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A spatial cell atlas of neuroblastoma reveals developmental, epigenetic and
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SUMMARY

Neuroblastoma is a pediatric cancer arising froendibveloping sympathoadrenal lineage with
complex inter- and intra-tumoral heterogeneity.chart this complexity, we generated a
comprehensive cell atlas of 55 neuroblastoma gatiemors, collected from two pediatric cancer
institutions, spanning a range of clinical, genediud histologic features. Our atlas combines
single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk®Rdeqg, whole exome sequencing, DNA
methylation profiling, spatial transcriptomics, am spatial proteomic methods. Sc/snRNA-seq
revealed three malignant cell states with featafeympathoadrenal lineage development. All
of the neuroblastomas had malignant cells thatmbksl sympathoblasts and the more
differentiated adrenergic cells. A subset of tunt@ad malignant cells in a mesenchymal cell
state with molecular features of Schwann cell premng. DNA methylation profiles defined four
groupings of patients, which differ in the degréenalignant cell heterogeneity and clinical
outcomes. Using spatial proteomics, we found tleatoblastomas are spatially
compartmentalized, with malignant tumor cells satered away from immune cells. Finally, we
identify spatially restricted signaling patterngnmmune cells from spatial transcriptomics. To
facilitate the visualization and analysis of olasias a resource for further research in
neuroblastoma, single cell, and spatial-omicsjatih are shared through the Human Tumor

Atlas Network Data Commons @ivw.humantumoratlas.org
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INTRODUCTION

Pediatric solid tumors can arise from mesodernmalpdermal and ectodermal lineages during
development and retain the molecular and cell@atures of their embryonic orighSingle-
cell and single-nucleus RNA-seq (sc/sn-RNA-seqetfiatric solid tumors have showed that
they contain heterogeneous populations of maligoelig representing different developmental
stages within particular embryonic lineafjés For example, embryonal rhabdomyosarcomas
are composed of malignant cells resembling mulspdges of skeletal muscle differentiafidh
Beyond this developmental hierarchy, there arairand inter-tumor variability in the
composition of the non-malignant tumor microenvir@amt (TME). Signaling between the
malignant and non-malignant cells in tumors canaabpreatment response, including to
chemoimmunotherapy.

Neuroblastoma is a pediatric solid tumor of thealigping sympathoadrenal lineage. The
sympathoadrenal lineage is specified with the faionaof proliferating sympathoblasts during
the first wave of neural crest migration (E8.5-E@.5nice and PCD 27-30 in humah&)*3
During the early stages of sympathoadrenal devetopnsympathoblasts produce post-
ganglionic sympathetic neurons that are eitherraggc or cholinergi¢. Later, these
sympathoblasts produce Schwann cell precursorsgs@mnultipotent cell population that can
differentiate into Schwann cells, multiple mesemhycell types, and adrenergic chromaffin
cells of the adrenal medutfa®® Both intrinsic and extrinsic factors regulate specification
and differentiation of adrenergic and mesenchyratié érom sympathoblasts Findings in
neuroblastoma cell lines mirror the presence dh bolrenergic and mesenchymal cell
populations in the developing adrenal gland, whih presence of two interconvertible epigenetic

states in malignant cells, termed the adrenergi2RN) and mesenchymal (MES) céfis?
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In addition to the striking heterogeneity withirdimidual tumors, neuroblastomas also exhibit
patient-to-patient variability with broad clinicalitcomes. For exampl®]YCN amplification

and age at diagnosis are the two of the most signif predictors of outcome, with survival rates
5 to 10 times higher in infants than in adolescentgoung adults§™>> While patients with
metastatic disease often have a poor outcome désfensive multi-modal therap{?° a rare
subset of neonates and infants with widely metastauroblastomas experience spontaneous
disease regression and have excellent outcdrifesloreover, tumors with well-differentiated
adrenergic malignant cells or those dominated hgramalignant Schwannian stroma are
associated with more favorable patient outcomeseliindings have led to the incorporation of
histologic status in clinical risk stratificatioh Finally, clinical success using antibodies and
chimeric antigen receptor (CAR) T cell therapy dieel towards GD2 ganglioside demonstrates
a potential role for engaging the immune systeneffactive treatment of neuroblastoth® 3*
Taken together, these findings indicate that tieeeecomplex interplay between intra-tumor
cellular heterogeneity in both the malignant and-n@lignant compartment, inter-patient
variability, and outcome in neuroblastoma.

Multiple scRNA-seq studies have provided imporiasights into the cellular
heterogeneity of neuroblastomas and the normalaiging sympathoadrenal linede 13>
However, these prior studies have focused on sn@leorts of 8-20, and, thus far, have led to
contradicting conclusions regarding the presen@bsence of malignant neuroblastoma cells
resembling cells of the developing sympathoadrimehge. Moreover, the spatial distribution of
malignant cell states, and their relation to theElWemain to be more comprehensively

analyzed in neuroblastoma.
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Here, we report a comprehensive cellular atlassafoblastoma from the Human Tumor
Atlas Pilot Project (HTAPPY, which spans 55 tumors from 51 pediatric patiests),
encompasses the full clinical spectrum of neurdbiaa. We identified three major populations
of malignant cells with features of proliferatingrgathoblasts (SYMP), adrenergic neurons
(ADRN), and mesenchymal cells (MES). These cellytajons were not uniformly distributed
across our cohort, and we introduce methylatiofilprg, which identified four groups of
neuroblastoma that differed by the degree of mahgheterogeneity. Moreover, two
methylation groups had significantly worse diseasieomes, suggesting that methylation
profiling may have utility as a potential risk dtfiar of disease. Non-malignant cells in the
neuroblastoma TME also exhibited intra- and intendr heterogeneity, and spatial analysis
demonstrated a compartmentalized structure whareuime cells were more likely to be adjacent
to MES tumor cells and separate from SYMP and AQ&MNor cells. Moreover, we identified
spatially distinct expression programs in immuniésdbat depended on their relative adjacency
to malignant cells. Our study sheds new light ofignant expression programs in

neuroblastoma and an atlas for the future stutBgstra- and inter-tumoral heterogeneity.
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RESULTS

A cdllular, genomic and spatial atlas of neuroblastoma

We built a tumor atlas for neuroblastoma as paHDAPP, a pilot for the human tumor atlas
network (HTANY’, by collecting samples from two pediatric canaanters (St. Jude Children’s
Research Hospital and Dana-Farber Cancer Institat&tal, we selected 55 tumors from 51
patients that met the criteria for sc/snRNA-seq spatial analyses. These neuroblastomas span
the clinical breadth of disease, including agesrmational neuroblastoma staging scale (INSS)
stage, and histology (neuroblastoma and gangliohdastoma)Figure 1A andTable S1).

They included neuroblastoma samples WItHCN amplification (n=12) an@LK gain-of-

function mutations (n=%Figure 1A andTable S2). Twenty-seven samples (predominantly stage
3 or 4) were obtained in the midst of treatmenhwtiemotherapy, nine of which received
chemo-immunotherapy with an anti-GD2 antib8dy, For patient HTAPP-312, we analyzed
samples before and after chemotherapy treatmerAPHT800 had two different sites, and
HTAPP-811 had three timepoints during chemo-immie@tpy treatment.

