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Abstract 1 

The enormous diversity of bacteriophages and their bacterial hosts presents a significant 2 

challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by 3 

complementary -and largely uncharacterized- genetics of adsorption, injection, and cell take-over. 4 

Here we present a machine learning (ML) approach to predict phage-bacteria interactions 5 

trained on genome sequences of and phenotypic interactions amongst 51 Escherichia coli strains 6 

and 45 phage λ strains that coevolved in laboratory conditions for 37 days. Leveraging multiple 7 

inference strategies and without a priori knowledge of driver mutations, this framework predicts 8 

both who infects whom and the quantitative levels of infections across a suite of 2,295 potential 9 

interactions. The most effective ML approach inferred interaction phenotypes from independent 10 

contributions from phage and bacteria mutations, predicting phage host range with 86% mean 11 

classification accuracy while reducing the relative error in the estimated strength of the infection 12 

phenotype by 40%. Further, transparent feature selection in the predictive model revealed 18 of 13 

176 phage λ and 6 of 18 E. coli mutations that have a significant influence on the outcome of 14 

phage-bacteria interactions, corroborating sites previously known to affect phage λ infections, as 15 

well as identifying mutations in genes of unknown function not previously shown to influence 16 

bacterial resistance. While the genetic variation studied was limited to a focal, coevolved phage-17 

bacteria system, the method's success at recapitulating strain-level infection outcomes provides 18 

a path forward towards developing strategies for inferring interactions in non-model systems, 19 

including those of therapeutic significance. 20 
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Introduction 21 

Next-generation sequencing technology has revealed widespread diversity in microbial and viral 22 

communities [ (Aylward FO, 2017), (Munson-McGee JH, 2018), (Breitbart, 2018), (Guillermo 23 

Dominguez-Huerta, 2022), (Sunagawa S., 2015) , (Nayfach, 2021), (Sunagawa, 2020)]. In parallel, 24 

the development of analytical tools to characterize species interaction networks from co-25 

occurrence and/or time series data has led to a better understanding of microbial community 26 

structure and function [ (Faust K, 2012) (Flannick J, 2006), (Stein RR, 2013), (Berry D, 2014), (Liao 27 

C., 2020), (Jiliang Hu J., 2022), (Shaer Tamar E, 2022)]. In principle, it should be possible to infer 28 

microbial interaction networks directly from genotypes and the environmental context 29 

[ (Manrubia S, 2021)]. Such inference is predicated on a simple principle: adsorption is required 30 

for a bacteriophage (phage) to infect a focal bacterial strain [ (Neurath AR, 1986) (Wang J H. M., 31 

2000) (Chatterjee S, 2012), (Gaborieau B, 2023)]; such adsorption requires expression of specific 32 

cell-surface receptors (e.g., protein, lipid, carbohydrate), although in many cases the specific 33 

receptor remains unknown or modulated by poorly characterized biosynthetic pathways [ (Tetz, 34 

2022)]]. However, even if a phage adsorbs to a bacteria, there are many intracellular resistance 35 

mechanisms that could assist or inactivate phage infection altogether [ (Zborowsky S., 2019), 36 

(Koonin, 2020), (Gao Z., 2023)]. Categorizing effective, extracellular adsorption and intracellular 37 

replication remains challenging. Hence, despite significant progress in linking microbial genotype 38 

to phenotype, less progress has been made with understanding the genetics of traits that 39 

influence microbial species interactions  (including virus and host pairs) given the additional 40 

complication that the phenotypic output of an association may depend on the joint effects of 41 
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two separate genomes [ (Bajic D, 2018), (de Jonge PA, 2019) (Buckling A, 2002) (Elena SF, 2003) 42 

(Koskella B, 2014) (Poullain V, 2008) (Kaltz O, 2002) (Beckett SJ, 2013) (Weitz JS, 2013) (Gurney J, 43 

2017)]. 44 

The problem of understanding the genetic basis of interactions requires the development 45 

of new computational approaches to construct genotype-to-phenotype maps. Conventional 46 

approaches try to correlate phenotypic differences with genetic variation (e.g., this is true for the 47 

broad scope of work in genome-wide associated studies [ (Horton MW, 2014) (D, 2016) (Power 48 

RA, 2017)]). The challenge for inferring interaction-associated phenotypes is that such 49 

interactions arise due to the combination of multiple genotypes (e.g., phage and host genotypes) 50 

leading to new combinatorial challenges. Initial steps towards interaction inference have been 51 

made through mutation-based association approaches that have successfully uncovered 52 

combinations of virus and host mutations that correlate with successful virus-host interactions 53 

[ (MacPherson A, 2018) (Jallow M, 2009) (Scanlan PD, 2011), (Shaer Tamar E, 2022), (Borin JM L. 54 

J.-S., 2023) ]. Conceptually, the challenge of uncovering interaction phenotypes is similar to 55 

attempts to tackle the problem of studying complex traits where gene-by-gene (G x G) 56 

interactions or gene-by-environment (G x E) interactions shape phenotypes [ (Wei WH, 2014), 57 

(An P, 2009), (G, 2015) (Gupta A Z. L., 2022)].  58 

In the case of virus-microbe systems, efforts to predict interaction phenotypes require 59 

leveraging specific system features and may depend on taxonomic scales. For example,  60 

computational approaches are increasingly used to predict the host range of viruses in a broad 61 

taxonomic sense, e.g., leveraging tetranucleotide frequencies and other sequence-specific 62 
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information [ (Edwards RA, 2016) (Dutilh BE, 2017)]). However, predicting strain-specific 63 

interactions remains a difficult task, particularly because taxonomic markers are known to be a 64 

poor proxy for infection profiles [ (Sullivan NJ, 2003), (Kauffman KM, 2022)]. Recent studies have 65 

shown some improvement in resolving strain-specific interaction phenotypes, e.g., by using 66 

