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26 Abstract

27 Although cytochrome P450 enzymes are the most versatile biocatalysts in nature,
28  there is insufficient comprehension of the molecular mechanism underlying their
29  functional innovation process. Here, by combining ancestral sequence reconstruction,
30  reverse mutation assay and structure analysis, we identified five founder residues in
31  the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a “three-point
32 fixation” model to elucidate the functional innovation mechanisms of P450s in nature.
33 According to this design principle of catalytic pocket, we further developed a de novo
34  diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the
35 17 non-natural P450s we generated, ten designs exhibited significant F6H activity and
36 six exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural
37  CYP706X1. This work not only explores the design principle of catalytic pockets of
38  P450s, but also provides an insight into the artificial design of P450 enzymes with
39  desired functions.
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43 Introduction

44 Cytochrome P450 enzymes (P450s) are ubiquitous in nearly all living organisms,
45  playing pivotal roles in various metabolic processes and pathways crucial for life,
46  growth, and development!. As the most versatile biocatalysts in nature, P450s not
47  only catalyzed more than 95% of the reported oxidation and reduction reactions® 4,
48  but also are known as “Universal catalyst” in industrial applications due to the ability
49  of selective oxidation of inert carbon-hydrogen bonds under mild conditions™ ©.
50  Therefore, obtaining new P450s with better properties has become an important goal
51 in the field of bioengineering” 8. In spite of huge functional diversity, most P450s
52 share the same catalytic mechanism® '° and similar structural scaffolds*. However, the
53  catalytic pockets exhibited significant variability in P450s with different functions
54  (Fig. S1)!'. Moreover, the nonpolar composition and unique conformational flexibility
55  of the substrate binding pockets are likely to enhance the capacity of these enzymes to
56  modify their active sites and adapt to new substrates and selectivities*. Considering
57  the high evolvability of P450s, directed evolution has been extensively employed in
58  engineering P450s with better traits'> ' 1415, However, this method often necessitates
59  multiple rounds of random mutagenesis and high-throughput screening, making it
60 challenging to exhaustively explore the potential protein space, whether in the
61  laboratory or computationally'®.

62 The rapid development of deep learning has opened up a new method to acquire
63  novel P450s with desired characteristics. Even though impressive achievements have
64  been witnessed in protein structure prediction'” '8, the desired functional design still is
65 a big challenge!® 2°. Recent developments in protein design leveraged by deep
66 learning methods encompass a broad spectrum. These include designing sequences
67  for fixed backbones?!, variable backbone design??, as well as the direct generation of
68  novel sequences and backbones within the natural protein space?’. These models
69 employ various architectures, including Convolutional Neural Networks (CNN),
70 Graph Neural Networks (GNN), and Transformers, which are all instrumental in
71 capturing the complex interactions between amino acids within a protein sequence'.
72 The abundance of sequence and structure data contributes to these deep learning
73 models surpassing the performance of traditional physical or statistical models®* 25,
74 However, when considering functional design, it's impossible to collect sufficient
75 high-quality functional data to train a sophisticated model to create sequences with a
76  desired function?® 27. Considering the current shortage, an approach that fuses
77 knowledge-based techniques to scrutinize the design principles of natural P450s with

78  powerful deep learning models to expand the natural protein sequence space, may be
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79  appropriate for designing new P450s. As our comprehension of the fundamental
80  mechanisms that govern the evolution of the catalytic pocket for functional innovation
81  in natural P450s remains limited, elucidating the process by which a particular P450
82  adopts a new function becomes crucial in designing a new one.

83 In this work, we used a flavone 6-hydroxylase (CYP706X1) from Erigeron
84  breviscapus as an example, which belongs to the CYP706X subfamily and converts
85  apigenin into scutellarein in the biosynthetic pathway of scutellarin (Fig. S2)?8. Firstly,
86  we determined the founder residues constituting the catalytic pocket responsible for
87  the functional innovation of the P450 gene through ancestral sequence reconstruction,
88  reverse mutation assay and crystallographic analysis. Then, we elucidated the design
89  principle of catalytic pocket for the functional innovation by an in-depth structural
90 analysis. Finally, we devised the P450Diffusion, an artificial P450 generative model,
91 by integrating the catalytic pocket design principle with a denoising diffusion
92  probabilistic model which has demonstrated outstanding performance in image
93 generation®”. With the P450Diffusion model, we successfully designed 10 artificial
94  P450s with F6H activity, and one design outperforms the naturally best-performing
95  gene about 3.5-fold, indicating the potential of P450Diffusion in the design of new
96  P450 enzymes.
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97  Results

98  Functional innovation of F6H in CYP706 family

99 Among the characterized P450s in CYP706 family, only the P450s in CYP706X
100  subfamily could catalyze the flavonoid substrates, indicating that the F6H function
101  may be de novo innovated in the ancestor of CYP706X subfamily (Fig. 1a and Fig.
102 S3). Moreover, we found that the catalytic pocket’s configuration of CYP706X1 (i.e.,
103  EbF6H from Erigeron breviscapus) is totally different from other P450s in CYP706
104  family. The substrate apigenin even could not be properly positioned in other P450s
105  with a C6-prone reactive state, which refers to the molecular configuration that is best
106  suited for binding to the catalytic pocket of the enzyme and undergoing a reaction
107 (Fig. S4). Therefore, it provides us an opportunity to decipher the constructive
108  mechanisms for the formation of F6H’s catalytic pocket by comparing the
109  neighboring genes in CYP706 family.

