

1 Cytochrome P450 Enzyme Design by Constraining Catalytic Pocket 2 in Diffusion model

3
4 Qian Wang^{a,b,c#}, Xiaonan Liu^{a,b,c#}, Hejian Zhang^{a,c,h#}, Huanyu Chu^{a,c#}, Chao Shi^{d#},
5 Lei Zhang^{a,c}, Pi Liu^{a,c}, Jing Li^{a,c,f,g}, Xiaoxi Zhu^{a,b,c}, Yuwan Liu^{a,c}, Zhangxin Chen^d,
6 Rong Huang^{a,c}, Jie Bai^{a,c}, Hong Chang^{a,c}, Tian Liu^{a,c}, Zhenzhan Chang^{d*}, Jian
7 Cheng^{a,c*}, Huifeng Jiang^{a,c*}

8
9
10 ^a*Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial*
11 *Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.*

12 ^b*University of Chinese Academy of Sciences, Beijing, 100049, China.*

13 ^c*National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.*

14 ^d*Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University,*
15 *Beijing, 100191, China.*

16 ^e*College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023,*
17 *China*

18 ^f*State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University,*
19 *Tianjin, 300071, China.*

20 ^g*College of Life science, Nankai University, Tianjin, 300071, China.*

21 ^h*College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.*

22
23 #These authors contributed equally to this article.

24 *Correspondence: Huifeng Jiang (jiang_hf@tib.cas.cn), Jian Cheng (cheng_j@tib.cas.cn) and
25 Zhenzhan Chang (changz@bjmu.edu.cn).

26 **Abstract**

27 Although cytochrome P450 enzymes are the most versatile biocatalysts in nature,
28 there is insufficient comprehension of the molecular mechanism underlying their
29 functional innovation process. Here, by combining ancestral sequence reconstruction,
30 reverse mutation assay and structure analysis, we identified five founder residues in
31 the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a “three-point
32 fixation” model to elucidate the functional innovation mechanisms of P450s in nature.
33 According to this design principle of catalytic pocket, we further developed a de novo
34 diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the
35 17 non-natural P450s we generated, ten designs exhibited significant F6H activity and
36 six exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural
37 CYP706X1. This work not only explores the design principle of catalytic pockets of
38 P450s, but also provides an insight into the artificial design of P450 enzymes with
39 desired functions.

40

41 **Keywords**

42 Cytochrome P450; Functional innovation; Diffusion Model; De novo P450 design

43 **Introduction**

44 Cytochrome P450 enzymes (P450s) are ubiquitous in nearly all living organisms,
45 playing pivotal roles in various metabolic processes and pathways crucial for life,
46 growth, and development¹. As the most versatile biocatalysts in nature, P450s not
47 only catalyzed more than 95% of the reported oxidation and reduction reactions^{2, 3, 4},
48 but also are known as “Universal catalyst” in industrial applications due to the ability
49 of selective oxidation of inert carbon-hydrogen bonds under mild conditions^{5, 6}.
50 Therefore, obtaining new P450s with better properties has become an important goal
51 in the field of bioengineering^{7, 8}. In spite of huge functional diversity, most P450s
52 share the same catalytic mechanism^{9, 10} and similar structural scaffolds⁴. However, the
53 catalytic pockets exhibited significant variability in P450s with different functions
54 (Fig. S1)¹¹. Moreover, the nonpolar composition and unique conformational flexibility
55 of the substrate binding pockets are likely to enhance the capacity of these enzymes to
56 modify their active sites and adapt to new substrates and selectivities⁴. Considering
57 the high evolvability of P450s, directed evolution has been extensively employed in
58 engineering P450s with better traits^{12, 13, 14, 15}. However, this method often necessitates
59 multiple rounds of random mutagenesis and high-throughput screening, making it
60 challenging to exhaustively explore the potential protein space, whether in the
61 laboratory or computationally¹⁶.

62 The rapid development of deep learning has opened up a new method to acquire
63 novel P450s with desired characteristics. Even though impressive achievements have
64 been witnessed in protein structure prediction^{17, 18}, the desired functional design still is
65 a big challenge^{19, 20}. Recent developments in protein design leveraged by deep
66 learning methods encompass a broad spectrum. These include designing sequences
67 for fixed backbones²¹, variable backbone design²², as well as the direct generation of
68 novel sequences and backbones within the natural protein space²³. These models
69 employ various architectures, including Convolutional Neural Networks (CNN),
70 Graph Neural Networks (GNN), and Transformers, which are all instrumental in
71 capturing the complex interactions between amino acids within a protein sequence¹⁹.
72 The abundance of sequence and structure data contributes to these deep learning
73 models surpassing the performance of traditional physical or statistical models^{24, 25}.
74 However, when considering functional design, it's impossible to collect sufficient
75 high-quality functional data to train a sophisticated model to create sequences with a
76 desired function^{26, 27}. Considering the current shortage, an approach that fuses
77 knowledge-based techniques to scrutinize the design principles of natural P450s with
78 powerful deep learning models to expand the natural protein sequence space, may be

79 appropriate for designing new P450s. As our comprehension of the fundamental
80 mechanisms that govern the evolution of the catalytic pocket for functional innovation
81 in natural P450s remains limited, elucidating the process by which a particular P450
82 adopts a new function becomes crucial in designing a new one.

83 In this work, we used a flavone 6-hydroxylase (CYP706X1) from *Erigeron*
84 *breviscapus* as an example, which belongs to the CYP706X subfamily and converts
85 apigenin into scutellarein in the biosynthetic pathway of scutellarin (Fig. S2)²⁸. Firstly,
86 we determined the founder residues constituting the catalytic pocket responsible for
87 the functional innovation of the P450 gene through ancestral sequence reconstruction,
88 reverse mutation assay and crystallographic analysis. Then, we elucidated the design
89 principle of catalytic pocket for the functional innovation by an in-depth structural
90 analysis. Finally, we devised the P450Diffusion, an artificial P450 generative model,
91 by integrating the catalytic pocket design principle with a denoising diffusion
92 probabilistic model which has demonstrated outstanding performance in image
93 generation²⁹. With the P450Diffusion model, we successfully designed 10 artificial
94 P450s with F6H activity, and one design outperforms the naturally best-performing
95 gene about 3.5-fold, indicating the potential of P450Diffusion in the design of new
96 P450 enzymes.

97 **Results**

98 **Functional innovation of F6H in CYP706 family**

99 Among the characterized P450s in CYP706 family, only the P450s in CYP706X
100 subfamily could catalyze the flavonoid substrates, indicating that the F6H function
101 may be de novo innovated in the ancestor of CYP706X subfamily (Fig. 1a and Fig.
102 S3). Moreover, we found that the catalytic pocket's configuration of CYP706X1 (i.e.,
103 EbF6H from *Erigeron breviscapus*) is totally different from other P450s in CYP706
104 family. The substrate apigenin even could not be properly positioned in other P450s
105 with a C6-prone reactive state, which refers to the molecular configuration that is best
106 suited for binding to the catalytic pocket of the enzyme and undergoing a reaction
107 (Fig. S4). Therefore, it provides us an opportunity to decipher the constructive
108 mechanisms for the formation of F6H's catalytic pocket by comparing the
109 neighboring genes in CYP706 family.

110 We compared the evolutionary trajectory between the CYP706X subfamily and
111 the most closely non-functional CYP706Y subfamily using ancestral sequence
112 reconstruction (Methods). By testing the function of the inferred ancestral P450s for
113 all key nodes in the phylogenetic tree (Fig. 1b), most ancestral sub-nodes in
114 CYP706X subfamily displayed significant F6H activity (Fig. 1c and Fig. S5).
115 Conversely, the F6H function disappeared in both the common ancestor ancXY and
116 the ancestor of CYP706Y subfamily (Fig. 1c). Thus, the F6H's catalytic pocket should
117 be originated when the CYP706X subfamily diverged from the common ancestor of
118 CYP706X and CYP706Y (ancXY). To gain insight into the evolution of the catalytic
119 pocket underlying functional innovation, we determined the crystal structure of ancX3,
120 which was found to crystallize more readily after screening for crystallization
121 conditions (Fig. S5, Fig. S6 and Table S1). Indeed, the binding mode of apigenin in
122 the common ancestor of CYP706X subfamily (ancX) was obviously different from
123 the non-functional ancXY, though they possessed very similar structural arrangement
124 (RMSD < 1.0Å, sequence identity = 83%) (Fig. 1d and Fig. 1e). A strong pai-pai
125 stacking and an obvious hydrogen bond are found to stabilize the substrate in a
126 C6-prone reactive state in ancX's catalytic pocket (Fig. 1d). However, the substrate in
127 the non-functional ancXY is held in a non-C6-prone reactive state with the hydrogen
128 bonds only by the surrounding residues like Trp and Thr (Fig. 1e).

