

Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes

Adriana Lucia-Sanz^{1,^}, Shengyun Peng^{2,#,^}, Chung Yin (Joey) Leung^{3,#}, Animesh Gupta⁴, Justin R. Meyer⁵ and Joshua S. Weitz^{6,7,8,#,*}

¹ School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

² Adobe Inc., Palo Alto, California, USA

³ GSK, Stevenage, Herts, United Kingdom

⁴ Department of Physics, University of California San Diego, La Jolla, California, USA

⁵ Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, USA

⁶ Department of Biology, University of Maryland, College Park, MD, USA

⁷ Department of Physics, University of Maryland, College Park, MD, USA

⁸ Institut d'Biologie, École Normale Supérieure, Paris, France

[^] Equal contributions

Former address: School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

* Corresponding author, E-mail: jsweitz@umd.edu (JSW)

1 Abstract

2 The enormous diversity of bacteriophages and their bacterial hosts presents a significant
3 challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by
4 complementary -and largely uncharacterized- genetics of adsorption, injection, and cell take-over.
5 Here we present a machine learning (ML) approach to predict phage-bacteria interactions
6 trained on genome sequences of and phenotypic interactions amongst 51 *Escherichia coli* strains
7 and 45 phage λ strains that coevolved in laboratory conditions for 37 days. Leveraging multiple
8 inference strategies and without *a priori* knowledge of driver mutations, this framework predicts
9 both who infects whom and the quantitative levels of infections across a suite of 2,295 potential
10 interactions. The most effective ML approach inferred interaction phenotypes from independent
11 contributions from phage and bacteria mutations, predicting phage host range with 86% mean
12 classification accuracy while reducing the relative error in the estimated strength of the infection
13 phenotype by 40%. Further, transparent feature selection in the predictive model revealed 18 of
14 176 phage λ and 6 of 18 *E. coli* mutations that have a significant influence on the outcome of
15 phage-bacteria interactions, corroborating sites previously known to affect phage λ infections, as
16 well as identifying mutations in genes of unknown function not previously shown to influence
17 bacterial resistance. While the genetic variation studied was limited to a focal, coevolved phage-
18 bacteria system, the method's success at recapitulating strain-level infection outcomes provides
19 a path forward towards developing strategies for inferring interactions in non-model systems,
20 including those of therapeutic significance.

21 **Introduction**

22 Next-generation sequencing technology has revealed widespread diversity in microbial and viral
23 communities [(Aylward FO, 2017), (Munson-McGee JH, 2018), (Breitbart, 2018), (Guillermo
24 Dominguez-Huerta, 2022), (Sunagawa S., 2015) , (Nayfach, 2021), (Sunagawa, 2020)]. In parallel,
25 the development of analytical tools to characterize species interaction networks from co-
26 occurrence and/or time series data has led to a better understanding of microbial community
27 structure and function [(Faust K, 2012) (Flannick J, 2006), (Stein RR, 2013), (Berry D, 2014), (Liao
28 C., 2020), (Jiliang Hu J., 2022), (Shaer Tamar E, 2022)]. In principle, it should be possible to infer
29 microbial interaction networks directly from genotypes and the environmental context
30 [(Manrubia S, 2021)]. Such inference is predicated on a simple principle: adsorption is required
31 for a bacteriophage (phage) to infect a focal bacterial strain [(Neurath AR, 1986) (Wang J H. M.,
32 2000) (Chatterjee S, 2012), (Gaborieau B, 2023)]; such adsorption requires expression of specific
33 cell-surface receptors (e.g., protein, lipid, carbohydrate), although in many cases the specific
34 receptor remains unknown or modulated by poorly characterized biosynthetic pathways [(Tetz,
35 2022)]. However, even if a phage adsorbs to a bacteria, there are many intracellular resistance
36 mechanisms that could assist or inactivate phage infection altogether [(Zborowsky S., 2019),
37 (Koonin, 2020), (Gao Z., 2023)]. Categorizing effective, extracellular adsorption and intracellular
38 replication remains challenging. Hence, despite significant progress in linking microbial genotype
39 to phenotype, less progress has been made with understanding the genetics of traits that
40 influence microbial species interactions (including virus and host pairs) given the additional
41 complication that the phenotypic output of an association may depend on the joint effects of

42 two separate genomes [(Bajic D, 2018), (de Jonge PA, 2019) (Buckling A, 2002) (Elena SF, 2003)
43 (Koskella B, 2014) (Poullain V, 2008) (Kaltz O, 2002) (Beckett SJ, 2013) (Weitz JS, 2013) (Gurney J,
44 2017)].

45 The problem of understanding the genetic basis of interactions requires the development
46 of new computational approaches to construct genotype-to-phenotype maps. Conventional
47 approaches try to correlate phenotypic differences with genetic variation (e.g., this is true for the
48 broad scope of work in genome-wide associated studies [(Horton MW, 2014) (D, 2016) (Power
49 RA, 2017)]). The challenge for inferring interaction-associated phenotypes is that such
50 interactions arise due to the combination of multiple genotypes (e.g., phage and host genotypes)
51 leading to new combinatorial challenges. Initial steps towards interaction inference have been
52 made through mutation-based association approaches that have successfully uncovered
53 combinations of virus and host mutations that correlate with successful virus-host interactions
54 [(MacPherson A, 2018) (Jallow M, 2009) (Scanlan PD, 2011), (Shaer Tamar E, 2022), (Borin JM L.
55 J.-S., 2023)]. Conceptually, the challenge of uncovering interaction phenotypes is similar to
56 attempts to tackle the problem of studying complex traits where gene-by-gene (G x G)
57 interactions or gene-by-environment (G x E) interactions shape phenotypes [(Wei WH, 2014),
58 (An P, 2009), (G, 2015) (Gupta A Z. L., 2022)].

59 In the case of virus-microbe systems, efforts to predict interaction phenotypes require
60 leveraging specific system features and may depend on taxonomic scales. For example,
61 computational approaches are increasingly used to predict the host range of viruses in a broad
62 taxonomic sense, e.g., leveraging tetranucleotide frequencies and other sequence-specific

63 information [(Edwards RA, 2016) (Dutilh BE, 2017)]). However, predicting strain-specific
64 interactions remains a difficult task, particularly because taxonomic markers are known to be a
65 poor proxy for infection profiles [(Sullivan NJ, 2003), (Kauffman KM, 2022)]. Recent studies have
66 shown some improvement in resolving strain-specific interaction phenotypes, e.g., by using
67 CRISPR spacers and metagenomic data to identify recent phage infection[(Simon Roux, 2021),
68 (Szabo RE., 2022), (George, 2023)] or by co-clustering phage and bacteria mutations, respectively,
69 amongst strains that tend to interact as a means to identify associated gene or sequence
70 differences [(Kauffman KM, 2022)].

71 Here, we link whole genome-wide changes in phage and bacteria with observed changes
72 in interaction phenotypes using a machine learning inference framework. We do so by leveraging
73 emergent genotype and phenotype changes in coevolving populations of *Escherichia coli* B strain
74 REL606 and bacteriophage λ strain cI26 during a 37-day experiment [(Gupta A P. S., 2022)]. The
75 key idea is to recapitulate infection phenotypes from an interaction network through a
76 hierarchical regression approach without *a priori* assumptions about driver mutations or the
77 nature of genetic interactions. In contrast, prior work on microevolutionary changes in infectivity
78 have focused on changes to genes or proteins with known functions in model organisms [(Meyer
79 JR D. D., 2012) (Lobo FP, 2009) (Modi SR, 2013), (Gaborieau B, 2023)]. Such approaches are
80 dependent on the existing annotation of genes or mutations, and thus are limited by both the
81 quality and quantity of annotations. Our regression framework predicts a substantial portion of
82 phage-host infection phenotypes, including: i) who infects whom and ii) with what efficiency. In
83 doing so, we identify prioritized phage and bacterial mutations underlying changes in infection

84 phenotypes and reveal that additive effects of phage and host mutations can be sufficient to
85 predict interaction phenotypes. As we explain, this finding suggests a route to generate testable
86 hypotheses for phage and genome sites underlying interactions that could also become priority
87 targets for modification in environmental inference and the development of phage therapeutics.

88 **Results**

89 **The mutation and cross-infection matrices for phage and bacteria**

90 From a previous study [(Gupta A P. S., 2022)], we analyzed genome sequences of 50 bacterial
91 host (descended from *E. coli* B strain REL606) and 44 phage (descended from λ strain cl26) strains
92 isolated at varying time points during a 37-day coevolution experiment. For the observed
93 genotypes, the mutation profiles of the host and phage revealed many changes in their genomes,
94 including 18 and 176 unique mutations for the host and phage, respectively (Table S1). The
95 interactions of all phage-bacterial pairs including the ancestors were measured, yielding a 51 by
96 45 cross-infection matrix. Interaction strength was estimated by the efficiency that a phage
97 infected a given host compared to its ability to infect the sensitive ancestor (referred to as the
98 efficiency of plating or EOP). Additional details of the EOP calculations are described in (Gupta A
99 P. S., 2022) and Methods section “Experimental setup and data collection”. At the beginning of
100 the experiment, the isogenic host strain was susceptible to all phage strains, and by the end of
101 the experiment on day 37, most of the host isolates had evolved resistance to all phage strains.
102 A summary of the mutation profiles and the EOP matrix showing the complexity of the observed
103 phenotypes is shown in Fig 1. Based on the measurement of 2295 phage-host pairwise

104 interactions, we found 913 successful ($EOP > 0$) and 1382 unsuccessful ($EOP = 0$) phage infections.
105 The distribution of EOP values was skewed, with 95% of values ranging from 0 to 1.5, and
106 presented a long tail with a significant variability in the observed phenotypes (S1 Fig). The co-
107 occurrence of mutations in different genomic contexts (S2 Fig) suggested it might be feasible to
108 infer host and phage mutations that disproportionately impact the interaction phenotype.

109

110 **Model for predicting the phage-bacteria interaction network**

111 Initially, we developed a framework for predicting the effect that mutational profiles have on the
112 host-phage cross-infection network irrespective of the interaction strengths (e.g. $EOP > 0$,
113 presence of infection; $EOP = 0$, absence of infection; illustrated in Fig 2a). The underlying
114 framework utilizes a logistic regression approach to predict the presence or absence of infection
115 phenotype (referred to here as POA) from mutational ‘features’ (see Materials and Methods
116 corresponding section). We evaluate different models based on distinct sets of mutations that
117 support infection predictions. These include models relying solely on a linear combination of
118 mutations, either from the host or phage mutational profiles (referred to as H and P individual
119 models), as well as a model that incorporates the additive effects of phage and host mutational
120 features in a linear combination (linear model). Additionally, we consider the possibility that
121 combinations of mutations in phage and host act in combination to impact the cross-infection
122 matrix. Therefore, we incorporate a set of mutational features that account for joint effects
123 between phage and host mutations (the nonlinear model) and a model that includes both ‘first-
124 order’ (additive phage and host mutations) and ‘second-order’ (nonlinear combination of phage

125 and host mutations) effects (the mixed model). A comprehensive description of how each feature
126 is constructed is provided in the Methods section “Feature construction”.

