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Abstract26

Although cytochrome P450 enzymes are the most versatile biocatalysts in nature,27

there is insufficient comprehension of the molecular mechanism underlying their28

functional innovation process. Here, by combining ancestral sequence reconstruction,29

reverse mutation assay and structure analysis, we identified five founder residues in30

the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a “three-point31

fixation” model to elucidate the functional innovation mechanisms of P450s in nature.32

According to this design principle of catalytic pocket, we further developed a de novo33

diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the34

17 non-natural P450s we generated, ten designs exhibited significant F6H activity and35

six exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural36

CYP706X1. This work not only explores the design principle of catalytic pockets of37

P450s, but also provides an insight into the artificial design of P450 enzymes with38

desired functions.39
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Introduction43

Cytochrome P450 enzymes (P450s) are ubiquitous in nearly all living organisms,44

playing pivotal roles in various metabolic processes and pathways crucial for life,45

growth, and development1. As the most versatile biocatalysts in nature, P450s not46

only catalyzed more than 95% of the reported oxidation and reduction reactions2, 3, 4,47

but also are known as “Universal catalyst” in industrial applications due to the ability48

of selective oxidation of inert carbon-hydrogen bonds under mild conditions5, 6.49

Therefore, obtaining new P450s with better properties has become an important goal50

in the field of bioengineering7, 8. In spite of huge functional diversity, most P450s51

share the same catalytic mechanism9, 10 and similar structural scaffolds4. However, the52

catalytic pockets exhibited significant variability in P450s with different functions53

(Fig. S1)11. Moreover, the nonpolar composition and unique conformational flexibility54

of the substrate binding pockets are likely to enhance the capacity of these enzymes to55

modify their active sites and adapt to new substrates and selectivities4. Considering56

the high evolvability of P450s, directed evolution has been extensively employed in57

engineering P450s with better traits12, 13, 14, 15. However, this method often necessitates58

multiple rounds of random mutagenesis and high-throughput screening, making it59

challenging to exhaustively explore the potential protein space, whether in the60

laboratory or computationally16.61

The rapid development of deep learning has opened up a new method to acquire62

novel P450s with desired characteristics. Even though impressive achievements have63

been witnessed in protein structure prediction17, 18, the desired functional design still is64

a big challenge19, 20. Recent developments in protein design leveraged by deep65

learning methods encompass a broad spectrum. These include designing sequences66

for fixed backbones21, variable backbone design22, as well as the direct generation of67

novel sequences and backbones within the natural protein space23. These models68

employ various architectures, including Convolutional Neural Networks (CNN),69

Graph Neural Networks (GNN), and Transformers, which are all instrumental in70

capturing the complex interactions between amino acids within a protein sequence19.71

The abundance of sequence and structure data contributes to these deep learning72

models surpassing the performance of traditional physical or statistical models24, 25.73

However, when considering functional design, it's impossible to collect sufficient74

high-quality functional data to train a sophisticated model to create sequences with a75

desired function26, 27. Considering the current shortage, an approach that fuses76

knowledge-based techniques to scrutinize the design principles of natural P450s with77

powerful deep learning models to expand the natural protein sequence space, may be78
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appropriate for designing new P450s. As our comprehension of the fundamental79

mechanisms that govern the evolution of the catalytic pocket for functional innovation80

in natural P450s remains limited, elucidating the process by which a particular P45081

adopts a new function becomes crucial in designing a new one.82

In this work, we used a flavone 6-hydroxylase (CYP706X1) from Erigeron83

breviscapus as an example, which belongs to the CYP706X subfamily and converts84

apigenin into scutellarein in the biosynthetic pathway of scutellarin (Fig. S2)28. Firstly,85

we determined the founder residues constituting the catalytic pocket responsible for86

the functional innovation of the P450 gene through ancestral sequence reconstruction,87

reverse mutation assay and crystallographic analysis. Then, we elucidated the design88

principle of catalytic pocket for the functional innovation by an in-depth structural89

analysis. Finally, we devised the P450Diffusion, an artificial P450 generative model,90

by integrating the catalytic pocket design principle with a denoising diffusion91

probabilistic model which has demonstrated outstanding performance in image92

generation29. With the P450Diffusion model, we successfully designed 10 artificial93

P450s with F6H activity, and one design outperforms the naturally best-performing94

gene about 3.5-fold, indicating the potential of P450Diffusion in the design of new95

P450 enzymes.96
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Results97

Functional innovation of F6H in CYP706 family98

Among the characterized P450s in CYP706 family, only the P450s in CYP706X99

subfamily could catalyze the flavonoid substrates, indicating that the F6H function100

may be de novo innovated in the ancestor of CYP706X subfamily (Fig. 1a and Fig.101

S3). Moreover, we found that the catalytic pocket’s configuration of CYP706X1 (i.e.,102

EbF6H from Erigeron breviscapus) is totally different from other P450s in CYP706103

family. The substrate apigenin even could not be properly positioned in other P450s104

with a C6-prone reactive state, which refers to the molecular configuration that is best105

suited for binding to the catalytic pocket of the enzyme and undergoing a reaction106

(Fig. S4). Therefore, it provides us an opportunity to decipher the constructive107

mechanisms for the formation of F6H’s catalytic pocket by comparing the108

neighboring genes in CYP706 family.109

We compared the evolutionary trajectory between the CYP706X subfamily and110

the most closely non-functional CYP706Y subfamily using ancestral sequence111

reconstruction (Methods). By testing the function of the inferred ancestral P450s for112

all key nodes in the phylogenetic tree (Fig. 1b), most ancestral sub-nodes in113

CYP706X subfamily displayed significant F6H activity (Fig. 1c and Fig. S5).114

Conversely, the F6H function disappeared in both the common ancestor ancXY and115

the ancestor of CYP706Y subfamily (Fig. 1c). Thus, the F6H’s catalytic pocket should116

be originated when the CYP706X subfamily diverged from the common ancestor of117

CYP706X and CYP706Y (ancXY). To gain insight into the evolution of the catalytic118

pocket underlying functional innovation, we determined the crystal structure of ancX3,119

which was found to crystallize more readily after screening for crystallization120

conditions (Fig. S5, Fig. S6 and Table S1). Indeed, the binding mode of apigenin in121

the common ancestor of CYP706X subfamily (ancX) was obviously different from122

the non-functional ancXY, though they possessed very similar structural arrangement123

(RMSD < 1.0Å, sequence identity = 83%) (Fig. 1d and Fig. 1e). A strong pai-pai124

stacking and an obvious hydrogen bond are found to stabilize the substrate in a125

C6-prone reactive state in ancX’s catalytic pocket (Fig. 1d). However, the substrate in126

the non-functional ancXY is held in a non-C6-prone reactive state with the hydrogen127

bonds only by the surrounding residues like Trp and Thr (Fig. 1e).128
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Founder residues for functional innovation of F6H129

In order to clarify the molecular mechanism of forming the catalytic pocket with130