CRISPR spacers and metagenomic data to identify recent phage infection[ (Simon Roux, 2021), 67 

(Szabo RE., 2022), (George, 2023)] or by co-clustering phage and bacteria mutations, respectively, 68 

amongst strains that tend to interact as a means to identify associated gene or sequence 69 

differences [ (Kauffman KM, 2022)].  70 

Here, we link whole genome-wide changes in phage and bacteria with observed changes 71 

in interaction phenotypes using a machine learning inference framework. We do so by leveraging 72 

emergent genotype and phenotype changes in coevolving populations of Escherichia coli B strain 73 

REL606 and bacteriophage  strain cI26 during a 37-day experiment [ (Gupta A P. S., 2022)]. The 74 

key idea is to recapitulate infection phenotypes from an interaction network through a 75 

hierarchical regression approach without a priori assumptions about driver mutations or the 76 

nature of genetic interactions. In contrast, prior work on microevolutionary changes in infectivity 77 

have focused on changes to genes or proteins with known functions in model organisms [ (Meyer 78 

JR D. D., 2012) (Lobo FP, 2009) (Modi SR, 2013), (Gaborieau B, 2023)]. Such approaches are 79 

dependent on the existing annotation of genes or mutations, and thus are limited by both the 80 

quality and quantity of annotations.  Our regression framework predicts a substantial portion of 81 

phage-host infection phenotypes, including: i) who infects whom and ii) with what efficiency. In 82 

doing so, we identify prioritized phage and bacterial mutations underlying changes in infection 83 
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phenotypes and reveal that additive effects of phage and host mutations can be sufficient to 84 

predict interaction phenotypes. As we explain, this finding suggests a route to generate testable 85 

hypotheses for phage and genome sites underlying interactions that could also become priority 86 

targets for modification in environmental inference and the development of phage therapeutics. 87 

 

Results 88 

The mutation and cross-infection matrices for phage and bacteria 89 

From a previous study [ (Gupta A P. S., 2022)], we analyzed genome sequences of 50 bacterial 90 

host (descended from E. coli B strain REL606) and 44 phage (descended from λ strain cI26) strains 91 

isolated at varying time points during a 37-day coevolution experiment. For the observed 92 

genotypes, the mutation profiles of the host and phage revealed many changes in their genomes, 93 

including 18 and 176 unique mutations for the host and phage, respectively (Table S1). The 94 

interactions of all phage-bacterial pairs including the ancestors were measured, yielding a 51 by 95 

45 cross-infection matrix. Interaction strength was estimated by the efficiency that a phage 96 

infected a given host compared to its ability to infect the sensitive ancestor (referred to as the 97 

efficiency of plating or EOP). Additional details of the EOP calculations are described in (Gupta A 98 

P. S., 2022) and Methods section <Experimental setup and data collection=. At the beginning of 99 

the experiment, the isogenic host strain was susceptible to all phage strains, and by the end of 100 

the experiment on day 37, most of the host isolates had evolved resistance to all phage strains. 101 

A summary of the mutation profiles and the EOP matrix showing the complexity of the observed 102 

phenotypes is shown in Fig 1. Based on the measurement of 2295 phage-host pairwise 103 
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interactions, we found 913 successful (EOP > 0) and 1382 unsuccessful (EOP = 0) phage infections. 104 

The distribution of EOP values was skewed, with 95% of values ranging from 0 to 1.5, and 105 

presented a long tail with a significant variability in the observed phenotypes (S1 Fig). The co-106 

occurrence of mutations in different genomic contexts (S2 Fig) suggested it might be feasible to 107 

infer host and phage mutations that disproportionately impact the interaction phenotype. 108 

 109 

Model for predicting the phage-bacteria interaction network 110 

Initially, we developed a framework for predicting the effect that mutational profiles have on the 111 

host-phage cross-infection network irrespective of the interaction strengths (e.g. EOP>0, 112 

presence of infection; EOP=0, absence of infection; illustrated in Fig 2a). The underlying 113 

framework utilizes a logistic regression approach to predict the presence or absence of infection 114 

phenotype (referred to here as POA) from mutational 8features9 (see Materials and Methods 115 

corresponding section). We evaluate different models based on distinct sets of mutations that 116 

support infection predictions. These include models relying solely on a linear combination of 117 

mutations, either from the host or phage mutational profiles (referred to as H and P individual 118 

models), as well as a model that incorporates the additive effects of phage and host mutational 119 

features in a linear combination (linear model).  Additionally, we consider the possibility that 120 

combinations of mutations in phage and host act in combination to impact the cross-infection 121 

matrix. Therefore, we incorporate a set of mutational features that account for joint effects 122 

between phage and host mutations (the nonlinear model) and a model that includes both 8first-123 

order9 (additive phage and host mutations) and 8second-order9 (nonlinear combination of phage 124 
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and host mutations) effects (the mixed model). A comprehensive description of how each feature 125 

is constructed is provided in the Methods section <Feature construction=. 126 

By comparing the performance of the logistic regression models built based on the 127 

different sets of features, we find that all three models that contain both phage and bacteria 128 