127 By comparing the performance of the logistic regression models built based on the
128 different sets of features, we find that all three models that contain both phage and bacteria
129 mutations predict the original POA phenotypes significantly better than a null model. In addition,
130 the linear model outperforms all other models in the validation step ($P < 9.44\text{e-}5$) with a mean
131 classification accuracy of $\sim 86\%$ (Fig 2a). This suggests that the linear model in principle contains
132 the best set of features for predicting the POA phenotype for a given phage-host pair in this
133 dataset. We further compared predictions of POA, and the mutational features predicted to have
134 the largest effects on the POA for the linear, nonlinear, and mixed models (Fig 3). The results
135 show that a linear combination of phage and host mutations can recapitulate the POA matrix
136 without explicit inclusion of interaction effects. Mutational features identified via this method
137 with a positive coefficient increase the probability of infection, and the opposite is true for
138 negative coefficients. Notably, we observe that bacterial mutations are more likely to have a
139 negative effect due to the evolution of host resistance, whereas phage mutations tend to have a
140 positive effect, indicating selection for counter-defense traits that expand host range (see (Gupta
141 A P. S., 2022)). Feature importance analysis (detailed in the Methods section) reveals 5 host
142 mutations and 32 phage mutations that have a positive effect on predicting phage-host
143 interaction network, compared with 7 host mutations and 15 phage mutations that have a
144 negative effect (Fig 5a, S2 Table).

145

146 **Model for predicting the efficiency of infection**

147 We extended the prediction framework described in the prior section to identify phage and host
148 mutations that have large impacts on the efficiency of phage infection (referred to as the EFF
149 model) in the existing cross-infection network (see Methods for a detailed explanation). We used
150 log-transformed EOP values of individual infection pairs (Shapiro-Wilk test $P = 3.283\text{e-}8$, S3 Fig)
151 as a proxy of EFF phenotypes, while keeping the cross-interaction network fixed (Fig 4a). We
152 performed a linear regression model to quantify the impact that different sets of mutation
153 features have on EFF phenotypes. Model performances were compared based on the validation
154 mean absolute error (MAE). As in the analysis of EOP, including both phage and host mutation
155 features led to the highest performing model predictions. The linear regression model with the
156 additive feature set gives the lowest validation MAE ($P < 3.95\text{e-}14$) with ~40% reduction of the
157 mean error compared to the null model (Fig 2b). Next, we built linear models based on all three
158 phage and host combinations of mutational features to predict EFF phenotypes to identify
159 corresponding mutational features that have the largest impact in the predictions (Fig 4). The EFF
160 phenotypes are best predicted by a linear combination of phage and host mutation profiles.
161 Mutational features predicted by this method impact the EOP profile of the phage-host
162 interaction network (principally affecting positively or negatively the efficiency of infection).
163 Feature importance analysis identified 8 host mutations and 25 phage mutations that promote
164 the efficiency of phage infection, compared with 6 host mutations and 28 phage mutations that
165 reduce the efficiency of phage infection (Fig 5b, S3 Table).

166

167 **Molecular mechanism behind driver mutational features**

168 Several putatively important mutations are revealed by the feature analysis using final predictive
169 models of POA (Fig 5a, S2 Table) and EFF (Fig 5b, S3 Table) phenotypes. We found 3 phage
170 mutations and 1 bacterial mutation that show a significant positive effect for the POA model. For
171 phage, these mutations include 2 nonsynonymous mutations in genes *S* and *J* and a synonymous
172 mutation in gene *J* and for the bacteria we identified a nonsynonymous mutation in the *ccmA*
173 gene. We also found 3 mutations in the host and 1 in the phage that have a significant negative
174 effect in the POA model. For the bacteria, these include a nonsynonymous mutation in *ompF* and
175 two deletions $\Delta 777\text{bp}$ in *insB* and $\Delta 141\text{bp}$ in *malT*; whereas for phage we identified a
176 nonsynonymous mutation in *J* (Fig 5a).

177 For the EFF model, 16 mutations are predicted to have a significant effect (7 positive and
178 9 negative) and the majority are in phage. Of the 7 positive predicted features, only 1 is bacterial,
179 a nonsynonymous mutation in *uup* gene. For phage, we identify 2 insertions, 1 deletion, and 1
180 synonymous mutation in *J* gene that should increase infectivity, another synonymous mutation
181 in *bor* gene and a nonsynonymous mutation in the *lom* gene that increase the efficiency of
182 infection. Whereas synonymous mutations are not expected to influence phage's ability to infect,
183 and insertions and deletions in the *J* coding region are anticipated to have detrimental effects
184 overall, we identified these mutations as influential to increase EFF prediction accuracy,
185 corroborating prior work that demonstrated the impact of these mutations arising through
186 recombination on phage fitness [(Borin JM A. S., 2021)]. Of the 9 negative predicted features, 1
187 is in the bacteria and 8 are in phage. The only bacterial mutation that negatively affects the EFF

188 was already identified by the POA model: the Δ 777bp deletion in *insB*. For the phage we identify
189 2 different intergenic mutations with significant negative effects downstream of *lambdap79* gene;
190 3 nonsynonymous, 1 synonymous (that was positive for POA and also reported in [(Borin JM A.
191 S., 2021)]) and Δ 1bp deletion mutations in *J* gene and 1 intergenic mutation between *Rz* and *bor*
192 genes (Fig 5b).

193 Our inference framework was able to recapitulate known biology without *a priori*
194 knowledge of driver mutations. We find mutations in the bacterial *maT* gene, a trans positive
195 regulator of LamB [(Debarbouille M, 1978), (Blanche S, 2013), (Maynard ND, 2010), (Banzhaf,
196 2020)], and several mutations located in the phage *J* gene region that were important for both
197 POA and EFF phenotype predictions. The *J* gene encodes the tail fiber of phage λ which is critical
198 to the process of injecting phage DNA into the host via LamB [(Wang J H. M., 2000), (Werts C,
199 1994), (Wang J M. V., 1998) (Maddamsetti R, 2018)]. Therefore, mutations in both *maT* and *J*
200 gene region are expected to impact the phage-host interaction network and the quantitative
201 efficiency of infection – consistent with our model predicting the mutations to be important for
202 both POA and EFF. A nonsynonymous mutation in the outer membrane porin OmpF, is the most
203 important feature for predicting a decrease in POA, but was not found to be important for
204 predicting EFF. This mutation is shared by 10 host strains, 2 of which were sampled from day 28
205 and 8 were from day 37. These 10 host strains were super-resistant, that is, they were resistant
206 to the ancestral phage λ strain, and all the phage isolates from the coevolution experiment.
207 Previous studies on this bacterial population showed that phage λ evolves to use OmpF as a
208 second receptor after *E. coli* evolves to down-regulate LamB [(Meyer JR D. D., 2012)]. Therefore,

209 this OmpF mutation is expected to confer resistance to these evolved phage λ strains and so
210 affects the POA (host-range), but not the EFF (efficiency of infection). Similar OmpF mutations
211 have been described to provide resistance to a related phage, phi21, after it similarly evolved to
212 use OmpF [(Borin JM L. J.-S., 2023)]. Each model also identified mutations in *manY* which is an
213 inner membrane transporter that enables phage λ to inject its DNA into the cytoplasm. Mutations
214 in this protein or others in the ManXYZ complex are known to confer resistance to λ [(Erni B,
215 1987), (Burmeister AR, 2021), (Borin JM L. J., 2023)] and all of them impacted negatively both
216 POA and EFF phenotypes. Most interestingly, both models were able to uncover the importance
217 of $\Delta 777$ bp deletion in *insB* by an IS element from *E. coli* which affects genes not previously
218 identified to interact with phage λ [(Maynard ND, 2010), (Blanche S, 2013)], but was recently
219 identified to confer resistance through epistasis with other resistance mutation in *malT* through
220 an unknown mechanism [(Gupta A P. S., 2022)]. This illustrates the capability of our machine
221 learning approach to identify candidate, pivotal genes involved in phage-host interactions.

222

223 **Discussion**

224 In this study, we developed a machine learning framework leveraging hierarchical logistic
225 regression to predict the network and efficiency of phage-bacteria interactions by linking
226 infection phenotypes with genetic mutation profiles of both phage and bacterial host. The basis
227 for our inference was an assumption that mutations can contribute directly or via gene-gene
228 interactions to changes in the infection phenotype. Our comparative analysis revealed that a
229 model that incorporates additive mutational effects of phage and host separately had the highest

230 predictive value in inferring phenotype from genotype. In doing so, the framework identified
231 gene regions already recognized in mediating the efficiency of infection for bacteriophage λ and
232 *E. coli* [(Meyer JR D. D., 2012) (Blanche S, 2013), (Burmeister AR, 2021), (Gupta A Z. L., 2022)]
233 and predicted mutations that conferred a resistant phenotype in bacteria through epistasis with
234 other mutations (Gupta et al., 2022). The model also identified features that were located in
235 phage gene *J* region, including a number of synonymous mutations as well as insertions and
236 deletions that in principle should be detrimental, but have been shown to modulate host-range
237 expansion and counter-defense through recombination [(Borin JM A. S., 2021)]. Hence, the
238 framework has the potential to identify novel genes and mutations that modulate both
239 qualitative and quantitative features of virus-microbe interactions while being cognizant of the
240 potential for the framework to erroneously also identify hitchhiking mutations as driver
241 mutations when they are likely proxies for adjacent driver mutants linked via recombination.

242 Based on the feature importance analysis, we identified one mutation located in the
243 phage *S* gene region that is found to be uniquely important for predicting the presence (or
244 absence) of infection. This gene encodes the holin which is a small inner membrane protein
245 required for phage-induced host lysis [(Chang CY, 1995)]. Notably, the phage-host interaction
246 network observed in our experiment is based on the quantitative plaque assay, in which clearings
247 (plaques) would appear where bacterial cells were infected and lysed by the phage [(Anderson
248 B, 2011), (Sambrook J, 2006)]. Thus, we interpret the feature analysis to imply that a mutation in
249 the *S* gene has a direct impact on the lysis of the host cells, which would then have an impact on
250 the final observed phenotype. Similar mutations were uncovered via experimental evolution to

251 counteract a gene deletion in the host that helps facilitate phage DNA replication [(Gupta A S.
252 A., 2020)]. This mutation may extend the infection process and allow the phage more time to
253 initiate DNA replication in the debilitated host, increasing the chance of a successful infection.
254 We hypothesize that this mutation may have a similar function to counteract host mutations that
255 interfere with λ 's lytic life cycle. Another mutation identified by our method in the phage *lom*
256 gene region was exclusively important in positively modulating infection efficiency but not the
257 interaction itself; we note that this site was previously reported to increase phage resistance
258 through an unknown mechanism [(Borin JM A. S., 2021)].

