocytes on the left, and 
fibrous-like astrocytes on the right. Nuclei are projected on PHATE axes. Color bar indicates 
pseudotime value range (red is low and blue is high). h-i) Ridge plot depicting the proportion of 
protoplasmic and fibrous-like (h) and PD vs control (i) at each pseudotime value.  
 

Figure 6. Spatial transcriptomics analyses localize cell-type specific DEGs in 
immune cells to local anatomic compartments in the PD substantia nigra 
a) Example ST slide image and analysis. On the left, an H&E image of SN tissue mounted onto a 
10X-Visium slide, with neurons demarcated by neuromelanin (brown). In the middle, expression 
values per spot of deconvolved cell type dopaminergic neurons. On the right, assigned 
BayesSpace clusters. b) Violin plot of average spot-level TH expression across ST tissue samples 
showing decreased TH in the PD vs control (logFC for TH in the SN is –1.56 with p value 6.3e-
46, and in the surrounding tissue, logFC is –0.71 with p value 2.02e-94). c) Violin plot of 
average T-cell disease factor enrichment levels across PD and control ST tissue samples. The lm 
estimate for the surrounding tissue is –0.10, p value <2e-16. The lm estimate for the nigra in PD 
is 0.08, p value <2e-16. d) Heatmap of normalized enrichment scores from gene set enrichment 
analysis of the snRNAseq-derived cell-type specific DEGs. All cell types represent the increased 
DEGs (positive logFC), except dopaminergic neurons, which represents decreased DEGs 
(negative logFC). On the x axis are the two assigned regions SN and Surrounding Tissue, and on 
the y axis are cell types from RCTD. P values are indicated. e) KEGG pathway enrichment 
analysis in PD vs control DEGs, in SN and surrounding tissue, from ST data. 
 

Figure 7. Spatial cross correlation illuminates cellular communication in PD 
a) Schematic explaining how spatial cross correlation (SCC) values are calculated in our 
analyses. Spots (capture areas) are identified over tissue, and RCTD is employed to determine 
the cellular composition of each spot. Spot-level neighbor information is encoded in a binary 
adjacency matrix, which is then combined with proportion matrices for each cell type in a 
previously defined SCC equation. The output is a SCC value for each cell type combination. b) 
Plot of matrix size (number of elements) by amount of time (seconds) taken to complete SCC 
computation using our optimized algorithm conducted using the CPU (red), GPU (blue). c) 
Heatmap of change in average SCC values for each cell-type combination, PD compared to 
control. Increased values (red) denote an increase in SCC in PD compared to control, decreased 
values (blue) denote a decrease. “+” symbols represent an increase in SCC significance in PD 
compared to control, or a lower aggregated p value. “-” symbols represent a decrease in 
significance. Grayed-out boxes represent relationships that either were not significant 
(aggregated p value >0.05) in neither PD nor control, or that lost significance in PD compared to 
control. d) Interaction weights for SN cell types in cell-cell contact signaling, as derived from 
CellChat. On the left is control, on the right is PD. Note that here, “monocyte derived myeloid” 
refers to monocytes/BAMs. e) Diagram of signaling pathways implicated in cell type 
interactions, defined by cell-cell contact. “BAMs” refers to monocytes/BAMs, abbreviated for 
visual purposes. f) Same as c but for secreted signaling. g) Same as d but for secretory signaling. 
h) Schematic of the proposed potential immune-glial axis model implicated in PD, as inferred 
from CellChat and SCC analyses. Purple arrows represent communication cell-cell contact, and 
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green through secreted signaling. Signaling pathways are coded with red text representing the 
sender, and blue text representing the recipient. Pink stars denote an increase in SCC in PD. 
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The customized code used for analysis in this manuscript is provided here: 
https://github.com/dalhoomist/T-cell_and_glial_pathology_in_PD. 
 
 

Supplementary Data 
Analysis of T-cell repertoire diversity  
To analyze our TCR sequencing data, we first confirmed that all repertoires were fully saturated. 
The saturation plots for each sample can be found in Table S2 (see methods). Once this was 
established, we moved on to assessment of entropy in our repertoires. 
 