To elucidate the cellular heterogeneity acrosscotort, we profiled 13 fresh tumor
specimens by scRNA-seq, 43 frozen specimens by Anétly, and one sample (HTAPP-656-
SMP-7481) by bothHigure 1A andTable S1, Supplemental Information). SnRNA-seq
applied to frozen samples allowed us to exploivimesly harvested and archived samples from
both centers, thus increasing the number of pasi@mples available for study from a rare
pediatric solid tumor like neuroblastoma and ineltamors for which clinical outcomes are
available. We successfully generated data from Esmmipat were banked up to ten years prior to

SnRNA-seq. We also performed whole exome sequerfeisfs) of tumor and germline DNA
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(n=43), bulk RNA-seq (n=44), and DNA methylatiohufnina 850k BeadChip arrays; n=34)
(Figure 1A, Tables S1, S2, Supplemental I nformation).

For the spatial atlas, tumors were apportionecanalfel for formalin fixation and
paraffin embedding (FFPE) and for cryoembeddingagdsectioningigure 1B,
Supplemental Infor mation). From the FFPE specimens, all 55 samples hadldgst staining
with hematoxylin and eosin (H&E; initially used folinical diagnostic purposes), 28 of the
tumors were further analyzed by multiplexed immiunaiescence, and 11 were analyzed by
multiplexed ion beam imaging (MIBf}** (Figure 1B, Supplemental I nformation). Serial
sections from 10 of the cryoembedded tumors wesglg@d by the spatial transcriptomics
method Slide-seq\V/2**and by the spatial proteomics method CO-Detedtjoimdexing
(CODEX)* (Figure 1B, Supplemental Information). We selected the 10-11 tumors for spatial
profiling to span most INSS stages and by an anatpathologist’s review to avoid samples
with large regions of necrosis or calcification.talay, 10 of 11 patient tumors were used across
all three spatial platforms (Slide-SeqV2, CODEX ahi@l), to compare and cross-validate the
different assays, and facilitate future developneéromputational method§&igure 1A,B,
Table S1). All raw, processed, and annotated data fromdtudy are available on the HTAN

data commonsh(tps://humantumoratlas.org/explire

Neur oblastomas have three major malignant cell states

The atlas included 530,055 high-qualitgell and nucleus profiles (84,769 cells; 445,286lai;
Table S3, Supplemental Information). These profiles were processed unifofthfy (Figure
S1A; Supplemental Information), combined using integrative non-negative matrix

factorization (iNMF), and co-embedded into a shdoeddimensional latent spatdFigure 2A
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andSi1B,C). Consistent with our previous studiz® snRNA-seq profiles had significantly
fewer expressed genes (1,373 genes/nucleus) tRMsseq (2,101 genes/cell) (p < 2.2X%)
lower proportion of mitochondrial reads (0.3% verdud%:; p < 2.2x1#) (Figure S1D-F), and
lower scores for two signatures of dissociationairet! stre$$*° (Figure S1G,H; p < 2.2x10').
The INMF integrated profiles partitioned into 2Qistiers Figure 2A-C; Table $4), annotated by
marker expression: five immune cell clustexg.( CD45 PTPRC), Figure 2C andS2A), three
endothelial cell clustere., CD31 PECAML1), Figure 2C andS2B), and 12 clusters that
express genes of the developing sympathoadreraldaé¢.g., NCAM (NCAML1), Figure 2B,C
andS2C). The 12 sympathoadrenal clusters were furtheitjosued into three groups: seven
clusters expressing genes representing differagestof sympathetic neuron differentiation
(NRG3, NTRK3, DBH, ERBB4, CHGB) (Figure 2C), consistent with the adrenergic (ADRN)
gene expression signature found in N-type neurtintas cell lines"*">2 four clusters
expressing genes found in mesenchymal cells defreedthe sympathoadrenal lineadmN(,
ACTAZ2, COL1A1L, EGFR) (Figure 2C), consistent with the mesenchymal (MES) gene asiva
signature found in S-type neuroblastoma cell fii#s® and one cluster resembling
proliferating sympathoblast®K167, TOP2A) (Figure 2C), which lie at the junction between
the sympathetic neurons and the mesenchymal eglsstent with their developmental
competence to produce both cell lineagagyre 2B).

We distinguished malignant from non-malignant gesfiby their inferred copy number
alterations (CNAs) from sc/snRNA-seq profffe¥’ identifying 344,124 malignant cell profiles
(64.9% of total), all restricted to the sympath@esdd clustersKigure 2D-F andS2D,E). Each
malignant cell subset (SYMP, ADRN, MES) had simpatterns of inferred CNA$-(gure

S2E). The proportion of immune cells was higher in NéRseq, while ShRNA-seq captured a


https://doi.org/10.1101/2024.01.07.574538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.07.574538; this version posted January 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

higher fraction of malignant and non-malignantselith sympathoadrenal lineage signatures,
consistent with previous reports in other tumors lealthy tissués*®*°(Figure 2G). This was
also reflected in the one sample profiled by befRMdA-seq and snRNA-seq, HTAPP-656-SMP-
3481" (Figure 2G andS2F).

We validated the proportion of SYMP, ADRN and MES seii neuroblastoma by
immunohistochemical staining for MKI67 (sympathatty, PHOX2B (adrenergic) and VIM
(mesenchymal) for 15 tumorBigure S2G, Table S5). We found good concordance between
the IHC and snRNA-sedr{gure S2H,!; r’=0.77-0.96), consistent with the agreement observed
in other tumor types. We have developed an online interactive visuatizdelp interrogate the
single cell/nucleus atlas, along with individuaingde CNA inference heatmaps

(https://viz.stjude.cloud/community/human-tumor-sdfeetwork-consortium-6

Tumor composition shifts associated with MY CN amplification or therapy

Next, we used a Bayesian composition model to coentbee proportions of cells (malignant,
immune, endothelial, other non-malignant) with athaut MYCN amplification or treatment
(Figure 2H,1, Supplemental I nformation). MYCN-amplified neuroblastomas had a reduction in
the proportion of immune cells within tumors (FDR@®), consistent with prior reports>
Conversely, intermediate and high-risk tumors &éatith either chemotherapy or
chemoimmunotherapy had a statistically credibleicédn in malignant cell proportion and an

increase in the proportion of immune cells (FDR&).@igure 2I).

Adrenergic and mesenchymal cell heterogeneity in neuroblastoma malignant cells
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To further characterize the heterogeneity withidigmant cell/nuclei profiles, we reintegrated
only the 50,532 malignant cell and 293,592 maligmarcleus profiles and partitioned them into
12 clustersKigure 3A-C; Table S5). We identified three clusters enriched for mebgntal
(MES) genes, seven clusters enriched for adrengagies (ADRN) and one proliferating
sympathoblast (SYMP) clustdfigure 3A-C).

The three major neuroblastoma cell clusters hatifes consistent with the gene
expression programs, core regulatory circuits dmwdroatin landscapes that distinguish ADRN
and MES cell line§™ The sympathoblasts and the eight adrenergicerkistere significantly
enriched in an ADRN cell line gene signafJr@nd the three mesenchymal clusters were
significantly enriched in the MES cell line signad (Figure 3D-G, Table S5). Moreover,
inferred transcription factor (TF) activity (usiSCENIC®®Y in our mesenchymal cluster
(Figure 3H; Table S5) included multiple TF regulons that had been mesly identified in the
MES neuroblastoma cell lin€$°including: ELK4, EGR3, MAFF, IRF1, IRF2, FLI1, RUNX2,
FOSL1, andFOS.2 (Figure 3H; Table S5). Conversely, TF regulons in our SYMP and ADRN
clusters HAND2, PHOX2A, PHOX2B, 19.2, andGATA2) had been previously identified in the

%,20,61

ADRN neuroblastoma cell lines and as part of a MY&iXe regulatory circui (Figure

3H).