259 The model selection procedure identified an additive model as the best predictor of
260 interaction phenotype from phage and bacterial genotype. In the additive model, individual
261 phage and bacterial mutations act independently, rather than synergistically (whether positively
262 or negatively), to determine infection outcome. Hence complex interaction networks may be
263 (partially) predictable based on direct effects rather than relying on direct inference of complex
264 interactive effects that are more challenging to measure [(Shaer Tamar E, 2022)]. Nonetheless,
265 it is important to note that this result may reflect the nature of our training and test sets, and
266 might be limited by sampling, and does not exclude the possibility that higher order gene-gene
267 interactions affect infection phenotypes. The number of phage-host mutation pairs scales as the
268 product of the number of phage and host mutations in higher order models (nonlinear and mixed
269 models), but most of these combinations were not observed in our strains. In essence, fitting
270 higher order models leads to underdetermined systems even with the introduction of
271 regularization terms meant to limit the number of weak contributions from mutations – whether

272 direct or in combination. Future work would have to significantly scale-up genotyped
273 combinations of overlapping mutations in different contexts to robustly infer phage-bacteria
274 interaction mutational pairs.

275 Our inference framework was able to detect the importance of previously identified
276 adaptive mutations that modify phage-host interactions. Although false positives and false
277 negatives are possible, we note that evolutionary effects including genetic hitchhiking and
278 recombination may move adaptive mutations onto different backgrounds, improving detection
279 of driver mutations of infection. We did not expect the identification of adaptive mutations to be
280 comprehensive. Instead, by linking genotype to phenotypic changes as measured by a subset of
281 phage and host isolates that arose via coevolution, we can identify mutations of potential
282 relevance to infection (and fitness) in an ecologically relevant context even if significant regimes
283 of mutational space are left unexplored.

284 In summary, we have developed a framework for predicting genotypic drivers of both the
285 qualitative and quantitative nature of host-pathogen interactions. In doing so, we recapitulated
286 the finding of mutations known to influence infection outcome as well as identified novel sites.
287 Moving forward, this framework could help prioritize research on identifying novel drivers of
288 infection, focusing efforts on mutations with highest absolute values and those most likely to
289 alter the phenotype (primarily nonsynonymous mutations). Although we applied this framework
290 in the context of experimental phage-bacteria coevolution and with relatively low genetic
291 diversity, this data-driven approach does not require *a priori* knowledge of driver genes and
292 mutations and could be applied to other, even poorly characterized, phage-bacteria systems. As

293 such, we expect this approach will be relevant in improving understanding of interactions in
294 natural systems as well as for phages that target bacterial pathogens.

295

296 Materials and Methods

297 Experimental setup and data collection

298 We analyzed data from Gupta et al., 2022 where *E. coli* B strain REL606 and phage λ strain cl26
299 were cocultured for a 37-day period. Samples were taken on checkpoint days for pairwise
300 quantitative plaque assays as described in (Gupta A P. S., 2022). The EOP value measures the
301 efficiency of a phage infecting a derived host strain relative to that for infecting the ancestral
302 strain. The EOP value for a phage, j , infecting a host, i , is computed as

303
$$e_{ij} = \frac{q_{(i,j)}}{q_{(anc,j)}} \times d^{s_{(i,j)} - s_{(anc,j)}}, \quad (1)$$

304 where $q_{(i,j)}$ is the number of plaques for phage j against host i , $q_{(anc,j)}$ is the number of plaques
305 for phage j against the ancestral host strain, $s_{(i,j)}$ is the number of dilutions performed to
306 observe distinguishable and countable clear plaques for phage j against host i , $s_{(anc,j)}$ is the
307 number of dilutions performed to observe distinguishable and countable clear plaques for phage
308 j against the ancestral host strain and d is the dilution ratio which is 5 in our experiment. A
309 positive EOP value from the cross-infection plaque assay indicates a successful infection event
310 for a given phage-host pair. In contrast, a zero EOP value indicates the phage has no capacity to
311 infect. A larger EOP value from the cross-infection plaque assay indicates that the phage can
312 infect a given host more efficiently than the ancestral host strain.

313 For each phage and host samples taken from each checkpoint, the DNA extraction, library
314 preparation and sequencing experiment was performed as described in (Gupta A P. S., 2022).
315 Mutation profiles based on the genome sequencing data were constructed using *breseq* as
316 described in (Gupta A P. S., 2022). In addition to the mutations revealed by *breseq* results, for
317 both host and phage we created an artificial mutation as the indicator for the ancestral strain to
318 add the ancestral strain into the mutation profile table. For this artificial mutation, only the
319 ancestral strain is indicated to have this mutation. All other strains were shown to not have this
320 mutation in the mutation profile table.

321

322 **Feature construction**

323 For a total number of U host samples and V phage samples, we denote the EOP value for the i -th
324 host against j -th phage as e_{ij} where $i \in [1, U]$ and $j \in [1, V]$. Let N be the total number of
325 unique mutations observed for the host and M be the total number of unique mutations
326 observed for the phage, the host mutation profile H is a matrix of dimension U by N , and the
327 phage mutation profile P is a matrix of dimension V by M . Let h_{il} be an element from H , then
328 $h_{il} = 1$ corresponds to the presence of the l -th mutation in the i -th host whereas $h_{il} = 0$
329 corresponds to the absence of the l -th mutation in the i -th host. Similarly, let p_{jk} be an element
330 from P , then $p_{jk} = 1$ corresponds to the presence of the k -th mutation in the j -th phage whereas
331 $p_{jk} = 0$ corresponds to the absence of the k -th mutation in the j -th phage.

332 Five sets of features were constructed based on the mutation profiles of the host and
333 phage. The H-only model is constructed based on a linear combination of 'host only' mutation
334 profiles. The H-only model, denoted as $\phi_{ij}^{(1)}$, can be represented as:

$$\phi_{ij}^{(1)} = \gamma_1 + \sum_{l=1}^N \alpha_l h_{il}, \quad (2)$$

336 where γ_1 represents a scalar of the bias term and α_l is the coefficient for the l -th host mutation.
337 γ_1 and α_l will be learned from the model. The H-only model can also be represented in matrix
338 form as:

$$\Phi^{(1)} = \Gamma_1 + H \cdot R_\alpha, \quad (3)$$

340 where Γ_1 is a U by V matrix by repeating γ_1 , i.e. $\Gamma_1 = [\gamma_1]_{U \times V}$, R_α is a N by V matrix by stacking
 341 the same coefficient vector α horizontally, i.e. $[\alpha|\alpha|\cdots|\alpha|\alpha]_{N \times V}$.

342 The P-only model is constructed based on a linear combination of 'phage only'

343 mutational profiles. The P-only model, denoted as $\phi_{ij}^{(2)}$, can be represented as:

$$\phi_{ij}^{(2)} = \gamma_2 + \sum_{k=1}^M \tilde{a}_k p_{jk}, \quad (4)$$

345 where γ_2 represents a scalar of the bias term and $\tilde{\alpha}_k$ is the coefficient for the k -th phage
346 mutation. γ_2 and $\tilde{\alpha}_k$ will be learned from the model. This model can also be represented in
347 matrix form as:

$$348 \quad \quad \quad \Phi^{(2)} = \Gamma_2 + [P \cdot R_{\tilde{\alpha}}]^T, \quad (5)$$

349 where Γ_2 is a U by V matrix by repeating γ_2 and $R_{\tilde{\alpha}}$ is a M by U matrix by stacking the same
 350 coefficient vector α horizontally, i.e. $[\tilde{\alpha}|\tilde{\alpha}| \cdots |\tilde{\alpha}|\tilde{\alpha}]_{M \times U}$.

351 The linear model, denoted as $\phi_{ij}^{(3)}$, utilizes a linear combination of phage and host
352 mutational features and can be represented as:

353
$$\phi_{ij}^{(3)} = \gamma_3 + \sum_{l=1}^N \alpha_l h_{il} + \sum_{k=1}^M \tilde{\alpha}_k p_{jk}, \quad (6)$$

354 where γ_3 represents a scalar of the bias term, α_l is the coefficient for the l -th host mutation and
355 $\tilde{\alpha}_k$ is the coefficient for the k -th phage mutation. γ_3 , α_l and $\tilde{\alpha}_k$ will be learned from the model.

356 The linear model can also be represented in matrix form as:

357
$$\Phi^{(3)} = \Gamma_3 + H \cdot R_\alpha + [P \cdot R_{\tilde{\alpha}}]^T, \quad (7)$$

358 where Γ_3 is a U by V matrix by repeating γ_3 , i.e. $\Gamma_3 = [\gamma_3]_{U \times V}$, R_α is a N by V matrix by stacking
359 the same coefficient vector α horizontally, i.e. $[\alpha|\alpha|\cdots|\alpha|\alpha]_{N \times V}$ and $R_{\tilde{\alpha}}$ is a M by U matrix by
360 stacking the same coefficient vector $\tilde{\alpha}$ horizontally, i.e. $[\tilde{\alpha}|\tilde{\alpha}|\cdots|\tilde{\alpha}|\tilde{\alpha}]_{M \times U}$. The assumption for
361 the linear model is that the impact of mutations from both the phage and host have additive
362 effects on the observed outcome.

363 The nonlinear model, denoted as $\phi_{ij}^{(4)}$, utilizes nonlinear combination of phage and host
364 mutational features as the input and can be represented as:

365
$$\phi_{ij}^{(4)} = \gamma_4 + \sum_{l=1}^N \sum_{k=1}^M \beta_{lk} h_{il} p_{jk}, \quad (8)$$

366 where γ_4 represents a scalar of the bias term, β_{lk} denotes the coefficient for the l -th host
367 mutation and k -th phage mutation in the corresponding i -th host and j -th phage pair. γ_4 and β_{lk}
368 will be learned from the model. This nonlinear model can also be represented in the matrix form
369 as:

370
$$\Phi^{(4)} = \Gamma_4 + H \cdot B \cdot P^T, \quad (9)$$

371 where Γ_4 is a U by V matrix by repeating γ_4 , i.e. $\Gamma_4 = [\gamma_4]_{U \times V}$, B is the N by M coefficient matrix.
372 The assumption for the nonlinear model is that the impact of the genetic mutations on the
373 observed outcome comes from the additive effects of co-occurring phage-host mutation pairs.
374 In other words, $h_{il}p_{jk} = 1$ only when both the host i has mutation l and phage j has mutation
375 k .