Additional inspection of the CDR3 sequence overlap between condition and region showed that 
there are 2,215 global CDR3 sequences across the 44 patients in our cohort, or 14.5% of unique 
CDR3s in the entire repertoire (Fig. S1a).  
 
To further interrogate our TCR repertoires, we quantified Shannon entropy as a measure of 
diversity (see methods) and partitioned the entropy to biologically known sources of diversity37. 
For each component of the T-cell receptor clonotype (Fig. S1d), the total entropy can be 
attributed to three sources: the CDR3 amino acid sequence, the VJ cassette combination, and 
delta between the entire clonotype and the VJ combo. For each component of the clonotype, we 
found that the SN exhibited significantly higher entropy compared to the cingulate, however 
there was no significant difference in entropy between control and PD (Fig. S1e). As such, we 
could conclude that disease condition had no bearing on the diversity of T-cell receptor 
repertoires, as calculated through Shannon entropy. This data is consistent with seeing more 
clonotypes in total in the SN versus the cingulate. 

 

Comparison of CDR3 Motifs to Alpha-Synuclein-Recognizing Motifs 
To determine whether TCRs in the brain resemble peripheral TCRs that recognize alpha-
synuclein, we used the brain repertoires as a reference in GLIPH2, and compared peripheral 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.08.574736doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574736
http://creativecommons.org/licenses/by/4.0/


blood derived TCRs that recognize alpha-synuclein using a recent dataset of specific TCR 
sequences from CD4+ T-cells in the blood that recognize alpha-synuclein, and, as a control 
group, CD4+ cells that recognize pertussis toxin9. We identified the shared motifs and created a 
data frame containing a list of motifs with clonal expansion scores and contributions from alpha-
synuclein-recognizing CDR3 sequences, pertussis-recognizing CDR3 sequences, and CDR3 
sequences from each of our four conditions (Table S3). Interestingly, there were no motifs 
shared by pertussis-recognizing sequences and sequences in our dataset. In contrast, 2,267 global 
motifs were shared by peripheral T-cell alpha-synuclein-recognizing sequences and brain T-
cells. Of those, 1,204 sequences were shared with control SN, 1,087 with PD SN, 541 with 
control cingulate, and 849 with PD cingulate sequences (Fig. S1h).  
 
Because the majority of tags with alpha-synuclein-recognizing sequences were shared with the 
SN, we then analyzed the differences in clonal expansion between PD and control in the SN 
within these shared tags. We again assigned a representative condition to each tag based on the 
condition contributing the highest proportion of reads, and compared the distribution of clonal 
expansion scores of these tags. The distributions of scores in the control group exhibited a 
trimodal distribution, while the PD group exhibited a bimodal distribution that was significantly 
shifted towards higher clonal expansion score values (Kolmogorov-Smirnov test D value 0.08, p 
value 0.006) (Fig. S1i), suggesting that while there are more T-cells present in PD SN, a higher 
fraction of the T-cells in the PD SN have alpha subunit motifs that share features with known 
TCR subunits that recognize alpha-synuclein. We note that while many TCR alpha chains are 
shared between CD4+ and CD8+ T-cells, identical alpha/beta combinations are rare118, and 
direct proof of specific PD SN T-cells recognizing alpha-synuclein or possessing the same TCR 
genes in both an individual’s brain and blood is not currently technically feasible. 
 

Single nucleus RNAseq identifies sublineages of neurons in the substantia nigra 
and cingulate cortex 
As further characterization of the snRNAseq dataset, we note that from the cingulate cortex, a 
total of 61,870 cells passed our QC, and in the SN, 207,859 cells. The UMAP projections of 
these cells, grouped by donor and sex, can be seen in Fig. S2a and Fig. S2e. Donor and sex both 
evenly distributed throughout all UMAP clusters and are therefore corrected for in our batch 
correction approach. The number in each cell type lineage (both broad lineages, e.g. astrocytes, 
and sublineages, e.g. fibrous-like and protoplasmic), as well as the number of nuclei assigned to 
each cell type from each sample, can be found in Table S1.  
 