Neur oblastoma cellular heterogeneity reflects a sympathoadrenal developmental hierar chy
To further characterize the 12 malignant cell statehe context of sympathoadrenal
development, we compared each profile to a referatlas of the human fetal adrenal medulla
Consistent with previous repatfe® most malignant cell/nucleus profiles (82.4%) haghest

similarity to ADRN cell types of the sympathoadrklreeage, representing different stages of

10
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sympathetic neuron and chromaffin cell differemtiat(Figure 31,J andS3A,B andTable S5).
Another 5.2% of cells/nuclei had highest similaingleR scor®) to that of proliferating
neuroblastsKigure 31,J andS3A,B andTable S5, Supplemental I nfor mation). Previously,
proliferating and postmitotic adrenergic cells waskerred to as proliferating neuroblasts and
neuroblasts, respectively, but here we use the sgmpathoblast (SYMP) to refer to
proliferating cells and ADRN to refer to postmitotells of the adrenergic lineadgédure 2B).

The mesenchymal cells (8.5%) in our tumors expresgmatures that most closely
matched Schwann cell precursors (SCPs) from tlaéderenal dataséfs SCPs are multipotent
cells derived from sympathoblasts that can prodate mesenchymal and adrenergic cell
typed'®*?(Figure 2B). Malignant cells with the highest late SCP sase have high MES
scores from prior cell line analysds@ure 3E, andS3C), and SOX10, a marker of SCPs in
normal fetal adrenal, was identified by SCENIC etsva in our MES cellsKigure 3H). We
confirmed the enrichment of MES clusters with arPSnature from a second atlas of the
human fetal adrenal meduliéFigure S3D,E). We validated that MES cells with the SCP
signature are malignant, by comparing profiles feopatient tumor (HTAPP-194-SMP-251) to
those from a matched orthotopic patient-derivecgeaft®® (O-PDX) (SINBL012407_X1):
2.2% and 1.8% of the nuclei profiles in the patteimbor and O-PDX, respectively, had the MES
signature [figur e 3K). No other non-malignant human cell type was detkwithin the O-PDX,
consistent with our previous observation that enalignant cell types propagate following
orthotopic xenotransplantatiofr.

Taken together, these data suggest that neurolmagtonors have a mixture of
proliferating SYMP, differentiating ADRN and MESIIsewith subsets spanning the different

steps of their developmental hierarckygure 31,J). The MES cells express SCP genes as well

11
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as genes found in other mesenchymal cell popukafffiioroblasts, myofibroblasts, smooth
muscle and melanocytes). This is consistent wighfalat that MES (S-type) neuroblastoma cell
lines have molecular features of Schwann cellsanuaytes, ectomesenchymal derivative and
smooth muscfé. Fifteen of the tumors in our cohort have very {ed% of profiled malignant
cells), if any, MES neuroblastoma tumor celsglur e S3F), explaining why previous studies
with smaller cohorts of patients have not idendifES neuroblastoma cells with the SCP gene
expression signatur&®® Importantly, our results cannot be used to deigly infer a cell of
origin for neuroblastoma, because there are reflmatsneuroblastoma cell lines and xenografts
can interconvert between MES and ADRR{**° Instead, our results are consistent with
previous work showing that neuroblastomas can redafe varying aspects of the
sympathoadrenal developmental plastici® and we have identified interpatient variability i

the degree of heterogeneity.

Differencesin neuroblastoma malignant cell composition correlateswith outcome
We next tested whether the variation in malignafitsubset composition is associated with
clinical features. We found a statistically sigoaint increase in SYMP cell proportions in
MYCN amplified tumors, infant cases (< 18 monthsgé), and untreated casEgyure S4A-
D). Conversely, while some (15/55) tumors had very (<1%) MES neuroblastoma tumor cells
(Figure S3F), the differences in MES cell proportions (continsly or discretely) did not
significantly associate (FDR>0.05, scCODA) with MM@mplification, risk group, age, or
treatment statug=(gure S4A-D).

Because different cell states within neuroblastanesexpected to have distinct

epigenetic profiles, we reasoned that methylatiafilphg of tumors could be used to accurately

12
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group tumors with different cellular compositiofredeed, methylation grouping of pediatric
cancers have been successful in identifying eptigesebgroups of brain tumors and sarc8ma
% We combined data from 190 neuroblastoma sampies the National Cancer Institute’s
Therapeutically Applicable Research to Generatediiffe Therapeutics (NCI-TARGET)
initiative with 34 methylation profiles from our kort (Figure 1 andT able S1). Consensus
clustering® partitioned the tumors to four methylation grougmsch with samples from both NCI-
TARGET and our cohortHgure 4A). Each methylation group was associated with ferift
combination of clinical and molecular factoRsdure 4B). For example, methylation group Il
was enriched for Children’s Oncology Group low4drdermediate-risk tumors and younger
patients (< 18 months), and group IV tumors wergchred for older patients (>18 months) with
MYCN amplified tumors. Nevertheless, some tumors WMI¥CN amplification or age younger
than 18 months were in group Il (n=9 and 16, retypay), reflecting the complex underlying
biology of neuroblastoma. Next, based on sc/snRB\data in our cohort, group | and IV
tumors had a statistically credible increase inptogortion of MES and SYMP tumor cells,
respectively Figure 4C and4E; scCODA Bayesian modeling). We validated theséifigs
using digital cytometry with CIBERSORTx bulk decahwtion’ of 124 samples from the
TARGET cohort with both RNA-seq and DNA methylatidata, with deconvolution parameters
optimized by training the model using bulk RNA-sat sc/snRNA-seq data from our samples
(Figure 4D,E). Consistent with our cohort, deconvolution of TBRT bulk RNA-Seq (n=124)
showed that group | tumors had a significantly keigbroportion of MES cells, and group IV
tumors had a significantly higher proportion of loyg sympathoblast tumor cellEigure 4F

and$4F).

13


https://doi.org/10.1101/2024.01.07.574538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.07.574538; this version posted January 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Currently, risk stratification of neuroblastomaongorates multiple clinical, diagnostic,
and histologic features to identify patients withigher risk of dead®”* Analyzing the outcome
for patients in each of the four tumor groupg(rre 4G), we found that patients with group | or
[Il tumors had significantly better outcomes conguhto patients with group Il or IV tumors
(Figure $AG). The poor outcomes for group IV patients werestgtent with the enrichment of
MYCN amplified tumoré>’?"3in that group Figur e 4B). Similarly, the excellent outcomes for
group Il patients were consistent with the enrielmtof stage 4S patients and infants under 18
months of ag@?’ Taken together, our data suggest that there maycoerelation between
cellular composition, DNA methylation grouping amatcome in neuroblastoma.

As group Il tumors had similar proportions of ME®I&SYMP cells to those of Group lli
tumors, but had much poorer outcomes, we hypotbe@shat there may be finer changes in cell
states associated with their distinctions. To idigtihose, we further analyzed cell signaling
pathways in each cell population in each diseasepgiWe first used SJARACN&to infer cell
type—specific interactomes for each of the threpneell populations (SYMP, ADRN, MES)
from their sc/snRNA-seq profiles, and then usedd¢heteractomes to infer the network activity
in each nucleus profile using NetBIBigure 4H). Finally, we performed differential activity
analysis to identify cell type—specific signalimggach neuroblastoma group (I-1V). Group lI
MES tumor cells, when compared to MES cells frotveoimethylation groups, were enriched
for signatures of inflammatory pathways, includmgmbers of the interferady-response and
TNFa pathways; in contrast, there were few differenoegoup Il adrenergic cells, when we

compared them to adrenergic cells from other matton groupsKigure 4l,J, Figure S4H-1).