376 Based on the formulation of the linear and nonlinear models, it is natural to combine both
377 effects to get a more sophisticated input feature, by adding up both effects. The mixed model,
378 denoted as $\phi_{ij}^{(5)}$, utilizes a mixed combination of linear and nonlinear effects of host and phage
379 mutation features and can be represented as:

380
$$\phi_{ij}^{(5)} = \gamma_5 + \sum_{l=1}^N \alpha_l h_{il} + \sum_{k=1}^M \tilde{\alpha}_k p_{jk} + \sum_{l=1}^N \sum_{k=1}^M \beta_{lk} h_{il} p_{jk}. \quad (10)$$

381 The matrix form of the mixed model is:

382
$$\Phi^{(5)} = \Gamma_5 + H \cdot R_\alpha + [P \cdot R_{\tilde{\alpha}}]^T + H \cdot B \cdot P^T, \quad (11)$$

383 where Γ_5 is a U by V matrix by repeating γ_5 , i.e. $\Gamma_5 = [\gamma_5]_{U \times V}$.

384

385 **Framework design**

386 We designed a framework comprised of two types of predictions. First, we designed a framework
387 that predicts the phage-host cross interaction network (i.e., the phage host range). This model
388 tries to find the set of features that can best distinguish between successful ($EOP > 0$) and
389 unsuccessful ($EOP = 0$) infections using classification models. Second, we built a framework to
390 predict the strength of the interaction of the subset of phage-host pairs where the host is
391 susceptible to the phage ($EOP > 0$). This model of our framework is designed to evaluate the

392 potential impact of the genotype on this observed phenotype by modeling the efficiency of the
393 phage in infecting a host.

394

395 **Model for predicting phage host cross-infection network (POA)**

396 In order to determine the presence or absence of a successful infection event for a phage-host
397 pair, we binarized the EOP values e_{ij} into 0 and 1, i.e.

398
$$d_{ij} = 1_{\{e_{ij} > 0\}}, \quad (12)$$

399 where $d_{ij} = 0$ indicates a failure of the infection and $d_{ij} = 1$ indicates success. Here we used
400 logistic regression to model the relationship between mutation profiles and the existence of
401 successful infection in phage-host pairs, that is:

402
$$\phi_{ij}^{(\cdot)} = \ln \left(\frac{d_{ij}}{1-d_{ij}} \right). \quad (13)$$

403 Each of the five sets of features, namely H-only, P-only, linear, nonlinear and mixed, were used
404 as the input features for the models $\phi_{ij}^{(1)}, \phi_{ij}^{(2)}, \phi_{ij}^{(3)}, \phi_{ij}^{(4)}$ and $\phi_{ij}^{(5)}$ respectively. In practice, we
405 used LASSO for feature selection and regularization. The penalty term parameter for LASSO was
406 determined by using 10-fold cross-validation on the training data. The prediction classification
407 error, $\frac{FalsePositives+FalseNegatives}{TestSamples}$, was used to assess the performance for this model. The mean
408 classification error was calculated by taking the mean of classification error from 200 runs.

409

410 **Model for predicting infection efficiency (EFF)**

411 We applied a log transformation on the positive EOP values to normalize the distribution. For a
412 given phage-host pair where a successful infection event is present, that is $e_{ij} > 0$, we denote
413 the natural log transformed EOP value as:

414
$$e'_{ij} = \ln(e_{ij}). \quad (14)$$

415 Shapiro-Wilk test was performed to check the normality of the distribution of e'_{ij} .

416 Linear regression was used to model the relationship between mutation profiles and the
417 intensity of successful infections in phage-host pairs, that is:

418
$$\phi_{ij}^{(\cdot)} = e'_{ij}. \quad (15)$$

419 Each of the five sets of features, namely H-only, P-only, linear, nonlinear and mixed, were used
420 as the input features for the models $\phi_{ij}^{(1)}, \phi_{ij}^{(2)}, \phi_{ij}^{(3)}, \phi_{ij}^{(4)}$ and $\phi_{ij}^{(5)}$ respectively. For the linear
421 model, we also used LASSO for feature selection and regularization. The penalty term parameter
422 for LASSO was determined by using 10-fold cross-validation on the training data. Finally, the MAE
423 was used to evaluate the performance of the model.

424

425 **Train-validation split and feature evaluation**

426 To assess the performance of different features for the logistic regression model, we performed
427 200 bootstrap runs to predict the existence of phage infection. Specifically, in each run the
428 training set was generated by randomly select $U \times V$ samples from the entire dataset with
429 replacement. The d_{ij} values that were not selected as training samples form the validation set.
430 As a control, for each run, a null model was built to predict the outcomes by randomly sample
431 d_{ij} values from a Bernoulli distribution $Bern(\hat{p})$ where \hat{p} is the maximum likelihood estimator

432 (MLE) of the proportion of successful infection from the training set of that run. After the 200
433 runs, the training and validation prediction error were compared between pairs of the models
434 including the null model and models based on phage and host mutations only and linear,
435 nonlinear, and mixed combinations of phage and host mutational features.

436 Similarly, we also performed 200 bootstrap runs for the linear model to predict the
437 infection efficiency. Specifically, in each run the training set was generated by randomly sample
438 e'_{ij} with replacement. The size of e'_{ij} sampled as the training set in each run matches the total
439 number of the e'_{ij} . The e'_{ij} that were not selected in the training set forms the validation set. As
440 a control, for each run, a null model was built by always predicting the efficiency of infection as
441 the mean e'_{ij} of the training set for that run. After the 200 runs, the training and validation MAEs
442 were compared between pairs of the models including the null model and every feature model
443 set.

444

445 **Final predictions and feature important analysis**

446 After comparing the training and validation performance of models based on the different
447 mutational sets with 200 bootstrap runs, a final model, that integrates predictions of POA and
448 EFF was constructed. The penalty term parameter for each of the prediction frameworks was
449 chosen as the mean of the best penalty term parameter from each of the 200 bootstrap runs.

450 After model fitting, the predicted outcome, \tilde{d}_{ij} for step 1 and \tilde{e}'_{ij} for step 2. For each step of
451 the final models, the importance of feature was measured by the absolute value of coefficients
452 learned from each step.

453

454 **Author Contributions**

455 Conceptualization: JSW, CYL & JRM

456 Methodology: ALS, SP, CYL & JSW

457 Investigation: ALS, SP, CYL, AG

458 Visualization: ALS, SP

459 Writing – original draft: ALS, SP & JSW

460 Writing – review & editing: ALS, SP, CYL, AG, JRM, JSW

461

462 **Software Availability**

463 https://github.com/aluciasanz/genotype_to_phenotype_inference model.

464 **Acknowledgments**

465 JSW - Army Research Office (W911NF1910384), NIH (R01-AI146592-01), Simons Foundation

466 (930283), Chaires Blaise Pascal of the Île-de-France region.

467 JRM - Howard Hughes Medical Institute Emerging Pathogens Initiative grant 7012574.

468

469 References

470

471 An P, M. O. (2009). The challenge of detecting epistasis (G x G interactions): Genetic Analysis
472 Workshop 16. *Genet Epidemiol.* 2009; , 33 Suppl 1:S58-67. doi: 10.1002/gepi.20474.

473 Anderson B, R. M. (2011). Enumeration of bacteriophage particles: Comparative analysis of the
474 traditional plaque assay and real-time QPCR- and nanosight-based assays.
475 *Bacteriophage*, 1(2):86-93.

476 Aylward FO, B. D.-C. (2017). Diel cycling and long-term persistence of viruses in the ocean's
477 euphotic zone. *Proc Natl Acad Sci U S A*, 114(43):11446-51. Epub 2017/10/27. doi:
478 10.1073/pnas.1714821114. P.

479 Bajic D, V. J. (2018). On the deformability of an empirical fitness landscape by microbial
480 evolution. *Proc Natl Acad Sci USA*, 115(44): 11286-11291.
481 <https://doi.org/10.1073/pnas.1808485115>.

482 Banzhaf, W. C. (2020). Subtle Environmental Differences have Cascading Effects on the Ecology
483 and Evolution of a Model Microbial Community. In W. C. Banzhaf, *Evolution in Action:
484 Past, Present and Future: A Festschrift in Honor of Erik D. Goodman* (pp. 273 – 288).
485 Springer International Publishing.

486 Beckett SJ, W. H. (2013). Coevolutionary diversification creates nested-modular structure in
487 phage-bacteria interaction networks. *Interface Focus*, 3(6):20130033. doi:
488 10.1098/rsfs.2013.0033.

489 Berry D, W. S. (2014). Deciphering microbial interactions and detecting keystone species with
490 co-occurrence networks. *Front Microbiol*, ;5:219. doi: 10.3389/fmicb.2014.00219.

491 Blanche S, W. S. (2013). The Protein Interaction Network of Bacteriophage lambda with its Host
492 *Escherichia coli*. *J Virol*, 87(23), <https://doi.org/10.1128/JVI.02495-13>.

493 Borin JM, A. S. (2021). Coevolutionary phage training leads to greater bacterial suppression and
494 delays the evolution of phage resistance. *Proc. Natl. Acad. Sci.*, 118 (23): e2104592118.

495 Borin JM, L. J. (2023). Comparison of bacterial suppression by phage cocktails, dual-receptor
496 generalists, and coevolutionarily trained phages. *Evolutionary Applications*, 16, 152–162.

497 Borin JM, L. J.-S. (2023). Rapid bacteria-phage coevolution drives the emergence of multi-scale
498 networks. *Science*, 382,674-678.

499 Breitbart, M. B. (2018). Phage puppet masters of the marine microbial realm. *Nature
500 Microbiology* 3, 754–766.

501 Buckling A, R. P. (2002). Antagonistic coevolution between a bacterium and a bacteriophage.
502 *Proc Biol Sci*, 269(1494):931-6. doi: 10.1098/rspb.2001.1945.

503 Burmeister AR, S. R. (2021). Sustained coevolution of phage lambda and *Escherichia coli*
504 involves inner-as well as outer-membrane defences and counter-defences.
505 *Microbiology*, 167:001063. doi: 10.1099/mic.0.001063.

506 Chang CY, N. K. (1995). S gene expression and the timing of lysis by bacteriophage lambda. . *J
507 Bacteriol*, 177(11):3283-94.