We next analyzed the neurons from our substantia nigra dataset and found that, as expected, 
dopaminergic neurons clustered separately (Fig. S2b), and these neurons were defined by TH 
and ALDH1A1 expression. We also found GABAergic GAD1/2+ interneurons and 
MEG3+MEG8+ neurons, which, unlike dopaminergic neurons, express very low SLC6A3, 
ROBO2, and CALB2 (Fig. S2c and Table S5). When examining the DEGs across neuronal 
clusters, as expected, the highest number of DEGs were seen in dopaminergic neurons of the SN 
(Fig. S2d).  
  
Next, we subclustered neurons of the cingulate cortex as we have done for the SN. Again, we 
found neither donor- nor sex-specific clusters (Fig. S2e). Sub-clusters were roughly equally 
represented in both conditions (Fig. S2f). A select subset of markers for each of the subclusters 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.08.574736doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574736
http://creativecommons.org/licenses/by/4.0/


are shown in Fig. S2g and provided in Table S5. Similar to our previous findings analyzing 
neurons in the control and HD cingulate cortex24, we found layer-specific projection neurons and 
several inter-neuronal subtypes. Interestingly, we found that the highest number of DEGs were 
found in layer 2 CUX2+ glutamatergic neurons. A large number of DEGs were also noted in 
SEMA3E layer 5/6 neurons, which is expected given that Lewy bodies accumulate more in deep 
layers85 (Fig. S2h). Spatial transcriptomic studies are needed to further investigate the 
relationship between Lewy body accumulation and gene expression changes in PD. 
 

DGE analysis highlights similarities in GABAergic neurons of the cingulate cortex 
and substantia nigra in PD 
When examining the DEGs in nigral neurons, we focused on dopaminergic neurons. Consistent 
with previous work119, we found that several of the dopaminergic neuron DEGs we involved in 
oxidative phosphorylation, neurodegenerative diseases, lysosome, and protein processing (Fig. 
S3a). They also showed enrichment in antigen processing and presentation120,121. Next, we 
examined the DEGs in cingulate neurons, focusing particularly on layer 2/3 CUX2+ neurons. We 
found that the cortical CUX2 neurons were also enriched in pathways of neurodegeneration, as 
well as ErbB and Wnt signaling, ubiquitin mediated proteolysis, and endocytosis (Fig. S3b). 
 
We compared the genes found to be upregulated and downregulated in PD in cortical CUX2+ 
neurons and dopaminergic neurons from the SN (Tables S4 and S5). We found a minority of 
increased DEGs were shared between increased DEGs in these cell types. However, more than 
half of the dopaminergic neurons’ decreased DEGs were shared with those of layer 2 CUX2+ 
cortical neurons (Fig. S3c, Table S9). As such, we analyzed which pathways were enriched in 
these DEGs using EnrichR and its Appyter extension (Fig. S3d). We found that dopaminergic 
and CUX2+ neurons downregulated processes involved in synaptic vesicle cycle, calcium 
reabsorption, glycolysis/gluconeogenesis, and neurodegenerative diseases. Together, our data 
demonstrates that not only does PD pathology affect dopaminergic neurons in the nigra, but also 
layer 2 as well as deeper layer projection neurons in the cingulate cortex. That said, we do not 
delve into the intricacies of the neuronal pathology in this study because our focus is on the glia-
immune interaction axis.  
 