129 **Founder residues for functional innovation of F6H**

130 In order to clarify the molecular mechanism of forming the catalytic pocket with
131 F6H function, we proposed to analyze the changes of amino acid compositions
132 between catalytic pockets of non-functional ancXY and functional ancX. Within 8 Å
133 range of the active center, 16 out of 48 residues are different (Fig. 2a). Interesting,
134 when we replaced all of the 16 residues with the corresponding residues in ancX, the
135 mutant (referred to as the ancXY-16) obtained F6H function (Fig. 2b). Given that not
136 all residues in the catalytic pocket contributed significantly to substrate recognition
137 and binding due to different locations of residues in three-dimensional space³⁰, we
138 attempt to find out the founder residues of the catalytic pocket in ancXY-16 by the
139 reverse mutation assay (RMA) to eliminate non-essential residues (Fig. 2b).

140 Firstly, RMA was respectively carried out on the 16 residues of ancXY-16 to
141 clarify the effect of each residue on the catalytic activity. We found one of them
142 (A220L) inactivated the ancXY-16, and 12 mutations significantly decreased the
143 catalytic activity, but four mutations (i.e., G111A, N119Q, F251L and V307L) had
144 less impact on the activity. Structural analysis showed that these four mutations were
145 distant from the P450 catalytic center and did not involve in the changes in the
146 residue's intrinsic hydrophilicity/hydrophobicity (Fig. S7). Subsequently, we excluded
147 these four mutations to construct the ancXY-12. RMA against the 12 residues of
148 ancXY-12 showed one extra mutation (T114I) could destroy the function of F6H. We
149 combined the two inactivating mutations (L220A and I114T) in ancXY to construct
150 ancXY-2, however, it didn't show F6H activity. Furthermore, we gradually added
151 single mutation to ancXY-2 according to the order of the RMA mutational effect in
152 ancXY-12. And finally, the constructed ancXY-5 (i.e., L220A, I114T, W123F, L248M,
153 and T317A) displayed F6H activity, and each of the five reverse mutations in
154 ancXY-5 deactivated the enzyme (Fig. 2b). The results showed that the mutations of
155 the five amino acids play a founder role (referred to as founder residues in the
156 following) in the F6H functional innovation process from ancXY to ancX. As to other
157 11 residues, the structural analysis showed that these mutations decreasing the
158 catalytic activity might play auxiliary roles in the enzyme catalysis due to no direct
159 interactions with the substrate apigenin (Fig. S7 and Fig. S8).

160 **The principle of catalytic pocket for functional innovation of F6H**

161 We further interpreted the underlying mechanism of five founder residues for
162 functional innovation through an in-depth analysis of the apigenin-binding model in
163 ancXY-5 (Fig. 3a). The five founder residues could be divided into two parts
164 according to their roles in protein structure. The first part included I114T, W123F and
165 L248M which mainly contributed to fix or bind the apigenin. For example, the I114T
166 introduced a hydrogen bond with 7' hydroxyl of apigenin with an energy contribution
167 of 0.66 ± 0.10 kcal/mol (Methods, Fig. 3b). A null mutation of T114V in ancXY-5 also
168 ascertained the indispensability of this hydrogen bond for the F6H function (Fig. S9).
169 The W123F contributed to the apigenin binding (-3.14 ± 0.37 kcal/mol) with an
170 aromatic pai-pai stacking interaction to the phenyl ring of the apigenin and alleviated
171 the spatial conflicts caused by ancestral tryptophan in the ancXY (Fig. 3c). The
172 L248M, located in the substrate access gate, was not only involved in the substrate
173 tunneling process (Fig. 3d, Video S1), but also contributed to the apigenin binding
174 with a pai stacking to the phenyl ring of apigenin. The second part included L220A
175 and T317A contributed to alleviate inappropriate interactions and space conflicts. The
176 L220A alleviated the space conflict conducted by ancestral leucine and provided
177 sufficient space for the placement of the B ring of substrate apigenin through the
178 introduction of a small side chain (Fig. 3e). The T317A not only provided sufficient
179 space for the placement of the A ring of apigenin but also avoided the
180 wrong-orientation apigenin-binding mode shown in nonfunctional ancXY caused by a
181 hydrogen bond between the hydroxyl group of threonine and the substrate (Fig. 3f).

182 Based on the mutations of five founder residues, it appears that, with an
183 appropriate spatial capacity (provided by small side chain residues A220 and A317),
184 the catalytic pocket evolved following a “three-point fixation” model. The
185 “three-point fixation” refers to essential interactions with three pivots in apigenin
186 including: 4'-OH of apigenin molecule (the first pivot) was fixed by the hydrogen
187 bond from T114, the “B” ring of apigenin (the second pivot) was fixed by the pai
188 stacking interactions from F123 and M248, and 7-OH of apigenin (the third pivot)
189 was fixed by the hydrogen bond with CpdI iron-oxo moiety (Fig. S10). The model
190 held the substrate apigenin in a reactive near-attack conformation (NAC), which
191 maintained the relative orientation between the reaction site of apigenin and CpdI
192 iron-oxo moiety at a favorable distance and angle (3.6 Å and 155°), thus serving to
193 initiate the 6-hydroxylation reaction of apigenin in the catalytic process (Fig. S11).
194 We propose that the “three-point fixation” model could serve as the design principle

195 for the catalytic pocket responsible for the natural functional innovation of F6H,
196 which also offers us the potential to de novo design P450s with the desired functions.

197 **Diffusion model-based designing of P450 with the specific function**

198 Hundreds of thousands of P450 protein sequences collected in public databases
199 offer us an opportunity to learn natural P450 sequence diversity and design new
200 functional P450s³¹. Recent advancements in diffusion models have shown significant
201 potential in enhancing the design of P450 enzymes with specific functions^{29, 32}. Here,
202 we proposed a P450 Sequences Diffusion Model (P450Diffusion) to de novo design
203 P450s with a desired function by combining the diffusion model with the design
204 principle of F6H catalytic pocket (Fig. 4a). P450Diffusion mainly consists of two
205 models (i.e., pre-trained and fine-tuning diffusion models). Firstly, 226,509 natural
206 P450 sequences were collected to train a pre-trained P450 sequence diffusion model.
207 This pre-trained model consists of two subprocesses: a forward diffusion subprocess,
208 which gradually adds Gaussian noise to the representation of P450 sequence until it
209 becomes random noise, and a reverse generation subprocess, which starts from
210 random noise and gradually de-noises the representation of P450 sequence to generate
211 a new P450 sequence. After 150,547 training rounds, the pre-trained diffusion model
212 could generate a wide variety of sequences, with similarities to natural sequences
213 ranging from 20% to 50%. Secondly, 19,202 P450 sequences with appreciable
214 similarity to CYP706X subfamily were used to fine-tune the pre-trained diffusion
215 model for ensuring that the generated sequences have a similar structural backbone to
216 the F6H. Besides, the five founder residues including T114, F123, A220, M248 and
217 A317 were constrained to ensure the reproduction of the “three-point fixation” design
218 principle in de novo generated sequences. The model integrating training set
219 fine-tuning with constrained generation was referred to as the fine-tuning diffusion
220 model.

221 Furthermore, we used the fine-tuning diffusion model to generate a total of
222 60,000 non-natural P450 sequences, which share about 50% average amino acid
223 identity to that of the natural sequences. In comparison with natural P450s, the
224 generated sequences not only have a highly similar distribution of Shannon entropies
225 for each position in multiple sequence alignments, but also display very consistent
226 residue-residue co-evolution patterns and physicochemical properties (Fig. S12 and
227 Fig. S13). However, the generated sequences can be grouped into smaller clusters and
228 interpolated between the natural sequence clusters, indicating that the generated
229 sequences have higher diversity than natural P450s (Fig. 4b). It is noteworthy that the

230 sequences generated by the fine-tuning P450Diffusion model form a larger cluster,
231 exhibiting greater similarity to the CYP706X subfamily, thereby demonstrating the
232 effectiveness of the fine-tuning model. Besides, we compared the distribution of five
233 founder residues among natural and generated P450s (Fig. 4c). It is found that except
234 the threonine (T) in position 317, other positions are highly variable in natural and
235 generated P450s from pre-trained model, even in natural P450s from CYP706 family.
236 However, all of five founder residues are relatively conserved in the generated P450s
237 from fine-tuning model, indicating that the P450Diffusion possessed the capability of
238 generating sequences with an amino-acid distribution similar to that of natural F6H on
239 the basis of constrained five founder residues.