110 We compared the evolutionary trajectory between the CYP706X subfamily and

111 the most closely non-functional CYP706Y subfamily using ancestral sequence
112 reconstruction (Methods). By testing the function of the inferred ancestral P450s for
113 all key nodes in the phylogenetic tree (Fig. 1b), most ancestral sub-nodes in
114  CYP706X subfamily displayed significant F6H activity (Fig. lc and Fig. S5).
115  Conversely, the FOH function disappeared in both the common ancestor ancXY and
116  the ancestor of CYP706Y subfamily (Fig. 1c). Thus, the F6H’s catalytic pocket should
117  be originated when the CYP706X subfamily diverged from the common ancestor of
118 CYP706X and CYP706Y (ancXY). To gain insight into the evolution of the catalytic
119 pocket underlying functional innovation, we determined the crystal structure of ancX3,
120 which was found to crystallize more readily after screening for crystallization
121 conditions (Fig. S5, Fig. S6 and Table S1). Indeed, the binding mode of apigenin in
122 the common ancestor of CYP706X subfamily (ancX) was obviously different from
123 the non-functional ancXY, though they possessed very similar structural arrangement
124  (RMSD < 1.0A, sequence identity = 83%) (Fig. 1d and Fig. le). A strong pai-pai
125  stacking and an obvious hydrogen bond are found to stabilize the substrate in a
126  Cé6-prone reactive state in ancX’s catalytic pocket (Fig. 1d). However, the substrate in
127 the non-functional ancXY is held in a non-C6-prone reactive state with the hydrogen

128 bonds only by the surrounding residues like Trp and Thr (Fig. 1e).
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129  Founder residues for functional innovation of F6H

130 In order to clarify the molecular mechanism of forming the catalytic pocket with
131 F6H function, we proposed to analyze the changes of amino acid compositions
132 between catalytic pockets of non-functional ancXY and functional ancX. Within 8 A
133 range of the active center, 16 out of 48 residues are different (Fig. 2a). Interesting,
134 when we replaced all of the 16 residues with the corresponding residues in ancX, the
135  mutant (referred to as the ancXY-16) obtained F6H function (Fig. 2b). Given that not
136 all residues in the catalytic pocket contributed significantly to substrate recognition
137  and binding due to different locations of residues in three-dimensional space®’, we
138 attempt to find out the founder residues of the catalytic pocket in ancXY-16 by the
139 reverse mutation assay (RMA) to eliminate non-essential residues (Fig. 2b).

140 Firstly, RMA was respectively carried out on the 16 residues of ancXY-16 to
141 clarify the effect of each residue on the catalytic activity. We found one of them
142 (A220L) inactivated the ancXY-16, and 12 mutations significantly decreased the
143 catalytic activity, but four mutations (i.e., G111A, N119Q, F251L and V307L) had
144 less impact on the activity. Structural analysis showed that these four mutations were
145  distant from the P450 catalytic center and did not involve in the changes in the
146 residue’s intrinsic hydrophilicity/hydrophobicity (Fig. S7). Subsequently, we excluded
147  these four mutations to construct the ancXY-12. RMA against the 12 residues of
148 ancXY-12 showed one extra mutation (T1141) could destroy the function of F6H. We
149  combined the two inactivating mutations (L220A and 1114T) in ancXY to construct
150  ancXY-2, however, it didn’t show F6H activity. Furthermore, we gradually added
151  single mutation to ancXY-2 according to the order of the RMA mutational effect in
152 ancXY-12. And finally, the constructed ancXY-5 (i.e., L220A, 1114T, W123F, L.248M,
153 and T317A) displayed FO6H activity, and each of the five reverse mutations in
154  ancXY-5 deactivated the enzyme (Fig. 2b). The results showed that the mutations of
155  the five amino acids play a founder role (referred to as founder residues in the
156  following) in the F6H functional innovation process from ancXY to ancX. As to other
157 11 residues, the structural analysis showed that these mutations decreasing the
158  catalytic activity might play auxiliary roles in the enzyme catalysis due to no direct

159  interactions with the substrate apigenin (Fig. S7 and Fig. S8).
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160  The principle of catalytic pocket for functional innovation of F6H

161 We further interpreted the underlying mechanism of five founder residues for
162  functional innovation through an in-depth analysis of the apigenin-binding model in
163  ancXY-5 (Fig. 3a). The five founder residues could be divided into two parts
164  according to their roles in protein structure. The first part included 1114T, W123F and
165  L248M which mainly contributed to fix or bind the apigenin. For example, the 1114T
166  introduced a hydrogen bond with 7° hydroxyl of apigenin with an energy contribution
167  of 0.66+0.10 kcal/mol (Methods, Fig. 3b). A null mutation of T114V in ancXY-5 also
168  ascertained the indispensability of this hydrogen bond for the F6H function (Fig. S9).
169 The WI123F contributed to the apigenin binding (-3.14+0.37 kcal/mol) with an
170 aromatic pai-pai stacking interaction to the phenyl ring of the apigenin and alleviated
171 the spatial conflicts caused by ancestral tryptophan in the ancXY (Fig. 3c). The
172 L248M, located in the substrate access gate, was not only involved in the substrate
173 tunneling process (Fig. 3d, Video S1), but also contributed to the apigenin binding
174 with a pai stacking to the phenyl ring of apigenin. The second part included L220A
175 and T317A contributed to alleviate inappropriate interactions and space conflicts. The
176 L220A alleviated the space conflict conducted by ancestral leucine and provided
177 sufficient space for the placement of the B ring of substrate apigenin through the
178  introduction of a small side chain (Fig. 3e). The T317A not only provided sufficient
179  space for the placement of the A ring of apigenin but also avoided the
180  wrong-orientation apigenin-binding mode shown in nonfunctional ancXY caused by a
181  hydrogen bond between the hydroxyl group of threonine and the substrate (Fig. 3f).