508 Chatterjee S, R. E. (2012). Interaction of bacteriophage lambda with its *E. coli* receptor, LamB.
509 *Viruses*, 4(11):3162-78. Epub 2012/12/04. doi: 10.3390/v4113162.

510 D, F. (2016). Bacterial genomics: Microbial GWAS coming of age. *Nat Microbiol*, 1:16059. doi:
511 10.1038/nmicrobiol.2016.59.

512 de Jonge PA, N. F. (2019). Molecular and Evolutionary Determinants of Bacteriophage Host
513 Range. *Trends Microbiol*, 27(1):51-63 doi: 10.1016/j.tim.2018.08.006.

514 Debarbouille M, S. H. (1978). Dominant constitutive mutations in malT, the positive regulator
515 gene of the maltose regulon in *Escherichia coli*. *J Mol Biol*, 124: 359–371.

516 Dutilh BE, R. A. (2017). Virus Discovery by Metagenomics: The (Im)possibilities. *Front Microbiol*,
517 8:1710. doi: 10.3389/fmicb.2017.01710.

518 Edwards RA, M. K. (2016). Computational approaches to predict bacteriophage-host
519 relationships. *FEMS Microbiol Rev*, ;40(2):258-72. doi: 10.1093/femsre/fuv048.

520 Elena SF, L. R. (2003). Evolution experiments with microorganisms: the dynamics and genetic
521 bases of adaptation . *Nat Rev Genet*, 4(6):457-69. doi: 10.1038/nrg1088.

522 Erni B, Z. B. (1987). he mannose permease of *Escherichia coli* consists of three different
523 proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation,
524 and penetration of phage lambda DNA. *Journal of Biological Chemistry*, 262 (11): 5238 -
525 5247.

526 Faust K, R. J. (2012). Microbial interactions: from networks to models. *Nat Rev Microbiol*.,
527 10(8):538-50. doi: 10.1038/nrmicro2832. PubMed PMID: 22796884.

528 Flannick J, N. A. (2006). Graemlin: general and robust alignment of multiple large interaction
529 networks. *Genome Res*, 16(9):1169-81. Epub 2006/08/11. doi: 10.1101/gr.5235706.

530 G, G. (2015). *A primer of human genetics*. Sinauer Associates is an imprint of Oxford University
531 Press.

532 Gaborieau B, V. H. (2023). Predicting phage-bacteria interactions at the strain level from
533 genomes. *bioRxiv*, <https://doi.org/10.1101/2023.11.22.567924> .

534 Gao Z, a. F. (2023). Bacteriophage strategies for overcoming host antiviral immunity . *Front.*
535 *Microbiol*. 14, 1211793.

536 George, N. H. (2023). CRISPR-resolved virus-host interactions in a municipal landfill include non-
537 specific viruses, hyper-targeted viral populations, and interviral conflicts. *Sci Rep* , 13,
538 5611. <https://doi.org/10.1038/s41598-023-32078-6>.

539 Guillermo Dominguez-Huerta, A. A. (2022). Diversity and ecological footprint of Global Ocean
540 RNA viruses. *Science* 376, 1202-1208.

541 Gupta A, P. S. (2022). Leapfrog dynamics in phage-bacteria coevolution revealed by joint
542 analysis of cross-infection phenotypes and whole genome sequencing. *Ecol Lett*,
543 25(4):876-888. doi: 10.1111/ele.1.

544 Gupta A, S. A. (2020). Bacteriophage lambda overcomes a perturbation in its host–viral genetic
545 network through mutualism and evolution of life history traits. *Evolution*, 74 (4): 764–
546 774.

547 Gupta A, Z. L. (2022). Host-parasite coevolution promotes innovation through deformations in
548 fitness landscapes. *eLife*, 11:e76162.

549 Gurney J, A. L.-B. (2017). Network structure and local adaptation in co-evolving bacteria-phage
550 interactions. *Mol Ecol*, 26(7):1764-77. doi: 10.1111/mec.14008.

551 Horton MW, B. N. (2014). Genome-wide association study of *Arabidopsis thaliana* leaf microbial
552 community. *Nat Commun*, 5:5320. doi: 10.1038/ncomms6320.

553 Jallow M, T. Y. (2009). Genome-wide and fine-resolution association analysis of malaria in West
554 Africa. *Nat Genet*, 41(6):657-65. doi: 10.1038/ng.388.

555 Jiliang Hu J., A. D. (2022). Emergent phases of ecological diversity and dynamics mapped in
556 microcosms. *Science* 378, 85-89.

557 Kaltz O, S. J. (2002). Within-and among-population variation in infectivity, latency and spore
558 production in a host-pathogen system. *Journal of Evolutionary Biology*, 15(5):850-60.

559 Kauffman KM, C. W. (2022). Resolving the structure of phage–bacteria interactions in the
560 context of natural diversity. *Nat Commun*, 13, 372. <https://doi.org/10.1038/s41467-021-27583-z>.

562 Koonin, E. M. (2020). Evolutionary entanglement of mobile genetic elements and host defence
563 systems: guns for hire. *Nat Rev Genet* 21, 119–131.

564 Koskella B, B. M. (2014). Bacteria-phage coevolution as a driver of ecological and evolutionary
565 processes in microbial communities. *FEMS Microbiol Rev*, 38(5):916-31. doi:
566 10.1111/1574-6976.12072.

567 Liao C., W. T. (2020). Modeling microbial cross-feeding at intermediate scale portrays
568 community dynamics and species coexistence. *PLOS Computational Biology* 16(8),
569 e1008135.

570 Lobo FP, M. B. (2009). Virus-host coevolution: common patterns of nucleotide motif usage in
571 Flaviviridae and their hosts. *PLoS One*, 4(7):e6282. doi: 10.1371/journal.pone.0006282.

572 MacPherson A, O. S. (2018). Keeping Pace with the Red Queen: Identifying the Genetic Basis of
573 Susceptibility to Infectious Disease. *Genetics*, 208(2):779-89. doi:
574 10.1534/genetics.117.300481.

575 Maddamsetti R, J. D. (2018). Gain-of-function experiments with bacteriophage lambda uncover
576 residues under diversifying selection in nature. *Evolution*, 72: 2234-2243.

577 Manrubia S, C. J.-U.-M. (2021). From genotypes to organisms: state-of-the-art and perspectives
578 of a cornerstone in evolutionary dynamics. *Phys Life Rev*, 38: 55-106. doi:
579 10.1016/j.plrev.2021.03.004.

580 Maynard ND, B. E. (2010). A Forward-Genetic Screen and Dynamic Analysis of Lambda Phage
581 Host-Dependencies Reveals an Extensive Interaction Network and a New Anti-Viral
582 Strategy. *PLOS Genetics*, 6(7): e1001017.
583 <https://doi.org/10.1371/journal.pgen.1001017>.

584 Meyer JR, D. D. (2012). Repeatability and contingency in the evolution of a key innovation in
585 phage lambda. *Science*, 335(6067):428-32. doi: 10.1126/science.1214449.

586 Meyer JR, D. D. (2012). Repeatability and contingency in the evolution of a key innovation in
587 phage lambda . *Science*, 335 (6067): 428-432.

588 Modi SR, L. H. (2013). Antibiotic treatment expands the resistance reservoir and ecological
589 network of the phage metagenome. *Nature*, ;499(7457):219-22. doi:
590 10.1038/nature12212.

591 Munson-McGee JH, P. S. (2018). A virus or more in (nearly) every cell: ubiquitous networks of
592 virus-host interactions in extreme environments. *ISME J*, 12(7):1706-14. Epub
593 2018/02/23. doi: 10.1038/s41.

594 Nayfach, S. P.-E. (2021). Metagenomic compendium of 189,680 DNA viruses from the human
595 gut microbiome. *Nat Microbiol* 6, 960-970.

596 Neurath AR, K. S. (1986). Identification and chemical synthesis of a host cell receptor binding
597 site on hepatitis B virus. *Cell*, 46(3):429-36. Epub 1986/08/01. PubMed PMID: 3015414.

598 Poullain V, G. S. (2008). The evolution of specificity in evolving and coevolving antagonistic
599 interactions between a bacteria and its phage. *Evolution*, ;62(1):1-11. doi:
600 10.1111/j.1558-5646.2007.00.

601 Power RA, P. J. (2017). Microbial genome-wide association studies: lessons from human GWAS.
602 *Nat Rev Genet*, 18(1):41-50. doi: 10.1038/nrg.2016.132.

603 Roux S., P.-E. D. (2021). IMG/VR v3: an integrated ecological and evolutionary framework for
604 interrogating genomes of uncultivated viruses. *Nucleic Acids Research*, 49(1):764–775.

605 Sambrook J, R. D. (2006). *The Condensed Protocols from Molecular Cloning: A Laboratory
606 Manual*. N.Y.: Cold Spring Harbor Laboratory Press.

607 Scanlan PD, H. A.-P. (2011). Genetic basis of infectivity evolution in a bacteriophage. *Mol Ecol*,
608 20(5):981-9. Epub 2010/11/16. doi: 10.1111/j.1365-294X.2010.04903.x.

609 Shaer Tamar E, K. R. (2022). Multistep diversification in spatiotemporal bacterial-phage
610 coevolution. *Nat Commun* , 13, 7971.

611 Simon Roux, D. P.-E.-M. (2021). IMG/VR v3: an integrated ecological and evolutionary
612 framework for interrogating genomes of uncultivated viruses. *Nucleic Acids Research*,
613 49(1): 764-775.

614 Stein RR, B. V. (2013). Ecological Modeling from Time-Series Inference: Insight into Dynamics
615 and Stability of Intestinal Microbiota. *PLOS Computational Biology* 9 (12), e1003388.

616 Sullivan NJ, G. T. (2003). Accelerated vaccination for Ebola virus haemorrhagic fever in non-
617 human primates. *Nature*, 424(6949):681-4. doi: 10.1038/nature01876.

618 Sunagawa S., C. L. (2015). Structure and function of the global ocean microbiome. *Science*, 348,
619 1261359.

620 Sunagawa, S. A. (2020). Tara Oceans: towards global ocean ecosystems biology. *Nat Rev
621 Microbiol* 18, 428–445.

622 Szabo RE., P. S. (2022). Historical contingencies and phage induction diversify bacterioplankton
623 communities at the microscale. *Proc. Natl. Acad. Sci* 119 (30), e211774811.

624 Tetz, V. T. (2022). Novel prokaryotic system employing previously unknown nucleic acids-based
625 receptors. *Microb Cell Fact* 21, 202.