240

241 **Experimental verification and structural insights of de novo generated P450s**

242 Finally, we experimentally tested whether the generated sequences from
243 P450Diffusion were true P450 enzymes, and performed F6H function. In order to
244 accurately obtain functional sequences from numerous designs, we conducted virtual
245 screening on 60,000 generated sequences based on three specific criteria: the
246 computational scores of composite metrics for assessing the quality of generated
247 sequences, the 3-dimensional pocket constraints of the five founder residues, and the
248 robustness of the apigenin binding modes (details in Methods, Fig. 4a). 17 designs
249 with sequence identities ranging from 70% to 87% to CYP706X1, were retained by
250 the virtual screening, then synthesized and expressed in yeast expression systems
251 (Table S2). The recombinant yeasts were cultivated for four days by feeding apigenin
252 as substrate and HPLC analysis revealed ten designs with significant F6H activity
253 (Fig. 5a). Surprisingly, there are six designs exhibited a 1.3- to 3.5-fold increase in
254 scutellarein production compared to CYP706X1 (Fig. 5b). The four remaining active
255 designs also displayed comparable activities with other natural F6H enzymes (i.e.,
256 Cn706X and Ls706X). Therefore, the results indicated that the P450Diffusion
257 could not only capture the fundamental design principle of F6H catalytic pocket and
258 effectively generate P450s sequences with F6H activity, but also selected out the
259 better P450 enzymes compared to natural sequences from the P450 sequence space.

260 Meanwhile, in order to further analyze the other seven designs without F6H
261 activity, we first test whether the seven designs can be soluble expressed in yeast
262 expression systems by integrating green fluorescent protein at the C-terminal. All
263 recombinant proteins successfully showed green fluorescence, demonstrating that
264 seven designs folded correctly in the yeast expression systems (Fig. S14).

265 Furthermore, we presented a structural perspective on the active designs as well as the
266 distinctions between the active and inactive ones. The structural analysis reveals that
267 no substantial mutations in the protein-substrate binding pockets between active and
268 inactive designs except the surface of the protein structure (Fig. 5c), and substrates
269 bind to catalytic pockets of all designs in a manner highly similar to natural
270 CYP706X1 (Fig. S15). However, long-term Molecular Dynamics (MD) simulations
271 have demonstrated significantly weaker binding stability of the substrate apigenin in
272 the inactive designs when compared to the active ones (Fig. 5d). This discrepancy
273 likely serves as the primary reason for the inactivity observed in these seven designs.
274 Besides, we observed that the overall protein structures of the active designs appear to
275 exhibit greater stability than the inactive ones following extensive MD simulations
276 (Fig. 5e). Notably, significant structural fluctuations are observed, particularly within
277 the sequence ranges of 220-230 and 390-410, as illustrated in the inactive designs (Fig.
278 S16). For instance, in Design33380, the R229K mutation disrupts the salt bridge with
279 E251, while the S230P mutation causes a break in the alpha-helix structure (Fig. S17).
280 And in Design91808, the S407L mutation break the hydrogen bond with the backbone
281 of A51, resulting in a less stable protein backbone than observed in active designs
282 (Fig. S18). These results imply that the amino acid mutations on the surface of the
283 protein could lead to a reduction in the global stability of the protein, which further
284 leads to substrate binding instability and ultimately to the loss of activity of the
285 designs. This analysis provided us with valuable insights for future improvements of
286 the P450 generative model.

287

288 **Discussion**

289 Nature has evolved an amazing array of enzymes to catalyze biological functions
290 and enabled living systems to face diverse environmental challenges³³. Gene
291 duplication contributes most to the generation of new enzymes³⁴, especially for
292 cytochrome P450s, which evolve to the largest enzyme family for plant metabolism
293 by widespread whole-genome and tandem duplications^{7, 35, 36}. Although most
294 duplicates are lost or subfunctionalized by purifying or neutral selection,
295 neofunctionalization often happened in P450 evolution due to high plasticity and
296 variability of catalytic pockets^{37, 38}. The evolutionary trajectory of P450's functional
297 innovation have attracted researchers' attention for a long time^{39, 40, 41} and the previous
298 researches were mainly focused at the gene level^{42, 43, 44, 45, 46} or residue level^{47, 48}. In
299 this study, based on ancestral sequence reconstruction, RMA and structural analysis,
300 we suggested the “three-point fixation” model as the design principle of catalytic
301 pocket which played a pivotal role in the functional innovations of F6H function.

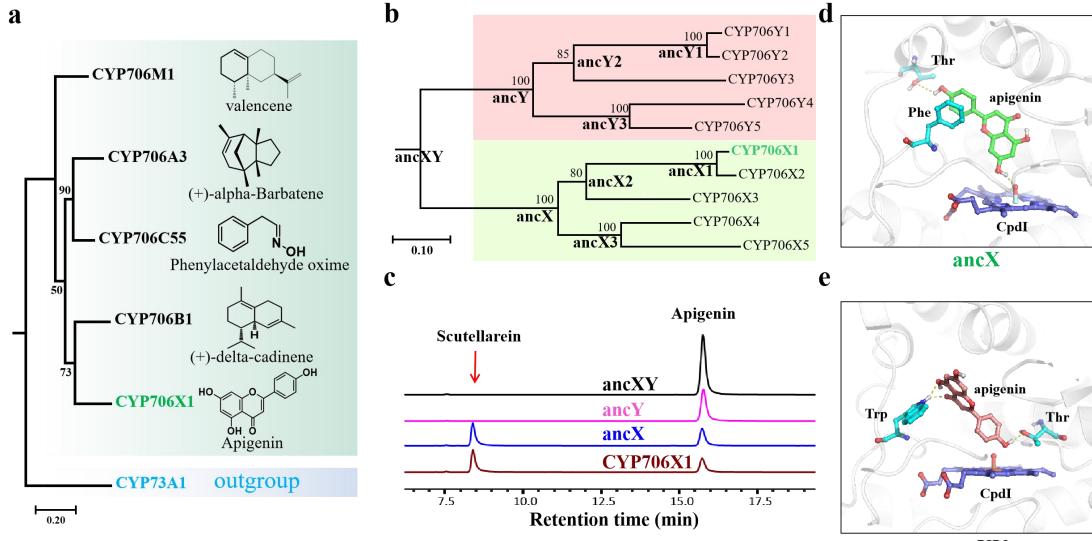
302 The “three-point fixation” model seems to be a general principle for the substrate
303 binding in P450's catalytic pocket, such as the camphor binding in P450cam⁴⁹ and
304 N-palmitoyl glycine binding in P450BM3⁵⁰. Similar fixation rules could also be found
305 in the general enzymatic catalysis where the substrates or catalytic residues are held in
306 the catalytic pockets⁵¹, even as a term commonly used in medicine and architecture⁵².
307 It is worth mentioning that besides the “three-point fixation” model, nature also
308 evolved other catalytic pocket design principles for functional innovations in P450s.
309 For example, the SbaiCYP82D4, as the isoenzyme of CYP706X1, have evolved to a
310 completely different catalytic pocket configuration for flavone 6-hydroxylation^{53, 54}.
311 The catalytic pocket of SbaiCYP82D4 consisted of more residues with strong
312 hydrophobicity, and no obvious hydrogen bond was found between surrounding
313 residues and substrate apigenin, making the substrate binds in an “oblique binding”
314 orientation (Fig. S19), which is distinguished with the “vertical binding” orientation
315 in CYP706X1. Although a different substrate binding model was found in
316 SbaiCYP82D4, the substrate apigenin also formed a reactive conformation in a NAC
317 model to enable the initiation of the catalytic reaction. This fact indicated that
318 substrates in P450s could be held in favorable orientations with different fixing rules
319 under the premise of sufficient space and suitable shape for the placement of the
320 substrate.

321 The rapid development of deep learning has witnessed many impressive

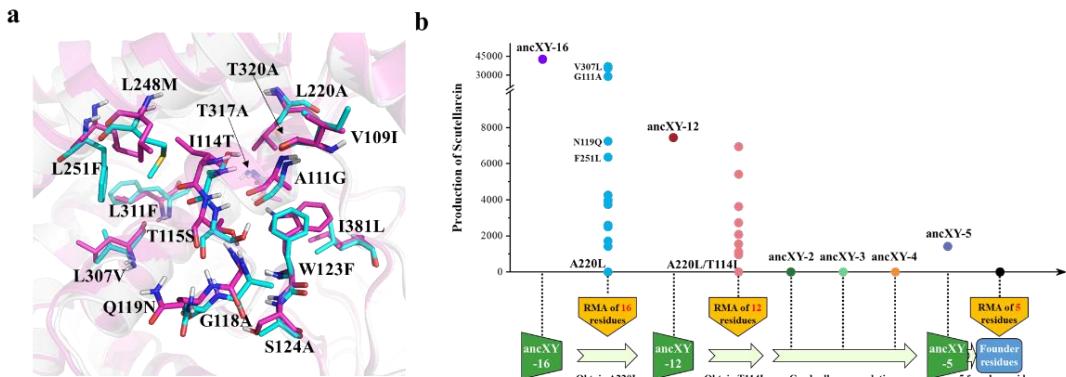
322 achievements in protein structure design, while the desired functional design still is a
323 big challenge^{55, 56, 57}. Our research provides a novel strategy for the de novo design of
324 P450s with specific function by coupling the design principle of catalytic packet with
325 deep learning model. In this study, non-natural P450s with F6H function were
326 successfully designed by integrating the “three-point fixation” model with a denoising
327 diffusion probabilistic model. The structural analysis of active designs suggested that
328 the design principle of F6H catalytic pocket has been fully incorporated into the deep
329 learn model. Furthermore, the structural insights between active and inactive designs
330 suggest that mutations on protein surface may be the fundamental factors contributing
331 to the inactivity or reduced activity of designed sequences, providing us with valuable
332 insights for future improvements of the P450 generative model. There are more
333 structure or sequence-based features should be considered, like the substrate-tunneling
334 feature, the overall stability of protein, and so on.