Comparison of DEGs in Nigral Myeloid Cells 
The UpSet plots in Fig. 3g-h indicated a total of three upregulated genes shared between nigral 
activated myeloid cells and monocytes/BAMs in PD: SAT1, TFRC, and NAMPT. The plots 
indicated that these genes were not increased in any other myeloid cell type of the nigra or 
cingulate cortex. We saw significant p values for all three genes in the activated myeloid cells 
and monocytes/BAMs of the nigra, however the logFC values were highest in monocytes/BAMs 
(Tables S4 and S5). Interestingly, SAT1 has been implicated by previous studies in PD 
pathogenesis, exerting neuroprotective effects on brains affected by alpha-synuclein 
toxicity122,123. TFR1, encoded by TFRC, is upregulated in myeloid cells in response to 
inflammatory pathway signaling such as NF-kB and HIF-1124,125. Finally, NAMPT has also been 
implicated in neuroinflammation, as it is upregulated in response to inflammatory stimuli126–128. 
This data further implicates both activated myeloid cells and monocytes/BAMs in the substantia 
nigra in neuroinflammation and progression of PD. 
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Qualification and Classification of ST Data and BayesSpace Clusters 
As a quality control step, we confirmed adequate number of counts per spot in each tissue 
sample before moving on to downstream analyses. It can also be seen that areas with high 
numbers of counts correspond to SN tissue (Fig. S5a-j), consistent with the presence of neurons 
in these regions, as neurons express a higher number of genes compared to glial cells. Each 
sample was also assigned a number of BayesSpace clusters according to their qTune metrics 
(Fig. S5a-j; see methods). We asked if the clusters across different samples can be correlated, 
and/or anatomically annotated. Thus, we performed correlation analysis of the gene expression in 
each of the BayesSpace clusters (see methods), and identified three cross-sample spatial meta-
clusters (Fig. S6k). The gene markers the meta-clusters are provided in Table S8. Examining 
these gene markers allowed us to classify the three meta-clusters as: white matter, SN, and white 
matter with high expression of ribosomal genes (Fig. S6k). Because the white matter could not 
be reliably divided into specific, consistent, canonical regions, we grouped the two white matter 
containing meta-clusters into one category (Surrounding_Tissue) (Fig. S6a-j). We used these 
classifications for downstream analyses. 
 

Interpretation of Spatial Cross Correlation Data 
SCC is different from traditional Pearson correlation. The diagonal of the SCC heatmap is the 
autocorrelation of each cell-type. It is notable that the heatmap shown in Fig. 7c is not symmetric 
along the diagonal. This is because we are showing the difference in SCC between PD and 
controls, aggregated across multiple samples. Also, because the relative abundance of features or 
cell types in this spatial dataset is spatially variable, this leads to slightly different coefficients 
when comparing the SCC between cell-type A and B versus SCC of the inverse relationship. In 
other words, the relationship of cell-type A to cell-type B is not entirely equivalent to the inverse 
relationship of cell-type B : cell-type A. This is because the weighting variable Wij (Fig. 7a), is 
either 1 or 0 based on the proximity of cell A to B, which is determined by the spatial abundance 
of each cell type relative to the other. As shown in Fig. 7c, the relationship between T-cells and 
oligodendrocytes is not equal when viewed from different axes. This can be interpreted as 
follows: T-cells, which are sparse cells, were colocalized with oligodendrocytes, which are 
abundant cells, and were rarely found where oligodendrocytes where low. Thus, the SCC of T-
cell to oligodendrocytes is positive. However, The SCC of oligodendrocyte to T-cells is not 
equivalent. This is because the oligodendrocytes are present in many areas where T-cells are not 
present.  
 
Changes in SCC relationships along the diagonal (autocorrelation) are useful to interpret, 
especially for sparse cells. In the SN, the TH+ neurons are evenly dispersed in the control tissue. 
In PD, these cells are depleted and are less abundant, thus, they become less disperse and more 
clustered in PD, especially given the known nigral region vulnerability of lateral vs medial tiers 
of SN TH+ neurons129. Namely, TH+ neurons are less abundant in the lateral SN and relatively 
less depleted in the medial SN. This neuropathologic phenomenon explains why TH+ neurons 
display increased autocorrelation (SCC along the diagonal) in PD, i.e., become less dispersed 
and more clustered, and therefore more autocorrelated. On the other hand, oligodendrocytes are 
present within the both the SN and the white matter, the distribution of oligodendrocytes was not 
apparently altered in our dataset, and thus, the autocorrelation was not altered. Likewise, the 
spatial distribution of oligodendrocytes relative to fibrous-like astrocytes was not altered. This 
includes comparing the abundance of oligodendrocytes to fibrous-like astrocytes and vice-versa. 
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This is because both cell-types are more abundant in the white matter, which represents a large 
fraction of our ST dataset.  
 