F6H function, we proposed to analyze the changes of amino acid compositions131

between catalytic pockets of non-functional ancXY and functional ancX. Within 8 Å132

range of the active center, 16 out of 48 residues are different (Fig. 2a). Interesting,133

when we replaced all of the 16 residues with the corresponding residues in ancX, the134

mutant (referred to as the ancXY-16) obtained F6H function (Fig. 2b). Given that not135

all residues in the catalytic pocket contributed significantly to substrate recognition136

and binding due to different locations of residues in three-dimensional space30, we137

attempt to find out the founder residues of the catalytic pocket in ancXY-16 by the138

reverse mutation assay (RMA) to eliminate non-essential residues (Fig. 2b).139

Firstly, RMA was respectively carried out on the 16 residues of ancXY-16 to140

clarify the effect of each residue on the catalytic activity. We found one of them141

(A220L) inactivated the ancXY-16, and 12 mutations significantly decreased the142

catalytic activity, but four mutations (i.e., G111A, N119Q, F251L and V307L) had143

less impact on the activity. Structural analysis showed that these four mutations were144

distant from the P450 catalytic center and did not involve in the changes in the145

residue’s intrinsic hydrophilicity/hydrophobicity (Fig. S7). Subsequently, we excluded146

these four mutations to construct the ancXY-12. RMA against the 12 residues of147

ancXY-12 showed one extra mutation (T114I) could destroy the function of F6H. We148

combined the two inactivating mutations (L220A and I114T) in ancXY to construct149

ancXY-2, however, it didn’t show F6H activity. Furthermore, we gradually added150

single mutation to ancXY-2 according to the order of the RMA mutational effect in151

ancXY-12. And finally, the constructed ancXY-5 (i.e., L220A, I114T, W123F, L248M,152

and T317A) displayed F6H activity, and each of the five reverse mutations in153

ancXY-5 deactivated the enzyme (Fig. 2b). The results showed that the mutations of154

the five amino acids play a founder role (referred to as founder residues in the155

following) in the F6H functional innovation process from ancXY to ancX. As to other156

11 residues, the structural analysis showed that these mutations decreasing the157

catalytic activity might play auxiliary roles in the enzyme catalysis due to no direct158

interactions with the substrate apigenin (Fig. S7 and Fig. S8).159
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The principle of catalytic pocket for functional innovation of F6H160

We further interpreted the underlying mechanism of five founder residues for161

functional innovation through an in-depth analysis of the apigenin-binding model in162

ancXY-5 (Fig. 3a). The five founder residues could be divided into two parts163

according to their roles in protein structure. The first part included I114T, W123F and164

L248M which mainly contributed to fix or bind the apigenin. For example, the I114T165

introduced a hydrogen bond with 7’ hydroxyl of apigenin with an energy contribution166

of 0.66±0.10 kcal/mol (Methods, Fig. 3b). A null mutation of T114V in ancXY-5 also167

ascertained the indispensability of this hydrogen bond for the F6H function (Fig. S9).168

The W123F contributed to the apigenin binding (-3.14±0.37 kcal/mol) with an169

aromatic pai-pai stacking interaction to the phenyl ring of the apigenin and alleviated170

the spatial conflicts caused by ancestral tryptophan in the ancXY (Fig. 3c). The171

L248M, located in the substrate access gate, was not only involved in the substrate172

tunneling process (Fig. 3d, Video S1), but also contributed to the apigenin binding173

with a pai stacking to the phenyl ring of apigenin. The second part included L220A174

and T317A contributed to alleviate inappropriate interactions and space conflicts. The175

L220A alleviated the space conflict conducted by ancestral leucine and provided176

sufficient space for the placement of the B ring of substrate apigenin through the177

introduction of a small side chain (Fig. 3e). The T317A not only provided sufficient178

space for the placement of the A ring of apigenin but also avoided the179

wrong-orientation apigenin-binding mode shown in nonfunctional ancXY caused by a180

hydrogen bond between the hydroxyl group of threonine and the substrate (Fig. 3f).181

Based on the mutations of five founder residues, it appears that, with an182

appropriate spatial capacity (provided by small side chain residues A220 and A317),183

the catalytic pocket evolved following a “three-point fixation” model. The184

“three-point fixation” refers to essential interactions with three pivots in apigenin185

including: 4’-OH of apigenin molecule (the first pivot) was fixed by the hydrogen186

bond from T114, the “B” ring of apigenin (the second pivot) was fixed by the pai187

stacking interactions from F123 and M248, and 7-OH of apigenin (the third pivot)188

was fixed by the hydrogen bond with CpdI iron-oxo moiety (Fig. S10). The model189

held the substrate apigenin in a reactive near-attack conformation (NAC), which190

maintained the relative orientation between the reaction site of apigenin and CpdI191

iron-oxo moiety at a favorable distance and angle (3.6 Å and 155°), thus serving to192

initiate the 6-hydroxylation reaction of apigenin in the catalytic process (Fig. S11).193

We propose that the “three-point fixation” model could serve as the design principle194
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for the catalytic pocket responsible for the natural functional innovation of F6H,195

which also offers us the potential to de novo design P450s with the desired functions.196

Diffusion model-based designing of P450 with the specific function197

Hundreds of thousands of P450 protein sequences collected in public databases198

offer us an opportunity to learn natural P450 sequence diversity and design new199

functional P450s31. Recent advancements in diffusion models have shown significant200

potential in enhancing the design of P450 enzymes with specific functions29, 32. Here,201

we proposed a P450 Sequences Diffusion Model (P450Diffusion) to de novo design202

P450s with a desired function by combining the diffusion model with the design203

principle of F6H catalytic pocket (Fig. 4a). P450Diffusion mainly consists of two204

models (i.e., pre-trained and fine-tuning diffusion models). Firstly, 226,509 natural205

P450 sequences were collected to train a pre-trained P450 sequence diffusion model.206

This pre-trained model consists of two subprocesses: a forward diffusion subprocess,207

which gradually adds Gaussian noise to the representation of P450 sequence until it208

becomes random noise, and a reverse generation subprocess, which starts from209

random noise and gradually de-noises the representation of P450 sequence to generate210

a new P450 sequence. After 150,547 training rounds, the pre-trained diffusion model211

could generate a wide variety of sequences, with similarities to natural sequences212

ranging from 20% to 50%. Secondly, 19,202 P450 sequences with appreciable213

similarity to CYP706X subfamily were used to fine-tune the pre-trained diffusion214

model for ensuring that the generated sequences have a similar structural backbone to215

the F6H. Besides, the five founder residues including T114, F123, A220, M248 and216

A317 were constrained to ensure the reproduction of the “three-point fixation” design217

principle in de novo generated sequences. The model integrating training set218

fine-tuning with constrained generation was referred to as the fine-tuning diffusion219

model.220

Furthermore, we used the fine-tuning diffusion model to generate a total of221

60,000 non-natural P450 sequences, which share about 50% average amino acid222

identity to that of the natural sequences. In comparison with natural P450s, the223

generated sequences not only have a highly similar distribution of Shannon entropies224

for each position in multiple sequence alignments, but also display very consistent225

residue-residue co-evolution patterns and physicochemical properties (Fig. S12 and226