335 In general, the current work provides insights into the principle of pocket design
336 in the P450 functional innovations and offers a potential research paradigm for the de
337 novo design of P450 enzymes with desired functions. With the increasing of in-depth
338 investigated P450s, more catalytic pocket design principles would be deciphered and
339 facilitated the design of P450s with novel and desired functions.

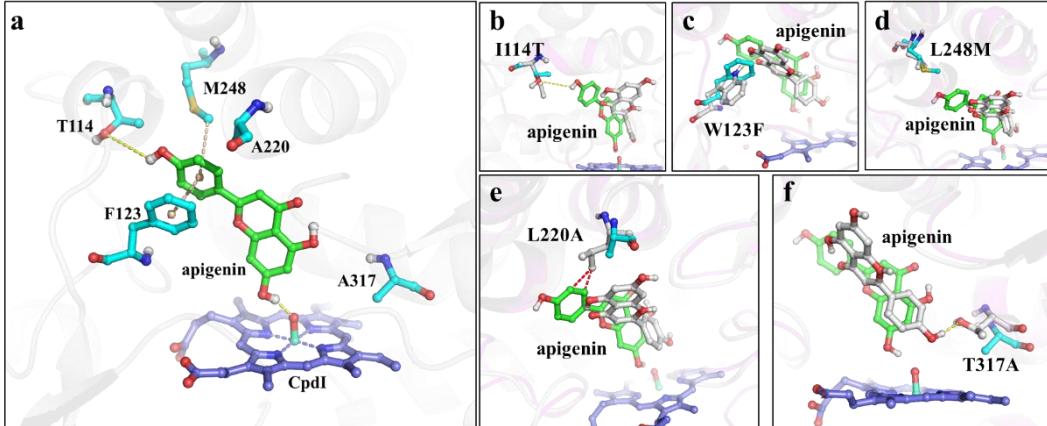
340 **Figures**



341
342 **Figure 1. De novo innovation of F6H function in CYP706X subfamily.** (a) Phylogenetic
343 relationship of 5 characterized genes in CYP706 family. The CYP73A1 was set as an out-group.
344 The maximum likelihood tree was constructed and all nodes received bootstrap support values
345 from 100 replicates. (b) Phylogenetic tree of CYP706X and CYP706Y subfamilies. The inferred
346 ancestral nodes are annotated with bold representations. CYP706X1 referred to F6H in *E.*
347 *breviscapus*. (c) HPLC analysis of the fermented products of ancXY, ancY, ancX and CYP706X1.
348 (d and e) Substrate-binding models of apigenin in catalytic pocket of ancX (d) and ancXY (e).
349 The dash lines represented the hydrogen bond interactions.

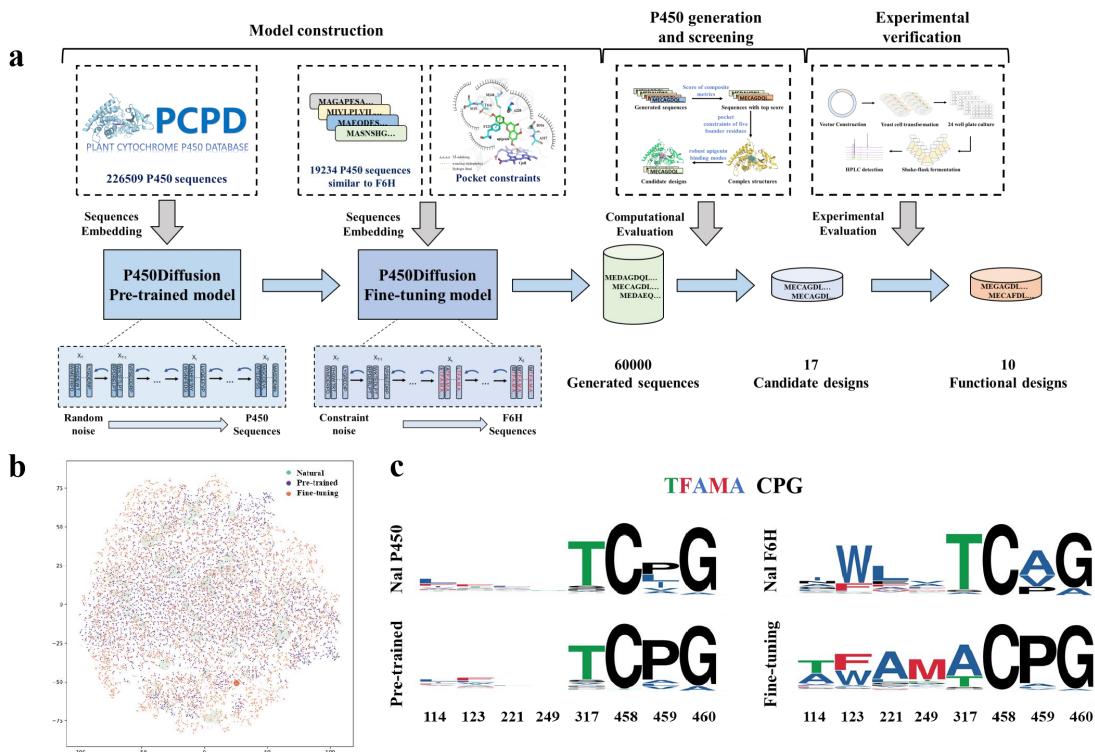


350
351 **Figure 2. Reverse mutation assay for the identification of founder residues.** (a) 16 different
352 residues within the 8 Å range of active center of non-functional ancXY and functional ancX. All
353 residues were represented as ball-and-stick model, and the residues of ancX and ancXY were color
354 by cyan and magenta, respectively. (b) Process of RMA for the identification of founder residues.
355 In the first round of RMA, one founder residue A220L was identified and four non-essential
356 residues (V307L, G111A, N119Q and F251L) were eliminated; In the second round of RMA, the
357 other founder residue T141I was identified; At last, three founder residues (i.e., W123F, L248M
358 and T317A) were identified. ancXY-2, ancXY-3 and ancXY-4 referred to ancXY-L220A/I141T,
359 ancXY-L220A/I141T/F123W and ancXY-L220A/I141T/F123W/M248L, respectively.



360
361 **Figure 3. Contribution of five founder residues for forming the reactive near-attack**
362 **conformation. (a)** Spatial conformation of five founder residues (cyan), substrate apigenin (green)
363 and CpdI (lightblue). **(b-f)** Comparison of each founder residue interacting with substrate in ancX
364 and ancXY. The substrate apigenin in ancX and ancXY referred green and white, respectively. The
365 founder residue in ancX and ancXY referred cyan and white, respectively.

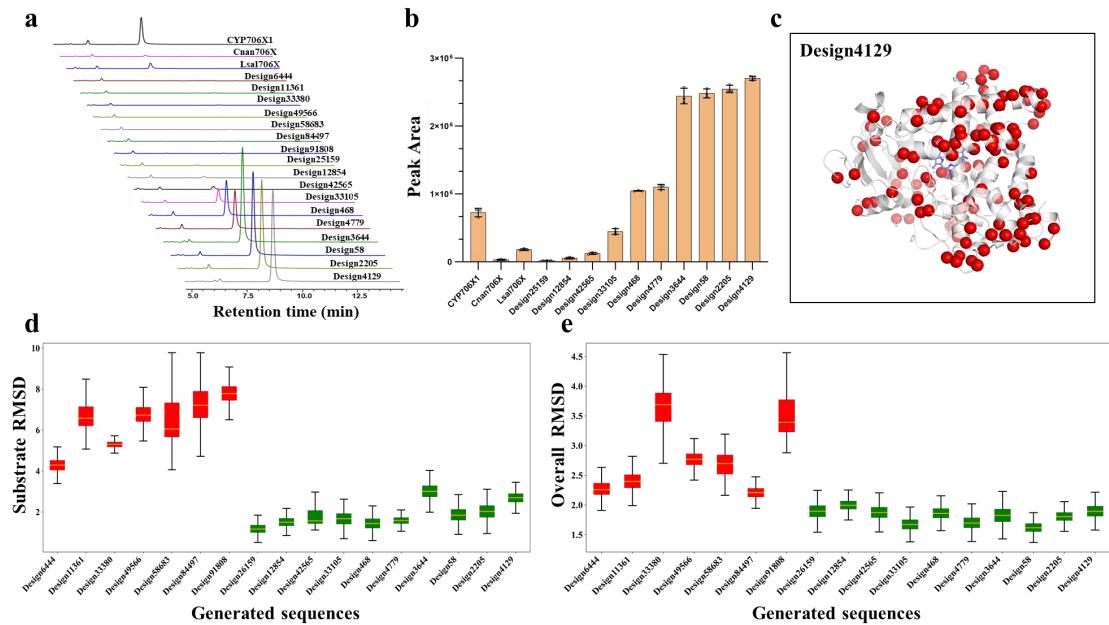
366



367
368 **Figure 4. P450Diffusion de novo design new P450 Processes from Scratch. (a)** The design
369 process for the new P450 includes P450Diffusion model construction (a pre-trained model and a
370 fine-tuning model), sequence generation and screening and experimental verification. The
371 generated sequences were screened and evaluated to obtain the candidate sequences for
372 experimental verification. **(b)** t-SNE embedding of natural, pre-trained model and fine-tuning
373 model generated sequences. The protein sequence space was visualized by transforming a distance
374 matrix derived from k-tuple measures of protein sequence alignment into a t-SNE embedding. Dot
375 sizes represent the 50% identity cluster size for each representative. **(c)** The distribution of five

