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Abstract

Generative drug design facilitates the creation of compounds effec-
tive against specific pathogenic target proteins. This opens up the
potential to discover novel compounds within the vast chemical space
and fosters the development of innovative therapeutic strategies. How-
ever, the practicality of generated molecules is often limited, as many
designs focus on a narrow set of drug-related properties, failing to
improve the success rate of the subsequent drug discovery process.
To overcome these challenges, we develop TamGen, a method that
employs a GPT-like chemical language model and enables target-
aware molecule generation and compound refinement. We demonstrate
that the compounds generated by TamGen have improved molecu-
lar quality and viability. Furthermore, we have integrated TamGen

∗This work is an upgraded version of [1]: While the previous work primarily empha-
sized the AI model and computational verification, this version accentuates the
findings related to ClpP inhibitors.
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into a drug discovery pipeline and identified 7 compounds showing
compelling inhibitory activity against the Tuberculosis ClpP protease,
with the most effective compound exhibiting a half maximal inhibitory
concentration (IC50) of 1.9 µM. Our findings underscore the prac-
tical potential and real-world applicability of generative drug design
approaches, paving the way for future advancements in the field.

Keywords: Generative drug design, Structure-based drug design, chemical
language model, Generative AI, GPT, Tuberculosis

1 Introduction

Generative drug design, a promising avenue for drug discovery, aims to
create novel molecules/compounds with desired pharmacological properties
from scratch, without relying on existing templates or molecular frameworks
[2, 3]. While conventional screening-based approaches, such as high-throughput
screening, virtual screening, and emerging deep learning-based screening [4–
7] usually hunt for drug candidates from libraries with 104 to 108 molecules
[8–10], generative drug design enables exploration of the vast chemical space,
which is estimated to contain over 1060 feasible compounds [11]. Consequently,
it holds potential to identify underexplored classes of compounds, and novel
compounds that are not in any existing library. This is especially important
for target proteins without hit compounds (starting point for drug design) and
those having developed resistance to current drugs.

Generative modeling techniques greatly empowers drug design. In recent
years, a growing number of approaches have been proposed to guide the gener-
ation of drug-like compounds given the information of target proteins [12–17],
stemming from creative artificial intelligence techniques such as autoregressive
models [18], generative adversarial networks (GAN) [19], variational autoen-
coders (VAE) [20], and diffusion models [12]. These approaches, by exploring
the chemical space conditioned on the target of interest, have demonstrated
the feasibility of target-based generative drug design with deep learning. How-
ever, validations with biophysical or biochemical assays are often missing [21],
as most of the generated compounds lack satisfying physiochemical properties
for drug-like compounds such as synthetic accessibility. In other words, despite
generating a large number of novel compounds, existing approaches struggle to
demonstrate their capability to provide effective candidates that can improve
the real-world drug discovery effectiveness.

We therefore propose a method named TamGen (Target-aware molecular
generation). TamGen features a GPT-like chemical language model aiming
for drug-like compound generation, inspired by the success of large language
models [22]. The Generative Pre-trained Transformer [23] (GPT), backbone
of large language models, has demonstrated its effectiveness in generating not
only text [22] but also images [24] and speech [25], as well as understanding
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and solving scientific problems [26]. Here, we demonstrate that a GPT-like
architecture and training strategy are also effective for generating chemical
compounds, as these compounds can be represented using Simplified Molecular
Input Line Entry System (SMILES) [27], a sequential representation akin to
text. In addition, we introduce two modules to encode target protein and com-
pound information, which allow target-aware generation of compounds based
on protein structures and compound refinement based on seeding compounds,
respectively. With benchmark test, we show that TamGen not only produces
compounds with higher plausibility, but also enhances the balance between
pharmacological activity and synthetic accessibility.

We applied TamGen to generate compounds against tuberculosis (TB), an
infectious disease caused by Mycobacterium tuberculosis (Mtb). TB was respon-
sible for 1.3 million fatalities and 10.6 million new cases in 2022 [28, 29], and the
rising antimicrobial resistance (AMR) in tuberculosis necessitates urgent ther-
apeutic innovation to tackle the disease [30, 31]. We focused on Caseinolytic
protease P (ClpP), an essential serine protease in bacterial protein degradation
system and an emerging novel target for antibiotic development [32–35]. Using
a Design-Refine-Test pipeline powered by TamGen, we discovered 7 candidate
compounds showing promising potency against Mtb ClpP, with half maximal
inhibitory concentrations (IC50) ranging from 1.88 µM to 19.9 µM. Signifi-
cantly, the compounds generated by TamGen not only enrich candidate pool
for further optimization, but also provide effective anchors for hit expansion
and structure-activity relationship (SAR) synthesis. These findings highlight
the broad applicability and considerable potential of TamGen in target-aware
drug design.

2 Results

2.1 TamGen enables target-aware compound design and

refinement

We implemented TamGen with three modules: (1) compound decoder, a GPT-
like chemical language model and the core component of TamGen, which
lays the foundation for compound generation in chemical space; (2) protein
encoder, a Transformer-based model used to encode the binding pockets of
target proteins; and (3) a contextual encoder for compound encoding and
refinement.