Supplementary Figure Legends 
Figure S1: TCR entropy and a-syn GLIPH2 results 
a) Venn diagram of all CDR3 sequences in the TCR repertoires, across all patients, grouped by 
region and condition. On the bottom left (purple oval) is the cingulate cortex control, top left 
(yellow oval) SN control, top right (green oval) SN PD, and bottom right (pink oval) cingulate 
cortex PD. b) Ridge plot showing the abundance distributions corresponding to each region and 
condition in the global CDR3s (center section in Venn diagram). The log-normalized reads are 
on the x axis, and region and condition are on the y axis. The left side represents sequences with 
higher numbers of reads, the right side lower numbers of reads. c) Bar plot depicting the average 
number of CDR3 sequences seen in more than one patient in control (orange) and PD (blue) 
samples of the substantia nigra. d) Entropy values for clonotype components - For each 
component, we found that the substantia nigra exhibited significantly higher entropy (linear 
model p values 0.0237, 0.024, 0.0131, and 0.0464, respectively), however there was no 
significant difference in entropy between control and PD (linear model p values 0.4487, 0.537, 
0.3775, and 0.4010, respectively). e) Bar plot of p values from comparison of entropy for each 
clonotype component, measured by linear regression between condition (orange bars) and region 
(blue bars). The y axis represents the calculated p value, while the x axis shows the clonotype 
component being compared. f) Box plots depicting clonal expansion scores for each of our four 
conditions, calculated from the patient level. The y axis represents D values derived from 
Kolmogorov-Smirnov testing. Values between control and PD in the cingulate cortex were not 
significantly different (p value 0.83). SN control D scores were significantly lower than SN PD, 
with p value 0.048. g) Plot of significance distributions generated 100-iterations from patient-
level clonal expansion scores (see methods). The x axis shows the generated p values, and the y 
axis shows the density. Values from the SN are represented in blue, cortex in orange. h) Pie chart 
of the number of GLIPH2 tags/motifs shared between the alpha-synuclein reactive peripheral T-
cells and each of the four specified conditions from our dataset. i) Ridge plot of clonal expansion 
scores of GLIPH2 tags/motifs shared between the alpha-synuclein reactive peripheral T-cells and 
control and PD SN. j) Gene set enrichment of a general memory T-cell geneset in T-cell gene 
expression in PD. Normalized enrichment score is 2.01 with p value 7e-05. 

 

Figure S2: Single Nucleus Analysis of Neurons in the Substantia Nigra. 
a) UMAP plots of all substantia nigra nuclei, grouped by donor on the left, and by sex on the 
right. b) UMAP plots of substantia nigra neuronal nuclei, grouped by sublineage on the left, and 
by condition on the right. c) Dot plot of select marker genes for each neuronal sublineage in the 
SN. Color represents the average normalized gene expression value, and size represents the 
percentage of cells expressing the gene. d) Number of differentially expressed genes in each 
neuronal sublineage of the SN. Green bars represent the number of genes with negative logFC 
values, or downregulated in PD, and blue bars represent those with positive logFC values, or 
upregulated in PD. e) Same as a but for the cingulate cortex. f) Same as b but for neurons in the 
cingulate cortex. g) Same as c but for neurons in the cingulate cortex. h) Same as d but for 
neurons in the cingulate cortex. 
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Figure S3: Comparison of Gene Expression in Neurons and Myeloid Cells 
a-b) Pathway enrichment of DEGs from dopaminergic neurons in the SN (a) and layer 2 CUX2+ 
neurons in the cingulate cortex (b). The fold enrichment is represented on the y axis, and each 
pathway on the y axis. Dot color represents –log10 p values, and dot size represents the number 
of genes in the pathway. c) Venn diagrams showing the overlap of DEGs, both increased (left) 
and decreased (right) between dopaminergic neurons in the SN and layer 2 CUX2+ neurons in 
the cingulate cortex. d) Bar plot showing the KEGG pathways represented by the shared 
decreased DEGs between the SN dopaminergic neurons and the cortical layer 2 CUX2+ neurons. 
 