Fig. S13). However, the generated sequences can be grouped into smaller clusters and227

interpolated between the natural sequence clusters, indicating that the generated228

sequences have higher diversity than natural P450s (Fig. 4b). It is noteworthy that the229
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sequences generated by the fine-tuning P450Diffusion model form a larger cluster,230

exhibiting greater similarity to the CYP706X subfamily, thereby demonstrating the231

effectiveness of the fine-tuning model. Besides, we compared the distribution of five232

founder residues among natural and generated P450s (Fig. 4c). It is found that except233

the threonine (T) in position 317, other positions are highly variable in natural and234

generated P450s from pre-trained model, even in natural P450s from CYP706 family.235

However, all of five founder residues are relatively conserved in the generated P450s236

from fine-tuning model, indicating that the P450Diffusion possessed the capability of237

generating sequences with an amino-acid distribution similar to that of natural F6H on238

the basis of constrained five founder residues.239

240

Experimental verification and structural insights of de novo generated P450s241

Finally, we experimentally tested whether the generated sequences from242

P450Diffusion were true P450 enzymes, and performed F6H function. In order to243

accurately obtain functional sequences from numerous designs, we conducted virtual244

screening on 60,000 generated sequences based on three specific criteria: the245

computational scores of composite metrics for assessing the quality of generated246

sequences, the 3-dimensional pocket constraints of the five founder residues, and the247

robustness of the apigenin binding modes (details in Methods, Fig. 4a). 17 designs248

with sequence identities ranging from 70% to 87% to CYP706X1, were retained by249

the virtual screening, then synthesized and expressed in yeast expression systems250

(Table S2). The recombinant yeasts were cultivated for four days by feeding apigenin251

as substrate and HPLC analysis revealed ten designs with significant F6H activity252

(Fig. 5a). Surprisingly, there are six designs exhibited a 1.3- to 3.5-fold increase in253

scutellarein production compared to CYP706X1 (Fig. 5b). The four remaining active254

designs also displayed comparable activities with other natural F6H enzymes (i.e.,255

Cnan706X and Lsal706X). Therefore, the results indicated that the P450Diffusion256

could not only capture the fundamental design principle of F6H catalytic pocket and257

effectively generate P450s sequences with F6H activity, but also selected out the258

better P450 enzymes compared to natural sequences from the P450 sequence space.259

Meanwhile, in order to further analyze the other seven designs without F6H260

activity, we first test whether the seven designs can be soluble expressed in yeast261

expression systems by integrating green fluorescent protein at the C-terminal. All262

recombinant proteins successfully showed green fluorescence, demonstrating that263

seven designs folded correctly in the yeast expression systems (Fig. S14).264
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Furthermore, we presented a structural perspective on the active designs as well as the265

distinctions between the active and inactive ones. The structural analysis reveals that266

no substantial mutations in the protein-substrate binding pockets between active and267

inactive designs except the surface of the protein structure (Fig. 5c), and substrates268

bind to catalytic pockets of all designs in a manner highly similar to natural269

CYP706X1 (Fig. S15). However, long-term Molecular Dynamics (MD) simulations270

have demonstrated significantly weaker binding stability of the substrate apigenin in271

the inactive designs when compared to the active ones (Fig. 5d). This discrepancy272

likely serves as the primary reason for the inactivity observed in these seven designs.273

Besides, we observed that the overall protein structures of the active designs appear to274

exhibit greater stability than the inactive ones following extensive MD simulations275

(Fig. 5e). Notably, significant structural fluctuations are observed, particularly within276

the sequence ranges of 220-230 and 390-410, as illustrated in the inactive designs (Fig.277

S16). For instance, in Design33380, the R229K mutation disrupts the salt bridge with278

E251, while the S230P mutation causes a break in the alpha-helix structure (Fig. S17).279

And in Design91808, the S407L mutation break the hydrogen bond with the backbone280

of A51, resulting in a less stable protein backbone than observed in active designs281

(Fig. S18). These results imply that the amino acid mutations on the surface of the282

protein could lead to a reduction in the global stability of the protein, which further283

leads to substrate binding instability and ultimately to the loss of activity of the284

designs. This analysis provided us with valuable insights for future improvements of285

the P450 generative model.286

287

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion288

Nature has evolved an amazing array of enzymes to catalyze biological functions289

and enabled living systems to face diverse environmental challenges33. Gene290

duplication contributes most to the generation of new enzymes34, especially for291

cytochrome P450s, which evolve to the largest enzyme family for plant metabolism292

by widespread whole-genome and tandem duplications7, 35, 36. Although most293

duplicates are lost or subfunctionalized by purifying or neutral selection,294

neofunctionalization often happened in P450 evolution due to high plasticity and295

variability of catalytic pockets37, 38. The evolutionary trajectory of P450’s functional296

innovation have attracted researchers’ attention for a long time39, 40, 41 and the previous297

researches were mainly focused at the gene level42, 43, 44, 45, 46 or residue level47, 48. In298

this study, based on ancestral sequence reconstruction, RMA and structural analysis,299

we suggested the “three-point fixation” model as the design principle of catalytic300

pocket which played a pivotal role in the functional innovations of F6H function.301

The “three-point fixation” model seems to be a general principle for the substrate302

binding in P450’s catalytic pocket, such as the camphor binding in P450cam49 and303

N-palmitoyl glycine binding in P450BM350. Similar fixation rules could also be found304

in the general enzymatic catalysis where the substrates or catalytic residues are held in305

the catalytic pockets51, even as a term commonly used in medicine and architecture52.306

It is worth mentioning that besides the “three-point fixation” model, nature also307

evolved other catalytic pocket design principles for functional innovations in P450s.308

For example, the SbaiCYP82D4, as the isoenzyme of CYP706X1, have evolved to a309

completely different catalytic pocket configuration for flavone 6-hydroxylation53, 54.310

The catalytic pocket of SbaiCYP82D4 consisted of more residues with strong311

hydrophobicity, and no obvious hydrogen bond was found between surrounding312

residues and substrate apigenin, making the substrate binds in an “oblique binding”313

orientation (Fig. S19), which is distinguished with the “vertical binding” orientation314

in CYP706X1. Although a different substrate binding model was found in315

SbaiCYP82D4, the substrate apigenin also formed a reactive conformation in a NAC316

model to enable the initiation of the catalytic reaction. This fact indicated that317

substrates in P450s could be held in favorable orientations with different fixing rules318

under the premise of sufficient space and suitable shape for the placement of the319

substrate.320

The rapid development of deep learning has witnessed many impressive321
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achievements in protein structure design, while the desired functional design still is a322

big challenge55, 56, 57. Our research provides a novel strategy for the de novo design of323

P450s with specific function by coupling the design principle of catalytic packet with324

deep learning model. In this study, non-natural P450s with F6H function were325

successfully designed by integrating the “three-point fixation” model with a denoising326

diffusion probabilistic model. The structural analysis of active designs suggested that327

the design principle of F6H catalytic pocket has been fully incorporated into the deep328

learn model. Furthermore, the structural insights between active and inactive designs329

suggest that mutations on protein surface may be the fundamental factors contributing330

to the inactivity or reduced activity of designed sequences, providing us with valuable331

insights for future improvements of the P450 generative model. There are more332

structure or sequence-based features should be considered, like the substrate-tunneling333

feature, the overall stability of protein, and so on.334

In general, the current work provides insights into the principle of pocket design335

in the P450 functional innovations and offers a potential research paradigm for the de336

novo design of P450 enzymes with desired functions. With the increasing of in-depth337

investigated P450s, more catalytic pocket design principles would be deciphered and338

facilitated the design of P450s with novel and desired functions.339
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Figures340