The compound decoder was pre-trained on 10 million SMILES randomly
sampled from PubChem. The compound decoder adopts the autoregressive
pre-training objective used in GPT, aiming to predict the next SMILES
token based on preceding tokens (Fig. 1a). This training strategy allows for
the sequential generation of compounds in both unconditional and condi-
tional manners, depending on whether target information is provided or not.
With this pre-training strategy, TamGen is able to learn general and diverse
knowledge about a multitude of compounds from chemical databases (e.g.,
PubChem), without requiring any additional information such as binding
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Fig. 1 The architecture of TamGen. (a) The pre-training phase of the compound decoder,
a GPT-like chemical language model. The model adopts standard GPT architecture, which
autoregressively generates the SMILES tokens from the input. 10 million compounds ran-
domly selected from PubChem were used for pre-training. (b-c) The overall framework
of TamGen during the fine-tuning and inference stages. (b) A Transformer-based protein
encoder and a VAE-based contextual encoder to facilitate target-aware drug generation and
seeding molecule-based compound refinement. See Methods and Figure S1 for details. (c)
The outputs from the protein encoder and the contextual encoder are integrated and for-
warded to the compound decoder via a cross-attention module.

proteins. This strategy enhances the generation capability of the compound
decoder and improves the chemical properties of the generated compounds.

The protein encoder was developed to comprehend target protein informa-
tion and to facilitate the generation of drug-like compounds in a target-aware
manner (Fig. 1b left). The Transformer architecture adopted by the protein
encoder features a self-attention mechanism, which gathers and processes infor-
mation from input sequences. Here, we designed a variant of self-attention to
capture both the sequential and geometric data of target proteins (Fig. S1, see
Methods for details). The protein encoder’s outputs are then directed to the
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compound decoder via a cross-attention module (Fig. 1c), activated only when
target proteins are provided. Therefore, we are able to generate compounds
from the 3D conformation of target proteins via the protein encoder-compound
decoder framework.

A Variational Autoencoder (VAE)-based contextual encoder was employed
to encode compounds and assist the generation process. VAEs are commonly
used to create new data by learning the input data’s probability distribution
and sampling from it [36]. In TamGen, the VAE-based contextual encoder
determines the mean (µ) and standard deviation (σ) for any given compound
y and protein sequence x pair (Fig. 1b right). Later, a vector z is sampled
from the distribution determined by µ and σ and added to the output of
protein encoder, before directed to the compound decoder (Fig. 1b right). In
the training stage, the model’s objective is to recover the input compound
y, whereas during application, the contextual encoder facilitates compound
refinement once a seeding molecule is provided. The incorporation of this
encoder enhances control over compound generation, enabling TamGen to be
seamlessly integrated into multi-round drug optimization pipelines with human
feedback. This interactive and iterative drug design capability holds to poten-
tial to increase the success rate of designed compounds and accelerate the drug
discovery process.

2.2 TamGen is effective and efficient for generative drug

design

To benchmark the overall performance of TamGen, we compared our meth-
ods against five approaches proposed recently: liGAN [37], 3D-AR [38] (there
is no abbreviation for the proposed method, so we refer to it as 3D-AR),
Pocket2Mol [14], ResGen [39] and TargetDiff [12]. These approaches focus on
direct generation of compounds in the 3D space to match protein binding
pockets with diverse deep learning techniques. Following previous practices,
we evaluated these methods and TamGen on CrossDocked2020 dataset [40], a
well-established benchmark dataset curated from PDBbind. CrossDocked2020
is composed of a train set with about 100,000 drug-target pairs and a test
set with 100 protein binding pockets. For fair comparison with previous work,
we used the same training and test data as those used in [12, 14] to fine-tune
TamGen.

We generated 100 compounds for each target protein in CrossDocked2020
test set with each method respectively. Then, we evaluated the designed
compounds using a comprehensive set of metrics: binding affinity to target
proteins, estimated by docking scores from Autodock-Vina [41]; drug-likeness,
assessed using both the Quantitative Estimate of Drug-likeness (QED) [42]
and Lipinski’s Rule of Five [43] based on calculated molecular physicochemi-
cal properties; synthetic accessibility scores (SAS), estimated by RDKit as a
proxy for the ease of synthesis of a compound [44]; and LogP, an indicative
of molecular lipophilicity, with an optimal range of 0-5 for oral administra-
tion [45]. In addition, we quantified the ability to generate diverse compounds
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Fig. 2 TamGen achieves the state-of-the-art performance on compound gen-
eration. (a) Overview of generative drug design methods ranked by overall scores for the
CrossDocked2020 task. Metrics include docking score (lower scores indicate better binding
affinity), quantitative estimation of drug-likeness (QED), Lipinski’s Rule of Five, Synthetic
accessibility scores (SAS), LogP, and molecular diversity (Div). Scores were normalized to
0%-100% for each metric. Absolute values were used for docking score normalization. Over-
all scores were calculated with mean reciprocal rank (see Methods for details). See also
Figure S2 and Table S1. (b) Average docking scores against SAS for TamGen and alternate
methods. TamGen achieves more favorable docking scores for compounds with higher SAS
and lower docking scores (bottom-right corner). (c) Barplot of the number of fused rings
(see Methods for details) in FDA-approved drugs and top-ranked compounds generated by
selected methods. For each method, a statistics of 1,000 compounds (100 targets × 10 com-
pounds with the highest docking scores against each corresponding target) were plotted.
The dashed line represents the average number of fused rings in FDA-approved drugs. Error
bar, 95% confidence interval. (d) Example compounds generated by selected methods, and
their binding poses to ClpP protein (shown as ribbons, with key residues shown as sticks).
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of each method with molecular diversity. Molecular diversity is derived from
the Tanimoto similarity between Morgan fingerprints of compounds. This
set of metrics provides a broad and complementary assessment of compound
properties, indicating the overall efficacy of a drug design method.