182 Based on the mutations of five founder residues, it appears that, with an
183  appropriate spatial capacity (provided by small side chain residues A220 and A317),
184  the catalytic pocket evolved following a “three-point fixation” model. The
185  “three-point fixation” refers to essential interactions with three pivots in apigenin
186  including: 4’-OH of apigenin molecule (the first pivot) was fixed by the hydrogen
187  bond from T114, the “B” ring of apigenin (the second pivot) was fixed by the pai
188  stacking interactions from F123 and M248, and 7-OH of apigenin (the third pivot)
189  was fixed by the hydrogen bond with CpdlI iron-oxo moiety (Fig. S10). The model
190  held the substrate apigenin in a reactive near-attack conformation (NAC), which
191  maintained the relative orientation between the reaction site of apigenin and Cpdl
192 iron-oxo moiety at a favorable distance and angle (3.6 A and 155°), thus serving to
193 initiate the 6-hydroxylation reaction of apigenin in the catalytic process (Fig. S11).

194  We propose that the “three-point fixation” model could serve as the design principle
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195  for the catalytic pocket responsible for the natural functional innovation of F6H,

196  which also offers us the potential to de novo design P450s with the desired functions.

197  Diffusion model-based designing of P450 with the specific function

198 Hundreds of thousands of P450 protein sequences collected in public databases
199  offer us an opportunity to learn natural P450 sequence diversity and design new
200  functional P450s3!. Recent advancements in diffusion models have shown significant
201  potential in enhancing the design of P450 enzymes with specific functions®® 32. Here,
202  we proposed a P450 Sequences Diffusion Model (P450Diffusion) to de novo design
203  P450s with a desired function by combining the diffusion model with the design
204  principle of F6H catalytic pocket (Fig. 4a). P450Diffusion mainly consists of two
205 models (i.e., pre-trained and fine-tuning diffusion models). Firstly, 226,509 natural
206  P450 sequences were collected to train a pre-trained P450 sequence diffusion model.
207  This pre-trained model consists of two subprocesses: a forward diffusion subprocess,
208  which gradually adds Gaussian noise to the representation of P450 sequence until it
209 becomes random noise, and a reverse generation subprocess, which starts from
210  random noise and gradually de-noises the representation of P450 sequence to generate
211 a new P450 sequence. After 150,547 training rounds, the pre-trained diffusion model
212 could generate a wide variety of sequences, with similarities to natural sequences
213 ranging from 20% to 50%. Secondly, 19,202 P450 sequences with appreciable
214  similarity to CYP706X subfamily were used to fine-tune the pre-trained diffusion
215 model for ensuring that the generated sequences have a similar structural backbone to
216  the FO6H. Besides, the five founder residues including T114, F123, A220, M248 and
217  A317 were constrained to ensure the reproduction of the “three-point fixation” design
218  principle in de novo generated sequences. The model integrating training set
219  fine-tuning with constrained generation was referred to as the fine-tuning diffusion
220  model.

221 Furthermore, we used the fine-tuning diffusion model to generate a total of
222 60,000 non-natural P450 sequences, which share about 50% average amino acid
223 identity to that of the natural sequences. In comparison with natural P450s, the
224 generated sequences not only have a highly similar distribution of Shannon entropies
225  for each position in multiple sequence alignments, but also display very consistent
226  residue-residue co-evolution patterns and physicochemical properties (Fig. S12 and
227  Fig. S13). However, the generated sequences can be grouped into smaller clusters and
228  interpolated between the natural sequence clusters, indicating that the generated

229  sequences have higher diversity than natural P450s (Fig. 4b). It is noteworthy that the
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230  sequences generated by the fine-tuning P450Diffusion model form a larger cluster,
231  exhibiting greater similarity to the CYP706X subfamily, thereby demonstrating the
232 effectiveness of the fine-tuning model. Besides, we compared the distribution of five
233 founder residues among natural and generated P450s (Fig. 4c). It is found that except
234 the threonine (T) in position 317, other positions are highly variable in natural and
235  generated P450s from pre-trained model, even in natural P450s from CYP706 family.
236  However, all of five founder residues are relatively conserved in the generated P450s
237  from fine-tuning model, indicating that the P450Diffusion possessed the capability of
238  generating sequences with an amino-acid distribution similar to that of natural F6H on
239  the basis of constrained five founder residues.