341
Figure 1. De novo innovation of F6H function in CYP706X subfamily. (a) Phylogenetic342
relationship of 5 characterized genes in CYP706 family. The CYP73A1 was set as an out-group.343
The maximum likelihood tree was constructed and all nodes received bootstrap support values344
from 100 replicates. (b) Phylogenetic tree of CYP706X and CYP706Y subfamilies. The inferred345
ancestral nodes are annotated with bold representations. CYP706X1 referred to F6H in E.346
breviscapus. (c) HPLC analysis of the fermented products of ancXY, ancY, ancX and CYP706X1.347
(d and e) Substrate-binding models of apigenin in catalytic pocket of ancX (d) and ancXY (e).348
The dash lines represented the hydrogen bond interactions.349

350
Figure 2. Reverse mutation assay for the identification of founder residues. (a) 16 different351
residues within the 8 Å range of active center of non-functional ancXY and functional ancX. All352
residues were represented as ball-and-stick model, and the residues of ancX and ancXY were color353
by cyan and magenta, respectively. (b) Process of RMA for the identification of founder residues.354
In the first round of RMA, one founder residue A220L was identified and four non-essential355
residues (V307L, G111A, N119Q and F251L) were eliminated; In the second round of RMA, the356
other founder residue T141I was identified; At last, three founder residues (i.e., W123F, L248M357
and T317A) were identified. ancXY-2, ancXY-3 and ancXY-4 referred to ancXY-L220A/I141T,358
ancXY-L220A/I141T/F123W and ancXY-L220A/I141T/F123W/M248L, respectively.359
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360
Figure 3. Contribution of five founder residues for forming the reactive near-attack361
conformation. (a) Spatial conformation of five founder residues (cyan), substrate apigenin (green)362
and CpdI (lightblue). (b-f) Comparison of each founder residue interacting with substrate in ancX363
and ancXY. The substrate apigenin in ancX and ancXY referred green and white, respectively. The364
founder residue in ancX and ancXY referred cyan and white, respectively.365

366

367

Figure 4. P450Diffusion de novo design new P450 Processes from Scratch. (a) The design368
process for the new P450 includes P450Diffusion model construction (a pre-trained model and a369
fine-tuning model), sequence generation and screening and experimental verification. The370
generated sequences were screened and evaluated to obtain the candidate sequences for371
experimental verification. (b) t-SNE embedding of natural, pre-trained model and fine-tuning372
model generated sequences. The protein sequence space was visualized by transforming a distance373
matrix derived from k-tuple measures of protein sequence alignment into a t-SNE embedding. Dot374
sizes represent the 50% identity cluster size for each representative. (c) The distribution of five375
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founder residues and control residues (CPG) among natural and generated P450s is illustrated in376
the WebLogo using multiple sequence alignment (MSA)58. This visualization incorporates data377
from four distinct sources: the P450Diffusion pre-trained model dataset (Nal P450), sequences378
generated by the P450Diffusion pre-trained model (Pre-trained), the P450Diffusion fine-tuning379
model dataset (Nal F6H), and sequences generated by the P450Diffusion fine-tuning model380
(Fine-tuning).381

382
383

384
Figure 5. Experimental verification and structural insights of de novo generated P450s. (a)385
The product scutellarein peak area of 17 designs, compared with natural Cnan706X, Lsal706X386
and CYP706X1. Different colors were assigned to different proteins. (b) The histogram displays387
the peak areas of products associated with functional designs, with CYP706X1 used as the control388
group. (c) The structural distribution of mutations in Design4129 was compared to that in389
CYP706X1, with mutations represented as red spheres. (d) The boxplot illustrates the substrate390
RMSD values across long-term MD simulations, with active designs depicted in green and391
inactive designs in red. (e) The boxplot represents the RMSD values for the overall protein392
structure across long-term MD simulations, with active designs shown in green and inactive393
designs in red.394
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Methods395

Phylogenetic analysis and ancestral sequence reconstruction396

The P450 sequences of CYP706 subfamilies were selected from the previous397

study28, including ten P450s of CYP706X/Y subfamilies for ancestral sequence398

reconstruction, and a P450 of CYP706W subfamily as an out-group. The399

transmembrane domains of P450 sequences were annotated with the TMHMM400

package59. Using the crystal structures of CYP76AH1 (PDB ID: 5YLW), a structural401

information-based sequence alignment of the P450s deprived of N-transmembrane402

region were generated by Expresso60. Poorly aligned regions (N- and C termini) were403

trimmed. Then a phylogenetic ML tree was created with the RAxML61. All protein404

sequences of ancestral nodes were deduced using FastML62, 63. The N- and C-terminal405

amino acids include transmembrane domain derived from CYP706X1 were added to406

each ancestor. Ultimately, we obtained the most probable ancestor of CYP706Y407

subfamily (ancY) and CYP706X subfamily (ancX), the common ancestor of two408

subfamilies (ancXY), and all sub-ancestors of CYP706Y subfamily (ancY1, ancY2409

and ancY3) and CYP706X subfamily (ancX1, ancX2 and ancX3) in the sub-nodes of410

the phylogenetic tree (Fig. 1b). The ancestral sequences are available in411

Supplementary information.412

Crystallization and Structure Solution413

Initial crystallization screening was performed using the sitting-drop414

vapor-diffusion method with commercial crystal screen kits at 16 ℃. The ancX3415

protein at concentration 10 mg/mL in buffer (2 mM KH2PO4, 8 mM K2HPO4, 500416

mM NaCl, 0.2 mM EDTA, 1 mM DTT, 10% (v/v) glycerol and pH 7.4) was used in417

the initial crystallization screening to determine the crystallization condition. The418

ancX3 protein was mixed with precipitant solution at a drop size of 0.6+0.6 μL419

against the reservoir containing 50 μL precipitant solution. The crystals grew from the420

mixture with the precipitant solution consisting of 1.34 M NaCl, 13.4% (w/v)421

PEG3350, 0.1 M MgCl2, 0.1 M imidazole and pH 6.5. The crystal optimization was422

performed using the hanging-drop vapor-diffusion method at 16 ℃ against the423

reservoir containing 0.5 mL of the precipitant solution. The drops contained 2 μL424

precipitant solution, 2 μL ancX3 protein and 0.2 μL of additive solution (40% v/v425
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Polypropylene glycol P400) from Hampton additive screen kit.426

Crystals of ancX3 were mounted from the crystallization drops in nylon loops and427

flash-frozen in liquid nitrogen using cryoprotectant consisting of 1.34 M NaCl, 13.4%428