While each method demonstrates strengths across certain metrics, Tam-
Gen is consistently top ranked. For example, TamGen achieves either the first
or the second place in 5 out of 6 metrics and exhibits the best overall per-
formance (Fig. 2a, Fig. S2 and Table S1). This finding shows that TamGen
is capable of simultaneously optimizing multiple aspects of compounds during
the generation process.

Among the metrics, synthetic accessibility is an important factor affect-
ing the practicality of a drug candidate, especially for novel compounds. It is
worth pointing out that TamGen performs the best in terms of SAS for com-
pounds with high binding affinity (reflected on docking scores, Fig. 2b), which
are likely to possess superior bioactivity against target proteins. To discern
why TamGen generates compounds with both high binding affinity and favor-
able SAS, we examined the top-scoring compounds generated by TamGen and
other methods. Our analysis reveals that TamGen tends to produce compounds
with fewer fused rings (Fig. 2c and Fig. S3). Notably, the number of fused rings
in compounds generated by TamGen aligns closely with FDA-approved drugs,
averaged to 1.78 (Fig. 2c and Fig. S3). Conversely, while methods involving
direct 3D generation can sometimes create compounds with superior poses
within binding pockets, these compounds often feature multiple fused rings
(Fig. 2c-d). Prior research indicates that a higher number of fused rings may
lead to lower SAS [46–48], potentially accounting for the subpar SAS scores of
other methods. Moreover, a high count of fused rings is linked with increased
cellular toxicity and decreased developability [48, 49]. In line with this under-
standing, compounds generated by TamGen display a higher similarity score
to FDA-approved drugs (Fig. S4). We hypothesize that pre-training on natu-
ral compounds and employing a sequence-based generation strategy enhance
the overall plausibility of compounds produced by TamGen.

TamGen also achieves the best efficiency compared to alternate methods
(Fig. S5). We benchmarked the wall time to generate 100 compounds for each
target of all methods using one A6000 GPU. Other methods required tens of
minutes or hours to complete this task, while TamGen was able to accomplish
the task in an average time of just 9 seconds. This makes TamGen 85, 154,
213 and 394 times faster than ResGen, TargetDiff, Pocket2Mol and 3D-AR.

Collectively, our results suggest that TamGen is both effective and efficient
in generating novel compounds. This positions TamGen as a valuable asset for
quickly identifying hit compounds for downstream development.

2.3 TamGen designs novel inhibitors targeting

Tuberculosis ClpP protease

We employed TamGen to design small-molecule inhibitors against ClpP. As
mentioned, ClpP plays essential roles in maintaining bacterial homeostasis,
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making it a promising antibiotic target. Apart from the previously discovered
Bortezomib, a peptidomimetic compound that targets the human 26S protea-
some and exhibits inhibitory activity against bacterial ClpP [50, 51], there
are no clinically approved ClpP inhibitors. Therefore, we leverage TamGen to
generate compounds targeting ClpP in Mycobacterium tuberculosis (Mtb), a
pathogenic bacteria in urgent need for novel drug candidates.

Fig. 3 Illustration of the Design-Refine-Test pipeline for Tuberculosis drug gen-
eration. (a) The Design stage. (b) The Refine stage. (c) The Test stage

We adopted a Design-Refine-Test pipeline driven by TamGen to identify
potential ClpP inhibitors (Fig. 3a-c). During the Design stage (Fig. 3a), uti-
lizing the binding pocket of ClpP derived from protein structures (PDB ID
5DZK, and a ClpP-Bortezomib cocrystal structure (unpublished)), TamGen
generated 2,612 unique compounds.

These compounds were then screened using molecular docking and Ligand-
Former, an AI model for phenotypic activity prediction [52] (see Methods for
details). At this stage, we eliminated the compounds with worse docking scores
compared to Bortezomib and inactive compounds predicted by LigandFormer.
Peptidomimetic compounds were also excluded due to their suboptimal ADME
properties (which is a known drawback of Bortezomib [53]). Finally, we identi-
fied 4 seeding compounds (green squares in Fig. 4 and Fig. S6) for the following
Refine stage.

In the Refine stage, TamGen was applied to generate compounds condi-
tioned on both the target protein and seeding compounds (Fig. 3b). Here,
in addition to the 4 representative compounds generated by TamGen, we
included 3 compounds with weak inhibitory activities identified from previous
experiments (IC50 in 100 µM - 200 µM against Mtb ClpP. Fig. S6). Condi-
tioned on the ClpP and these 7 seeding compounds, we generated 8,635 unique
compounds using TamGen, and screened the compounds following the same
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Fig. 4 UMAP visualization of library compounds and key compounds identi-
fied from the Design-Refine-Test pipeline with TamGen. Gray (background): 100K
compounds sampled from library. Green (background): 2,612 compounds generated at Stage
1. Red (background): 8,365 compounds generated at Stage 2. Square and plus markers in
green: seeding compounds used for Stage 2 generation. Circle, cross, and diamond markers
in orange red: compounds subjected to IC50 determinations, stratified into 3 clusters based
on molecular scaffold groups.

procedure as in the Design stage. Finally, 296 of these generated compounds
were selected for the Test (biological assay) stage.