Immune infiltration is correated with clinical featur es of neuroblastoma
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While bulk methylation profiles identified groupstamors associated with different clinical
outcome, malignant cell composition may be insidfit to fully explain these distinctions
(Figure $4F). We hypothesized that other cells, such as imneefie, and their interactions with
malignant cell states (such as the inflammatory M&$e in Group Il) may also drive some of
these distinctions. To explore this, we characterithe diversity of immune cell states within
neuroblastoma. We re-integrated 25,438 cell an8l1&Bnucleus profiles from immune cells and
annotated them into major categories with CellTypi&igure 5A and S5A-C). Because tissue
dissociation increased stress module gene expressstRNA-seqKigure S5B), we focused
our subsequent analysis on the snRNA-seq profiles.

The 25,579 myeloid nucleus profiles from 41 tunspanned 8 subsetSigure 5B-D).
Most myeloid cells (78.9%) were macrophages, irogdD68 and CD163 macrophages
(Figure 5B-D). CD68 macrophages were enriched in mitochondrial gemes, 1 T-CO1/2/3
andMT-ND1/2/3/4/5) and genes encoding the ferritin heteromeric cemniTL andFTH)
(Table S6), whereas CD163macrophages expressed markers of pro-tumorigeagcaphages,
includingMDC1 (CD206) andVISR1 (CD204) {Table S6). The 17,142 T/NK cell nucleus
profiles included four T cell subsets, one natuiiédr (NK) cell subset and one small innate
lymphoid cell (ILC) subsetHigure S5D-G andTable S6). Finally, there were 4,962 profiles of
naive, memory, and plasma B cells, detected in sbotenot all, tumorsKigure S5H-K and
Table S6).

The 25 untreated tumors with snRNA-seq data aenetbylation Groups I-1V also
differed in immune cell compositionkigur e 5D-G and S5G). While the number of group lli
and group IV tumors was limited, there was a dtatily credible enrichment of CD163

macrophages in groupvé. group Il tumorsKigure 5E; scCODA Bayesian modeling). We
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confirmed that that group | tumors had a signiftbahigher number of CD163%ells compared

to tumors from the other methylation groups usifgeéx immunofluorescence microscopy of 28
HTAPP tumors with PHOX2B staining to identify malant cells and four immune markers
(CD3, CD8, CD68 and CD163) to mark T cell and mpbhege populationg-(gure 5F,G).
Multiplexed fluorescence showed a compartmentatingthenotype, where PHOX2Bumor

cells were arrayed in nests that excluded immufeetelr cells and MES cell$(gur e 5F).

Discrete spatial compartments of malignant, immune, and stromal cellsin neur oblastoma

To better characterize the distinct malignant anchune cell features across neuroblastoma
groups, we used multiplex ion beam imaging (MIBthich combines metal-conjugated
antibodies and time-of-flight mass spectrom@fy’ to generate high-resolution spatial maps
of 41 proteins in archival formalin-fixed paraffernbedded tissue. We first tiled MIBI captures
from two high-quality tumor specimens (HTAPP-1021 (Group Il) and HTAPP-130-
SMP-91 (Group IV)) to generate large 2Q08 x 2000um arrays Figure 6A-C). We then
developed a computational method, Patched Levelyaiseof NeuroBlastoma (PLANB), to
guantify the expression of markers relative totthreor and stroma in a stepwise pixel-by-pixel
manner Figure 6D). The expression of CD56/NCAM (a marker of neuasbbma’),

proliferation (Ki67), and transcriptionally actigaromatin (H3K27ac) were all enriched within
tumor neighborhoodd$=(gur e 6D), whereas markers for immune effectors (CD11c, @bd
CD8) were enriched in the stromal neighborhdedre 6D). We next performed MIBI
analysis using 30 fields of view (FOVs) from 11lipat samples, predominantly from Group Il
(n=7). We annotated cell types based on proteinesspn Figure 6E-G), and observed both

sample-to-sample and region-to-region variatiommmune cell density that correlated with the
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sc/snRNA-segRigure 6G,H). Neighborhood analysis (n=30) identified broatteras in cell

type colocalizationKigur e 61,J). Consistent with PLANB, Malignant tumor cells segated

into one neighborhood (neighborhood ‘0’) with véeyw immune cellsKigure 6J,

neighborhood ‘0’), while there were four distinctlaetypes of immune-rich neighborhoods. For
example, neighborhood ‘3’ was patrticularly richBrecells, whereas macrophages were
predominantly localized to neighborhood ‘2’ thatdatontained CD4 T, CD8 T, and dendritic
cells (DCs) Figure 6J,K).

Because MIBI provided a high-resolution map of mélastoma spatial organization but
could not be performed at scale for large areassadhe samples, we generated whole-slide
CODEX*"®data for 10 HTAPP samples (with matching MIBI datith 52 antibodies followed
by imaging segmentation, cell marker clusteringl egll annotationKigure 7A-C andS6A-C).
We leveraged the expanded scale of CODEX to charraetthe inter- and intra-tumor cellular
heterogeneity across the entire tumor sectiondoheample. First, we partitioned CD56
CD45 cells by expression of vimentin (VIM), collagen (€0L4), and podoplanin (PDPN).
CD56'VIM "COL4'PDPN cells had thin, elongated morphology and werecatjato neuropil,
consistent with Schwannian stronfagure S6D-F). CD56VIM "COL4 PDPN cells had
histologic features of neuroblastoma tumor celsals blue round cells) and were positive for
the proliferation marker Ki67Rjgur e S6D-F and data not shown). CDSAM *COL4'PDPN
and CD56VIM *COL4 PDPNcells were rare and interspersed throughout thetigure 7C
andS6F). We cannot discern from these data if those eeianalignant. Overall, because of the
available antibodies, CODEX was more useful fottigpanalysis of immune than

neuroblastoma malignant cell types (ADRN, MES, SYMP
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Following cell type annotation, we identified cefighborhoods (CNs) with
characteristic co-localized cell typé&idur e 7B-D). The malignant CD56cells were
predominantly found in CNO, which contained no ottell types Figure 7B,D), consistent with
our MIBI and multiplex immunofluorescence analydikree other neighborhoods (CN8, CN11,
and CN12) were predominantly enriched for immurktgpes, especially DCs and T cells
(Figure 7B,D). Finally, seven neighborhoods were predominactiyprised of stromal cells,
including two lymphatic-rich neighborhoods (CN1 a&N7) and five cell neighborhoods that
were enriched for VIM+,COL4+ stroma (CN2, CN3, CI@D5, and CN10Figure 7B,D).

Unsupervised analysis of the cell-cell interactmagitrix from the entire tumor section of
each of the 10 samples confirmed the compartmeatain of tumor cells from immune/stromal
components in neuroblastonfdure 7E-G). Specifically, CD56 tumor cells self-associate into
a niche devoid of immune cellBifure 7E). Each tumor cells neighborhood is in turn
surrounded by a second niche with stromal celisddtc cells, and T cellsHigure 7E-G). A
third niche comprised of CD5@IM * cells that may represent tumor cells, normal celidoth.
Taken together, both CODEX and MIBI showed a higidgnpartmentalized tumor

organization.