(w/v) PEG3350, 0.1 M MgCl2, 0.1 M imidazole, 25% (v/v) glycerol, pH 6.5.429

Diffraction data (λ = 0.97918 Å) were collected on beamlines 17U1 at Shanghai430

Synchrotron Radiation Facility for IFS crystals. Diffraction images were indexed,431

integrated and scaled using the XDS program. Details of the data-collection statistics432

are summarized in Table S1.433

The structure of ancX3 was solved by molecular replacement with the structure434

of CYP76AH1 (PDB code: 5YLW) as search model64. Iterative model building and435

refinement were performed using COOT and PHENIX, respectively. Coordinates and436

structure factors have been deposited with the PDB under accession id 8JC2.437

Structural modelling and molecular docking438

The 3D models of all P450s and ancestral proteins are predicted by the local439

ColabFold algorithm through inputting the crystal structure of ancX3 as one of440

templates65. The Cartesian coordinates and atom charges of CpdI was obtained from a441

published data66. The structure of substrate apigenin was obtained from PubChem67,442

and assigned with AM1-BCC charges68. An ensemble of different conformations of443

the substrate were generated by enumerating these under OpenBabel69. Substrate444

rotamers were extensively sampled around the C2-C1’ axis with 5° intervals. The445

mol2 formatted CpdI and apigenin were parameterized with molfile_to_params.py446

script. Before molecular docking, the protein structure complex with CpdI species447

was firstly sampled and minimized by the RosettaRelax protocol without constraints70,448
71. Then the apigenin was docked into relaxed structures using RosettaLigand72, 73, 74.449

Distance restraints were added between the Fe ion and ligated cysteine (2.3 Å +/– 0.1450

Å), between carboxylate groups of heme and arginines (2.2 Å +/– 0.4 Å) in451

Rosetta-Scripts75. Each run of 100,000 models were generated with the MPI76 version452

of RosettaLigand and the top 100 models with lowest REU were clustered with453

Calibur77, and the structures with the lowest binding free energy (interface_delta)454

were selected as our final docking models. The Rosetta scripts and option files for455

RosettaLigand and are available in Supplementary information.456
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MD simulations and MM-PB/GBSA457

Our target models with CpdI and substrate molecules were set as the initial458

structures for MD simulation. The protein structures were prepared with the459

pdb4amber application in Amber20 package78. The force field for the CpdI species460

was taken from a published data66. The partial atomic charges and missing parameters461

for substrate apigenin were generated by Antechamber with AM1-BCC charge462

model79, 80. A few Na+ ions were added to the protein surface to neutralize the total463

charge of the system. Finally, the resulting system was solvated in a rectangular box464

of TIP3P waters extending up to minimum cutoff of 12 Å from the protein boundary.465

The Amber ff14SB force field was employed for all the proteins in MD simulations.466

After proper parameterizations and setup, the resulting systems were minimized467

with two steps (the first step with 5,000 steps of steepest descent and 10,000 steps of468

conjugate gradient, the second step with 10,000 steps of steepest descent and 30,000469

steps of conjugate gradient) to remove the poor contacts and relax the systems. The470

systems were then gently annealed from 0 to 300 K under the NVT ensemble for 50471

ps with a restraint of 5 kcal mol−1 Å−2. Subsequently, the systems were maintained for472

a total of five rounds of density equilibration of 20 ps in the NPT ensemble at a target473

temperature of 300 K and a target pressure of 1.0 atm using the Langevin thermostat81474

with a restraint of 1 kcal mol−1 Å−2. Totally five rounds of density equilibration475

relaxed the system to achieve a uniform density after heating dynamics under periodic476

boundary conditions. Thereafter, we removed all of the restraints applied during477

heating and density dynamics and further equilibrated the systems for ∼2 ns to get a478

well-settled pressure and temperature for conformational and chemical analyses. This479

was followed by a MD production run for 100 ns for each of the systems. During all480

of the MD simulations, the covalent bonds containing hydrogen were constrained481

using SHAKE82 and particle-mesh Ewald83 was used to treat long-range electrostatic482

interactions. All of the MD simulations were performed with the GPU version of the483

Amber 20 package.484

The python script mmpbsa.py84 in Amber20 package was used in this research to485

analyze the binding free energy of apigenin. According to the systematic research of486

Hou et al., the inclusion of the conformational entropy may be crucial for the487

prediction of absolute binding free energies but not for ranking the binding affinities488

of similar ligands85. The binding free energy analysis implemented here just for489
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analyzing the interaction energy contribution of each key residue. Therefore, the490

change of conformational entropy upon ligand binding has been ignored in our491

calculation because of expensive computational cost and low prediction accuracy. The492

calculation procedure mainly referred the MMPBSA protocol in AMBER tutorial493

websites (http://ambermd.org/tutorials/advanced/tutorial3/section1.htm).494

Building and training the P450 Sequences Diffusion Model (P450Diffusion)495

Denoising diffusion probability models (or diffusion models, for short) work by496

applying a Markov process to corrupt the training data by successively adding497

Gaussian noise, then learning to recover the data by reversing this denoising process86.498

We adapt this framework to generate protein sequences, introducing necessary499

modifications to encode the discrete protein sequences into a vector of a specific500

length. We used physicochemical character-based schemes, the principal components501

score Vectors of Hydrophobic, Steric, and Electronic properties (VHSE8)87, to encode502

protein sequences. The P450 Sequences Diffusion model (P450diffusion) is composed503

of a U-Net with self-attention layers and features a classical U-shaped structure with504

down-sampling and up-sampling blocks.505

To build the P450Diffusion, we screened and analyzed all potential P450s from a506

published P450 database31 and public databases, filtering out sequences with a length507

greater than 560 and resulting in 226,509 sequences to form the training dataset. Then508

we encode the training dataset, where each amino acid in the protein sequence is509

encoded as an 8-dimensional vector, and each batch protein sequence is encoded as a510

64×1×560×8 vector. Here 64 is the batch size equal to the number of samples in the511

training data; 1 represents the channel size; 560 represents the maximum length of the512

protein sequence; 8 represents the VHSE8 encode vector for each amino acid in the513

protein sequence. If the protein sequence is shorter than 560, we add gaps until it514

reaches a length of 560. In this case, we assign a vector of eight zeroes as the515

encoding for gaps. Then we started to train the pre-trained P450 sequence diffusion516

model. After 150,547 training steps, the loss functions of the pre-trained diffusion517

model converged and the model was obtained. (Fig. S20a).518

In order to generate sequences with F6H function more effectively, we fine-tune519

the pre-trained diffusion model with the filtered dataset by selecting sequences with520

more than 30% amino acid identity to the CYP706X subfamily and clustering them521

with 90% sequence similarity. Finally, a total of 19234 sequences formed a522
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fine-tuning dataset. Meanwhile, we assigned different sample weights to 30 sequences523

from the CYP706X subfamily and other sequences in the fine-tuning dataset. The524

sampling weight ratio between the 30 sequences from the CYP706X subfamily and525

other sequences was 600:1. The P450Diffusion was obtained after 150,500 training526

steps (Fig. S20b).527

The P450Diffusion architecture to generate P450 sequences was based on the528

diffusion model. The diffusion model is composed of a U-Net with self-attention529

layers. The main difference with traditional U-Net is that the up-sampling and530

down-sampling blocks support an extra timestep argument on their forward pass. This531

is done by embedding the timestep linearly into the convolutions. In the training532

process, the network takes a batch of noisy protein sequences of shape (batch size,533

channels, height, width) and a batch of noise levels of shape (batch size, 1) as input,534

and returns a tensor of shape (batch size, channels, height, width). In this model, we535

used a mean squared error loss (MSELoss) function and optimized the networks with536

the AdamW algorithm, setting the learning rate to 2e-4. Our model was implemented537

in PyTorch and trained on 6 GeForce RTX 3090 systems for about 150,000 steps,538

which took approximately 63 hours.539

Computational evaluation and structure-based virtual screening for generated540

sequences541

Three criteria were used to screen the generated sequences in silico to improved542

experimental validation success rates: the computational scores of composite metrics543

for assessing the quality of generated sequences, the 3-dimensional pocket constraints544

of the five founder residues, and the robustness of the apigenin binding modes.545