240

241  Experimental verification and structural insights of de novo generated P450s

242 Finally, we experimentally tested whether the generated sequences from
243 P450Diffusion were true P450 enzymes, and performed FO6H function. In order to
244  accurately obtain functional sequences from numerous designs, we conducted virtual
245  screening on 60,000 generated sequences based on three specific criteria: the
246  computational scores of composite metrics for assessing the quality of generated
247  sequences, the 3-dimensional pocket constraints of the five founder residues, and the
248  robustness of the apigenin binding modes (details in Methods, Fig. 4a). 17 designs
249  with sequence identities ranging from 70% to 87% to CYP706X1, were retained by
250  the virtual screening, then synthesized and expressed in yeast expression systems
251  (Table S2). The recombinant yeasts were cultivated for four days by feeding apigenin
252 as substrate and HPLC analysis revealed ten designs with significant FOH activity
253 (Fig. 5a). Surprisingly, there are six designs exhibited a 1.3- to 3.5-fold increase in
254 scutellarein production compared to CYP706X1 (Fig. 5b). The four remaining active
255  designs also displayed comparable activities with other natural F6H enzymes (i.e.,
256  Cnan706X and Lsal706X). Therefore, the results indicated that the P450Diffusion
257 could not only capture the fundamental design principle of F6H catalytic pocket and
258  effectively generate P450s sequences with F6H activity, but also selected out the
259  better P450 enzymes compared to natural sequences from the P450 sequence space.

260 Meanwhile, in order to further analyze the other seven designs without FOH
261  activity, we first test whether the seven designs can be soluble expressed in yeast
262  expression systems by integrating green fluorescent protein at the C-terminal. All
263  recombinant proteins successfully showed green fluorescence, demonstrating that

264  seven designs folded correctly in the yeast expression systems (Fig. S14).
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265  Furthermore, we presented a structural perspective on the active designs as well as the
266  distinctions between the active and inactive ones. The structural analysis reveals that
267  no substantial mutations in the protein-substrate binding pockets between active and
268  inactive designs except the surface of the protein structure (Fig. 5c¢), and substrates
269  bind to catalytic pockets of all designs in a manner highly similar to natural
270 CYP706X1 (Fig. S15). However, long-term Molecular Dynamics (MD) simulations
271 have demonstrated significantly weaker binding stability of the substrate apigenin in
272 the inactive designs when compared to the active ones (Fig. 5d). This discrepancy
273 likely serves as the primary reason for the inactivity observed in these seven designs.
274  Besides, we observed that the overall protein structures of the active designs appear to
275  exhibit greater stability than the inactive ones following extensive MD simulations
276 (Fig. 5e). Notably, significant structural fluctuations are observed, particularly within
277  the sequence ranges of 220-230 and 390-410, as illustrated in the inactive designs (Fig.
278  S16). For instance, in Design33380, the R229K mutation disrupts the salt bridge with
279  E251, while the S230P mutation causes a break in the alpha-helix structure (Fig. S17).
280  And in Design91808, the S407L mutation break the hydrogen bond with the backbone
281  of ASI, resulting in a less stable protein backbone than observed in active designs
282  (Fig. S18). These results imply that the amino acid mutations on the surface of the
283 protein could lead to a reduction in the global stability of the protein, which further
284  leads to substrate binding instability and ultimately to the loss of activity of the
285  designs. This analysis provided us with valuable insights for future improvements of
286  the P450 generative model.

287
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288 Discussion

289 Nature has evolved an amazing array of enzymes to catalyze biological functions
200 and enabled living systems to face diverse environmental challenges®’. Gene
291  duplication contributes most to the generation of new enzymes®*, especially for
292 cytochrome P450s, which evolve to the largest enzyme family for plant metabolism
293 by widespread whole-genome and tandem duplications” 3% 3¢, Although most
294  duplicates are lost or subfunctionalized by purifying or neutral selection,
295  neofunctionalization often happened in P450 evolution due to high plasticity and
296  variability of catalytic pockets’” *8. The evolutionary trajectory of P450’s functional
297  innovation have attracted researchers’ attention for a long time*® 4% 4! and the previous
298  researches were mainly focused at the gene level*> 43 44 45 46 or residue level*” *8. In
299  this study, based on ancestral sequence reconstruction, RMA and structural analysis,
300 we suggested the “three-point fixation” model as the design principle of catalytic
301  pocket which played a pivotal role in the functional innovations of F6H function.

302 The “three-point fixation” model seems to be a general principle for the substrate
303 binding in P450’s catalytic pocket, such as the camphor binding in P450cam* and
304  N-palmitoyl glycine binding in P450BM3%, Similar fixation rules could also be found
305 in the general enzymatic catalysis where the substrates or catalytic residues are held in
306  the catalytic pockets®!, even as a term commonly used in medicine and architecture’?.
307 It is worth mentioning that besides the “three-point fixation” model, nature also
308  evolved other catalytic pocket design principles for functional innovations in P450s.
309  For example, the SbaiCYP82D4, as the isoenzyme of CYP706X1, have evolved to a
310  completely different catalytic pocket configuration for flavone 6-hydroxylation’® 34,
311  The catalytic pocket of SbaiCYP82D4 consisted of more residues with strong
312 hydrophobicity, and no obvious hydrogen bond was found between surrounding
313 residues and substrate apigenin, making the substrate binds in an “oblique binding”
314  orientation (Fig. S19), which is distinguished with the “vertical binding” orientation
315 in CYP706X1. Although a different substrate binding model was found in
316  SbaiCYP82D4, the substrate apigenin also formed a reactive conformation in a NAC
317 model to enable the initiation of the catalytic reaction. This fact indicated that
318  substrates in P450s could be held in favorable orientations with different fixing rules
319  under the premise of sufficient space and suitable shape for the placement of the
320  substrate.