376 founder residues and control residues (CPG) among natural and generated P450s is illustrated in
377 the WebLogo using multiple sequence alignment (MSA)⁵⁸. This visualization incorporates data
378 from four distinct sources: the P450Diffusion pre-trained model dataset (Nal P450), sequences
379 generated by the P450Diffusion pre-trained model (Pre-trained), the P450Diffusion fine-tuning
380 model dataset (Nal F6H), and sequences generated by the P450Diffusion fine-tuning model
381 (Fine-tuning).

382
383



384

385 **Figure 5. Experimental verification and structural insights of de novo generated P450s. (a)**
386 The product scutellarein peak area of 17 designs, compared with natural Cnan706X, Lsal706X
387 and CYP706X1. Different colors were assigned to different proteins. **(b)** The histogram displays
388 the peak areas of products associated with functional designs, with CYP706X1 used as the control
389 group. **(c)** The structural distribution of mutations in Design4129 was compared to that in
390 CYP706X1, with mutations represented as red spheres. **(d)** The boxplot illustrates the substrate
391 RMSD values across long-term MD simulations, with active designs depicted in green and
392 inactive designs in red. **(e)** The boxplot represents the RMSD values for the overall protein
393 structure across long-term MD simulations, with active designs shown in green and inactive
394 designs in red.

395 **Methods**

396 **Phylogenetic analysis and ancestral sequence reconstruction**

397 The P450 sequences of CYP706 subfamilies were selected from the previous
398 study²⁸, including ten P450s of CYP706X/Y subfamilies for ancestral sequence
399 reconstruction, and a P450 of CYP706W subfamily as an out-group. The
400 transmembrane domains of P450 sequences were annotated with the TMHMM
401 package⁵⁹. Using the crystal structures of CYP76AH1 (PDB ID: 5YLW), a structural
402 information-based sequence alignment of the P450s deprived of N-transmembrane
403 region were generated by Expresso⁶⁰. Poorly aligned regions (N- and C termini) were
404 trimmed. Then a phylogenetic ML tree was created with the RAxML⁶¹. All protein
405 sequences of ancestral nodes were deduced using FastML^{62, 63}. The N- and C-terminal
406 amino acids include transmembrane domain derived from CYP706X1 were added to
407 each ancestor. Ultimately, we obtained the most probable ancestor of CYP706Y
408 subfamily (ancY) and CYP706X subfamily (ancX), the common ancestor of two
409 subfamilies (ancXY), and all sub-ancestors of CYP706Y subfamily (ancY1, ancY2
410 and ancY3) and CYP706X subfamily (ancX1, ancX2 and ancX3) in the sub-nodes of
411 the phylogenetic tree (Fig. 1b). The ancestral sequences are available in
412 Supplementary information.

413 **Crystallization and Structure Solution**

414 Initial crystallization screening was performed using the sitting-drop
415 vapor-diffusion method with commercial crystal screen kits at 16 °C. The ancX3
416 protein at concentration 10 mg/mL in buffer (2 mM KH₂PO₄, 8 mM K₂HPO₄, 500
417 mM NaCl, 0.2 mM EDTA, 1 mM DTT, 10% (v/v) glycerol and pH 7.4) was used in
418 the initial crystallization screening to determine the crystallization condition. The
419 ancX3 protein was mixed with precipitant solution at a drop size of 0.6+0.6 µL
420 against the reservoir containing 50 µL precipitant solution. The crystals grew from the
421 mixture with the precipitant solution consisting of 1.34 M NaCl, 13.4% (w/v)
422 PEG3350, 0.1 M MgCl₂, 0.1 M imidazole and pH 6.5. The crystal optimization was
423 performed using the hanging-drop vapor-diffusion method at 16 °C against the
424 reservoir containing 0.5 mL of the precipitant solution. The drops contained 2 µL
425 precipitant solution, 2 µL ancX3 protein and 0.2 µL of additive solution (40% v/v

426 Polypropylene glycol P400) from Hampton additive screen kit.

427 Crystals of ancX3 were mounted from the crystallization drops in nylon loops and
428 flash-frozen in liquid nitrogen using cryoprotectant consisting of 1.34 M NaCl, 13.4%
429 (w/v) PEG3350, 0.1 M MgCl₂, 0.1 M imidazole, 25% (v/v) glycerol, pH 6.5.
430 Diffraction data ($\lambda = 0.97918 \text{ \AA}$) were collected on beamlines 17U1 at Shanghai
431 Synchrotron Radiation Facility for IFS crystals. Diffraction images were indexed,
432 integrated and scaled using the XDS program. Details of the data-collection statistics
433 are summarized in Table S1.

434 The structure of ancX3 was solved by molecular replacement with the structure
435 of CYP76AH1 (PDB code: 5YLW) as search model⁶⁴. Iterative model building and
436 refinement were performed using COOT and PHENIX, respectively. Coordinates and
437 structure factors have been deposited with the PDB under accession id 8JC2.

438 **Structural modelling and molecular docking**

439 The 3D models of all P450s and ancestral proteins are predicted by the local
440 ColabFold algorithm through inputting the crystal structure of ancX3 as one of
441 templates⁶⁵. The Cartesian coordinates and atom charges of CpdI was obtained from a
442 published data⁶⁶. The structure of substrate apigenin was obtained from PubChem⁶⁷,
443 and assigned with AM1-BCC charges⁶⁸. An ensemble of different conformations of
444 the substrate were generated by enumerating these under OpenBabel⁶⁹. Substrate
445 rotamers were extensively sampled around the C2-C1' axis with 5° intervals. The
446 mol2 formatted CpdI and apigenin were parameterized with molfile_to_params.py
447 script. Before molecular docking, the protein structure complex with CpdI species
448 was firstly sampled and minimized by the RosettaRelax protocol without constraints⁷⁰,
449 ⁷¹. Then the apigenin was docked into relaxed structures using RosettaLigand^{72, 73, 74}.
450 Distance restraints were added between the Fe ion and ligated cysteine (2.3 Å \pm 0.1
451 Å), between carboxylate groups of heme and arginines (2.2 Å \pm 0.4 Å) in
452 Rosetta-Scripts⁷⁵. Each run of 100,000 models were generated with the MPI⁷⁶ version
453 of RosettaLigand and the top 100 models with lowest REU were clustered with
454 Calibur⁷⁷, and the structures with the lowest binding free energy (interface_delta)
455 were selected as our final docking models. The Rosetta scripts and option files for
456 RosettaLigand and are available in Supplementary information.

457 **MD simulations and MM-PB/GBSA**

458 Our target models with CpdI and substrate molecules were set as the initial
459 structures for MD simulation. The protein structures were prepared with the
460 pdb4amber application in Amber20 package⁷⁸. The force field for the CpdI species
461 was taken from a published data⁶⁶. The partial atomic charges and missing parameters
462 for substrate apigenin were generated by Antechamber with AM1-BCC charge
463 model^{79, 80}. A few Na⁺ ions were added to the protein surface to neutralize the total
464 charge of the system. Finally, the resulting system was solvated in a rectangular box
465 of TIP3P waters extending up to minimum cutoff of 12 Å from the protein boundary.
466 The Amber ff14SB force field was employed for all the proteins in MD simulations.