Details are as follows.546

We used random protein sequences of length 560 with the five founder residues547

as the starting sequence for the diffusion model sample. In the reverse diffusion548

process, we perform 600 steps of denoising the 60,000 starting sequences to obtain549

60,000 generated sequences. In order to increase the likelihood that the generated550

sequences would function as F6H, we evaluated the generated protein sequences551

using a variety of computational metrics, including esm-1v88, Alphafold218,552

ProteinMPNN89, and others90. Firstly, the 60,000 generated sequences were screened553

by the sequence motif constructed by the five founder residues, and 77 sequences554

were filtered out. Secondly, both the 77 generated sequences and the F6H sequences555
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were scored for esm-1v, and then the top 33 sequences in the esm-1v results were556

selected for alphafold2 structure modeling. Thirdly, the constructed structures and557

sequences were evaluated using ProteinMPNN, and the top 19 designs were selected558

based on their ProteinMPNN scores, which were higher than that of CYP706X1559

(-1.63). Fourthly, substrate apigenin and CpdI were docked into constructed structures560

using RosettaLigand and the substrate-binding models were obtained based on561

binding affinity (interface_delta_X); Subsequently, MD simulations were performed562

to evaluate the overall structure stability and binding pocket stability for each563

designed sequences; Finally, the substrate-binding structures that meet catalytic564

pocket constraints constituted by founder residues and maintain stable substrate565

binding modes were chosen as candidate sequences for experimental verifications566

(Fig. S21).567

Cloning construction and products detection568

Chemicals and media used in this study were exhibited in supplementary569

materials. All primers used in this study are listed in Table S3. All strains and570

plasmids are listed in Table S4. The protein sequences and DNA sequences can be571

found in supplementary information. Nucleotide sequences of ancXY, ancX, ancX1,572

ancX2 and ancX3, ancX-16 were codon optimized for Saccharomyces cerevisiae and573

synthesis by Genscript, China. Subsequently, the gene fragments, ATR2 (P450574

reductase from Arabidopsis thaliana) and the head-to-head promoters575

(pPGK1-pTDH3) were cloned into the vector Y22-TC using the Minerva Super576

Fusion Cloning Kit (US Everbright Inc., China). The assembly system was577

transformed into DMT competent cells and the sequences assembled successfully578

were verified by further sequencing. For mutants constructing, mutation sites were579

introduced by the mutant primers which listed in Table S3 and used the same method580

for recombinant vectors assembly. The nucleotide sequences of P450 designs were581

codon optimized for S. cerevisiae and subcloned between PGK1 promoter and CYC1582

terminator of Y22-PE by Genscript, China.583

Due to the functional expression of P450 enzyme needed an auxiliary reductase584

partner (CPR), the ATR2 from Arabidopsis thaliana was cloned into expression vector585
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YCplac33-TP which contained a TDH3 promoter and a PDC1 terminator and named586

Y33-ATR2. The plasmid Y33-ATR2 was preserved in our laboratory. The587

recombinant vectors containing P450 enzymes designed by deep learning were588

separately co-transformed with Y33-ATR2 into W303-1B, and transformants were589

selected on a tryptophan and uracil minus plate (CM-Trp-Ura). Three colonies were590

picked for each genotype, and used to inoculate 3 ml of CM-Trp-Ura medium in a591

24-well-plate. The recombinant vectors containing ATR2 and P450 (ancXY, ancX,592

ancX1, ancX2 or ancX3) were directly transformed into W303-1B without extra593

Y33-ATR2 and cultured in tryptophan minus medium (CM-Trp). The cells were594

grown at 30 ℃ and 550 rpm for 48 hours, after which the resulting seed cultures were595

transferred into fresh medium at a ratio of 1:50. The new cultivation was fermented596

under the same condition for 4 days after feeding 1mM apigenin. For the mutants,597

flasks containing 30 ml of medium were then inoculated at a ratio of 1:50 using the598

resulting seed cultures by feeding 1mM apigenin. The main cultures were grown at599

30 ℃ and 220 rpm for 4 days. The products extraction method and HPLC detection600

method was based on our previous study28 and was described in detail in the601

supplementary methods.602

603

Authorship contribution statement604

Qian Wang performed computational analysis and enzyme design, and wrote the605

manuscript. Xiaonan Liu and Qian Wang designed experiments and interpreted606

experimental results. Hejian Zhang and Huanyu Chu conducted deep learning work.607

Chao Shi performed the crystallization of ancX3. Other authors contributed to608

collating experimental results. Zhenzhan Chang and Jian Cheng revised the paper.609

Huifeng Jiang conceived and directed the project.610

611

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Declaration of competing interests612

The authors declare no competing financial interests.613

614

Acknowledgements615

We thank the staff of beamline BL17U1 at Shanghai Synchrotron Radiation616

Facility (SSRF), Shanghai, People’s Republic of China, for assistance during data617

collection.618

This project has received funding from the National Key R&D Program of China619

(Grant No. 2021YFC2103500); National Natural Science Foundation of China (No.620

32371499); China Postdoctoral Science Foundation (Grant No. 2019M661032);621

National Natural Science Foundation of China (NSFC; Grant No. 31901026 and No.622

32171418); Tianjin Synthetic Biotechnology Innovation Capacity Improvement623

Project (No. TSBICIP-KJGG-002-02 and No. TSBICIP-CXRC-015); the Tianjin624

Science Fund for Distinguished Young Scholars (No.18JCJQJC48300).625

626

Appendix A. Supplementary data627

Supplementary data for this article can be found online.628

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Reference629

1. Nelson DR. Cytochrome P450 diversity in the tree of life. Biochimica et Biophysica Acta630
(BBA)-Proteins and Proteomics 1866, 141-154 (2018).631

632
2. Lamb DC, et al. On the occurrence of cytochrome P450 in viruses. Proceedings of the633

National Academy of Sciences 116, 12343-12352 (2019).634
635

3. Liang Y, Wei J, Qiu X, Jiao N. Homogeneous oxygenase catalysis. Chemical reviews 118,636
4912-4945 (2018).637

638
4. Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a639

review. Current drug targets 19, 38-54 (2018).640
641

5. Coon MJJARPT. Cytochrome P450: nature's most versatile biological catalyst. 45, 1-25 (2005).642
643

6. Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological644
application: chances and limitations. J Applied microbiology 98, 6185-6203 (2014).645