mutations predict the original POA phenotypes significantly better than a null model. In addition, 129 

the linear model outperforms all other models in the validation step (P < 9.44e-5) with a mean 130 

classification accuracy of ~86% (Fig 2a). This suggests that the linear model in principle contains 131 

the best set of features for predicting the POA phenotype for a given phage-host pair in this 132 

dataset. We further compared predictions of POA, and the mutational features predicted to have 133 

the largest effects on the POA for the linear, nonlinear, and mixed models (Fig 3). The results 134 

show that a linear combination of phage and host mutations can recapitulate the POA matrix 135 

without explicit inclusion of interaction effects. Mutational features identified via this method 136 

with a positive coefficient increase the probability of infection, and the opposite is true for 137 

negative coefficients. Notably, we observe that bacterial mutations are more likely to have a 138 

negative effect due to the evolution of host resistance, whereas phage mutations tend to have a 139 

positive effect, indicating selection for counter-defense traits that expand host range (see (Gupta 140 

A P. S., 2022)). Feature importance analysis (detailed in the Methods section) reveals 5 host 141 

mutations and 32 phage mutations that have a positive effect on predicting phage-host 142 

interaction network, compared with 7 host mutations and 15 phage mutations that have a 143 

negative effect (Fig 5a, S2 Table). 144 

 145 
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Model for predicting the efficiency of infection 146 

We extended the prediction framework described in the prior section to identify phage and host 147 

mutations that have large impacts on the efficiency of phage infection (referred to as the EFF 148 

model) in the existing cross-infection network (see Methods for a detailed explanation). We used 149 

log-transformed EOP values of individual infection pairs (Shapiro-Wilk test P = 3.283e-8, S3 Fig) 150 

as a proxy of EFF phenotypes, while keeping the cross-interaction network fixed (Fig 4a). We 151 

performed a linear regression model to quantify the impact that different sets of mutation 152 

features have on EFF phenotypes. Model performances were compared based on the validation 153 

mean absolute error (MAE). As in the analysis of EOP, including both phage and host mutation 154 

features led to the highest performing model predictions. The linear regression model with the 155 

additive feature set gives the lowest validation MAE (P < 3.95e-14) with ~40% reduction of the 156 

mean error compared to the null model (Fig 2b). Next, we built linear models based on all three 157 

phage and host combinations of mutational features to predict EFF phenotypes to identify 158 

corresponding mutational features that have the largest impact in the predictions (Fig 4). The EFF 159 

phenotypes are best predicted by a linear combination of phage and host mutation profiles. 160 

Mutational features predicted by this method impact the EOP profile of the phage-host 161 

interaction network (principally affecting positively or negatively the efficiency of infection). 162 

Feature importance analysis identified 8 host mutations and 25 phage mutations that promote 163 

the efficiency of phage infection, compared with 6 host mutations and 28 phage mutations that 164 

reduce the efficiency of phage infection (Fig 5b, S3 Table). 165 

 166 
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Molecular mechanism behind driver mutational features 167 

Several putatively important mutations are revealed by the feature analysis using final predictive 168 

models of POA (Fig 5a, S2 Table) and EFF (Fig 5b, S3 Table) phenotypes. We found 3 phage 169 

mutations and 1 bacterial mutation that show a significant positive effect for the POA model. For 170 

phage, these mutations include 2 nonsynonymous mutations in genes S and J and a synonymous 171 

mutation in gene J and for the bacteria we identified a nonsynonymous mutation in the ccmA 172 

gene. We also found 3 mutations in the host and 1 in the phage that have a significant negative 173 

effect in the POA model. For the bacteria, these include a nonsynonymous mutation in ompF and 174 

two deletions Δ777bp in insB and Δ141bp in malT; whereas for phage we identified a 175 

nonsynonymous mutation in J (Fig 5a).   176 

For the EFF model, 16 mutations are predicted to have a significant effect (7 positive and 177 

9 negative) and the majority are in phage. Of the 7 positive predicted features, only 1 is bacterial, 178 

a nonsynonymous mutation in uup gene. For phage, we identify 2 insertions, 1 deletion, and 1 179 

synonymous mutation in J gene that should increase infectivity, another synonymous mutation 180 

in bor gene and a nonsynonymous mutation in the lom gene that increase the efficiency of 181 

infection. Whereas synonymous mutations are not expected to influence phage9s ability to infect, 182 

and insertions and deletions in the J coding region are anticipated to have detrimental effects 183 

overall, we identified these mutations as influential to increase EFF prediction accuracy, 184 

corroborating prior work that demonstrated the impact of these mutations arising through 185 

recombination on phage fitness [ (Borin JM A. S., 2021)].  Of the 9 negative predicted features, 1 186 

is in the bacteria and 8 are in phage. The only bacterial mutation that negatively affects the EFF 187 
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was already identified by the POA model: the Δ777bp deletion in insB. For the phage we identify 188 

2 different intergenic mutations with significant negative effects downstream of lambdap79 gene; 189 

3 nonsynonymous, 1 synonymous (that was positive for POA and also reported in [ (Borin JM A. 190 

S., 2021)]) and Δ1bp deletion mutations in J gene and 1 intergenic mutation between Rz and bor 191 

genes (Fig 5b).  192 

Our inference framework was able to recapitulate known biology without a priori 193 

knowledge of driver mutations. We find mutations in the bacterial malT gene, a trans positive 194 

regulator of LamB [ (Debarbouille M, 1978), (Blanche S, 2013), (Maynard ND, 2010), (Banzhaf, 195 