We proceeded to compare the generated compounds with molecules from
existing chemical libraries. Using UMAP visualization (Fig. 4, Methods), we
observe that compounds generated by TamGen are distinguishable from those
in compound libraries. This indicates that TamGen is capable of exploring
untapped chemical spaces when generating potential compounds conditioned
on ClpP. Moreover, the compounds generated in the Refine stage showed supe-
rior docking scores and more dispersed patterns (an indicative of molecular
diversity) compared to those from the Design stage (Fig. S7). This improve-
ment shows that a Design-Refine generation approach can effectively enhance
the desired properties of the candidate pool.
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2.4 Designed compounds effectively inhibit ClpP

enzymatic activities

To expedite the validation process and to reduce synthesis costs in the Test
stage, we first sought commercially available compounds that are similar to
TamGen generated compounds (Fig. 3c). From a pool of 446k compounds col-
lected from commercial compound libraries, we identified 159 analogues, whose
Maximum Common Substructure (MCS) similarity were higher than 0.55 to
any of the 296 selected compounds. Five analogue compounds demonstrated
clear inhibition effects in a peptidase activity assay, with Bortezomib as a
positive control (Fig. S8). Strikingly, following-up dose-response experiment
revealed an IC50 lower than 20 µM for all five compounds, with the Analog-005
showing IC50 of 1.9 µM(Fig. 5). As none of these compounds have been linked
to ClpP inhibition (Table. S2), TamGen may have identified novel candidates
for Tuberculosis treatment.
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Fig. 5 Experimental validation and analysis on selected compounds targeting
Mtb ClpP. (a) Dose-response assays for eight compounds with DMSO as a control. See
methods for details of curve fitting and IC50 determination. (b) Docked structures of ClpP
with Syn-A003-01, Analog-005, and Bortezomib.
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To probe the structure-activity relationship (SAR) and expand the hit
compound pool, we further synthesized 3 compounds de novo. Firstly, given
that Analog-003 exhibited the strongest inhibitory effect in the peptidase
activity assay (48% of Bortezomib, Fig. S8), we synthesized its correspond-
ing source compound from model generation, denoted as Syn-A003-01 (Fig.
4). Both these compounds, as well as Analog-001 and Analog-002, feature a
diphenylurea group (Series I in Fig. 4), a novel scaffold for ClpP inhibitors.
However, substituting trifluoromethyl with chlorine lowers IC50 by four folds
(Fig. 5a). Variations in IC50 across compounds of Series I imply that the tri-
fluoromethyl group may introduce steric hindrance to the binding. Secondly,
we synthesized two derivatives of Analog-005, the compound exhibiting the
best IC50: Syn-A005-01 replaced the sulfonamide group in Analog-005 with
a methyl group, and Syn-A005-02 removed the amide group (Fig. 4). Similar
inhibition efficiency was observed in these two derivatives and Analog-005 (Fig.
5a), indicating that these modified groups were not key determinants for the
binding of this series of compounds (Series II). Collectively, out of the 8 com-
pounds generated or inspired by TamGen, 7 demonstrated inspiring IC50. The
high confirmation rate of TamGen-driven drug design also suggests an alterna-
tive application of generative models, namely, employing the newly generated
molecules as anchors for a more effective and efficient library search. This
approach allows us to alleviate the cost in screening process and surmount the
challenges posed by the validation and application of novel molecule synthesis
in generative methods.

2.5 Structural insights on the mechanisms of compound

binding

To investigate the inhibitor binding mechanism, we analyzed the docking poses
of two representative compounds, Syn-A003-01 (from Series I) and Analog-
005 (from Series II). These two compounds were docked to ClpP structure
(PDB ID: 5DZK, see Methods for details) (Fig. 5b). For comparison, the bind-
ing pose of Bortezomib, derived from an unpublished cocrystal structure, was
also modeled into the same crystal structure of ClpP. Similar to Bortezomib,
both Analog-005 and Syn-A003-01 maintain multiple hydrogen bonding inter-
actions with ClpP1 (a subunit of ClpP). The participating residues include
Gly69, Ile71, His123, and Leu126, which are shown to be crucial for inhibitor
binding to ClpP [50, 51]. Meanwhile, the docked pose of Analog-005 suggests
that the carbonyl carbon possibly forms a covalent bond with the catalytic
residue Ser98, suggested by both the chemical mechanism and docked complex
structural model. This is in accordance with the binding pose of Bortezomib,
providing plausible explanation of Analog-005’s strong inhibitory activity.
Interestingly, the complex structures also reveal that the sulfonamide groups of
Analog-005 and Syn-A003-01 extend towards a deep pocket formed by residues
Glu101, Phe102, Met150 and Asn154, a feature not observed for Bortezomib.
The sulfonamide group may contribute to the binding to ClpP, especially
for Syn-A003-01, as its sulfonamide moiety forms additional hydrogen bonds
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with residues Glu101, His123 and Asn154, significantly increasing favorable
interactions.