467 After proper parameterizations and setup, the resulting systems were minimized
468 with two steps (the first step with 5,000 steps of steepest descent and 10,000 steps of
469 conjugate gradient, the second step with 10,000 steps of steepest descent and 30,000
470 steps of conjugate gradient) to remove the poor contacts and relax the systems. The
471 systems were then gently annealed from 0 to 300 K under the NVT ensemble for 50
472 ps with a restraint of 5 kcal mol⁻¹ Å⁻². Subsequently, the systems were maintained for
473 a total of five rounds of density equilibration of 20 ps in the NPT ensemble at a target
474 temperature of 300 K and a target pressure of 1.0 atm using the Langevin thermostat⁸¹
475 with a restraint of 1 kcal mol⁻¹ Å⁻². Totally five rounds of density equilibration
476 relaxed the system to achieve a uniform density after heating dynamics under periodic
477 boundary conditions. Thereafter, we removed all of the restraints applied during
478 heating and density dynamics and further equilibrated the systems for ~2 ns to get a
479 well-settled pressure and temperature for conformational and chemical analyses. This
480 was followed by a MD production run for 100 ns for each of the systems. During all
481 of the MD simulations, the covalent bonds containing hydrogen were constrained
482 using SHAKE⁸² and particle-mesh Ewald⁸³ was used to treat long-range electrostatic
483 interactions. All of the MD simulations were performed with the GPU version of the
484 Amber 20 package.

485 The python script mmpbsa.py⁸⁴ in Amber20 package was used in this research to
486 analyze the binding free energy of apigenin. According to the systematic research of
487 Hou et al., the inclusion of the conformational entropy may be crucial for the
488 prediction of absolute binding free energies but not for ranking the binding affinities
489 of similar ligands⁸⁵. The binding free energy analysis implemented here just for

490 analyzing the interaction energy contribution of each key residue. Therefore, the
491 change of conformational entropy upon ligand binding has been ignored in our
492 calculation because of expensive computational cost and low prediction accuracy. The
493 calculation procedure mainly referred the MMPBSA protocol in AMBER tutorial
494 websites (<http://ambermd.org/tutorials/advanced/tutorial3/section1.htm>).

495 **Building and training the P450 Sequences Diffusion Model (P450Diffusion)**

496 Denoising diffusion probability models (or diffusion models, for short) work by
497 applying a Markov process to corrupt the training data by successively adding
498 Gaussian noise, then learning to recover the data by reversing this denoising process⁸⁶.
499 We adapt this framework to generate protein sequences, introducing necessary
500 modifications to encode the discrete protein sequences into a vector of a specific
501 length. We used physicochemical character-based schemes, the principal components
502 score Vectors of Hydrophobic, Steric, and Electronic properties (VHSE8)⁸⁷, to encode
503 protein sequences. The P450 Sequences Diffusion model (P450diffusion) is composed
504 of a U-Net with self-attention layers and features a classical U-shaped structure with
505 down-sampling and up-sampling blocks.

506 To build the P450Diffusion, we screened and analyzed all potential P450s from a
507 published P450 database³¹ and public databases, filtering out sequences with a length
508 greater than 560 and resulting in 226,509 sequences to form the training dataset. Then
509 we encode the training dataset, where each amino acid in the protein sequence is
510 encoded as an 8-dimensional vector, and each batch protein sequence is encoded as a
511 $64 \times 1 \times 560 \times 8$ vector. Here 64 is the batch size equal to the number of samples in the
512 training data; 1 represents the channel size; 560 represents the maximum length of the
513 protein sequence; 8 represents the VHSE8 encode vector for each amino acid in the
514 protein sequence. If the protein sequence is shorter than 560, we add gaps until it
515 reaches a length of 560. In this case, we assign a vector of eight zeroes as the
516 encoding for gaps. Then we started to train the pre-trained P450 sequence diffusion
517 model. After 150,547 training steps, the loss functions of the pre-trained diffusion
518 model converged and the model was obtained. (Fig. S20a).

519 In order to generate sequences with F6H function more effectively, we fine-tune
520 the pre-trained diffusion model with the filtered dataset by selecting sequences with
521 more than 30% amino acid identity to the CYP706X subfamily and clustering them
522 with 90% sequence similarity. Finally, a total of 19234 sequences formed a

523 fine-tuning dataset. Meanwhile, we assigned different sample weights to 30 sequences
524 from the CYP706X subfamily and other sequences in the fine-tuning dataset. The
525 sampling weight ratio between the 30 sequences from the CYP706X subfamily and
526 other sequences was 600:1. The P450Diffusion was obtained after 150,500 training
527 steps (Fig. S20b).

528 The P450Diffusion architecture to generate P450 sequences was based on the
529 diffusion model. The diffusion model is composed of a U-Net with self-attention
530 layers. The main difference with traditional U-Net is that the up-sampling and
531 down-sampling blocks support an extra timestep argument on their forward pass. This
532 is done by embedding the timestep linearly into the convolutions. In the training
533 process, the network takes a batch of noisy protein sequences of shape (batch size,
534 channels, height, width) and a batch of noise levels of shape (batch size, 1) as input,
535 and returns a tensor of shape (batch size, channels, height, width). In this model, we
536 used a mean squared error loss (MSELoss) function and optimized the networks with
537 the AdamW algorithm, setting the learning rate to 2e-4. Our model was implemented
538 in PyTorch and trained on 6 GeForce RTX 3090 systems for about 150,000 steps,
539 which took approximately 63 hours.

540 **541 Computational evaluation and structure-based virtual screening for generated
sequences**

542 Three criteria were used to screen the generated sequences in silico to improved
543 experimental validation success rates: the computational scores of composite metrics
544 for assessing the quality of generated sequences, the 3-dimensional pocket constraints
545 of the five founder residues, and the robustness of the apigenin binding modes.
546 Details are as follows.

547 We used random protein sequences of length 560 with the five founder residues
548 as the starting sequence for the diffusion model sample. In the reverse diffusion
549 process, we perform 600 steps of denoising the 60,000 starting sequences to obtain
550 60,000 generated sequences. In order to increase the likelihood that the generated
551 sequences would function as F6H, we evaluated the generated protein sequences
552 using a variety of computational metrics, including esm-1v⁸⁸, AlphaFold2¹⁸,
553 ProteinMPNN⁸⁹, and others⁹⁰. Firstly, the 60,000 generated sequences were screened
554 by the sequence motif constructed by the five founder residues, and 77 sequences
555 were filtered out. Secondly, both the 77 generated sequences and the F6H sequences

556 were scored for esm-1v, and then the top 33 sequences in the esm-1v results were
557 selected for alphafold2 structure modeling. Thirdly, the constructed structures and
558 sequences were evaluated using ProteinMPNN, and the top 19 designs were selected
559 based on their ProteinMPNN scores, which were higher than that of CYP706X1
560 (-1.63). Fourthly, substrate apigenin and CpdI were docked into constructed structures
561 using RosettaLigand and the substrate-binding models were obtained based on
562 binding affinity (interface_delta_X); Subsequently, MD simulations were performed
563 to evaluate the overall structure stability and binding pocket stability for each
564 designed sequences; Finally, the substrate-binding structures that meet catalytic
565 pocket constraints constituted by founder residues and maintain stable substrate
566 binding modes were chosen as candidate sequences for experimental verifications
567 (Fig. S21).

568 **Cloning construction and products detection**

569 Chemicals and media used in this study were exhibited in supplementary
570 materials. All primers used in this study are listed in Table S3. All strains and
571 plasmids are listed in Table S4. The protein sequences and DNA sequences can be
572 found in supplementary information. Nucleotide sequences of ancXY, ancX, ancX1,
573 ancX2 and ancX3, ancX-16 were codon optimized for *Saccharomyces cerevisiae* and
574 synthesis by Genscript, China. Subsequently, the gene fragments, ATR2 (P450
575 reductase from *Arabidopsis thaliana*) and the head-to-head promoters
576 (pPGK1-pTDH3) were cloned into the vector Y22-TC using the Minerva Super
577 Fusion Cloning Kit (US Everbright Inc., China). The assembly system was
578 transformed into DMT competent cells and the sequences assembled successfully
579 were verified by further sequencing. For mutants constructing, mutation sites were
580 introduced by the mutant primers which listed in Table S3 and used the same method
581 for recombinant vectors assembly. The nucleotide sequences of P450 designs were
582 codon optimized for *S. cerevisiae* and subcloned between PGK1 promoter and CYC1
583 terminator of Y22-PE by Genscript, China.

584 Due to the functional expression of P450 enzyme needed an auxiliary reductase
585 partner (CPR), the ATR2 from *Arabidopsis thaliana* was cloned into expression vector

586 YCplac33-TP which contained a TDH3 promoter and a PDC1 terminator and named
587 Y33-ATR2. The plasmid Y33-ATR2 was preserved in our laboratory. The
588 recombinant vectors containing P450 enzymes designed by deep learning were
589 separately co-transformed with Y33-ATR2 into W303-1B, and transformants were
590 selected on a tryptophan and uracil minus plate (CM-Trp-Ura). Three colonies were
591 picked for each genotype, and used to inoculate 3 ml of CM-Trp-Ura medium in a
592 24-well-plate. The recombinant vectors containing ATR2 and P450 (ancXY, ancX,
593 ancX1, ancX2 or ancX3) were directly transformed into W303-1B without extra
594 Y33-ATR2 and cultured in tryptophan minus medium (CM-Trp). The cells were
595 grown at 30 °C and 550 rpm for 48 hours, after which the resulting seed cultures were
596 transferred into fresh medium at a ratio of 1:50. The new cultivation was fermented
597 under the same condition for 4 days after feeding 1mM apigenin. For the mutants,
598 flasks containing 30 ml of medium were then inoculated at a ratio of 1:50 using the
599 resulting seed cultures by feeding 1mM apigenin. The main cultures were grown at
600 30 °C and 220 rpm for 4 days. The products extraction method and HPLC detection
601 method was based on our previous study²⁸ and was described in detail in the
602 supplementary methods.