2020)], and several mutations located in the phage J gene region that were important for both 196 

POA and EFF phenotype predictions. The J gene encodes the tail fiber of phage  which is critical 197 

to the process of injecting phage DNA into the host via LamB [ (Wang J H. M., 2000), (Werts C, 198 

1994), (Wang J M. V., 1998) (Maddamsetti R, 2018)]. Therefore, mutations in both malT and J 199 

gene region are expected to impact the phage-host interaction network and the quantitative 200 

efficiency of infection – consistent with our model predicting the mutations to be important for 201 

both POA and EFF. A nonsynonymous mutation in the outer membrane porin OmpF, is the most 202 

important feature for predicting a decrease in POA, but was not found to be important for 203 

predicting EFF. This mutation is shared by 10 host strains, 2 of which were sampled from day 28 204 

and 8 were from day 37. These 10 host strains were super-resistant, that is, they were resistant 205 

to the ancestral phage λ strain, and all the phage isolates from the coevolution experiment. 206 

Previous studies on this bacterial population showed that phage  evolves to use OmpF as a 207 

second receptor after E. coli evolves to down-regulate LamB [ (Meyer JR D. D., 2012)]. Therefore, 208 
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this OmpF mutation is expected to confer resistance to these evolved phage  strains and so 209 

affects the POA (host-range), but not the EFF (efficiency of infection). Similar OmpF mutations 210 

have been described to provide resistance to a related phage, phi21, after it similarly evolved to 211 

use OmpF [ (Borin JM L. J.-S., 2023)]. Each model also identified mutations in manY which is an 212 

inner membrane transporter that enables phage  to inject its DNA into the cytoplasm. Mutations 213 

in this protein or others in the ManXYZ complex are known to confer resistance to  [ (Erni B, 214 

1987), (Burmeister AR, 2021), (Borin JM L. J., 2023)] and all of them impacted negatively both 215 

POA and EFF phenotypes. Most interestingly, both models were able to uncover the importance 216 

of Δ777bp deletion in insB by an IS element from E. coli which affects genes not previously 217 

identified to interact with phage  [ (Maynard ND, 2010), (Blanche S, 2013)], but was recently 218 

identified to confer resistance through epistasis with other resistance mutation in malT through 219 

an unknown mechanism [ (Gupta A P. S., 2022)]. This illustrates the capability of our machine 220 

learning approach to identify candidate, pivotal genes involved in phage-host interactions. 221 

 222 

Discussion 223 

In this study, we developed a machine learning framework leveraging hierarchical logistic 224 

regression to predict the network and efficiency of phage-bacteria interactions by linking 225 

infection phenotypes with genetic mutation profiles of both phage and bacterial host. The basis 226 

for our inference was an assumption that mutations can contribute directly or via gene-gene 227 

interactions to changes in the infection phenotype. Our comparative analysis revealed that a 228 

model that incorporates additive mutational effects of phage and host separately had the highest 229 
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predictive value in inferring phenotype from genotype. In doing so, the framework identified 230 

gene regions already recognized in mediating the efficiency of infection for bacteriophage  and 231 

E. coli [ (Meyer JR D. D., 2012) (Blanche S, 2013), (Burmeister AR, 2021), (Gupta A Z. L., 2022)] 232 

and predicted mutations that conferred a resistant phenotype in bacteria through epistasis with 233 

other mutations (Gupta et al., 2022). The model also identified features that were located in 234 

phage gene J region,  including a number of synonymous mutations as well as insertions and 235 

deletions that in principle should be detrimental, but have been shown to modulate host-range 236 

expansion and counter-defense through recombination [ (Borin JM A. S., 2021)]. Hence, the 237 

framework has the potential to identify novel genes and mutations that modulate both 238 

qualitative and quantitative features of virus-microbe interactions while being cognizant of the 239 

potential for the framework to erroneously also identify hitchhiking mutations as driver 240 

mutations when they are likely proxies for adjacent driver mutants linked via recombination. 241 

Based on the feature importance analysis, we identified one mutation located in the 242 

phage S gene region that is found to be uniquely important for predicting the presence (or 243 

absence) of infection. This gene encodes the holin which is a small inner membrane protein 244 

required for phage-induced host lysis [ (Chang CY, 1995)]. Notably, the phage-host interaction 245 

network observed in our experiment is based on the quantitative plaque assay, in which clearings 246 

(plaques) would appear where bacterial cells were infected and lysed by the phage [ (Anderson 247 

B, 2011), (Sambrook J, 2006)]. Thus, we interpret the feature analysis to imply that a mutation in 248 

the S gene has a direct impact on the lysis of the host cells, which would then have an impact on 249 

the final observed phenotype. Similar mutations were uncovered via experimental evolution to 250 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.08.574707doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574707
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

counteract a gene deletion in the host that helps facilitate phage DNA replication [ (Gupta A S. 251 

A., 2020)]. This mutation may extend the infection process and allow the phage more time to 252 

initiate DNA replication in the debilitated host, increasing the chance of a successful infection. 253 

We hypothesize that this mutation may have a similar function to counteract host mutations that 254 

interfere with 9s lytic life cycle.  Another mutation identified by our method in the phage lom 255 

gene region was exclusively important in positively modulating infection efficiency but not the 256 

interaction itself; we note that this site was previously reported to increase phage resistance 257 

through an unknown mechanism [ (Borin JM A. S., 2021)].  258 

The model selection procedure identified an additive model as the best predictor of 259 

interaction phenotype from phage and bacterial genotype. In the additive model, individual 260 

phage and bacterial mutations act independently, rather than synergistically (whether positively 261 

or negatively), to determine infection outcome. Hence complex interaction networks may be 262 