Altogether, through the Design-Refine-Test process powered by TamGen,
we identified compounds that interact with the target protein ClpP in dis-
tinct modes from that of Bortezomib, thereby unveiling novel mechanisms for
future ClpP inhibitor discovery. These compounds possess benzenesulfonamide
and diphenylurea groups as scaffolds, which are completely different from the
peptidomimetic Bortezomib, providing a possible solution to improve bioavail-
ability and molecular stability of ClpP inhibitors. To sum up, the novelty and
strong inhibitory efficacy of these compounds show potential for further devel-
opment. The success of generating ClpP inhibitory compounds underscores the
immense promise of TamGen in designing novel drug candidates and address-
ing drug-resistant Tuberculosis, implying its broad applications in drug design
to treat other diseases.

3 Discussion and conclusions

Designing compounds that have high binding affinity to given pathogenic pro-
tein targets can speed up drug discovery process. It has been highly desirable
to generate compounds based on target information and many efforts have
been made to develop generative AI models to solve this challenging problem.
However, few attempts have demonstrated success in real-world application.
Here, we present the method, TamGen, not only achieved state-of-the-art per-
formance in benchmark testing, but also discovered several compounds with
high inhibition activities against ClpP protease of Mtb, the causing pathogen
of infectious tuberculosis disease.

The success of TamGen is attributed to two major factors: (1) Chemical
knowledge information embedded in the pre-trained compound decoder model,
which enables the generation of high quality compounds that follow chemistry
rules to possess properties for drug developments. With an ablation study, we
show that pre-training is essential for producing plausible chemical compounds
(Fig. S9). (2) An effective binding pocket representation that correlates to
chemical compound decoding. The information of target protein binding sites
is used to direct compound generation. Furthermore, TamGen can be applied
to refine hit compounds reported in the literature or identified in previous
rounds to generate better compounds for given targets. These designs over-
come the data scarcity caused by shortage of high quality drug-target complex
structures, which are usually required to learn the interactions between drug
compounds and protein targets. Testing results show that TamGen is capable
of generating compounds with high diversity and drug likeliness properties,
increasing chances of hitting compounds that can be synthesized and further
developed into drugs. This is supported by the successful design of strong
inhibitor compounds against Mtb ClpP target. In the ClpP inhibitor genera-
tion case, we adopted the Design-Refine-Test workflow to iteratively improve
the generated compounds. The Refine stage can be repeated multiple times by
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including inhibitors discovered in previous steps, so that TamGen can help fur-
ther optimize the compounds and increase the chance of generating stronger
inhibitors.

The pre-training of compound decoder using chemical compound informa-
tion in the similar manner as GPT models is a core component of TamGen.
This strategy helps overcome the data scarcity issue partially, yet, the genera-
tive AI model such as TamGen can still benefit from a larger training dataset
composed of high quality target-ligand complex structures.Also, a pre-trained
protein structure encoder can be applied to describe target pocket geometry
information, which is currently represented using amino acid positions. Such
a pre-trained model or other advanced representations for the pocket may
improve generated compound qualities [54]. This is particularly important to
improve the binding affinity, because the interaction information are embed-
ded in complex structures. TamGen can be further improved to predict the
compound properties, such as binding affinity, compound stability, synthesiz-
ability, and drug properties including ADME/T. As presented in this work,
these properties were assessed by experts in medicinal chemistry using docking
analysis and phenotypic prediction. As more 3D complex structural data along
with the binding affinity or inhibition activities information become available
for model training, TamGen can predict properties and rank generated com-
pounds. Such automation will further accelerate the compound generation and
facilitate experimental testing.

Generative AI models, such as TamGen, contribute to the drug discovery
not only by speeding up the process, but also enable the exploration in larger
chemical space beyond available compound libraries. It is expected that the
information will accumulate at at accelerating pace, because the novel com-
pounds generated by AI models will enrich the chemical knowledge once they
are validated experimentally. These add-on information will in turn enhance
future generative AI models. Furthermore, TamGen has demonstrated the
capability of generating diverse compounds based on both binding pocket and
seeding compounds. This capability enables compound refinement by provid-
ing candidates centered around the seeding compounds for follow-up research.
The capability of TamGen is demonstrated in the TB drug design as an appli-
cation. The same protocol can be immediately applied to design compounds
for other target proteins, unleashing its power in facilitating drug discovery in
general.

4 Methods

4.1 Details of TamGen

We describe the details about how to process the 3D structure input, the archi-
tectures of the protein encoder, the chemical language model, the contextual
encoder and the training objective functions.

Preliminaries: Let a = (a1, a2, · · · , aN ) and r = (r1, r2, · · · , rN ) denote the
amino acids and their 3D coordinates of a binding pocket respectively, where
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N is the sequence length and ri ∈ R
3 is the centroid of amino acid i (i is

an index to label the amino acids around the binding site). ai is a one-hot
vector like (· · · , 0, 0, 1, 0, · · · ), where the vector length is 20 (the number of
possible amino acid types) and the only 1 locates at the position correspond-
ing to the amino acid type. A binding pocket is denoted as x = (a, r) and
[N ] = {1, 2, · · · , N}. Let y = (y1, y2, · · · , yM ) denote the SMILES string of the
corresponding ligand/drug with a length M . Our goal is to learn a mapping
from x = (a, r) to y.