321 The rapid development of deep learning has witnessed many impressive
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322 achievements in protein structure design, while the desired functional design still is a
323 big challenge®: %57, Our research provides a novel strategy for the de novo design of
324 P450s with specific function by coupling the design principle of catalytic packet with
325  deep learning model. In this study, non-natural P450s with F6H function were
326  successfully designed by integrating the “three-point fixation” model with a denoising
327  diffusion probabilistic model. The structural analysis of active designs suggested that
328  the design principle of FO6H catalytic pocket has been fully incorporated into the deep
329  learn model. Furthermore, the structural insights between active and inactive designs
330  suggest that mutations on protein surface may be the fundamental factors contributing
331  to the inactivity or reduced activity of designed sequences, providing us with valuable
332 insights for future improvements of the P450 generative model. There are more
333 structure or sequence-based features should be considered, like the substrate-tunneling
334  feature, the overall stability of protein, and so on.

335 In general, the current work provides insights into the principle of pocket design
336 in the P450 functional innovations and offers a potential research paradigm for the de
337  novo design of P450 enzymes with desired functions. With the increasing of in-depth
338  investigated P450s, more catalytic pocket design principles would be deciphered and
339  facilitated the design of P450s with novel and desired functions.
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342 Figure 1. De novo innovation of F6H function in CYP706X subfamily. (a) Phylogenetic
343  relationship of 5 characterized genes in CYP706 family. The CYP73A1 was set as an out-group.
344  The maximum likelihood tree was constructed and all nodes received bootstrap support values
345  from 100 replicates. (b) Phylogenetic tree of CYP706X and CYP706Y subfamilies. The inferred
346  ancestral nodes are annotated with bold representations. CYP706X1 referred to F6H in E.
347  breviscapus. (¢) HPLC analysis of the fermented products of ancXY, ancY, ancX and CYP706X1.
348 (d and e) Substrate-binding models of apigenin in catalytic pocket of ancX (d) and ancXY (e).
349  The dash lines represented the hydrogen bond interactions.
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351 Figure 2. Reverse mutation assay for the identification of founder residues. (a) 16 different
352 residues within the 8 A range of active center of non-functional ancXY and functional ancX. All
353  residues were represented as ball-and-stick model, and the residues of ancX and ancXY were color
354 by cyan and magenta, respectively. (b) Process of RMA for the identification of founder residues.
355 In the first round of RMA, one founder residue A220L was identified and four non-essential
356 residues (V307L, G111A, N119Q and F251L) were eliminated; In the second round of RMA, the
357 other founder residue T1411 was identified; At last, three founder residues (i.e., W123F, L248M
358 and T317A) were identified. ancXY-2, ancXY-3 and ancXY-4 referred to ancXY-L220A/1141T,
359  ancXY-L220A/1141T/F123W and ancXY-L220A/1141T/F123W/M248L, respectively.
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361 Figure 3. Contribution of five founder residues for forming the reactive near-attack
362  conformation. (a) Spatial conformation of five founder residues (cyan), substrate apigenin (green)
363 and CpdlI (lightblue). (b-f) Comparison of each founder residue interacting with substrate in ancX
364  and ancXY. The substrate apigenin in ancX and ancXY referred green and white, respectively. The
365  founder residue in ancX and ancXY referred cyan and white, respectively.
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368 Figure 4. P450Diffusion de novo design new P450 Processes from Scratch. (a) The design
369  process for the new P450 includes P450Diffusion model construction (a pre-trained model and a
370  fine-tuning model), sequence generation and screening and experimental verification. The
371 generated sequences were screened and evaluated to obtain the candidate sequences for
372 experimental verification. (b) t-SNE embedding of natural, pre-trained model and fine-tuning
373 model generated sequences. The protein sequence space was visualized by transforming a distance
374  matrix derived from k-tuple measures of protein sequence alignment into a t-SNE embedding. Dot
375  sizes represent the 50% identity cluster size for each representative. (¢) The distribution of five
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376  founder residues and control residues (CPG) among natural and generated P450s is illustrated in
377  the WebLogo using multiple sequence alignment (MSA)®®. This visualization incorporates data
378  from four distinct sources: the P450Diffusion pre-trained model dataset (Nal P450), sequences
379  generated by the P450Diffusion pre-trained model (Pre-trained), the P450Diffusion fine-tuning
380  model dataset (Nal F6H), and sequences generated by the P450Diffusion fine-tuning model
381 (Fine-tuning).
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385 Figure 5. Experimental verification and structural insights of de novo generated P450s. (a)
386  The product scutellarein peak area of 17 designs, compared with natural Cnan706X, Lsal706X
387  and CYP706X1. Different colors were assigned to different proteins. (b) The histogram displays
388  the peak areas of products associated with functional designs, with CYP706X1 used as the control
3890  group. (¢) The structural distribution of mutations in Design4129 was compared to that in
390 CYP706X1, with mutations represented as red spheres. (d) The boxplot illustrates the substrate
391 RMSD values across long-term MD simulations, with active designs depicted in green and
392  inactive designs in red. (e) The boxplot represents the RMSD values for the overall protein
393 structure across long-term MD simulations, with active designs shown in green and inactive
394 designs in red.
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395  Methods