(partially) predictable based on direct effects rather than relying on direct inference of complex 263 

interactive effects that are more challenging to measure [ (Shaer Tamar E, 2022)]. Nonetheless, 264 

it is important to note that this result may reflect the nature of our training and test sets, and 265 

might be limited by sampling, and does not exclude the possibility that higher order gene-gene 266 

interactions affect infection phenotypes. The number of phage-host mutation pairs scales as the 267 

product of the number of phage and host mutations in higher order models (nonlinear and mixed 268 

models), but most of these combinations were not observed in our strains. In essence, fitting 269 

higher order models leads to underdetermined systems even with the introduction of 270 

regularization terms meant to limit the number of weak contributions from mutations – whether 271 
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direct or in combination. Future work would have to significantly scale-up genotyped 272 

combinations of overlapping mutations in different contexts to robustly infer phage-bacteria 273 

interaction mutational pairs.  274 

Our inference framework was able to detect the importance of previously identified 275 

adaptive mutations that modify phage-host interactions. Although false positives and false 276 

negatives are possible, we note that evolutionary effects including genetic hitchhiking and 277 

recombination may move adaptive mutations onto different backgrounds, improving detection 278 

of driver mutations of infection. We did not expect the identification of adaptive mutations to be 279 

comprehensive. Instead, by linking genotype to phenotypic changes as measured by a subset of 280 

phage and host isolates that arose via coevolution, we can identify mutations of potential 281 

relevance to infection (and fitness) in an ecologically relevant context even if significant regimes 282 

of mutational space are left unexplored. 283 

In summary, we have developed a framework for predicting genotypic drivers of both the 284 

qualitative and quantitative nature of host-pathogen interactions. In doing so, we recapitulated 285 

the finding of mutations known to influence infection outcome as well as identified novel sites. 286 

Moving forward, this framework could help prioritize research on identifying novel drivers of 287 

infection, focusing efforts on mutations with highest absolute values and those most likely to 288 

alter the phenotype (primarily nonsynonymous mutations). Although we applied this framework 289 

in the context of experimental phage-bacteria coevolution and with relatively low genetic 290 

diversity, this data-driven approach does not require a priori knowledge of driver genes and 291 

mutations and could be applied to other, even poorly characterized, phage-bacteria systems. As 292 
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such, we expect this approach will be relevant in improving understanding of interactions in 293 

natural systems as well as for phages that target bacterial pathogens. 294 

 295 

Materials and Methods 296 

Experimental setup and data collection 297 

We analyzed data from Gupta et al., 2022 where E. coli B strain REL606 and phage  strain cI26 298 

were cocultured for a 37-day period. Samples were taken on checkpoint days for pairwise 299 

quantitative plaque assays as described in (Gupta A P. S., 2022). The EOP value measures the 300 

efficiency of a phage infecting a derived host strain relative to that for infecting the ancestral 301 

strain. The EOP value for a phage, Ā, infecting a host, ÿ, is computed as 302 þÿĀ = ć(ÿ,Ā)ć(���,Ā) × ýý(ÿ,Ā)2ý(���,Ā)  ,     (1) 303 

where þ(ÿ,Ā) is the number of plaques for phage Ā against host ÿ, þ(�Ąý,Ā) is the number of plaques 304 

for phage Ā  against the ancestral host strain, Ā(ÿ,Ā)  is the number of dilutions performed to 305 

observe distinguishable and countable clear plaques for phage Ā against host ÿ, Ā(�Ąý,Ā)  is the 306 

number of dilutions performed to observe distinguishable and countable clear plaques for phage 307 Ā against the ancestral host strain and ý  is the dilution ratio which is 5 in our experiment. A 308 

positive EOP value from the cross-infection plaque assay indicates a successful infection event 309 

for a given phage-host pair. In contrast, a zero EOP value indicates the phage has no capacity to 310 

infect. A larger EOP value from the cross-infection plaque assay indicates that the phage can 311 

infect a given host more efficiently than the ancestral host strain. 312 
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For each phage and host samples taken from each checkpoint, the DNA extraction, library 313 

preparation and sequencing experiment was performed as described in (Gupta A P. S., 2022). 314 

Mutation profiles based on the genome sequencing data were constructed using breseq as 315 

described in (Gupta A P. S., 2022). In addition to the mutations revealed by breseq results, for 316 

both host and phage we created an artificial mutation as the indicator for the ancestral strain to 317 

add the ancestral strain into the mutation profile table. For this artificial mutation, only the 318 

ancestral strain is indicated to have this mutation. All other strains were shown to not have this 319 

mutation in the mutation profile table.  320 

 321 

Feature construction 322 

For a total number of ý host samples and þphage samples, we denote the EOP value for the ÿ-th 323 

host against Ā -th phage as þÿĀ  where ÿ ∈ [1, ý]  and Ā ∈ [1, þ] . Let þ  be the total number of 324 

unique mutations observed for the host and ý  be the total number of unique mutations 325 

observed for the phage, the host mutation profile � is a matrix of dimension ý by þ, and the 326 

phage mutation profile � is a matrix of dimension þ by ý. Let /ÿĂ  be an element from �, then 327 /ÿĂ = 1  corresponds to the presence of the Ă -th mutation in the ÿ -th host whereas /ÿĂ = 0 328 