Processing 3D input: The amino acid ai ∀i ∈ [N ] is mapped to d-
dimensional vectors via an embedding layer Ea. Following our previous
exploration on modeling the 3D coordinates [55], the coordinate ri(i ∈ [N ]) is
mapped to a d-dimensional vector via a linear mapping. Considering we can
rotate and translate a binding pocket while its spatial semantic information
should be preserved, we apply data augmentation to the coordinates. That is,
in the input layer, for any i ∈ [N ],

h
(0)
i = Eaai + Erρ

(

ri −
1

N

N
∑

j=1

rj

)

, (1)

where (i) Ea and Er are learnable matrices, and they are optimized during
model training; (ii) ρ denotes a random roto-translation operation, and before
using ρ, we center the coordinates to the origin. Thus we process the discrete

input x into N continuous hidden representations h
(0)
i .

Protein encoder: The encoder stacks L identical blocks. The output of the

l-th block, i.e., h
(l)
i , is fed into the (l + 1)-th layer for further processing and

obtain h
(l+1)
i for any i ∈ [N ] and l ∈ {0} ∪ [L − 1]. Each block consists of an

attention layer and an FFN layer, which is a two-layer feed-forward network as
that in the original Transformer [23]. To model the spatial distances of amino
acids, we propose a new type of distance-aware attention. Mathematically,

h̃
(l+1)
i =

N
∑

j=1

αj(Wvh
(l)
j ),

αj =
exp α̂j

∑N

k=1 exp α̂k

,

α̂j = exp

(

−
∥ri − rj∥

2

τ

)

(h
(l)¦
i Wh

(l)
j ),

(2)

where W and Wv are parameters to be optimized, and τ is the temperature

hyperparameter to control. After that, h̃
(l+1)
i is processed by an FFN layer

and obtain
h
(l+1)
i = FFN(h̃

(l+1)
i ). (3)

The output from the last block, i.e., h
(L)
i ∀i ∈ [N ], is the eventual representa-

tions of x from the encoder.
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The contextual encoder: To facilitate diverse generation, we follow the VAE
framework and use a random variable z to control the diverse generation for
the same input. Given a protein binding pocket x, a compound y is sampled
according to the distribution p(y|x, z; Θ). The contextual encoder (i.e., the
VAE encoder) models the posterior distribution of z given a binding pocket
x and the corresponding ligand y. The input of VAE encoder is defined as
follows:

h
(0)
i =















Eaai + Erρ

(

ri −
1

N

N
∑

j=1

rj

)

, i f N

Eyyi−N , i > N,

(4)

where Ey is the embedding of the SMILES. The VAE encoder follows the
architecture of standard Transformer encoder [23], which uses the vanilla
self-attention layer rather than the distance-aware version due to the non-
availability of the 3D ligand information. The output from the last block, i.e.,

h
(L)
i ∀i ∈ [N ], is mapped to the mean µi and covariance matrix Σi of position

i via linear mapping, which can be used for constructing q(z|x,y), by assum-

ing q(z|x,y) is Gaussian. The ligand representations, i.e., h
(L)
j j > N , are not

used to construct q(z|x,y).
Chemical language model: The chemical language model is exactly the same

as that in [23], which consists of the self-attention layer, cross-attention layer
and an FFN layer. The self-attention layer aggregates the representation from
the previous block in the decoder, the pocket-SMILES attention processes the

h
(L)
i from the pocket encoder, and the FFN is exactly the same as that in the

encoder. We pre-train the decoder on 10M compounds randomly selected from
PubChem (denoted as D0) using the following objective function:

min−
∑

y∈D0

1

My

My
∑

i=1

logP (yi|yi−1, yi−2, · · · , y1), (5)

where My is the length of y. The chemical language model is pre-trained on
eight V100 GPUs for 200k steps.

The cross-attention between the protein encoder and chemical language

model) takes all h
(L)
i as inputs. Under the VAE variant, during training, the

inputs are h
(L)
i + z′i, where z′i is sampled from the distribution q(z|x,y) intro-

duced above. During inference, the inputs are h
(L)
i + zi where zi is randomly

sampled from N(0, I).
Implementation details For the results in Section 2.2, for fair comparison

with the previous methods like Pocket2Mol [14], Targetdiff [12], we use the
same data as them. The data is filtered from CrossDocked [40] and there are
123k target-ligand pairs. For inference, the z is sampled from multivariant
standard Gaussian distribution rather than the conditioned generation. Both
the pocket encoder and VAE encoder have 4 layers with hidden dimension
256. The decoder has 12 layers with hidden dimension 768. We use Adam
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optimizer [56] with initial learning 3 × 10−5. In the context of generating the
compound database for Tuberculosis (TB), the current methodology incor-
porates an augmented dataset that includes the CrossDocked database and
the Protein Data Bank (PDB), cumulatively accounting for approximately
300,000 protein-ligand pairs. To elaborate, this process involved the extrac-
tion of pocket-ligand pairs from 72,201 PDB files. A pocket is defined on the
basis of spatial proximity criteria: if any atom of an amino acid is less than 10
angstroms away from any atom of the ligand, the corresponding amino acid is
taken as part of the pocket.