High-resolution spatial transcriptomics shows context-dependent shiftsin expression

As the number and type of antibodies used in dgatbeomics limited our ability to resolve
malignant cells, we finally profiled 19 frozen seas from 10 tumors in our cohort by Slide-
SeqVZ?, generating spatial transcriptomic data apftOresolution. We then integrated our
Slide-SegV2 and snRNA-seq profiles to spatiallygssell type distributions (with robust cell

type decomposition (RCTD), overcoming the spatial lower resolution, andpatially project
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full gene expression profiles (using TANGRA®W overcoming data sparsity in Slide-SeqV2
(Figure 8A).

We successfully assigned 8 of the cell types ddfinesc/snRNA-segHigur e 8B-D),
including all three major malignant cell subset®RN, MES, SYMP), three broad immune cell
categories (T cells, B cells, myeloid cells), atrdrmal and vascular endothelial cells. The
proportion of malignant cell populations was catetl (Pearson’$¥0.71, p<0.0001) between
SnRNA-seq and Slide-SeqVEiQure 8E). We then used the relative abundance of cell
signatures in Slide-SeqV2 data to identify cellcelocalization, finding that ADRN and SYMP
tumor cells were less likely to be adjacent to rigebr T-cells Figure 8F), consistent with the
compartmentalization observed in spatial proteoraredysis (MIBI and CODEX). In contrast,
MES tumor cells had a weak, but detectable, assmeiwith immune cells in the TMB-{gure
8F), which is consistent with the higher expressibarminflammatory program by MES cells in
Group Il tumors Eigure 4l,J).

To investigate further, we clustered the RNA pesfifrom each barcoded bead and then
aggregated those clusters into a tumor-rich (>5Q&kgmant cells) and stroma-rich (<50%
malignant cells) bead&igure 8G), and then compared for each cell type, diffesdrkpression
(per section) between beads with that cell typedhain the tumor-ricks. stroma-rich clusters
(Figure 8H-1). For example, myeloid cells in sample HTAPP-102Ps11 FOV#1 expressed
significantly higher ferritin light chain{TL) when in tumor-rictvs. stroma-rich beads$-{gure
8H), and higher levels of MHC class Il gertéisA-DRA andHLA-DRBL in stroma-vs. tumor-
rich beadsKigure 8H). Finally, we scored genes for recurrent enrichmerither compartment
across the 19 sampldsigure 81 andTable S7). Stroma-restricted myeloid cells consistently

expressed monocytic and DC markers including MHGZIl genesHLA-DPB1, HLA-DRA,
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HLA-DRB1, CD74) and lysozymel(YZ) (Figure 8l), whereas intratumoral myeloid cells
expressed higher levels of mitochondrial (eWjT;CO1 andMT-CO2) and anti-oxidant (e.qg.,
ATOX1, GSTP1, COX6C, andOAZ1) genes, raising the possibility that those myeéastls that
penetrated into tumor-rich regions underwent meielistress Figure 81). Indeed, the CD68
macrophages snRNA-seq profil&sdure 5B,C) are enriched foFTL andTMSB10, both

associated with intratumoral expression in Slidg\&g supporting this interpretation.

DISCUSSION

Tumor profiling using single-cell sequencing tediogees has transformed our understanding of
cancer and the cellular constituents within tum8gatial-omics technologies have the potential
to unveil further complexity informed by the tisssteucture within tumors. Despite these
advances, combining and leveraging these tooleneert remains limited due to technical and
computational challenges. We have generated a @arapsive dataset for a rare childhood
cancer, neuroblastoma, by accruing fresh and freaemples from two pediatric cancer
institutions. We have developed standardized tipsaeessing and handling methods to
decentralize data generation, which we have mabkcpuavailable to the community
(Methods). In total, we used four sequencing meth{sthgle-cell/nucleus RNA-seq, bulk RNA-
seq, whole exome sequencing and methylation prgjiland three spatial methods (MIBI,
CODEX and Slide-SeqV?2) to build a foundational tese for pediatric cancer researchers and
for future computational method development. Weeharnade all data (raw, processed and
annotated) openly available to the research contynthmough the HTAN Data Coordinating

Center fittps://humantumoratlas.ojgin this study, we leverage this resource to stigate
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heterogeneity of malignant cell states and to rhagspatial organization of immune cells within

neuroblastoma.

Malignant cellsin neur oblastoma retain featur es of sympathoadrenal development

Our analysis of single cell/nucleus RNA-sequengrafiles from 55 samples show that
neuroblastoma tumors have three major cell pomunatihat are reminiscent of sympathoadrenal
development. Most malignant cells resemble diffeating adrenergic neurons (post-ganglionic
sympathetic neurons and chromaffin cells; ADRNS)elA smaller subset of cells resembles the
immature proliferating sympathoblasts from earfgsts of sympathoadrenal development
(SYMP). A diverse nomenclature has been used torithesthese cells, which have been referred
to as ‘sympathoblasts’, ‘neuroblasts’, ‘adrenerglis’, and ‘noradrenergic neuroblastoma’
68.14.19.20\ne propose restricting the term sympathoblagiase cells that are actively dividing

in sc/snRNA-seq datasets, and the term adreneygalifother cell populations that have
features of sympathoadrenal neurons and chromadfis. In the future, the community may
define further subsets of cells in the ADRN popolabf neuroblastoma tumor cells that
resemble different stages of development.

In addition to ADRN and SYMP tumor cells, we idéiet a third ‘mesenchymal’ (MES
cells) population of tumor cells. The presenceneke mesenchymal cells hearkens to previous
reports using cell lines, a subset of which we@nshto have epigenetically and
transcriptionally similarity to early neural crgsbgenitor$®?° In our single-cell/nucleus
dataset, the MES cells/nuclei had expression potibnsistent with those reports providing
further evidence of this important biological insity*°. However, other neuroblastoma single-

cell studies have raised the question of whetheEMé&lls are bona fide malignant cells. Indeed,
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a variety of non-malignant cells (Schwann cellsPSJibroblasts, myofibroblasts) that express
mesenchymal genes are present in neuroblastomasumaking it difficult to discern bona fide
MES neuroblastoma cells from non-malignant cellgregsing similar gene expression
program&'. In our analysis, we separated MES and ADRN matigiells and showed that both
populations had the same inferred copy humber tiamiaAdditionally, using datasets from
matched patient tumor and an orthotopic patientrddrxenograft (O-PDX), we show that
SYMP, ADRN and MES cell populations are preserdimilar proportions. Non-malignant
human cells do not persist during passaging in @€ Iending further credence that the MES
tumor cell population are indeed malignant cellseper analysis of the MES neuroblastoma cell
population showed these cells most closely resesrtdwann cell precursors (SCPs) from the
developing fetal adrenal medulla, consistent witbaent report that also identified an SCP-like
population in a cohort of 17 tumdfsWhile the similarity of MES and SCP expressioafites
raise the tantalizing possibility that neuroblastomcapitulate the differentiation hierarchy of
the developing fetal adrenal, it remains uncleagtiver SCPs are the cell of origin of

neuroblastoma and future work will be needed toegklthat question.