corresponds to the absence of the Ă-th mutation in the ÿth host. Similarly, let ýĀā be an element 329 

from �, then ýĀā = 1 corresponds to the presence of the ā-th mutation in Ā-th phage whereas 330 ýĀā = 0 corresponds to the absence of the ā-th mutation in the Ā-th phage. 331 
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Five sets of features were constructed based on the mutation profiles of the host and 332 

phage. The H-only model is constructed based on a linear combination of 8host only9 mutation 333 

profiles. The H-only model, denoted as �ÿĀ(1)
, can be represented as: 334 

�ÿĀ(1) = ā1 + ∑ ÿĂ/ÿĂþĂ=1  ,        (2) 335 

where ā1 represents a scalar of the bias term and ÿĂ  is the coefficient for the Ă-th host mutation. 336 ā1 and ÿĂ  will be learned from the model. The H-only model can also be represented in matrix 337 

form as: 338 �(1) = Ā1 + � ⋅ ��,        (3) 339 

where Ā1 is a ý by þ matrix by repeating ā1, i.e. Ā1 = [ā1]ā×Ă, �� is a þ by þ matrix by stacking 340 

the same coefficient vector ÿ horizontally, i.e. [ÿ|ÿ| ⋯ |ÿ|ÿ]þ×Ă.  341 

The P-only model is constructed based on a linear combination of 8phage only9 342 

mutational profiles. The P-only model, denoted as �ÿĀ(2)
 , can be represented as: 343 

�ÿĀ(2) = ā2 + ∑ ÿ�āýĀāýā=1 ,        (4) 344 

where ā2 represents a scalar of the bias term and ÿ�ā is the coefficient for the ā-th phage 345 

mutation. ā2 and ÿ�ā will be learned from the model. This model can also be represented in 346 

matrix form as: 347 �(2) = Ā2 + [� ⋅ ��� ]Ā ,       (5) 348 

where Ā2 is a ý by þ matrix by repeating ā2 and ���  is a ý by ý matrix by stacking the same 349 

coefficient vector ÿ~ horizontally, i.e. [ÿ�|ÿ�| ⋯ |ÿ�|ÿ�]ý×ā. 350 
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The linear model, denoted as  �ÿĀ(3)
, utilizes a linear combination of phage and host 351 

mutational features and can be represented as: 352 �ÿĀ(3) = ā3 + ∑ ÿĂ/ÿĂþĂ=1 + ∑  ÿ�āýĀāýā=1 ,        (6) 353 

where ā3 represents a scalar of the bias term, ÿĂ  is the coefficient for the Ă-th host mutation and 354  ÿ�ā is the coefficient for the ā-th phage mutation. ā3, ÿĂ  and ÿ�ā will be learned from the model. 355 

The linear model can also be represented in matrix form as: 356 �(3) = Ā3 + � ⋅ �� + [� ⋅ ��� ]Ā ,       (7) 357 

where Ā3 is a ý by þ matrix by repeating ā3, i.e. Ā3 = [ā3]ā×Ă, �� is a þ by þ matrix by stacking 358 

the same coefficient vector ÿ horizontally, i.e. [ÿ|ÿ| ⋯ |ÿ|ÿ]þ×Ă  and ���  is a ý by ý matrix by 359 

stacking the same coefficient vector ÿ� horizontally, i.e. [ÿ�|ÿ�| ⋯ |ÿ�|ÿ�]ý×ā. The assumption for 360 

the linear model is that the impact of mutations from both the phage and host have additive 361 

effects on the observed outcome. 362 

The nonlinear model, denoted as  �ÿĀ(4)
, utilizes nonlinear combination of phage and host 363 

mutational features as the input and can be represented as:  364 �ÿĀ(4) = ā4 + ∑ ∑ ĀĂā/ÿĂýĀāýā=1þĂ=1  ,       (8) 365 

where ā4  represents a scalar of the bias term, ĀĂā  denotes the coefficient for the Ă -th host 366 

mutation and ā-th phage mutation in the corresponding ÿ-th host and Ā-th phage pair. ā4 and ĀĂā 367 

will be learned from the model. This nonlinear model can also be represented in the matrix form 368 

as:  369 �(4) = Ā4 + � ⋅ � ⋅ �Ā ,       (9) 370 
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where Ā4 is a ý by þ matrix by repeating ā4, i.e. Ā4 = [ā4]ā×Ă, ÿ is the þ by ý coefficient matrix. 371 

The assumption for the nonlinear model is that the impact of the genetic mutations on the 372 

observed outcome comes from the additive effects of co-occurring phage-host mutation pairs. 373 

In other words, /ÿĂýĀā = 1 only when both the host ÿ has mutation Ă and phage Ā has mutation 374 ā. 375 

Based on the formulation of the linear and nonlinear models, it is natural to combine both 376 

effects to get a more sophisticated input feature, by adding up both effects. The mixed model, 377 

denoted as �ÿĀ(5)
 , utilizes a mixed combination of linear and nonlinear effects of host and phage 378 

mutation features and can be represented as: 379 �ÿĀ(5) = ā5 + ∑ ÿĂ/ÿĂþĂ=1 + ∑  ÿ�āýĀāýā=1 + ∑ ∑ ĀĂā/ÿĂýĀāýā=1þĂ=1  .       (10) 380 