4.2 The phenotype screening predictor LigandFormer

We utilize an adapted version of the Graph Neural Network (GNN) model as
proposed in Leng et. al. [57] to predict potential phenotypic activity. Com-
pared with traditional GNNs, our model is designed such that the output from
one layer is propagated to all subsequent layers for enhanced processing. We
implement a 5-layer architecture following Leng et. al. [57]. Our phenotypic
predictor is trained using a dataset of 18,886 samples, which are gathered from
a variety of sources including ChEMBL, published datasets, and academic lit-
erature as compiled by [58]. At the inference stage, we interpret an output
value exceeding 0.69 (a threshold determined based on validation performance)
as indicative of a positive sample.

4.3 Baselines and evaluations

4.3.1 Baselines

We mainly compare our method with the following baselines:

1. 3D-AR [38], a representative deep learning baseline that uses a graph neu-
ral network to encode the 3D pocket information and direct generates the
3D conformation of candidate drugs. The atom type and coordinates are
generated sequentially. 3D-AR does not explicitly generate the position of
the next, by use MCMC for generation.

2. Pocket2Mol [14] is an improved version of 3D-AR, which has specific
modules to predict atom type, coordinate positions and bond type.

3. ResGen [39] is also an autoregressive method of generating compounds in
3D space directly. Compared with Pocket2Mol, ResGen uses residue-level
encoding while Pocket2Mol uses atomic-level encoding.

4. TargetDiff [12] utilizes diffusion models to generate compounds. Com-
pared with the previous method, all atom types and coordinates are
generated simultaneously, and iteratively refined until obtaining a stable
conformation.

4.3.2 TamGen without pre-training

To assess the impact of pre-training, we introduce a TamGen version without
pre-training, in which the compound generator is initialized randomly. We
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observed overfitting when a 12-layer chemical language model was used in the
non pre-trained version. Upon evaluating layers 4, 6, 8, and 12 based on their
validation performance, we discovered that a model with 4 layers yielded the
most optimal results.

4.3.3 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) calculation [59] is a widely used method to
evaluate a method across different metrics. To elaborate, denote the rank of a
method on metric i as ri. The MRR for a particular method is hence defined as
1
N

∑N

i=1
1
ri

, where N represents the total number of evaluation metrics being
considered.

4.3.4 Fused rings

In this work, fused rings denote a structural element in compounds where two
or more ring structures share at least one common bond. The size of the largest
group of these “fused” rings within a molecule is denoted as the number of
fused rings. In Fig. 2(d), from left to right, the number of fused rings of the
four compounds are 2, 5, 4 and 4 respectively.

4.4 Experimental details

4.4.1 Peptidase activity assay

ClpP1P2 complex in Mtb can catalyse the hydrolysis of small peptides. Follow-
ing previous protocols, we measure the in vitro inhibition of ClpP peptidase
activity by monitoring the cleavage of fluorogenic peptide Ac-Pro-Lys-Met-
AMC [60–62].

0.4 µL of candidate inhibitors, Bortezomib, or DMSO control are added
into a black flat bottom 384-well plate by Echo®20 Liquid Handler and mixed
with 20 µL enzyme buffer (The final ClpP1P2 dimer concentration is 50nM;
reaction buffers: PIPES 30mM (pH 7.5), NaCl: 200mM and 0.005% Tween20).
The solution is pre-incubated at room temperature for 2 hours. Then, 20 µL
substrate buffer with Ac-Pro-Lys-Met-AMC is added (final concentration of
Ac-Pro-Lys-Met-AMC is 10 µM; reaction buffer is the same with the above).
Fluorescence (Ex/Em: 380/ 440 nm) is recorded for 120 min at 37℃.

4.4.2 Single-dose response measurement

Inhibition rates of compounds were determined by Relative Fluorescence Units
(RFU) compared with Bortezomib control [63, 64] and DMSO control, which
is defined as follows:

Inhibition Rate =
RFU(test) − RFU(DMSO)

RFU(bortezomib) − RFU(DMSO)
× 100%. (6)
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In this case, fluorescence of DMSO is seen as none inhibition (0%), and flu-
orescence of Bortezomib is seen as completed inhibition (100%). Compounds
with inhibition rates more than 20 % at 20 µM are considered as hits.

4.4.3 Dose-response assay and IC50 determination

To determine IC50, candidate inhibitors are assayed at 9 or 10 gradient con-
centrations. A series of candidate inhibitor, Bortezomib, or DMSO dilutions is
prepared starting from a maximum concentration of 100 µM, with each sub-
sequent concentration being half or one third of the previous one (2-fold or
3-fold dilution gradient). IC50 is determined by the change of recorded fluores-
cence (as RFU) and gradient dilution of inhibitors concentration. Non-linear
fit (log(inhibitor) vs. normalized response) is used for IC50 curve fitting.

4.5 Compound generation in Design and Refine stages

for ClpP

4.5.1 Compound generation

Given a complex crystal structure with a protein receptor and a ligand, the
center of the ligand is denoted as c. For each residue i of a protein, if its
centroid pi satisfies the condition ∥c− pi∥ f τ , i.e., within a distance cutoff τ

from the ligand center c, then residue i is included in the pocket, where the
distance cutoff τ is pre-defined.