646
7. Liu X, Zhu X, Wang H, Liu T, Cheng J, Jiang H. Discovery and modification of cytochrome P450647

for plant natural products biosynthesis. Synthetic and Systems Biotechnology 5, 187-199648
(2020).649

650
8. Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme651

systems for biomedical and biotechnological applications. Journal of Biological Chemistry 295,652
833-849 (2020).653

654
9. Moody PC, Raven EL. The nature and reactivity of ferryl heme in compounds I and II.655

Accounts of chemical research 51, 427-435 (2018).656
657

10. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure,658
Reactivity, and Selectivity, Modeled by QM/MM Calculations. Chemical reviews 110,659
949-1017 (2010).660

661
11. Nair PC, McKinnon RA, Miners JO. Cytochrome P450 structure–function: insights from662

molecular dynamics simulations. Drug metabolism reviews 48, 434-452 (2016).663
664

12. Li QS, Schwaneberg U, Fischer P, Schmid RD. Directed evolution of the fatty-acid hydroxylase665
P450 BM-3 into an indole-hydroxylating catalyst. Chemistry–A European Journal 6, 1531-1536666
(2000).667

668
13. Brandenberg OF, Chen K, Arnold FH. Directed evolution of a cytochrome P450 carbene669

transferase for selective functionalization of cyclic compounds. J Journal of the American670
Chemical Society 141, 8989-8995 (2019).671

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


672
14. Yang Y, Arnold FHJAoCR. Navigating the unnatural reaction space: directed evolution of heme673

proteins for selective carbene and nitrene transfer. 54, 1209-1225 (2021).674
675

15. Reetz MTJAoCR. Directed evolution of artificial metalloenzymes: a universal means to tune676
the selectivity of transition metal catalysts? 52, 336-344 (2019).677

678
16. Brandenberg OF, Fasan R, Arnold FH. Exploiting and engineering hemoproteins for abiological679

carbene and nitrene transfer reactions. Current opinion in biotechnology 47, 102-111 (2017).680
681

17. Baek M, et al. Accurate prediction of protein structures and interactions using a three-track682
neural network. Science 373, 871-876 (2021).683

684
18. Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature 596,685

583-589 (2021).686
687

19. Ding W, Nakai K, Gong H. Protein design via deep learning. Briefings in Bioinformatics 23,688
(2022).689

690
20. Ferruz N, et al. From sequence to function through structure: Deep learning for protein691

design. (2022).692
693

21. Liu Y, et al. Rotamer-free protein sequence design based on deep learning and694
self-consistency. 2, 451-462 (2022).695

696
22. Watson JL, et al. De novo design of protein structure and function with RFdiffusion. 1-3697

(2023).698
699

23. Repecka D, et al. Expanding functional protein sequence spaces using generative adversarial700
networks. Nature Machine Intelligence 3, 324-333 (2021).701

702
24. Liu H, Chen QJWIRCMS. Computational protein design with data-driven approaches: Recent703

developments and perspectives. 13, e1646 (2023).704
705

25. Malbranke C, Bikard D, Cocco S, Monasson R, Tubiana JJCOiSB. Machine learning for706
evolutionary-based and physics-inspired protein design: Current and future synergies. 80,707
102571 (2023).708

709
26. Sanderson T, Bileschi ML, Belanger D, Colwell LJJE. ProteInfer, deep neural networks for710

protein functional inference. 12, e80942 (2023).711
712

27. Xu Y, et al. Deep dive into machine learning models for protein engineering. 60, 2773-2790713
(2020).714

715

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. Liu X, et al. Engineering yeast for the production of breviscapine by genomic analysis and716
synthetic biology approaches. Nature communications 9, 1-10 (2018).717

718
29. Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Advances in neural719

information processing systems 33, 6840-6851 (2020).720
721

30. Clifton BE, Kaczmarski JA, Carr PD, Gerth ML, Tokuriki N, Jackson CJ. Evolution of722
cyclohexadienyl dehydratase from an ancestral solute-binding protein. Nature Chemical723
Biology 14, 542-547 (2018).724

725
31. Wang H, et al. PCPD: Plant cytochrome P450 database and web-based tools for structural726

construction and ligand docking. Synthetic and systems biotechnology 6, 102-109 (2021).727
728

32. Anand N, Achim T. Protein structure and sequence generation with equivariant denoising729
diffusion probabilistic models. arXiv preprint arXiv:220515019, (2022).730

731
33. Copeland RA. Enzymes: a practical introduction to structure, mechanism, and data analysis.732

John Wiley & Sons (2000).733
734

34. Long M, VanKuren NW, Chen S, Vibranovski MD. New gene evolution: little did we know.735
Annual review of genetics 47, 307-333 (2013).736

737
35. Cheng J, et al. The origin and evolution of the diosgenin biosynthetic pathway in yam. Plant738

communications 2, 100079 (2021).739
740

36. Cheng J, et al. Chromosome-level genome of Himalayan yew provides insights into the origin741
and evolution of the paclitaxel biosynthetic pathway.Molecular Plant 14, 1199-1209 (2021).742

743
37. Liu Z, et al. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in744

plant metabolism. Nature Communications 7, 13026 (2016).745
746

38. Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and747
evolution.Molecular Plant 14, 1244-1265 (2021).748

749
39. Jensen RA. Enzyme recruitment in evolution of new function. Annual review of microbiology750

30, 409-425 (1976).751
752

40. Arnold FH. The nature of chemical innovation: new enzymes by evolution. Quarterly Reviews753
of Biophysics 48, 404-410 (2015).754

755
41. Copley SD. Setting the stage for evolution of a new enzyme. Current opinion in structural756

biology 69, 41-49 (2021).757
758

42. Long M, Betrán E, Thornton K, Wang W. The origin of new genes: glimpses from the young759

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


and old. Nature Reviews Genetics 4, 865-875 (2003).760
761

43. Zhou Q, et al. On the origin of new genes in Drosophila. Genome research 18, 1446-1455762
(2008).763

764
44. Carvunis A-R, et al. Proto-genes and de novo gene birth. Nature 487, 370-374 (2012).765

766
45. Ohno S. Evolution by gene duplication. Springer Science & Business Media (2013).767

768
46. Zimmer CT, et al. Neofunctionalization of duplicated P450 genes drives the evolution of769

insecticide resistance in the brown planthopper. Current Biology 28, 268-274. e265 (2018).770
771

47. Renata H, Wang ZJ, Arnold FH. Expanding the enzyme universe: accessing non-natural772
reactions by mechanism-guided directed evolution. Angewandte Chemie International773
Edition 54, 3351-3367 (2015).774

775
48. Giunta CI, et al. Tuning the properties of natural promiscuous enzymes by engineering their776

nano-environment. ACS nano 14, 17652-17664 (2020).777
778

49. Raag R, Poulos TL. Crystal structures of cytochrome P-450CAM complexed with camphane,779
thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation.780
Biochemistry 30, 2674-2684 (1991).781

782
50. Haines DC, Tomchick DR, Machius M, Peterson JA. Pivotal role of water in the mechanism of783

P450BM-3. Biochemistry 40, 13456-13465 (2001).784
785

51. Benkovic SJ, Hammes-Schiffer S. A perspective on enzyme catalysis. Science 301, 1196-1202786
(2003).787

788
52. Rana M, et al. Surgical treatment of zygomatic bone fracture using two points fixation versus789

three point fixation-a randomised prospective clinical trial. Trials 13, 1-10 (2012).790
791