DNA methylation correlateswith clinical outcome and tumor heter ogeneity

We observed a broad range of heterogeneity pattiewisding 15 neuroblastomas samples
which were deficient of MES cells (defined by hayiass than 1% of malignant cells/nuclei in
the MES subpopulation). Traditional clinical riskcfors such as age, risk strata, and MYCN
amplification status did not credibly distinguistetdegree of tumor cell heterogeneity. DNA
methylation, however, identified four molecular gps with distinct patterns of malignant state

heterogeneity. These groupings are reminiscenrecent study by Gartlgruber, et al. that used
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histone H3K27ac profiling to identify four epigeitegroups of neuroblastorifa They
discovered one group of tumors enriched for MYCNpklined tumors, and two groups that had
MYCN non-amplified tumors differing in risk statusterestingly, a fourth group that the
authors reported as “mesenchymal subtype” shaaeddriptomic similarity to SCPs. In our
analysis, we were able to take advantage of matatetiylation and transcriptomic data (both
bulk RNA and single-cell/nucleus RNA-sequencingllit@ctly compare the malignant cell state
diversity within each methylation group. Indeed, al&o identified a group of tumors (group 1)
that were highly enriched for MES tumor cells. hogp Il tumors, MES cells expressed higher
levels of pro-inflammatory gene programs indicat¥énterferon and TNF pathway activation,
consistent with in vitro reports that cells witihMi&S transcriptomic signatures had higher levels
of MHC class Il expression and were able to engageune effector celf§®% Group Ill tumors
were enriched for young infants, and most groupuiviors had MYCN amplifications.
Importantly, though each methylation group hadinitstpatterns of clinical risk factors, they
were a number of outliers. For example, we idesdi® MYCN amplified tumors that clustered
into group Il, and 2 infants clustered into gro\p |

Critically, methylation grouping correlated withrgival outcomes, which raises the
possibility of using DNA methylation to moleculadyratify neuroblastoma risk. DNA
methylation profiling has already shown utilitytime diagnostic classification of brain tumors
and sarcomds°®’ and has been validated in the risk stratificatibmedulloblastom&. Before
any similar implementation in neuroblastoma, mwsigér methylation datasets will need to be
gathered to construct a definitive epigenetic di@ssFinally, it remains unclear whether
transcriptomic or epigenetic shifts during therapyld be used as a prognostic biomarker. Prior

studies in preclinical models of neuroblastoma hade&ated that relapsed neuroblastoma
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tumors are enriched for mesenchymal transcriptaigicaturé®®> and transcription factor
activity analysis of 3 matched primary-relapsed gasindicated an association between the
MES signature and disease reldfseuture work comparing transcriptomic or methylati
profiles from tumors samples obtained before amthduherapy may provide valuable

information about mechanisms of treatment escageenurrence in neuroblastoma.

Spatial-Omics

Spatial profiling technologies have dramaticallypnoved our ability to map the cellular
architecture of tumors in situ. However, their agtion to rare childhood cancers has been
limited by the lack of a standardized dataset campgdhe strengths and limitations of each
modality. By generating MIBI, CODEX and Slide-Seqif&a from 10 banked neuroblastoma
tumors, we benchmark each assay so that they cechpate-by-side. MIBI provides very high
spatial resolution which is useful for analysigdogct cellular interactions in tumors and the
TME. Another advantage is the use of archival FEB&ions with excellent preservation of
morphological features. The limitation of MIBI isd size of the fields that can be efficiently
analyzed. We produced large, tiled datasets forttnwwrs, but had to use smaller fields of view
for the remainder of our cohort. CODEX overcomes limitation, and we were able to generate
whole slide images; at the time that we were aagyilata, CODEX had been credentialed only
for use with fresh-frozen tissue, but interim acs@have adapted CODEX for use with FFPE
tissue . Both MIBl and CODEX are limited by the gaility of antibodies that have been
validated in the tissue of interest, and the mbjaf validated antibodies target immune cell
markers. Thus, these two platforms were particplaskeful for profiling the immune cells in the

TME, but the antibodies available could not be usedefinitively identify all 3 tumor cell
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populations. Slide-SeqV2, however, provided broad¢a on cell populations in the tumor and

TME, allowing us to identify patterns of spatiastlibution for each malignant cell state. Slide-

SegV2 had the limitation of reduced resolution [[b@), which required integration with

sc/snRNA-seq data to map cell types across themspecNonetheless, if there are well-
separated regions of the tumor and TME that castefieed histologically, Slide-SeqV2 can be
useful in identifying differences in gene expreagpatterns for the same cell population across
the different neighborhoods in the tumor. We emvisthat based on our experience, that future
atlas efforts using a combination of a spatial gwaotic, spatial transcriptomic, and single-cell
RNA-sequencing technologies will be able to geretla¢ greatest cross-modality information.
Further advances in computational tools that atllesearchers to bridge between spatial -omic
data will be needed to fully harness these multdat@tlases; indeed two recent reports have
shown the promise of this approach by unifying tele annotatioif®’.

Taken together, all three platforms were consistgth the conclusion that
neuroblastomas have discrete tumor cell neighbalhawade up of SYMP and ADRN tumor
cells surrounded by a stromal neighborhood mad&f MES tumor cells, immune cells, and
other cells in the TME. This is important becalsedassumption that neuroblastomas are
immunologically ‘cold’ may reflect this segregatiohcell populations rather than a complete
lack of immune cells in the tumor. Moreover, it gagts that different populations of tumor cells
may play different roles in signaling to the immua#ls in the TME. For example, our data
indicate that MES cells within the TME have activatof pro-inflammatory genes and
pathways, and this may contribute to the compartatieation of neuroblastoma. Also, these
platforms were useful in comparing the cell-calinglling and gene expression network activity

in the cell populations that were in different @ of the tumor such as macrophages in the
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tumor neighborhood relative to the stromal regidise.have demonstrated the importance of
integrating multiple spatial-omics platforms wittyshRNA-seq and other molecular and cellular
features to gain a more comprehensive view of élalar heterogeneity and interactions in

cancer.

Future Directions
To provide clarity for the neuroblastoma fieldwitl be important to harmonize the
nomenclature of cell states relative to normallfatiienal development. We propose the use of
the term ‘SYMP’ for the proliferating sympathoblastls and ‘ADRN’ for the more
differentiated tumor cells that are not activelyiding. This is consistent with the previous
studies and the historical research on cell liddmng those lines, we propose the term ‘MES’ to
refer to the non-neuronal cells in neuroblastonad lave mixtures of gene expression programs
reminiscent of mesenchymal cell populations derivech SCPs. In addition to simplifying and
clarifying the nomenclature, it will be essentaitdependently validate the presence of all three
cell populations in patient tumors and O-PDXs anddnfirm that these three populations vary
across patients and correlate with outcome and Dig#aylation group. Finally, it will be
important to extend our discovery beyond the sasipéze that neuroblastomas are partitioned
into neighborhoods with ADRN and SYMP cells tha aeparated from the stroma with MES
tumor cells and immune cells.

There are exciting opportunities to begin to explbre changes in gene expression
programs as cells (e.g., macrophages) migrate batite different neighborhoods within
tumors and the changes that occur in the confaxeatment. Also, studies on patient tumors

undergoing anti-GD2 immunotherapy can provide ingarnew insights into the molecular and
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cellular mechanisms of antigen-directed cell-mestiatytotoxicity, in order to help us better
understand why some patient tumors respond béterdthers. Finally, there are opportunities
to further refine cell populations such as the eADRN groups in neuroblastoma and the
lineage relationships between tumor cell populatidie do not know if individual tumor cells
can transition between the SYMP, ADRN and MES staltes or if they are clonally restricted.
Nor do we know if one population of tumor cellsnsre likely to survive therapy and contribute
to disease recurrence. The data generated frorsttldg provide a systematic framework for the
future investigation of neuroblastoma. As suchhaee shared all data, raw and processed,
publicly available through the Human Tumor AtlaswWeark data portal

(https://humantumoratlas.ojgiVe anticipate that this cohort will be a tramsfative resource

for further dissection of neuroblastoma biology &rdbuilding computational tools in the

future.
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FIGURE LEGENDS

Figure 1. HTAPP neuroblastoma study design and sample cohort.