In the case of ClpP complex, we first designed compounds based on
published complex structure (PDB 5DZK) and our co-crystalized Bortezomib-
ClpP structure. We took two values of τ to be 10 Å and 15 Å. We used beam
search with beam size 20 to generate compounds. The β of the VAE was set
to be 0.1 or 1. We initialized compound generation with 20 unique random
seeds, ranging from 1 to 20. After removing duplicate and invalid generated
compounds, we obtained 2.6k unique compounds.

During the following Refine stage, in addition to the binding pocket
information, we included guiding information encoded in 4 representative com-
pounds and 3 experimentally discovered compounds exhibiting weak inhibition
activities. The parameter τ was set to 10 Å, 12 Å, and 15 Å. We used beam
search with beam sizes of 4, 10, and 20 for compound generation. The β param-
eter of the VAE was set to 0.1 or 1. We initiated compound generation with
100 unique random seeds, ranging from 1 to 100. After removing duplicates
and invalid compounds, we obtained a total of 8.4k unique compounds.

4.5.2 UMAP visualization

Compounds are converted to 1024-dimensional vectors with function
GetMorganFingerprintAsBitVect from rdkit. UMAP transformation
[65] is performed with parameters: n neighbors=20, min dist=0.7,

metric=sokal michener.
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4.6 Ligand Docking to protein target

The SMILES of generated compounds were converted to 3D structures with
Open Babel program. Subsequently, AutoDock Tools was employed to add
hydrogens and assign the Gasteiger charge to both the converted 3D com-
pounds and the RCSB downloaded protein 5DZK before the docking process.
The 5DZK ligand-centered maps were defined by the program AutoGrid and
grid box was generated with definitions of 20 × 20 × 20 points and 1 Å spac-
ing. Molecular docking was performed with AutoDock Vina program with
default settings. The predicted binding poses were visualized using the PyMol
program.
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Fig. S1 Details of the self-attention mechanism with geometric information used
in the protein encoder. For each amino acid representation in layer i, the attention weight
α’s is calculated as the product of the amino acid representation similarity and negative
geometric distances between pairs of amino acids (i.e., exp(−distances2/τ) where τ is a
hyperparameter). The output of layer i is then derived from the sum of the α’s multiplied
by the amino acid representation.
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Fig. S2 Docking scores, QED, Lipinski, SAS, and Molecular Diversity of various
generative drug design methods in relation to the CrossDocked2020 task. Error
bar, 95% confidence interval.
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whiskers, 1.5x interquartile range; points, outliers.
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Fig. S4 The Fréchet ChemNet Distance (FCD) similarity [66] scores between
FDA-approved drugs and compounds produced by different methods. FCD is a
metric that quantifies the distributional dissimilarities between two compound sets, referred
to as group A and group B. In this context, group A comprises all FDA-approved drugs,
while group B includes compounds generated through various methods. A lower FCD score
indicates a closer distribution of the generated compounds to the FDA approved drugs,
signifying their similarity. TamGen demonstrates the capability to generate compounds that
are most akin to FDA-approved drugs, as evidenced by the lowest FCD scores.
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Fig. S5 TamGen significantly outperforms alternate methods on running time.
The y-axis is scaled using a logarithm base 10.
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Fig. S6 Seeding compounds for Stage 2 generation. (a-d) The four seeding com-
pounds selected from the first round; (e): One example of the experimental selected
compound.
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Fig. S8 Inhibition rate of the 159 library search analogs relative to Bortezomib.
All compounds were evaluated at the concentration of 20 µM. The dashed line indicates the
threshold for analog selection. x-axis: Maximum Common Substructure (MCS) similarity
scores. See Methods for details.
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(a) The violin plot illustrates the docking scores of pretrained and non-
pretrained compound decoder. Pretrained decoder shows a significant improve-
ment compared to non-pretrained decoder. p-value is calculated with
Mann–Whitney U test (scipy.stats.mannwhitneyu).

(b) Case study of the generated compounds. The top/bottom rows are the compounds
generated by pre-trained / non-pretrained compound generators respectively. The corre-
sponding docking scores for each compound are displayed under their respective structures.
Each column corresponds to the same target. The compounds are visualized using RDKit.

Fig. S9 Ablation study indicates that pre-training is essential for molecule gen-
eration of the compound decoder.
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Model
Metric

Vina Dock (↓) QED (↑) SAS (↑) Diversity (↑) LogP∈ [0, 5] Lipinski (↑)

liGAN* -6.099 0.392 0.592 0.655 55.0% 78.4%
3D-AR -6.746 0.503 0.637 0.698 55.0% 96.2%

Pocket2Mol -7.152 0.573 0.756 0.741 75.5% 99.5%
TargetDiff -7.802 0.480 0.585 0.717 65.2% 90.5%
ResGen -6.326 0.567 0.767 0.756 78.0% 96.5%
TamGen -7.475 0.559 0.771 0.747 87.9% 98.8%

Table S1 Compilation of performance statistics for all methods across various evaluation
metrics.

ID PubChem Commercial library source IC50 (µM)

Analog-001 2810424 Maybridge Screening Collection 17.2
Analog-002 45503904 Life Chemicals HTS Compound Collection 19.9
Analog-003 2813477 Maybridge Screening Collection 10.1
Analog-004 160268 reframeDB 19.6
Analog-005 4851126 Selleck PFZ 1.9

Table S2 Resources of the analogue compounds. The index of the compounds, PubChem
CID, Commercial library source and IC50 values are summarized.
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