626 Vica Pacheco S, G. G. (1997). The lom gene of bacteriophage lambda is involved in *Escherichia
627 coli* K12 adhesion to human buccal epithelial cells. *FEMS Microbiol Lett.* , 156(1):129-32.

628 Wang J, H. M. (2000). The C-terminal portion of the tail fiber protein of bacteriophage lambda is
629 responsible for binding to LamB, its receptor at the surface of *Escherichia coli* K-12. *J
630 Bacteriol*, 182(2):508-12.

631 Wang J, M. V. (1998). Cloning of the J gene of bacteriophage lambda, expression and
632 solubilization of the J protein: first in vitro studies on the interactions between J and
633 LamB, its cell surface receptor. *Res Microbiol*, 149(9):611.

634 Wei WH, H. G. (2014). Detecting epistasis in human complex traits. *Nat Rev Genet*, 15(11):722-
635 33. doi: 10.1038/nrg3747.

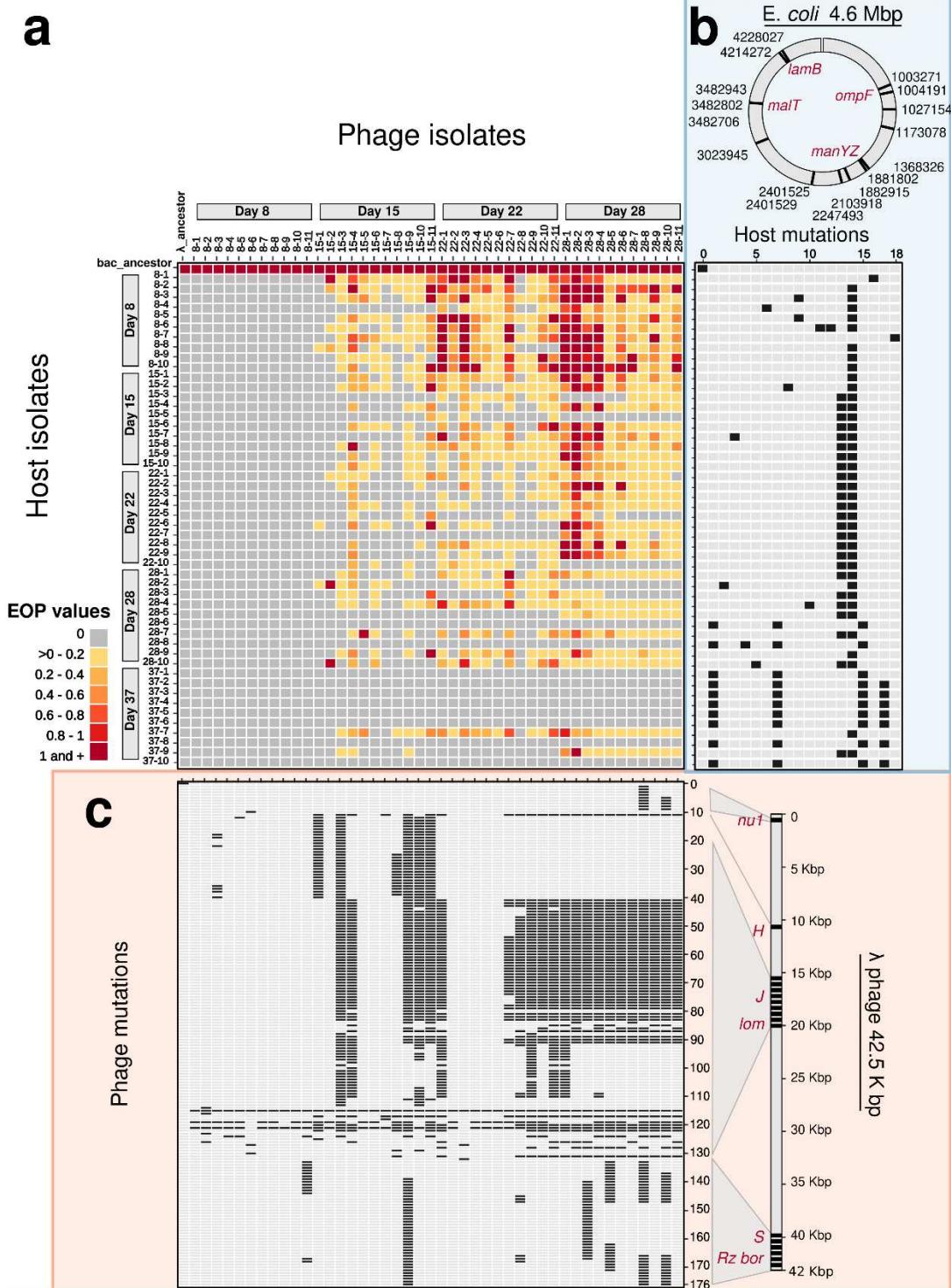
636 Weitz JS, P. T. (2013). Phage-bacteria infection networks. *Trends Microbiol*, 21(2):82-91. doi:
637 10.1016/j.tim.2012.11.00.

638 Werts C, M. V. (1994). Adsorption of bacteriophage lambda on the LamB protein of Escherichia
639 coli K-12: point mutations in gene J of lambda responsible for extended host range. *J
640 Bacteriol*, 176(4):941-7.

641 Zborowsky S., a. D. (2019). Resistance in marine cyanobacteria differs against specialist and
642 generalist cyanophages . *Proc. Natl. Acad. Sci.* 116 (34) , 16899-16908.

643

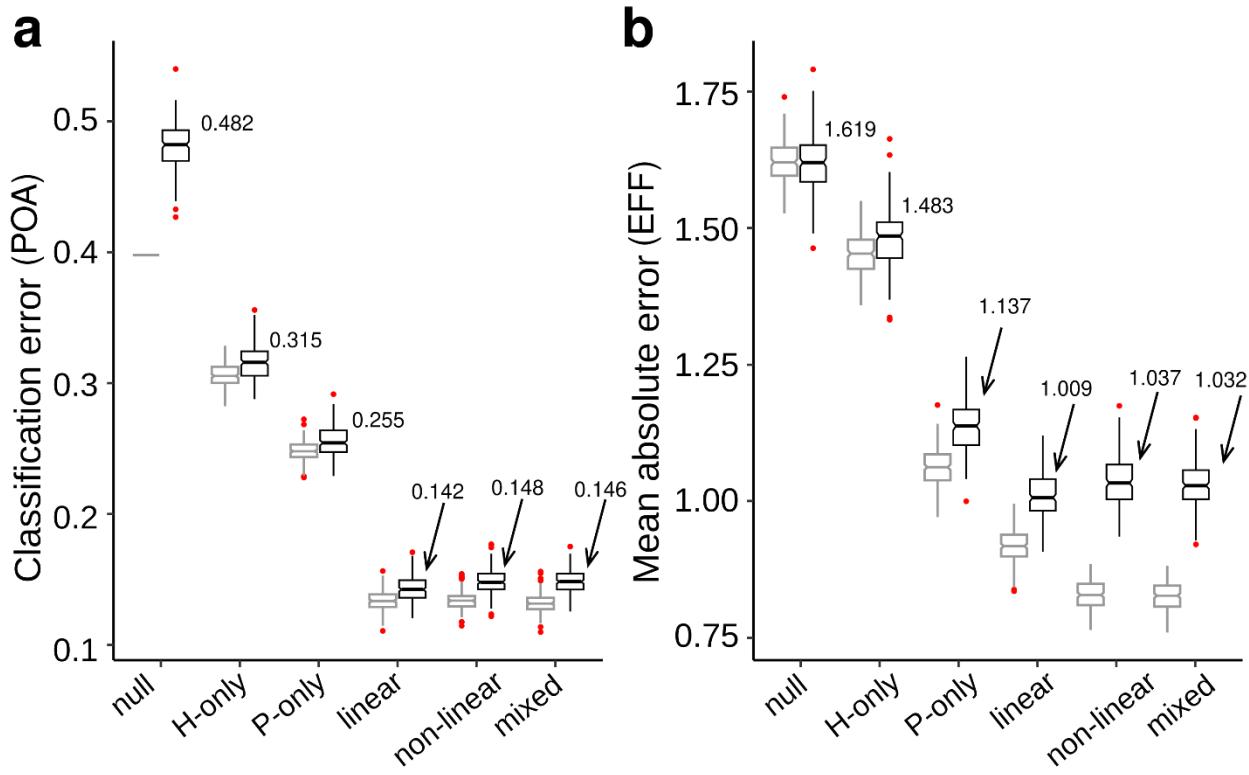
644 **Figures**



645

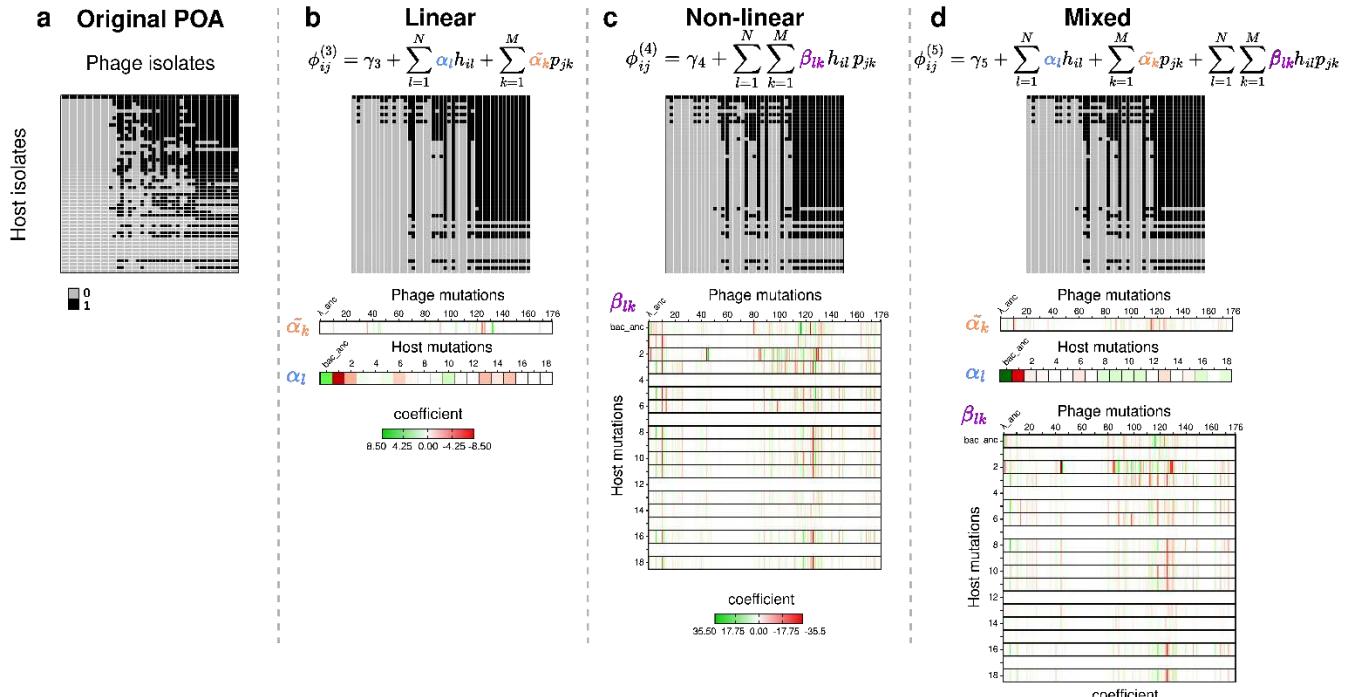
646 **Fig 1. Phage-bacteria cross-infection matrix and mutation profiles.** (a) Cross-infection matrix,
647 including host and phage ancestor strains, and 50 bacteria (rows) and 44 phage (columns) strains
648 isolated during 37-day coevolution experiment (day of isolation indicated). Names correspond to
649 “day of isolation – number of isolate”. Colored cells are EOP values of infection as in legend, grey
650 cells indicate no infection. (b-c) Mutation profiles for each isolate (positions mutated are in black
651 and in grey otherwise) for 18 (host) and 127 (phage) found mutations numbered in sequential
652 order of appearance in the corresponding genome. (b, in blue) Host isolates (rows) and mutation
653 profiles (columns) for 1 to 18 unique mutations found in nt position 1,003,271 to 4,228,027 of
654 the *E. coli* genome (c, in orange) Phage isolates (columns) and mutation profiles (rows) for 1 to
655 127 unique mutations found in nt position 175 to 42,491 of the λ phage genome. For the
656 complete list of host and phage mutations see S1 Table. Important genes for phage-host
657 interaction are highlighted in red and discussed in the main text.