(A) Clinical, histologic, and molecular featurestoé HTAPP neuroblastoma dataset (n=55).
Sequencing and spatial technologies applied areatetl.

(B) Sample workflow. Fresh, frozen, and fixed ts$tom neuroblastoma tumors were from two
institutions, St. Jude Children’s Research Hospital Dana-Farber Cancer Institute. Fresh or
frozen tissue were dissociated for single-celliogle-nucleus RNA-sequencing, respectively.
Additionally, a subset of tumors underwent deegiapprofiling using spatial proteomic (MIBI
and CODEX) or spatial transcriptomic (Slide-SeqW#thods.

Abbreviations: INSS, international neuroblastonamstg system; WES, whole exome
sequencing; DNA-me, DNA methylation; MIBI, multipled ion beam imaging; CODEX, co-

detection by indexing; FFPE, formalin-fixed pamafémbedded; IF, immunofluorescence.

Figure 2. Single-cell and nucleus RNA-sequencing of 55 neuroblastoma tumors.

(A) UMAP plot showing integrated data from both 8&Rseq (n=13 tumors; 84,769 cells) and
snRNA-seq (n=43 tumors; 445,286 nuclei). Twentwgtdts were identified, which were
annotated as endothelial (n=3 clusters), immuné (iasters), or sympathoadrenal (n=12
clusters).

(B) Schematic of sympathoadrenal lineages withendéveloping adrenal gland. Sympathoblasts
are a proliferative sympathoadrenal progenitor ciitifferentiate to generate either: (i.) cells of

the mesenchymal (MES) lineage, which are deriveshfmultipotent Schwann cell precursors
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(SCPs), or (ii.) cells of the adrenergic (ADRN)dage, which consist of postmitotic adrenergic
cells.

(C) Heatmap showing relative expression of the3@genes for each joint cluster. Expression is
colored based on scaled normalized value (z-score).

(D) UMAP plot showing copy number variant (CNV)pses following inference of copy-
number alteration.

(E) Violin plot comparing the CNV score from scRN&g and snRNA-seq data.

(F) UMAP plot as in (A) colored based on the preseor absence of inferred copy number
alterations.

(G) Cell type composition after coarse annotatibtine transcriptomic atlas, comparing all
single-cell RNA-seq data and all single-nucleus R&¢4 data, or comparing one sample
(HTAPP-656-SMP-7481) that was processed by botyiesicell and single-nucleus RNA-
sequencing.

(H-1) Relative proportion of immune, endotheliumalignant, and non-malignant cells/nuclei for
each tumor comparing MYCN status (H) or treatméaius (I). The comparison of treatment
impact in heterogeneity (HI was restricted to antkgrmediate-risk or high-risk samples. Bars
with a * demarcate credibly significant differencas calculated by Bayesian composition
analysi€® using a false discovery rate (FDR) of 0.05.

Abbreviations: UMAP, uniform manifold approximatiamd projection; ADR, adrenergic; S,
sympathoblast; MES, mesenchymal; SCP, Schwanmpeaursor; CNV, copy number

variation; FDR, false discovery rate.

Figure 3. Analysis of malignant cell-specific programs of neuroblastoma.
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(A) UMAP plot showing integrated data of malignaetis/nuclei from scRNA-seq (n=13
tumors; 50,532 cells) and snRNA-seq (n=43 tumd@8;292 nuclei) clustered by joint cluster.
Twelve clusters were identified which were annatate adrenergic (n=8 clusters), mesenchymal
(n=3 clusters), or sympathoblast (n=1 cluster).

(B) Heatmap showing relative expression of the3@menes for each malignant cluster.
Expression is colored based on scaled normalizkeet {a-score).

(C) UMAP plots of malignant cells/nuclei, coloredded on expression of mesenchymal markers
(VIM, COL4AL), adrenergic markergid, DBH), and sympathoblast markeMKI67, TOP2A).
Cells are colored based on normalized expression.

(D-E) UMAP plots of malignant neuroblastoma datdpred based on adrenergic (D) and
mesenchymal (E) signature scores from van Groningfesi°

(F-G) Violin plot of adrenergic (F) and mesenchytf@) signature scoréssplit by
developmental state (mesenchymal, adrenergic,yangahoblast).

(H) Heatmap showing inferred transcription factciiaty for a curated list of neuroblastoma
core regulatory circuit factars® A full list of differentially active transcriptiofactors is
available in Table S5. Transcription factor acyivé colored based on normalized activity.

() UMAP plot as in (A), colored based on predicsaahilarity to fetal adrenal medulla cell states
from Jansky, et &lusing Singlef?.

(J) Heatmap of similarity scores between each duter and fetal adrenal medulla cell states.
Similarity scores are calculated as normalized Bpaa correlatiorfé.

(K) Overlay comparing shRNA-seq data from an oxpat patient-derived xenograft

(SINBL012407_X1) to snRNA-seq from the originatpeagient tumor (HTAPP-194-SMP-251).
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Figure 4. DNA methylation profiling identifies 4 subtypes of neur oblastoma that differ in
malignant cell state composition and outcome.

(A) t-SNE dimension reduction of 207 neuroblaston&thylation profiles from the NCI
TARGET cohort (n=173) or the HTAPP neuroblastomiaoccb(n=34). Consensus clustefiiig
was used to delineate 4 groups of tumors plus apgob control adrenal samples. Samples from
the HTAPP cohort are demarcated in dark red.

(B) Heatmaps colored based on relative abundancknafal risk factors within each
methylation grouping from (A). Numbers within eaz#l correspond to the absolute number of
tumors. p-values, Fisher exact test of independence

(C) Box plot of the proportion of malignant cellsftei within each malignant cell state, divided
by methylation group. Data are presented as mediaterquartile range. Statistically credible
differences, as determined by Bayesian compositiatysi€® set with a false discovery < 0.05,
are displayed as bars with an asterisk.

(D and E) Validation and optimization of CIBERSOR@Gulk deconvolution parameters derived
using matched snRNA-seq and bulk RNA-seq data freB8 tumors from the HTAPP cohort.
(D) shows a scatterplot comparing proportion olscel each malignant state within sc/snRNA-
seq data (‘ground truth’) compared to the estimategortion from bulk deconvolution. (E)
shows the cell-type specific correlation betwedsrdi@NA-seq and bulk deconvolved data. Bars
in the gray region meet significant criteria foncordance with ground truth as measured by
Pearson correlation (p < 0.05)

(F) Box plots of estimated malignant cell propamsavithin the NCI TARGET dataset, as
estimated by CIBERSORTXx bulk deconvolution of bRIMA-seq data, divided by methylation

grouping. Plots show proportions of cells thatesgmated to be in the mesenchymal (top),
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adrenergic (middle), or sympathoblast (bottom)estBiata are presented as median +
interquartile range. Differences across groupsriesdt statistical significance are shown (p
values; Wilcoxon rank sum test).

(G) Kaplan-Meier curve showing overall survivalpatients within the NCI TARGET cohort
(n=175) divided by methylation grouping. p-valuesrevcalculated using the Mantel-Cox log
rank test. Censored datapoints are representedsualithrectangles.

(H) Schematic of the scMINER activity inferenceMSNER generatesell type-specific gene
regulatory network to infer protein activity angsaling factor activation.

(1) Volcano plot of signaling pathway inference quamng group Il MES cells to MES cells
from the other methylation groupings.

(J) HALLMARK pathway analysis of statistically sigicant results from (I).

Figure 5. Immune cell heter ogeneity and spatial compartmentalization of neuroblastoma.