396  Phylogenetic analysis and ancestral sequence reconstruction

397 The P450 sequences of CYP706 subfamilies were selected from the previous
398  study?, including ten P450s of CYP706X/Y subfamilies for ancestral sequence
399  reconstruction, and a P450 of CYP706W subfamily as an out-group. The
400  transmembrane domains of P450 sequences were annotated with the TMHMM
401  package®. Using the crystal structures of CYP76AHI1 (PDB ID: 5YLW), a structural
402  information-based sequence alignment of the P450s deprived of N-transmembrane
403 region were generated by Expresso®. Poorly aligned regions (N- and C termini) were
404  trimmed. Then a phylogenetic ML tree was created with the RAXML®!. All protein
405  sequences of ancestral nodes were deduced using FastML5% 3, The N- and C-terminal
406  amino acids include transmembrane domain derived from CYP706X1 were added to
407  each ancestor. Ultimately, we obtained the most probable ancestor of CYP706Y
408  subfamily (ancY) and CYP706X subfamily (ancX), the common ancestor of two
409  subfamilies (ancXY), and all sub-ancestors of CYP706Y subfamily (ancY1, ancY?2
410  and ancY3) and CYP706X subfamily (ancX1, ancX2 and ancX3) in the sub-nodes of
411  the phylogenetic tree (Fig. 1b). The ancestral sequences are available in

412 Supplementary information.

413  Crystallization and Structure Solution

414 Initial crystallization screening was performed using the sitting-drop
415  vapor-diffusion method with commercial crystal screen kits at 16 °C. The ancX3
416  protein at concentration 10 mg/mL in buffer (2 mM KH;PO4, 8 mM KoHPO4, 500
417  mM NaCl, 0.2 mM EDTA, 1 mM DTT, 10% (v/v) glycerol and pH 7.4) was used in
418  the initial crystallization screening to determine the crystallization condition. The
419  ancX3 protein was mixed with precipitant solution at a drop size of 0.6+0.6 pL
420  against the reservoir containing 50 pL precipitant solution. The crystals grew from the
421  mixture with the precipitant solution consisting of 1.34 M NaCl, 13.4% (w/v)
422 PEG3350, 0.1 M MgCl,, 0.1 M imidazole and pH 6.5. The crystal optimization was
423  performed using the hanging-drop vapor-diffusion method at 16 °C against the
424  reservoir containing 0.5 mL of the precipitant solution. The drops contained 2 pL

425  precipitant solution, 2 pL ancX3 protein and 0.2 puL of additive solution (40% v/v
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426  Polypropylene glycol P400) from Hampton additive screen kit.

427 Crystals of ancX3 were mounted from the crystallization drops in nylon loops and
428  flash-frozen in liquid nitrogen using cryoprotectant consisting of 1.34 M NaCl, 13.4%
429  (w/v) PEG3350, 0.1 M MgCl,, 0.1 M imidazole, 25% (v/v) glycerol, pH 6.5.
430  Diffraction data (A = 0.97918 A) were collected on beamlines 17U1 at Shanghai
431  Synchrotron Radiation Facility for IFS crystals. Diffraction images were indexed,
432 integrated and scaled using the XDS program. Details of the data-collection statistics
433 are summarized in Table S1.

434 The structure of ancX3 was solved by molecular replacement with the structure
435  of CYP76AHI1 (PDB code: 5YLW) as search model®. Iterative model building and
436  refinement were performed using COOT and PHENIX, respectively. Coordinates and
437  structure factors have been deposited with the PDB under accession id 8JC2.

438  Structural modelling and molecular docking

439 The 3D models of all P450s and ancestral proteins are predicted by the local
440  ColabFold algorithm through inputting the crystal structure of ancX3 as one of
441  templates®. The Cartesian coordinates and atom charges of CpdI was obtained from a
442 published data®. The structure of substrate apigenin was obtained from PubChem®’,
443 and assigned with AM1-BCC charges®. An ensemble of different conformations of
444  the substrate were generated by enumerating these under OpenBabel®. Substrate
445  rotamers were extensively sampled around the C2-C1’ axis with 5° intervals. The
446  mol2 formatted Cpdl and apigenin were parameterized with molfile to params.py
447  script. Before molecular docking, the protein structure complex with Cpdl species
448  was firstly sampled and minimized by the RosettaRelax protocol without constraints’®
449 7' Then the apigenin was docked into relaxed structures using RosettaLigand’> 7> 74,
450  Distance restraints were added between the Fe ion and ligated cysteine (2.3 A +/— 0.1
451  A), between carboxylate groups of heme and arginines (2.2 A +/— 0.4 A) in
452 Rosetta-Scripts’®. Each run of 100,000 models were generated with the MPI’® version
453  of Rosettaligand and the top 100 models with lowest REU were clustered with
454  Calibur”’, and the structures with the lowest binding free energy (interface delta)
455  were selected as our final docking models. The Rosetta scripts and option files for

456  RosettaLigand and are available in Supplementary information.
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457  MD simulations and MM-PB/GBSA