658



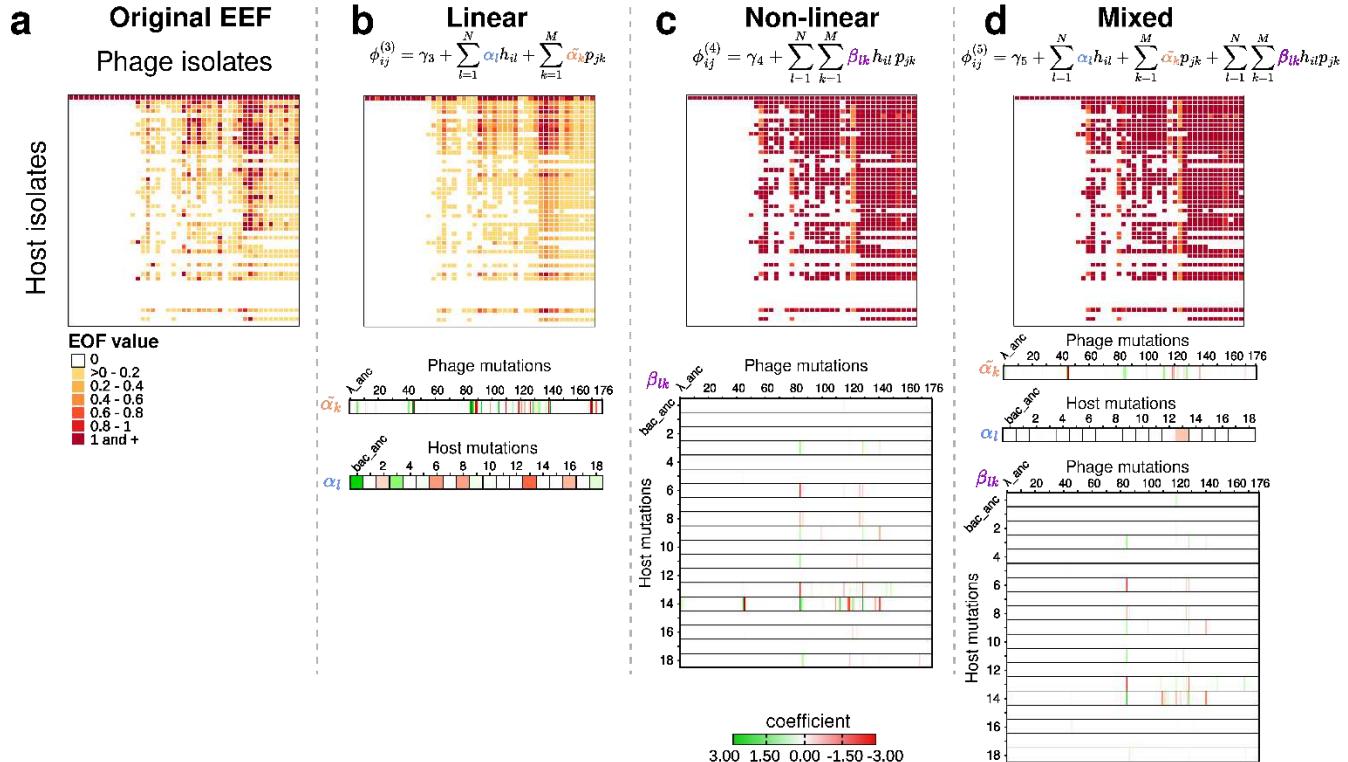
659

660 **Fig 2. Model performances for different feature sets.** The lowest mean value in the validation set for
661 POA and EFF models corresponds to the linear model. (a) Classification error distributions in the training
662 (grey) and validation (black) sets for the predictions of the phage-host interaction network (POA) (ANOVA
663 post hoc Tukey $p < 0.01$). The lowest mean value in the validation set corresponds to the linear model (b)
664 Mean absolute error distributions in the training (grey) and validation (black) sets for the predictions of
665 efficiency of infection (EFF) (ANOVA post hoc Tukey $p < 0.001$, comparing different mutation feature
666 models and a null model. Boxplots contain 25th-75th percentiles, whiskers indicate minimum and
667 maximum values, middle lines are the median (value indicated) of 200 bootstrap runs. Red dots are
668 outliers.



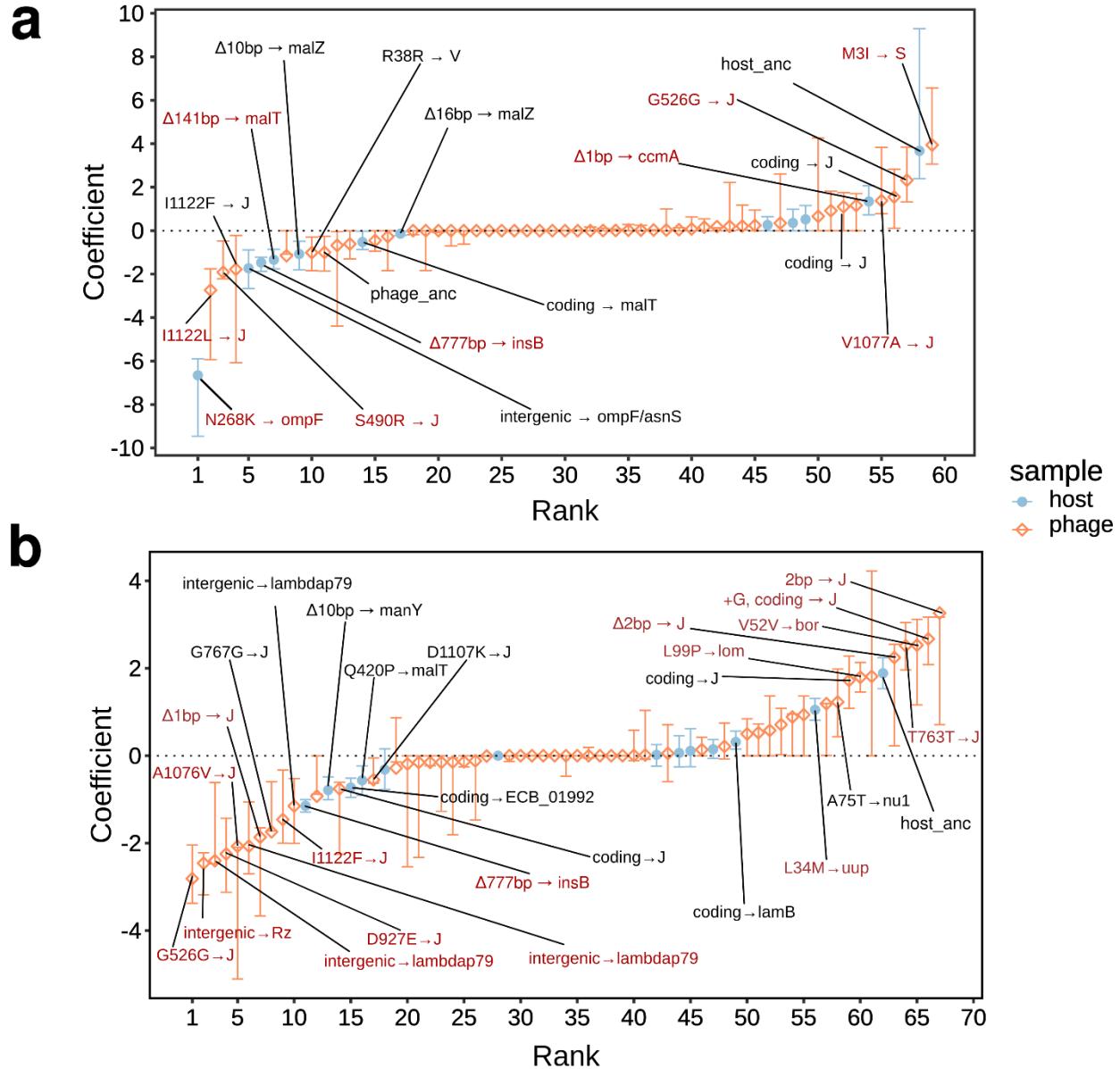
669

670 **Fig 3. Model for predicting phage-host interaction network.** (a) Original POA matrix showing
 671 presence (black) and absence (gray) of successful infection between phage (columns) and host
 672 (rows) isolated pairs. (b-d) Results of the different model predictions as of the POA matrices, and
 673 coefficient values for 176 phage and 18 host mutations plus the ancestor trait using (b) a linear
 674 mutation set (equation [6]), (c) nonlinear mutation set (equation [8]) and (d) mixed combination
 675 of phage and host mutation set. The color of the coefficient indicates positive (green) to negative
 676 (red) effects of each mutation (phage: $\tilde{\alpha}_k$, host: α_l) combination of mutations, β_{lk} .