Figure S4: Single Nucleus Analysis of Astrocytes in the Cingulate Cortex. 
a) UMAP plots of all cingulate cortex astrocyte nuclei, grouped by sublineage (protoplasmic in 
orange, fibrous-like in blue), condition (control in orange, PD in blue), and donor. b) Number of 
DEGs in each astrocytic sublineage in the cingulate cortex. Green bars represent the number of 
genes with negative logFC values, or downregulated in PD, and blue bars represent those with 
positive logFC values, or upregulated in PD. c) KEGG pathway enrichment of DEGs in fibrous-
like and protoplasmic astrocytes in the cingulate cortex. d) Dot plot of select markers genes for 
each astrocyte lineage in the cingulate cortex. Color represents the average normalized gene 
expression value and size represents the percentage of cells expressing the gene. e) Pseudotime 
plot of astrocytic nuclei in the cingulate cortex, with astrocytes expressing protoplasmic genes on 
the left side in red, and astrocytes expressing fibrous-like genes on the right in blue. Nuclei are 
projected on PHATE axes. Color bar indicates pseudotime value range. f) Ridge plot depicting 
the proportion of protoplasmic and fibrous-like in low to high pseudotime values. Protoplasmic 
astrocytes are depicted in orange, fibrous-like in blue. g) Ridge plot depicting the enrichment of 
PD and control astrocytes in low to high pseudotime values. PD astrocytes are depicted in blue, 
control in orange. 
 

Figure S5: Spatial Transcriptomics and BayesSpace Spot-Level Data. 
a-f) From left to right: Original H&E tissue image, number of counts per spot (normalized by 
SCT), and regional tissue classifications for each sample. g-j) same as a-f, but tissue image is 
stained with antibodies NeuN, GFAP, and DAPI. 
 

Figure S6: BayesSpace Clusters and Their Correlations. 
a-j) BayesSpace cluster assignments for each spot in each sample. k) Heatmap of correlated 
clusters for each sample as defined by correlation of gene expression. The large top left cluster is 
classified as white matter, the middle cluster as substantia nigra (SN), and the lower right 
clusters as white matter with increased ribosomal gene expression. The BayesSpace clusters for 
each sample are indicated on the x and y axes. Dark red colors denote a high correlation value, 
and dark blue colors denote a lower correlation value between variable feature enrichment. 
 

Figure S7: MT3 and GFAP staining in astrocytes 
a-b) Cells in the cingulate stained for DAPI (blue) to detect nuclei of all cells and GFAP (green) 
to detect astrocytes. Scale bar = 20 μm. c-d) Cells in the SN stained with DAPI (blue) to detect 
nuclei of all cells and GFAP (green) to detect astrocytes. Scale bar = 20 μm. The next row shows 
MT3 (red) alone. The last figure is the merged of all three channels. e) Example of “GFAP high” 
cells shown by arrows. f) Example of “GFAP low” cells shown by arrows. g) Quantification of 
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the proportion of MT3 positive astrocytes in their respective regions. Unpaired two-tailed T-test 
N = 6 for both conditions. P value = 0.0017 for the proportion of MT3 positive GFAP-high 
astrocytes in the cingulate, p value = 0.9290 in the SN. The proportion of astrocytes labeled 
“GFAP High” in the cingulate has p value = 0.003, SN has p value = 0.0019. Data is shown as 
mean +/- SEM.  
 

Supplementary Tables: 
Table S1: T-cell Receptor Sequencing, Single Nucleus, and Spatial Transcriptomics Sample 
Metadata. 
Table 2: Saturation Plots from TCR Sequencing Repertoires. 
Table 3: Expanded CDR3 Sequences and GLIPH2 Results. 
Table 4: Substantia Nigra Lineage Cluster Markers, DEGs, and PathfindR Results. 
Table 5: Cingulate Cortex Lineage Cluster Markers, DEGs, and PathfindR Results. 
Table 6: CD8+ Tissue Resident Memory Gene Set and General Memory Geneset. 
Table 7: scHPF Cell Scores and Gene Scores. 
Table 8: BayesSpace Cluster Correlation Data. 
Table 9: Comparison of DEGs in Cingulate Cortex and Substantia Nigra Neurons and Myeloid 
Cells. 
Table 10: Antibody Descriptions. 
Table 11: Comparison of GPU versus CPU SCC Calculations.  
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