The matrix form of the mixed model is:  381 �(5) = Ā5 + � ⋅ �� + [� ⋅ ��� ]Ā + � ⋅ � ⋅ �Ā  ,       (11) 382 

where Ā5 is a ý by þ matrix by repeating ā5, i.e. Ā5 = [ā5]ā×Ă. 383 

 384 

Framework design 385 

We designed a framework comprised of two types of predictions. First, we designed a framework 386 

that predicts the phage-host cross interaction network (i.e., the phage host range). This model 387 

tries to find the set of features that can best distinguish between successful (EOP > 0) and 388 

unsuccessful (EOP = 0) infections using classification models. Second, we built a framework to 389 

predict the strength of the interaction of the subset of phage-ho pairs where the host is 390 

susceptible to the phage (EOP > 0). This model of our framework is designed to evaluate the 391 
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potential impact of the genotype on this observed phenotype by modeling the efficiency of the 392 

phage in infecting a host. 393 

 394 

Model for predicting phage host cross-infection network (POA) 395 

In order to determine the presence or absence of a successful infection event for a phage-host 396 

pair, we binarized the EOP values þÿĀ into 0 and 1, i.e. 397 ýÿĀ = 1{ÿÿĀ>0} ,       (12) 398 

where ýÿĀ = 0 indicates a failure of the infection and ýÿĀ = 1  indicates success. Here we used 399 

logistic regression to model the relationship between mutation profiles and the existence of 400 

successful infection in phage-host pairs, that is: 401 

�ÿĀ(⋅) = Ă� ( þÿĀ12þÿĀ) .       (13) 402 

Each of the five sets of features, namely H-only, P-only, linear, nonlinear and mixed, were used 403 

as the input features for the models �ÿĀ(1)
, �ÿĀ(2)

, �ÿĀ(3)
, �ÿĀ(4)

 and �ÿĀ(5)
 respectively. In practice, we 404 

used LASSO for feature selection and regularization. The penalty term parameter for LASSO was 405 

determined by using 10-fold cross-validation on the training data. The prediction classification 406 

error, 
��Ăýÿ�ąýÿþÿ�ÿý+��ýĂÿþÿ��þÿ�ÿýĀÿýþÿ�ăĆĂÿý , was used to assess the performance for this model. The mean 407 

classification error was calculated by taking the mean of classification error from 200 runs. 408 

 409 

Model for predicting infection efficiency (EFF) 410 
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We applied a log transformation on the positive EOP values to normalize the distribution. For a 411 

given phage-host pair where a successful infection event is present, that is þÿĀ > 0, we denote 412 

the natural log transformed EOP value as: 413 þÿĀ′ = Ă� (þÿĀ) .       (14) 414 

Shapiro-Wilk test was performed to check the normality of the distribution of þÿĀ′ .  415 

Linear regression was used to model the relationship between mutation profiles and the 416 

intensity of successful infections in phage-host pairs, that is: 417 �ÿĀ(⋅) = þÿĀ′  .       (15) 418 

Each of the five sets of features, namely H-only, P-only, linear, nonlinear and mixed, were used 419 

as the input features for the models �ÿĀ(1)
, �ÿĀ(2)

, �ÿĀ(3)
 , �ÿĀ(4)

 and �ÿĀ(5)
 respectively. For the linear 420 

model, we also used LASSO for feature selection and regularization. The penalty term parameter 421 

for LASSO was determined by using 10-fold cross-validation on the training data. Finally, the MAE 422 

was used to evaluate the performance of the model. 423 

 424 

Train-validation split and feature evaluation 425 

To assess the performance of different features for the logistic regression model, we performed 426 

200 bootstrap runs to predict the existence of phage infection. Specifically, in each run the 427 

training set was generated by randomly select ý × þ  samples from the entire dataset with 428 

replacement. The ýÿĀ values that were not selected as training samples form the validation set. 429 

As a control, for each run, a null model was built to predict the outcomes by randomly sample 430 ýÿĀ values from a Bernoulli distribution �þÿ�(ý̂) where ý̂ is the maximum likelihood estimator 431 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.08.574707doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574707
http://creativecommons.org/licenses/by-nd/4.0/


23 
 

(MLE) of the proportion of successful infection from the training set of that run. After the 200 432 

runs, the training and validation prediction error were compared between pairs of the models 433 

including the null model and models based on phage and host mutations only and linear, 434 

nonlinear, and mixed combinations of phage and host mutational features.  435 

Similarly, we also performed 200 bootstrap runs for the linear model to predict the 436 

infection efficiency. Specifically, in each run the training set was generated by randomly sample 437 þÿĀ′  with replacement. The size of þÿĀ′  sampled as the training set in each run matches the total 438 

number of the þÿĀ′ . The þÿĀ′  that were not selected in the training set forms the validation set. As 439 

a control, for each run, a null model was built by always predicting the efficiency of infection as 440 

the mean þÿĀ′  of the training set for that run. After the 200 runs, the training and validation MAEs 441 

were compared between pairs of the models including the null model and every feature model 442 

set.  443 

 444 

Final predictions and feature important analysis 445 

After comparing the training and validation performance of models based on the different 446 

mutational sets with 200 bootstrap runs, a final model, that integrates predictions of POA and 447 

EFF was constructed. The penalty term parameter for each of the prediction frameworks was 448 

chosen as the mean of the best penalty term parameter from each of the 200 bootstrap runs. 449 