458 Our target models with Cpdl and substrate molecules were set as the initial
459  structures for MD simulation. The protein structures were prepared with the
460  pdb4amber application in Amber20 package’®. The force field for the CpdlI species
461  was taken from a published data®. The partial atomic charges and missing parameters
462  for substrate apigenin were generated by Antechamber with AMI-BCC charge
463  model™ 8. A few Na* ions were added to the protein surface to neutralize the total
464  charge of the system. Finally, the resulting system was solvated in a rectangular box
465  of TIP3P waters extending up to minimum cutoff of 12 A from the protein boundary.
466  The Amber ff14SB force field was employed for all the proteins in MD simulations.
467 After proper parameterizations and setup, the resulting systems were minimized
468  with two steps (the first step with 5,000 steps of steepest descent and 10,000 steps of
469  conjugate gradient, the second step with 10,000 steps of steepest descent and 30,000
470  steps of conjugate gradient) to remove the poor contacts and relax the systems. The
471  systems were then gently annealed from 0 to 300 K under the NVT ensemble for 50
472 ps with a restraint of 5 kcal mol™" A2 Subsequently, the systems were maintained for
473  atotal of five rounds of density equilibration of 20 ps in the NPT ensemble at a target
474  temperature of 300 K and a target pressure of 1.0 atm using the Langevin thermostat®!
475  with a restraint of 1 kcal mol™' A2 Totally five rounds of density equilibration
476  relaxed the system to achieve a uniform density after heating dynamics under periodic
477  boundary conditions. Thereafter, we removed all of the restraints applied during
478  heating and density dynamics and further equilibrated the systems for ~2 ns to get a
479  well-settled pressure and temperature for conformational and chemical analyses. This
480  was followed by a MD production run for 100 ns for each of the systems. During all
481  of the MD simulations, the covalent bonds containing hydrogen were constrained
482  using SHAKE® and particle-mesh Ewald®® was used to treat long-range electrostatic
483  interactions. All of the MD simulations were performed with the GPU version of the
484  Amber 20 package.

485 The python script mmpbsa.py®* in Amber20 package was used in this research to
486  analyze the binding free energy of apigenin. According to the systematic research of
487  Hou et al., the inclusion of the conformational entropy may be crucial for the
488  prediction of absolute binding free energies but not for ranking the binding affinities

489  of similar ligands®. The binding free energy analysis implemented here just for
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490  analyzing the interaction energy contribution of each key residue. Therefore, the
491  change of conformational entropy upon ligand binding has been ignored in our
492  calculation because of expensive computational cost and low prediction accuracy. The
493  calculation procedure mainly referred the MMPBSA protocol in AMBER tutorial

494  websites (http://ambermd.org/tutorials/advanced/tutorial3/sectionl.htm).

495  Building and training the P450 Sequences Diffusion Model (P450Diffusion)

496 Denoising diffusion probability models (or diffusion models, for short) work by
497  applying a Markov process to corrupt the training data by successively adding
498  Gaussian noise, then learning to recover the data by reversing this denoising process®S.
499  We adapt this framework to generate protein sequences, introducing necessary
500 modifications to encode the discrete protein sequences into a vector of a specific
501  length. We used physicochemical character-based schemes, the principal components
502  score Vectors of Hydrophobic, Steric, and Electronic properties (VHSES)?’, to encode
503  protein sequences. The P450 Sequences Diffusion model (P450diffusion) is composed
504  of a U-Net with self-attention layers and features a classical U-shaped structure with
505  down-sampling and up-sampling blocks.

506 To build the P450Diffusion, we screened and analyzed all potential P450s from a
507  published P450 database’! and public databases, filtering out sequences with a length
508  greater than 560 and resulting in 226,509 sequences to form the training dataset. Then
509  we encode the training dataset, where each amino acid in the protein sequence is
510  encoded as an 8-dimensional vector, and each batch protein sequence is encoded as a
511  64x1x560x8 vector. Here 64 is the batch size equal to the number of samples in the
512  training data; 1 represents the channel size; 560 represents the maximum length of the
513  protein sequence; 8 represents the VHSES encode vector for each amino acid in the
514  protein sequence. If the protein sequence is shorter than 560, we add gaps until it
515  reaches a length of 560. In this case, we assign a vector of eight zeroes as the
516  encoding for gaps. Then we started to train the pre-trained P450 sequence diffusion
517  model. After 150,547 training steps, the loss functions of the pre-trained diffusion
518  model converged and the model was obtained. (Fig. S20a).

519 In order to generate sequences with FOH function more effectively, we fine-tune
520  the pre-trained diffusion model with the filtered dataset by selecting sequences with
521  more than 30% amino acid identity to the CYP706X subfamily and clustering them

522 with 90% sequence similarity. Finally, a total of 19234 sequences formed a
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523 fine-tuning dataset. Meanwhile, we assigned different sample weights to 30 sequences
524  from the CYP706X subfamily and other sequences in the fine-tuning dataset. The
525  sampling weight ratio between the 30 sequences from the CYP706X subfamily and
526  other sequences was 600:1. The P450Diffusion was obtained after 150,500 training
527  steps (Fig. S20b).