603

604 **Authorship contribution statement**

605 Qian Wang performed computational analysis and enzyme design, and wrote the
606 manuscript. Xiaonan Liu and Qian Wang designed experiments and interpreted
607 experimental results. Hejian Zhang and Huanyu Chu conducted deep learning work.
608 Chao Shi performed the crystallization of ancX3. Other authors contributed to
609 collating experimental results. Zhenzhan Chang and Jian Cheng revised the paper.
610 Huifeng Jiang conceived and directed the project.

611

612 **Declaration of competing interests**

613 The authors declare no competing financial interests.

614

615 **Acknowledgements**

616 We thank the staff of beamline BL17U1 at Shanghai Synchrotron Radiation
617 Facility (SSRF), Shanghai, People's Republic of China, for assistance during data
618 collection.

619 This project has received funding from the National Key R&D Program of China
620 (Grant No. 2021YFC2103500); National Natural Science Foundation of China (No.
621 32371499); China Postdoctoral Science Foundation (Grant No. 2019M661032);
622 National Natural Science Foundation of China (NSFC; Grant No. 31901026 and No.
623 32171418); Tianjin Synthetic Biotechnology Innovation Capacity Improvement
624 Project (No. TSBICIP-KJGG-002-02 and No. TSBICIP-CXRC-015); the Tianjin
625 Science Fund for Distinguished Young Scholars (No.18JCJQJC48300).

626

627 **Appendix A. Supplementary data**

628 Supplementary data for this article can be found online.

629 Reference

- 630 1. Nelson DR. Cytochrome P450 diversity in the tree of life. *Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics* **1866**, 141-154 (2018).
- 632
- 633 2. Lamb DC, *et al.* On the occurrence of cytochrome P450 in viruses. *Proceedings of the National Academy of Sciences* **116**, 12343-12352 (2019).
- 635
- 636 3. Liang Y, Wei J, Qiu X, Jiao N. Homogeneous oxygenase catalysis. *Chemical reviews* **118**, 4912-4945 (2018).
- 638
- 639 4. Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. *Current drug targets* **19**, 38-54 (2018).
- 641
- 642 5. Coon MJJARPT. Cytochrome P450: nature's most versatile biological catalyst. **45**, 1-25 (2005).
- 643
- 644 6. Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. *J Applied microbiology* **98**, 6185-6203 (2014).
- 646
- 647 7. Liu X, Zhu X, Wang H, Liu T, Cheng J, Jiang H. Discovery and modification of cytochrome P450 for plant natural products biosynthesis. *Synthetic and Systems Biotechnology* **5**, 187-199 (2020).
- 650
- 651 8. Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. *Journal of Biological Chemistry* **295**, 833-849 (2020).
- 654
- 655 9. Moody PC, Raven EL. The nature and reactivity of ferryl heme in compounds I and II. *Accounts of chemical research* **51**, 427-435 (2018).
- 657
- 658 10. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity, Modeled by QM/MM Calculations. *Chemical reviews* **110**, 949-1017 (2010).
- 661
- 662 11. Nair PC, McKinnon RA, Miners JO. Cytochrome P450 structure-function: insights from molecular dynamics simulations. *Drug metabolism reviews* **48**, 434-452 (2016).
- 664
- 665 12. Li QS, Schwaneberg U, Fischer P, Schmid RD. Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. *Chemistry—A European Journal* **6**, 1531-1536 (2000).
- 668
- 669 13. Brandenberg OF, Chen K, Arnold FH. Directed evolution of a cytochrome P450 carbene transferase for selective functionalization of cyclic compounds. *J Journal of the American Chemical Society* **141**, 8989-8995 (2019).
- 671

672

673 14. Yang Y, Arnold FHJAoCR. Navigating the unnatural reaction space: directed evolution of heme

674 proteins for selective carbene and nitrene transfer. **54**, 1209-1225 (2021).

675

676 15. Reetz MTJAoCR. Directed evolution of artificial metalloenzymes: a universal means to tune

677 the selectivity of transition metal catalysts? **52**, 336-344 (2019).

678

679 16. Brandenberg OF, Fasan R, Arnold FH. Exploiting and engineering hemoproteins for abiological

680 carbene and nitrene transfer reactions. *Current opinion in biotechnology* **47**, 102-111 (2017).

681

682 17. Baek M, *et al.* Accurate prediction of protein structures and interactions using a three-track

683 neural network. *Science* **373**, 871-876 (2021).

684

685 18. Jumper J, *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,

686 583-589 (2021).

687

688 19. Ding W, Nakai K, Gong H. Protein design via deep learning. *Briefings in Bioinformatics* **23**,

689 (2022).

690

691 20. Ferruz N, *et al.* From sequence to function through structure: Deep learning for protein

692 design. (2022).

693

694 21. Liu Y, *et al.* Rotamer-free protein sequence design based on deep learning and

695 self-consistency. **2**, 451-462 (2022).

696

697 22. Watson JL, *et al.* De novo design of protein structure and function with RFdiffusion. 1-3

698 (2023).

699

700 23. Repecka D, *et al.* Expanding functional protein sequence spaces using generative adversarial

701 networks. *Nature Machine Intelligence* **3**, 324-333 (2021).

702

703 24. Liu H, Chen QJWIRCMS. Computational protein design with data-driven approaches: Recent

704 developments and perspectives. **13**, e1646 (2023).

705

706 25. Malbranque C, Bikard D, Cocco S, Monasson R, Tubiana JJCOiSB. Machine learning for

707 evolutionary-based and physics-inspired protein design: Current and future synergies. **80**,

708 102571 (2023).

709

710 26. Sanderson T, Bileschi ML, Belanger D, Colwell LJJE. ProteinInfer, deep neural networks for

711 protein functional inference. **12**, e80942 (2023).

712

713 27. Xu Y, *et al.* Deep dive into machine learning models for protein engineering. **60**, 2773-2790

714 (2020).

715

716 28. Liu X, *et al.* Engineering yeast for the production of breviscapine by genomic analysis and
717 synthetic biology approaches. *Nature communications* **9**, 1-10 (2018).

718

719 29. Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. *Advances in neural*
720 *information processing systems* **33**, 6840-6851 (2020).

721

722 30. Clifton BE, Kaczmarski JA, Carr PD, Gerth ML, Tokuriki N, Jackson CJ. Evolution of
723 cyclohexadienyl dehydratase from an ancestral solute-binding protein. *Nature Chemical*
724 *Biology* **14**, 542-547 (2018).

725

726 31. Wang H, *et al.* PCPD: Plant cytochrome P450 database and web-based tools for structural
727 construction and ligand docking. *Synthetic and systems biotechnology* **6**, 102-109 (2021).

728

729 32. Anand N, Achim T. Protein structure and sequence generation with equivariant denoising
730 diffusion probabilistic models. *arXiv preprint arXiv:220515019*, (2022).

731

732 33. Copeland RA. *Enzymes: a practical introduction to structure, mechanism, and data analysis*.
733 John Wiley & Sons (2000).

734

735 34. Long M, VanKuren NW, Chen S, Vibranovski MD. New gene evolution: little did we know.
736 *Annual review of genetics* **47**, 307-333 (2013).

737

738 35. Cheng J, *et al.* The origin and evolution of the diosgenin biosynthetic pathway in yam. *Plant*
739 *communications* **2**, 100079 (2021).

740

741 36. Cheng J, *et al.* Chromosome-level genome of Himalayan yew provides insights into the origin
742 and evolution of the paclitaxel biosynthetic pathway. *Molecular Plant* **14**, 1199-1209 (2021).

743

744 37. Liu Z, *et al.* Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in
745 plant metabolism. *Nature Communications* **7**, 13026 (2016).

746

747 38. Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and
748 evolution. *Molecular Plant* **14**, 1244-1265 (2021).

749

750 39. Jensen RA. Enzyme recruitment in evolution of new function. *Annual review of microbiology*
751 **30**, 409-425 (1976).

752

753 40. Arnold FH. The nature of chemical innovation: new enzymes by evolution. *Quarterly Reviews*
754 *of Biophysics* **48**, 404-410 (2015).

755

756 41. Copley SD. Setting the stage for evolution of a new enzyme. *Current opinion in structural*
757 *biology* **69**, 41-49 (2021).