53. Liu X, et al. De Novo biosynthesis of multiple pinocembrin derivatives in Saccharomyces792
cerevisiae. ACS Synthetic Biology 9, 3042-3051 (2020).793

794
54. Gao R, et al. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X795

members related to flavone biosynthesis in Lamiaceae and Asteraceae. The Plant Journal,796
(2021).797

798
55. Wu Z, Johnston KE, Arnold FH, Yang KK. Protein sequence design with deep generative799

models. Current opinion in chemical biology 65, 18-27 (2021).800
801

56. Ovchinnikov S, Huang P-S. Structure-based protein design with deep learning. Current opinion802
in chemical biology 65, 136-144 (2021).803

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


804
57. Wang J, et al. Scaffolding protein functional sites using deep learning. Science 377, 387-394805

(2022).806
807

58. Crooks GE, Hon G, Chandonia J-M, Brenner SEJGr. WebLogo: a sequence logo generator. 14,808
1188-1190 (2004).809

810
59. Möller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane811

spanning regions. Bioinformatics 17, 646-653 (2001).812
813

60. Armougom F, et al. Expresso: automatic incorporation of structural information in multiple814
sequence alignments using 3D-Coffee. Nucleic acids research 34, W604-W608 (2006).815

816
61. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large817

phylogenies. Bioinformatics 30, 1312-1313 (2014).818
819

62. Ashkenazy H, et al. FastML: a web server for probabilistic reconstruction of ancestral820
sequences. Nucleic acids research 40, W580-W584 (2012).821

822
63. Kaltenbach M, et al. Evolution of chalcone isomerase from a noncatalytic ancestor. Nature823

Chemical Biology 14, 548-555 (2018).824
825

64. Shi C, et al. Structural insights revealed by crystal structures of CYP76AH1 and CYP76AH1 in826
complex with its natural substrate. Biochemical and Biophysical Research Communications827
582, 125-130 (2021).828

829
65. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making830

protein folding accessible to all. Nature methods 19, 679-682 (2022).831
832

66. Dubey KD, Wang B, Shaik S. Molecular dynamics and QM/MM calculations predict the833
substrate-induced gating of cytochrome P450 BM3 and the regio-and stereoselectivity of834
fatty acid hydroxylation. Journal of the American Chemical Society 138, 837-845 (2016).835

836
67. Kim S, et al. PubChem substance and compound databases. Nucleic acids research 44,837

D1202-D1213 (2015).838
839

68. Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in840
molecular mechanical calculations. Journal of molecular graphics & modelling 25, 247-260841
(2006).842

843
69. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An844

open chemical toolbox. Journal of Cheminformatics 3, 33 (2011).845
846

70. Misura KM, Baker D. Progress and challenges in high-resolution refinement of protein847

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


structure models. Proteins: Structure, Function, and Bioinformatics 59, 15-29 (2005).848
849

71. Bradley P, Misura KM, Baker D. Toward high-resolution de novo structure prediction for small850
proteins. Science 309, 1868-1871 (2005).851

852
72. Meiler J, Baker D. ROSETTALIGAND: Protein–small molecule docking with full side-chain853

flexibility. Proteins: Structure, Function, and Bioinformatics 65, 538-548 (2006).854
855

73. Davis IW, Baker D. RosettaLigand docking with full ligand and receptor flexibility. Journal of856
Molecular Biology 385, 381-392 (2009).857

858
74. Lemmon G, Meiler J. Rosetta Ligand docking with flexible XML protocols. In: Computational859

Drug Discovery and Design). Springer (2012).860
861

75. Fleishman SJ, et al. RosettaScripts: a scripting language interface to the Rosetta862
macromolecular modeling suite. PloS one 6, e20161 (2011).863

864
76. Graham RL, Woodall TS, Squyres JM. Open MPI: A flexible high performance MPI. In:865

International Conference on Parallel Processing and Applied Mathematics). Springer (2005).866
867

77. Li SC, Ng YK. Calibur: a tool for clustering large numbers of protein decoys. BMC868
bioinformatics 11, 25 (2010).869

870
78. Case DA, et al. Amber 2021. University of California, San Francisco (2021).871

872
79. Wang J, Wang W, Kollman PA, Case DA. Antechamber: an accessory software package for873

molecular mechanical calculations. J Am Chem Soc 222, U403 (2001).874
875

80. Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges.876
AM1-BCC model: II. Parameterization and validation. Journal of computational chemistry 23,877
1623-1641 (2002).878

879
81. Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD. Langevin stabilization of molecular dynamics.880

The Journal of chemical physics 114, 2090-2098 (2001).881
882

82. Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of883
motion of a system with constraints: molecular dynamics of n-alkanes. Journal of884
computational physics 23, 327-341 (1977).885

886
83. Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in887

large systems. The Journal of chemical physics 98, 10089-10092 (1993).888
889

84. Miller III BR, McGee Jr TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA. py: an890
efficient program for end-state free energy calculations. Journal of chemical theory and891

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/


computation 8, 3314-3321 (2012).892
893

85. Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA894
methods. 1. The accuracy of binding free energy calculations based on molecular dynamics895
simulations. Journal of chemical information and modeling 51, 69-82 (2011).896

897
86. Sohl-Dickstein J, Weiss E, Maheswaranathan N, Ganguli S. Deep unsupervised learning using898

nonequilibrium thermodynamics. In: International conference on machine learning). PMLR899
(2015).900

901
87. Mei H, Liao ZH, Zhou Y, Li SZ. A new set of amino acid descriptors and its application in902

peptide QSARs. Peptide Science: Original Research on Biomolecules 80, 775-786 (2005).903
904

88. Meier J, Rao R, Verkuil R, Liu J, Sercu T, Rives A. Language models enable zero-shot prediction905
of the effects of mutations on protein function. Advances in Neural Information Processing906
Systems 34, 29287-29303 (2021).907

908
89. Dauparas J, et al. Robust deep learning–based protein sequence design using ProteinMPNN.909

Science 378, 49-56 (2022).910
911

90. Johnson SR, et al. Computational Scoring and Experimental Evaluation of Enzymes Generated912
by Neural Networks. bioRxiv, 2023.2003. 2004.531015 (2023).913

914

915

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.08.574609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.08.574609
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Cytochrome P450 Enzyme Design by Constraining Cata
	Abstract
	Introduction
	Results
	Functional innovation of F6H in CYP706 family
	Founder residues for functional innovation of F6H
	The principle of catalytic pocket for functional i
	Diffusion model-based designing of P450 with the s
	Experimental verification and structural insights 

	Discussion
	Figures
	Methods
	Phylogenetic analysis and ancestral sequence recon
	Crystallization and Structure Solution
	Structural modelling and molecular docking
	MD simulations and MM-PB/GBSA
	Building and training the P450 Sequences Diffusion
	Computational evaluation and structure-based virtu
	Cloning construction and products detection  

	Authorship contribution statement
	Declaration of competing interests
	Acknowledgements 
	Appendix A. Supplementary data
	Reference