528 The P450Diffusion architecture to generate P450 sequences was based on the
529  diffusion model. The diffusion model is composed of a U-Net with self-attention
530  layers. The main difference with traditional U-Net is that the up-sampling and
531  down-sampling blocks support an extra timestep argument on their forward pass. This
532 is done by embedding the timestep linearly into the convolutions. In the training
533 process, the network takes a batch of noisy protein sequences of shape (batch size,
534  channels, height, width) and a batch of noise levels of shape (batch size, 1) as input,
535 and returns a tensor of shape (batch size, channels, height, width). In this model, we
536  used a mean squared error loss (MSELoss) function and optimized the networks with
537  the AdamW algorithm, setting the learning rate to 2e-4. Our model was implemented
538 in PyTorch and trained on 6 GeForce RTX 3090 systems for about 150,000 steps,
539  which took approximately 63 hours.

540 Computational evaluation and structure-based virtual screening for generated
541  sequences

542 Three criteria were used to screen the generated sequences in silico to improved
543 experimental validation success rates: the computational scores of composite metrics
544  for assessing the quality of generated sequences, the 3-dimensional pocket constraints
545  of the five founder residues, and the robustness of the apigenin binding modes.
546  Details are as follows.

547 We used random protein sequences of length 560 with the five founder residues
548  as the starting sequence for the diffusion model sample. In the reverse diffusion
549  process, we perform 600 steps of denoising the 60,000 starting sequences to obtain
550 60,000 generated sequences. In order to increase the likelihood that the generated
551  sequences would function as F6H, we evaluated the generated protein sequences
552 using a variety of computational metrics, including esm-1v8, Alphafold2'?,
553 ProteinMPNN®’, and others®. Firstly, the 60,000 generated sequences were screened
554 by the sequence motif constructed by the five founder residues, and 77 sequences

555  were filtered out. Secondly, both the 77 generated sequences and the F6H sequences
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556  were scored for esm-1v, and then the top 33 sequences in the esm-1v results were
557  selected for alphafold2 structure modeling. Thirdly, the constructed structures and
558  sequences were evaluated using ProteinMPNN, and the top 19 designs were selected
559  based on their ProteinMPNN scores, which were higher than that of CYP706X1
560  (-1.63). Fourthly, substrate apigenin and Cpdl were docked into constructed structures
561  using Rosettaligand and the substrate-binding models were obtained based on
562  binding affinity (interface delta X); Subsequently, MD simulations were performed
563  to evaluate the overall structure stability and binding pocket stability for each
564  designed sequences; Finally, the substrate-binding structures that meet catalytic
565  pocket constraints constituted by founder residues and maintain stable substrate
566  binding modes were chosen as candidate sequences for experimental verifications

567 (Fig. S21).

568  Cloning construction and products detection

569 Chemicals and media used in this study were exhibited in supplementary
570  materials. All primers used in this study are listed in Table S3. All strains and
571  plasmids are listed in Table S4. The protein sequences and DNA sequences can be
572 found in supplementary information. Nucleotide sequences of ancXY, ancX, ancXl,
573  ancX2 and ancX3, ancX-16 were codon optimized for Saccharomyces cerevisiae and
574  synthesis by Genscript, China. Subsequently, the gene fragments, ATR2 (P450
575 reductase from Arabidopsis thaliana) and the head-to-head promoters
576  (pPGK1-pTDH3) were cloned into the vector Y22-TC using the Minerva Super
577  Fusion Cloning Kit (US Everbright Inc., China). The assembly system was
578  transformed into DMT competent cells and the sequences assembled successfully
579  were verified by further sequencing. For mutants constructing, mutation sites were
580  introduced by the mutant primers which listed in Table S3 and used the same method
581  for recombinant vectors assembly. The nucleotide sequences of P450 designs were
582  codon optimized for S. cerevisiae and subcloned between PGK1 promoter and CYCI
583  terminator of Y22-PE by Genscript, China.

584 Due to the functional expression of P450 enzyme needed an auxiliary reductase

585  partner (CPR), the ATR2 from Arabidopsis thaliana was cloned into expression vector
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586  YCplac33-TP which contained a TDH3 promoter and a PDC1 terminator and named
587  Y33-ATR2. The plasmid Y33-ATR2 was preserved in our laboratory. The
588  recombinant vectors containing P450 enzymes designed by deep learning were
589  separately co-transformed with Y33-ATR2 into W303-1B, and transformants were
590  selected on a tryptophan and uracil minus plate (CM-Trp-Ura). Three colonies were
591  picked for each genotype, and used to inoculate 3 ml of CM-Trp-Ura medium in a
592 24-well-plate. The recombinant vectors containing ATR2 and P450 (ancXY, ancX,
593  ancXl1, ancX2 or ancX3) were directly transformed into W303-1B without extra
594  Y33-ATR2 and cultured in tryptophan minus medium (CM-Trp). The cells were
595  grown at 30 °C and 550 rpm for 48 hours, after which the resulting seed cultures were
596  transferred into fresh medium at a ratio of 1:50. The new cultivation was fermented
597  under the same condition for 4 days after feeding ImM apigenin. For the mutants,
598  flasks containing 30 ml of medium were then inoculated at a ratio of 1:50 using the
599  resulting seed cultures by feeding 1mM apigenin. The main cultures were grown at
600 30 °C and 220 rpm for 4 days. The products extraction method and HPLC detection
601  method was based on our previous study?® and was described in detail in the
602  supplementary methods.

603
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