677

678 **Fig 4. Model for predicting the efficiency of infection.** (a) Original cross-infection matrix where
679 colors are EOP values of infection between phage (columns) and host (rows) isolate pairs, white
680 cells indicate no infection. (b-d) Results of the different model predictions as of the EEF matrices,
681 and coefficient values for 176 phage and 18 host mutations plus the ancestor trait using (b) a
682 linear mutation set (equation [6]), (c) nonlinear mutation set (equation [8]) and (d) mixed
683 combination of phage and host mutation set (equation [10]). The color of the coefficient indicates
684 positive (green) to negative (red) effects of each mutation (phage: $\tilde{\alpha}_k$, host: α_l) combination of
685 mutations, β_{lk} .

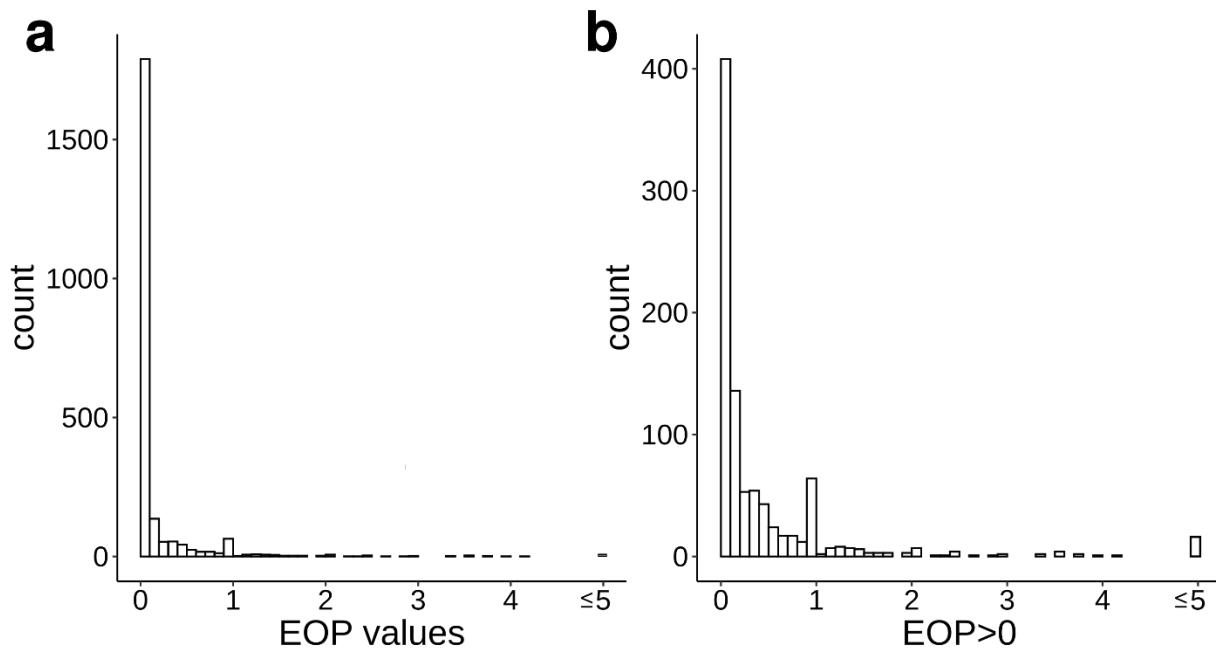


686

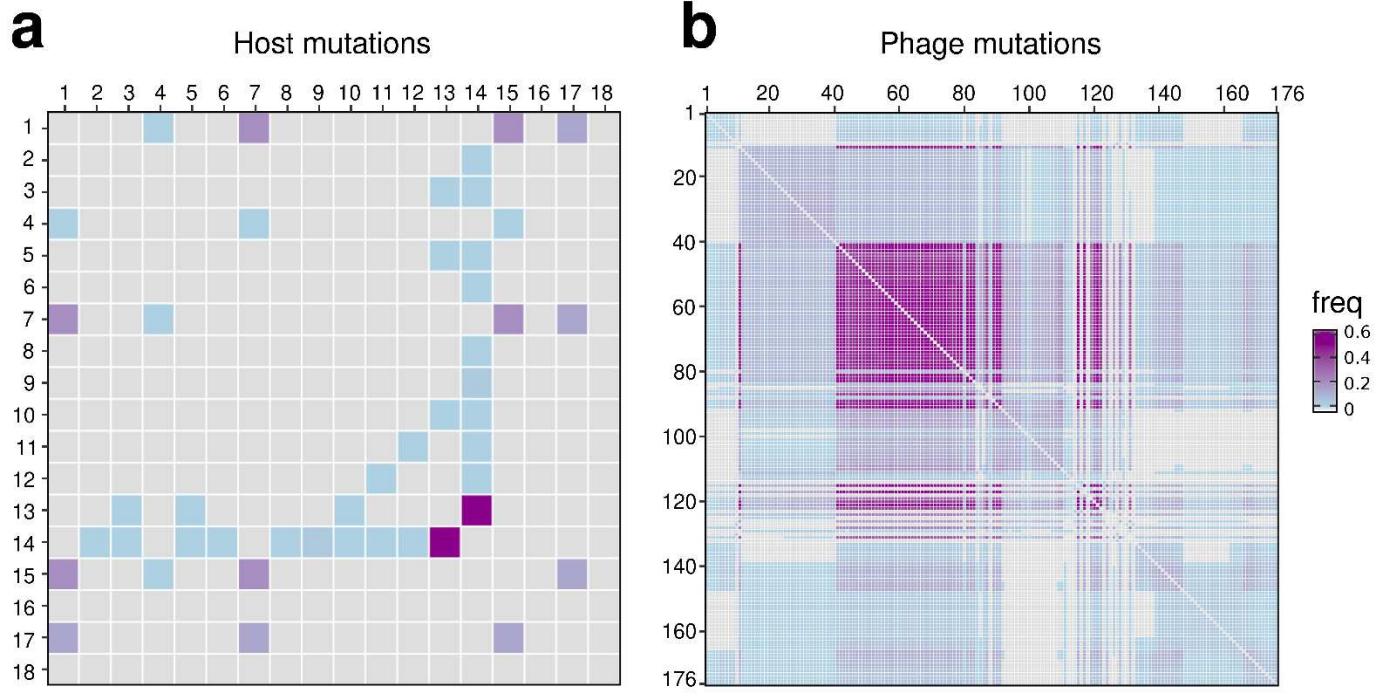
687 **Fig 5. Rank ordered (most negative-most positive) coefficients for important mutations in the**
 688 **final model.** The importance of features was measured by the absolute value of the coefficients
 689 learned from each model. Error bars indicate 0.9 quantile. Labels indicate “mutation → gene”
 690 when the 90th quantile excludes 0. Mutations in red have the highest positive (negative)
 691 coefficients which lowest (highest) value is larger (smaller) or equal to 0 (from 200 bootstrap runs)

692 and are discussed in the main text. Important features for (a) the final model predicting POA
693 include a total of 59 non-zero coefficients, and (b) 67 non-zero coefficient values for the final
694 model predicting EFF. The complete lists of mean, maximum and minimum values of the
695 coefficients associated to mutations predicting POA and EFF are shown in S2 Table and S3 Table
696 respectively.

697 **Supporting information**

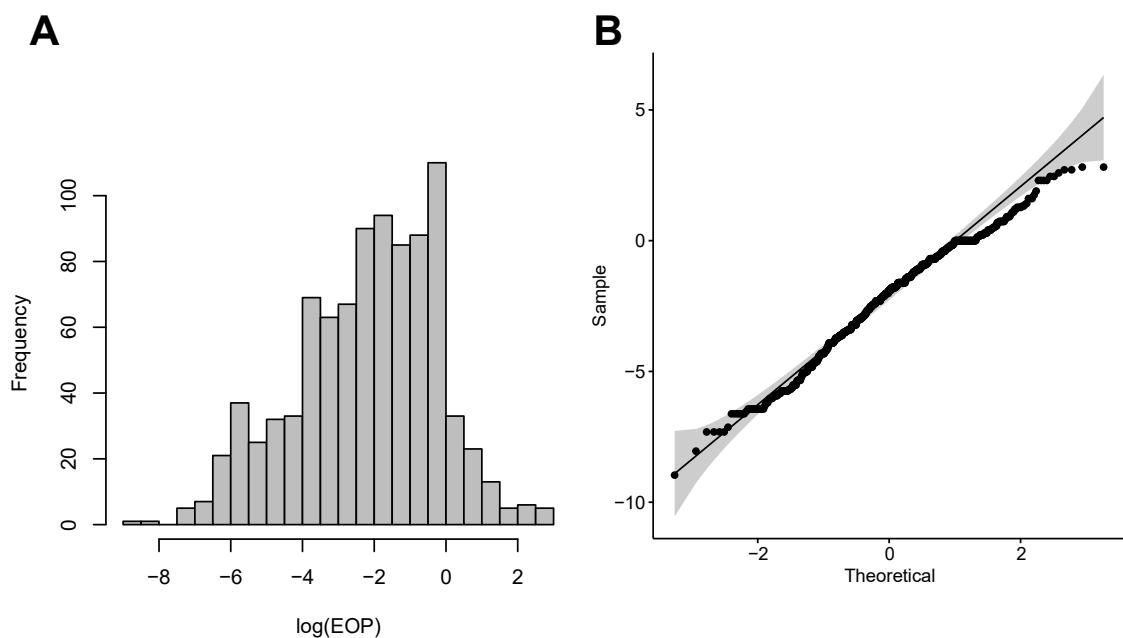


698 **S1 Fig. Distribution of the experimentally obtained EOP values.** (A) Original distribution of the
699 EOP values for 2295 phage-host infection pairs. (B) Distribution of 913 positive EOP values. Bin
700 width=0.1.



701

702 **S2 Fig. Correlations of mutational appearances in host and phage.** (a) 18x18 host and (b)
703 176x176 phage mutation matrices representing the frequency with which pairs of mutations
704 simultaneously appear within the same genetic background.



705 **S3 Fig. Log transformed positive EOP value distribution.** (A) Distribution of the log positive EOP
706 values (B) Q-Q plot for log positive EOP values against normal quantiles (Shapiro-Wilk test P value
707 = 3.283e-8)

708 **S1 Table. Mutation profile tables for host and phage.**

709 **S2 Table. Ordered features with non-zero coefficients from final model for predicting POA**
710 **based on a linear combination of phage and host mutation profiles.**

711 **S3 Table. Ordered features with non-zero coefficients from final model for predicting EFF based**
712 **on a linear combination of phage and host mutation profiles.**