758

759 42. Long M, Betrán E, Thornton K, Wang W. The origin of new genes: glimpses from the young

760 and old. *Nature Reviews Genetics* **4**, 865-875 (2003).

761

762 43. Zhou Q, *et al.* On the origin of new genes in *Drosophila*. *Genome research* **18**, 1446-1455
763 (2008).

764

765 44. Carvunis A-R, *et al.* Proto-genes and *de novo* gene birth. *Nature* **487**, 370-374 (2012).

766

767 45. Ohno S. *Evolution by gene duplication*. Springer Science & Business Media (2013).

768

769 46. Zimmer CT, *et al.* Neofunctionalization of duplicated P450 genes drives the evolution of
770 insecticide resistance in the brown planthopper. *Current Biology* **28**, 268-274. e265 (2018).

771

772 47. Renata H, Wang ZJ, Arnold FH. Expanding the enzyme universe: accessing non-natural
773 reactions by mechanism-guided directed evolution. *Angewandte Chemie International
774 Edition* **54**, 3351-3367 (2015).

775

776 48. Giunta CI, *et al.* Tuning the properties of natural promiscuous enzymes by engineering their
777 nano-environment. *ACS nano* **14**, 17652-17664 (2020).

778

779 49. Raag R, Poulos TL. Crystal structures of cytochrome P-450CAM complexed with camphane,
780 thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation.
781 *Biochemistry* **30**, 2674-2684 (1991).

782

783 50. Haines DC, Tomchick DR, Machius M, Peterson JA. Pivotal role of water in the mechanism of
784 P450BM-3. *Biochemistry* **40**, 13456-13465 (2001).

785

786 51. Benkovic SJ, Hammes-Schiffer S. A perspective on enzyme catalysis. *Science* **301**, 1196-1202
787 (2003).

788

789 52. Rana M, *et al.* Surgical treatment of zygomatic bone fracture using two points fixation versus
790 three point fixation-a randomised prospective clinical trial. *Trials* **13**, 1-10 (2012).

791

792 53. Liu X, *et al.* De Novo biosynthesis of multiple pinocembrin derivatives in *Saccharomyces
793 cerevisiae*. *ACS Synthetic Biology* **9**, 3042-3051 (2020).

794

795 54. Gao R, *et al.* Comparative genomics reveal the convergent evolution of CYP82D and CYP706X
796 members related to flavone biosynthesis in Lamiaceae and Asteraceae. *The Plant Journal*,
797 (2021).

798

799 55. Wu Z, Johnston KE, Arnold FH, Yang KK. Protein sequence design with deep generative
800 models. *Current opinion in chemical biology* **65**, 18-27 (2021).

801

802 56. Ovchinnikov S, Huang P-S. Structure-based protein design with deep learning. *Current opinion
803 in chemical biology* **65**, 136-144 (2021).

804

805 57. Wang J, *et al.* Scaffolding protein functional sites using deep learning. *Science* **377**, 387-394
806 (2022).

807

808 58. Crooks GE, Hon G, Chandonia J-M, Brenner SEJGr. WebLogo: a sequence logo generator. **14**,
809 1188-1190 (2004).

810

811 59. Möller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane
812 spanning regions. *Bioinformatics* **17**, 646-653 (2001).

813

814 60. Armougom F, *et al.* Expresso: automatic incorporation of structural information in multiple
815 sequence alignments using 3D-Coffee. *Nucleic acids research* **34**, W604-W608 (2006).

816

817 61. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
818 phylogenies. *Bioinformatics* **30**, 1312-1313 (2014).

819

820 62. Ashkenazy H, *et al.* FastML: a web server for probabilistic reconstruction of ancestral
821 sequences. *Nucleic acids research* **40**, W580-W584 (2012).

822

823 63. Kaltenbach M, *et al.* Evolution of chalcone isomerase from a noncatalytic ancestor. *Nature
Chemical Biology* **14**, 548-555 (2018).

824

825

826 64. Shi C, *et al.* Structural insights revealed by crystal structures of CYP76AH1 and CYP76AH1 in
827 complex with its natural substrate. *Biochemical and Biophysical Research Communications*
828 **582**, 125-130 (2021).

829

830 65. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making
831 protein folding accessible to all. *Nature methods* **19**, 679-682 (2022).

832

833 66. Dubey KD, Wang B, Shaik S. Molecular dynamics and QM/MM calculations predict the
834 substrate-induced gating of cytochrome P450 BM3 and the regio-and stereoselectivity of
835 fatty acid hydroxylation. *Journal of the American Chemical Society* **138**, 837-845 (2016).

836

837 67. Kim S, *et al.* PubChem substance and compound databases. *Nucleic acids research* **44**,
838 D1202-D1213 (2015).

839

840 68. Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in
841 molecular mechanical calculations. *Journal of molecular graphics & modelling* **25**, 247-260
842 (2006).

843

844 69. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An
845 open chemical toolbox. *Journal of Cheminformatics* **3**, 33 (2011).

846

847 70. Misura KM, Baker D. Progress and challenges in high-resolution refinement of protein

848 structure models. *Proteins: Structure, Function, and Bioinformatics* **59**, 15-29 (2005).

849

850 71. Bradley P, Misura KM, Baker D. Toward high-resolution de novo structure prediction for small

851 proteins. *Science* **309**, 1868-1871 (2005).

852

853 72. Meiler J, Baker D. ROSETTALIGAND: Protein–small molecule docking with full side-chain

854 flexibility. *Proteins: Structure, Function, and Bioinformatics* **65**, 538-548 (2006).

855

856 73. Davis IW, Baker D. RosettaLigand docking with full ligand and receptor flexibility. *Journal of*

857 *Molecular Biology* **385**, 381-392 (2009).

858

859 74. Lemmon G, Meiler J. Rosetta Ligand docking with flexible XML protocols. In: *Computational*

860 *Drug Discovery and Design*). Springer (2012).

861

862 75. Fleishman SJ, *et al.* RosettaScripts: a scripting language interface to the Rosetta

863 macromolecular modeling suite. *PLoS one* **6**, e20161 (2011).

864

865 76. Graham RL, Woodall TS, Squyres JM. Open MPI: A flexible high performance MPI. In:

866 *International Conference on Parallel Processing and Applied Mathematics*). Springer (2005).

867

868 77. Li SC, Ng YK. Calibur: a tool for clustering large numbers of protein decoys. *BMC*

869 *bioinformatics* **11**, 25 (2010).

870

871 78. Case DA, *et al.* *Amber 2021*. University of California, San Francisco (2021).

872

873 79. Wang J, Wang W, Kollman PA, Case DA. Antechamber: an accessory software package for

874 molecular mechanical calculations. *J Am Chem Soc* **222**, U403 (2001).

875

876 80. Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges.

877 AM1-BCC model: II. Parameterization and validation. *Journal of computational chemistry* **23**,

878 1623-1641 (2002).

879

880 81. Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD. Langevin stabilization of molecular dynamics.

881 *The Journal of chemical physics* **114**, 2090-2098 (2001).

882

883 82. Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of

884 motion of a system with constraints: molecular dynamics of n-alkanes. *Journal of*

885 *computational physics* **23**, 327-341 (1977).

886

887 83. Darden T, York D, Pedersen L. Particle mesh Ewald: An $N \cdot \log(N)$ method for Ewald sums in

888 large systems. *The Journal of chemical physics* **98**, 10089-10092 (1993).

889

890 84. Miller III BR, McGee Jr TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA. py: an

891 efficient program for end-state free energy calculations. *Journal of chemical theory and*

892 computation **8**, 3314-3321 (2012).

893

894 85. Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA
895 methods. 1. The accuracy of binding free energy calculations based on molecular dynamics
896 simulations. *Journal of chemical information and modeling* **51**, 69-82 (2011).

897

898 86. Sohl-Dickstein J, Weiss E, Maheswaranathan N, Ganguli S. Deep unsupervised learning using
899 nonequilibrium thermodynamics. In: *International conference on machine learning*). PMLR
900 (2015).

901

902 87. Mei H, Liao ZH, Zhou Y, Li SZ. A new set of amino acid descriptors and its application in
903 peptide QSARs. *Peptide Science: Original Research on Biomolecules* **80**, 775-786 (2005).

904

905 88. Meier J, Rao R, Verkuil R, Liu J, Sercu T, Rives A. Language models enable zero-shot prediction
906 of the effects of mutations on protein function. *Advances in Neural Information Processing
907 Systems* **34**, 29287-29303 (2021).

908

909 89. Dauparas J, *et al.* Robust deep learning-based protein sequence design using ProteinMPNN.
910 *Science* **378**, 49-56 (2022).

911

912 90. Johnson SR, *et al.* Computational Scoring and Experimental Evaluation of Enzymes Generated
913 by Neural Networks. *bioRxiv*, 2023.2003. 2004.531015 (2023).

914

915