After model fitting, the predicted outcome ᷂d̃ÿĀ for step 1 and ẽÿĀ′  for step 2.  For each step of 450 

the final models, the importance of feature was measured by the absolute value of coefficients 451 

learned from each step. 452 
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Fig 1. Phage-bacteria cross-infection matrix and mutation profiles. (a) Cross-infection matrix, 646 

including host and phage ancestor strains, and 50 bacteria (rows) and 44 phage (columns) strains 647 

isolated during 37-day coevolution experiment (day of isolation indicated). Names correspond to 648 

<day of isolation – number of isolate=. Colored cells are EOP values of infection as in legend, grey 649 

cells indicate no infection. (b-c) Mutation profiles for each isolate (positions mutated are in black 650 

and in grey otherwise) for 18 (host) and 127 (phage) found mutations numbered in sequential 651 

order of appearance in the corresponding genome. (b, in blue) Host isolates (rows) and mutation 652 

profiles (columns) for 1 to 18 unique mutations found in nt position 1,003,271 to 4,228,027 of 653 

the E. coli genome (c, in orange) Phage isolates (columns) and mutation profiles (rows) for 1 to 654 

127 unique mutations found in nt position 175 to 42,491 of the λ phage genome. For the 655 

complete list of host and phage mutations see S1 Table. Important genes for phage-host 656 

interaction are highlighted in red and discussed in the main text.  657 

  658 
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 659 

Fig 2. Model performances for different feature sets.  The lowest mean value in the validation set for 660 

POA and EFF models corresponds to the linear model. (a) Classification error distributions in the training 661 

(grey) and validation (black) sets for the predictions of the phage-host interaction network (POA) (ANOVA 662 

post hoc Tukey p<0.01). The lowest mean value in the validation set corresponds to the linear model (b) 663 

Mean absolute error distributions in the training (grey) and validation (black) sets for the predictions of 664 

efficiency of infection (EFF) (ANOVA post hoc Tukey p<0.001, comparing different mutation feature 665 

models and a null model. Boxplots contain 25th-75th percentiles, whiskers indicate minimum and 666 

maximum values, middle lines are the median (value indicated) of 200 bootstrap runs. Red dots are 667 

outliers. 668 
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 669 

Fig 3. Model for predicting phage-host interaction network. (a) Original POA matrix showing 670 

presence (black) and absence (gray) of successful infection between phage (columns) and host 671 

(rows) isolated pairs. (b-d) Results of the different model predictions as of the POA matrices, and 672 

coefficient values for 176 phage and 18 host mutations plus the ancestor trait using (b) a linear 673 

mutation set (equation [6]), (c) nonlinear mutation set (equation [8]) and (d) mixed combination 674 

of phage and host mutation set. The color of the coefficient indicates positive (green) to negative 675 

(red) effects of each mutation (phage: ÿ�ā, host: ÿĂ)combination of mutations, ĀĂā. 676 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.08.574707doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574707
http://creativecommons.org/licenses/by-nd/4.0/


34 
 

 677 

Fig 4. Model for predicting the efficiency of infection. (a) Original cross-infection matrix where 678 

colors are EOP values of infection between phage (columns) and host (rows) isolate pairs, white 679 

cells indicate no infection. (b-d) Results of the different model predictions as of the EFF matrices, 680 

and coefficient values for 176 phage and 18 host mutations plus the ancestor trait using (b) a 681 

linear mutation set (equation [6]), (c) nonlinear mutation set (equation [8]) and (d) mixed 682 

combination of phage and host mutation set (equation [10]). The color of the coefficient indicates 683 

positive (green) to negative (red) effects of each mutation (phage: ÿ�ā, host: ÿĂ) combination of 684 

mutations, ĀĂā. 685 
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 686 

Fig 5. Rank ordered (most negative-most positive) coefficients for important mutations in the 687 

final model.  The importance of features was measured by the absolute value of the coefficients 688 

learned from each model. Error bars indicate 0.9 quantile. Labels indicate <mutation → gene= 689 

when the 90th quantile excludes 0. Mutations in red have the highest positive (negative) 690 

coefficients which lowest (highest) value is larger (smaller) or equal to 0 (from 200 bootstrap runs) 691 
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and are discussed in the main text.  Important features for (a) the final model predicting POA 692 

include a total of 59 non-zero coefficients, and (b) 67 non-zero coefficient values for the final 693 

model predicting EFF. The complete lists of mean, maximum and minimum values of the 694 

coefficients associated to mutations predicting POA and EFF are shown in S2 Table and S3 Table 695 

respectively. 696 
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Supporting information 697 

 

 

 
S1 Fig. Distribution of the experimentally obtained EOP values. (A) Original distribution of the 698 

EOP values for 2295 phage-host infection pairs. (B) Distribution of 913 positive EOP values. Bin 699 

width=0.1.  700 
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 701 

S2 Fig. Correlations of mutational appearances in host and phage. (a) 18x18 host and (b) 702 

176x176 phage mutation matrices representing the frequency with which pairs of mutations 703 

simultaneously appear within the same genetic background. 704 
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S3 Fig. Log transformed positive EOP value distribution. (A) Distribution of the log positive EOP 705 

values (B) Q-Q plot for log positive EOP values against normal quantiles (Shapiro-Wilk test P value 706 

= 3.283e-8) 707 

S1 Table. Mutation profile tables for host and phage.  708 

S2 Table. Ordered features with non-zero coefficients from final model for predicting POA 709 

based on a linear combination of phage and host mutation profiles. 710 

S3 Table. Ordered features with non-zero coefficients from final model for predicting EFF based 711 

on a linear combination of phage and host mutation profiles. 712 
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