(A) UMAP plot of integrated immune cells/nuclei fnc5scRNA-seq (n=13 tumors; 25,436 cells)
and snRNA-seq (n=43 tumors; 49,515 nuclei). Callsi are colored based on CellTypist
automated annotatiéh

(B) UMAP plot of 25,979 myeloid nuclei from the HP® neuroblastoma dataset (B). Nuclei
are categorized based on the expression of cekarsar

(C) Dot plot showing expression of cell markersdach myeloid cluster. Expression is colored
based on scaled normalized value (z-score) ansizeeof each dot represents the percentage of
cells within each cluster that had detectable esgoa.

(D) Bar plots showing cell type proportions of noidl subtypes for each sample within the

snRNA-seq cohort (n=41).
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(E) Composition analysis of the myeloid compartmasrbss SnRNA-seq datasets (n=41),
separated by methylation grouping. Data are predeag median + interquartile range.
Statistically credible differences, as measuredguBiayesian component analysis with false
discover rate < 0.05, are represented with anislster

(F) Example image of multiplexed immunofluorescefawesample HTAPP-102-SMP-11,

stained with PHOX2B, CD8, CD3, CD68, and CD163.

(G) Quantitation of CD68+ and CD163+ cells from tipiéxed immunofluorescence (n=28).
Data is divided by methylation grouping. Data isgented as median * interquartile range.
Differences across groups that meet statisticaifsignce are marked with an asterisk (p values;

Wilcoxon rank sum test).

Figure 6. Multiplexed ion-beam imaging (M 1BI) identifies compar tmentalization of tumor
and immune cells.

(A) Multiplexed ion beam imaging (MIBI) of multipked spatial proteomic data. Two large,
tiled arrays (5x5 captured areas) from samples HF-AB2-SMP-11 and HTAPP-130-SMP-91
were obtained. As an example, the stitched aray HHTAPP-102-SMP-11 is shown in panel
A; 7 markers are shown (double-stranded DNA [dsDNZD3, CD8, CD68, CD163, CD56 and
Vimentin [VIM]). A white overlay shows the tumorrstna interface, which was used for
patched level analysis of neuroblastoma (PLANB).

(B) A high magnification of the boxed area with#) (

(C) Patched level analysis of neuroblastoma (PLAN&Ermines the relative locality of cell
types or markers with reference to the tumor-stromandary using a stepwise pixel-by-pixel

algorithm.
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(D) PLANB analysis of HTAPP-102-SMP-11 and HTAPR3ASMP-91 showing the distribution
of tumor markers (CD56, Ki67, H3K27ac), myeloidis€lCD11c), or T cells (CD4, CD8). The
x-axis reflects distance relative to tumor-stromarface, with negative values being within the
tumor nest and positive values being outside thetwnest. The y-axis reflects relative
expression of markers (arbitrary units).

(E-F) Heatmap showing expression of cell type phgno markers (E) and functional markers
(F) for each cell type in the large, tiled arrays.

(G-H) Cell type proportions from the two largeetllarrays comparing the prevalence of cell
types in the MIBI data compared to snRNA-seq datenel (G) shows a scatterplot comparing
proportions of each cell type identified in sc/sriiRBEq datax-axis) to the proportion detected
in the tiled MIBI arrays for HTAPP-102-SMP-11 and APP-130-SMP-91. Panel (H) shows
bar plots comparing cell type composition in snRs&s and MIBI datasets both includingft)
and excludingright) malignant cells/nuclei.

() Bar plot of cell types in the single-tile MiIBllatasets (10 samples, 30 FOVs). Following
capture of MIBI data, segmentation and marker esgpom was used to annotate cell types. Bar
plots including and excluding malignant cells drevsn on the top and bottom, respectively.
(J) Neighborhood analysis of MIBI data from theRRDVs from (H). As an example, we show
HTAPP-102-SMP-11 field-of-view (FOV) #1. On thetlsfde, we show an H&E from an
adjacent section. Following MIBI capture, imagesevgegmented, and cell types were
automatically called. These cell maps were thetyaed using neighborhood analysis to

identify those cell types that co-localize with leather.
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(K) Cluster-map of cell type composition within daweighborhood from the combined MIBI
dataset (n=30 FOVs). Dendrograms represent higcaitatiustering of cell types (rows) and

neighborhoods (columns). Colors represent scatetiibod of adjacency between cell types.

Figure 7. Co-detection by indexing (CODEX) imaging of whole slidesidentifiesrecurrent
patternsof cellular interaction.

(A) Representative CODEX whole-slide image of HTABG1-SMP-31, showing 3-color
overview (using CD56, collagen IV [COLIV] and CD3paged using a 52-marker CODEX
panel. Insets of two regions are shown with a setepanel of markers typical for B cells
(CD19), T cells (CD3, CD4, and CDS8), stroma (cafiladV), tumor (CD56), myeloid cells
(CD1c, CD11c, and CD15), and cells of ambiguousdge (Vimentin).

(B) Identification of 15 cell neighborhoods (CNg}sled on 16 cell types, showing cell type
enrichment within each CN (pooled data across 10EXsamples).

(C) Representative cell type maps from sample HTAP&SMP-31. Cells are colored to match
the row legend in panel B.

(D) Representative CN map from sample HTAPP-116-SIPNeighbonoods are colored to
match the column legend in panel B.

(E) Heatmap of likelihood ratios of cell-cell cootdetween the 16 annotated cell types across
the entire HTAPP CODEX cohort (n=10 samples).

(F-G) Representative CODEX images of cell conthetsveen either CD3-positive T cells and

CD11c-positive dendritic cells (F) or CD4-positiared CD8-positive T cells (G).
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Figure 8. High resolution spatial transcriptomics with Slide-SeqV2 demonstrates myeloid
reprogramming within neur oblastoma.

(A) Data processing workflow for Slide-Seq v2 d&ade-SeqV2, after alignment and UMI
counting, underwent both cell type decompositioth 28ro-count imputation. For both analyses,
analogous snRNA-seq from the same tumor fragmestengloyed to define cell types or
expression modules.

(B) An example Slide-SeqV2 array from HTAPP-102-SMP On the left, an adjacent frozen
section was processed by H&E staining. On the rigl8lide-SeqV2 array colored based on cell
type after decomposition with RCTD

(C) Magnified view of the HTAPP-102-SMP-11 field-eew (FOV) #1 from panel B.

(D) Comparison of cell composition from snRNA-sedadand Slide-SeqV2 assays. 17 Slide-
SeqV2 datasets were generated from 10 specimeasdldrs of the bars match up with the
legend in panels B and C.

(E) Scatterplot comparing the percentage of mahgnall states within single-nucleus RNA-seq
data (x-axis; n=10) to the percentage of measurtinreach decomposed Slide-SeqV2 FOV
(y-axis; n=19).

(F) Cell-cell interaction cluster-map of cell typgsowing the frequency that two cell types are
adjacent to each other.

(G) Tumor-rich and stroma-rich compartments, defiatter clustering. Tumor-rich areas were
defined as Slide-SeqV2 beads with >50% malignahtomposition while stroma-rich areas
were defined as Slide-SeqV2 beads with <50% matigoell composition.

(H) Volcano plot of CSIDE differential expressionadysis comparing cell-type expression

patterns between tumor-rich and stroma-rich compeamts.
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(1) Bar plot of recurrent myeloid genes that araatred in tumor-rich myeloid cells or stromal-

rich myeloid cells. The y-axis represents the femy that significant enrichment was detected

(out of 13 evaluated FOVSs).
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