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Abstract 

 

Alzheimer's disease (AD) and related demenPas (ADRD) is a complex disease with mulPple  

pathophysiological drivers that determine clinical symptomology and disease progression. These 

diseases develop insidiously over Pme, through many pathways and disease mechanisms and conPnue 

to have a huge societal impact for aûected individuals and their families. While emerging blood-based 

biomarkers, such as plasma p-tau181 and p-tau217, accurately detect Alzheimer neuropthology and are 

associated with faster cogniPve decline, the full extension of plasma proteomic changes in ADRD 

remains unknown. Earlier detecPon and beAer classiûcaPon of the diûerent subtypes may provide 

opportuniPes for earlier, more targeted intervenPons, and perhaps a higher likelihood of successful 

therapeuPc development. 

 

In this study, we aim to leverage unbiased mass spectrometry proteomics to idenPfy novel, blood-based 

biomarkers associated with cogniPve decline. 1,786 plasma samples from 1,005 paPents were collected 

over 12 years from partcipants in the MassachuseAs Alzheimer9s Disease Research Center Longitudinal 

Cohort Study. PaPent metadata includes demographics, ûnal diagnoses, and clinical demenPa raPng 

(CDR) scores taken concurrently. The ProteographTM Product Suite (Seer, Inc.) and liquid-chromatography 

mass-spectrometry (LC-MS) analysis were used to process the plasma samples in this cohort and 

generate unbiased proteomics data. Data-independent acquisiPon (DIA) mass spectrometry results 

yielded 36,259 pepPdes and 4,007 protein groups. Linear mixed eûects models revealed 138 

diûerenPally abundant proteins between AD and healthy controls. Machine learning classiûcaPon 

models for AD diagnosis idenPûed potenPal candidate biomarkers including MBP, BGLAP, and APoD. Cox 

regression models were created to determine the associaPon of proteins with disease progression and 

suggest CLNS1A, CRISPLD2, and GOLPH3 as targets of further invesPgaPon as potenPal biomarkers. The 

Proteograph workûow provided deep, unbiased coverage of the plasma proteome at a speed that 

enabled a cohort study of almost 1,800 samples, which is the largest, deep, unbiased proteomics study 

of ADRD conducted to date. 
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Introduc)on 

 

DemenPa aûects over 55 million people worldwide, with Alzheimer9s Disease (AD) and Related 

DemenPas (ADRD) being the most common forms. However, heterogeneity in presentaPon and rates of 

cogniPve decline and disease progression, as well as the need for more informaPve and accessible 

biomarkers, contribute to challenges in diagnosis and prognosis. The current gold standard for diagnosis 

remains autopsy, but this, of course, is only of retrospecPve clinical and research value. Molecular 

positron emission tomography imaging (PET,  for amyloid-b and tau) approaches the diagnosPc accuracy 

of autopsy, but they are not widely available, accessible or easily repeatable and are expensive. Blood-

based biomarkers enable greater accessibility, easier repeatability, and paPent parPcipaPon, ulPmately 

resulPng in higher-quality research, disease management, and treatments.  Blood-based biomarkers of 

amyloid beta and phosphorylated tau are emerging with steadily improving accuracy to predict brain AD 

pathology, but their uPlity for disease staging or prognosis is sPll limited. Although AD and related 

diseases are pathologically deûned by their signature proteinopathies, a host of other pathophysiological 

processes contribute to neurodegeneraPon and cogniPve decline. These include varying degrees of 

inûammaPon, vascular disease, metabolic dysfuncPon, oxidaPve stress, dysregulaPon in 

transcripPon/translaPon/post-translaPonal modiûcaPon, dysproteostasis and dyslipidoses. Much of the 

heterogeneity of ADRD's presentaPons, diagnosis, and prognosis may be related to these factors.  

 

Though liquid chromtagraphy mass spectrometry (LC-MS) remains the gold standard for deep, unbiased 

proteomics, conducPng these experiments in plasma at a scale necessary for biological insight has 

historically been challenging. Prior studies have been either deep and of limited scale11 or at scale but of 

limited depth.2 We previously introduced Proteograph, a planorm for deep, unbiased proteomics at 

scale. Here, we present an updated assay, termed Proteograph XT, to reduce the number of MS 

injecPons, enabling a 2.5x improvement in throughput, while preserving similar depth from the 

Proteograph presented in previous unbiased proteomic studies using nanoparPcle-based mass 

spectroscopy.335 

 

We therefore used Proteograph XT on 1,786 samples from 1,005 parPcipants, whose ûnal diagnoses 

represented a spectrum of demenPas, with AD parPcipants (n=379) represenPng the plurality. With 

these data, our study addressed biological pathways that are implicated in AD using linear mixed 

modeling and diûerenPal expression, biomarker discovery for AD paPents with machine learning 

classiûcaPon, and potenPal biomarkers for cogniPve decline across demenPa paPents with Pme-to-event 

modeling. 

 

 

Methods 

Cohort 

The cohort consisted of 1030 parPcipants in the MassachuseAs Alzheimer9s Disease Research Center's 

Longitudinal Cohort Study (MADRC-LC) in whom at least one plasma had been collected between 2008 

and 2019. This is a longitudinal observaPonal study spanning the enPre conPnnum of nomal aging to 

ADRD. Annual standardized assessments included a general and neurological exam, a semi-structured 

interview with the parPcipant and/or informant to record cogniPve symptoms with a Clinical DemenPa 

RaPng scale (CDR DemenPa Staging Instrument), a baAery of neuropsychological tests, and other 

instruments of the NaPonal Alzheimer's CoordinaPng Center (NACC) Uniform Dataset (UDS)6,7. Blood was 

collected  from all consenPng parPcipants.  
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 CogniPve status and clinical syndromes were determined at each visit by a consensus team aqer 

a detailed examinaPon and review of all available informaPon according to the 2011 NIA-AA diagnosPc 

criteria for MCI and AD8,9. Many parPcipants had autopsy, imaging, CSF, and/or plasma biomarkers in 

aûliated protocols.  Disease diagnosis (AD or other diseases) was further informed by these data when 

available. ParPcipant clinical data used in the analyses here include age, sex, race, ethnicity, years of 

educaPon, and clinical demenPa raPng global (CDRg) scores taken concurrently with sample collecPon. 

AddiPonal biomarker data available on almost all cases included apolipoprotein e (APOE) genotype as 

well as plasma phospho-tau 181 (pTau181), glial ûbrillary acidic protein (GFAP) and neuroûlament -light 

(NfL).  Plasma biomarkers were measured using ultrasensiPve MSD S-PLEX electrochemiluminescence 

immunoassay kits (Meso Scale Discovery, Rockville, MD), as previously described1010. 

 

 

ParPcipant summary staPsPcs are shown in Table 1.  

 

 
Table 1. Study par0cipant summary sta0s0cs. 

Characteristics Alzheimer9s Disease No Neurodegenerative 

Disease 

Other Dementias 

Number of participants (N) 379 240 387 

Number of visits [median (min, max)] 1 (1, 6) 2 (1, 6) 1 (1, 6) 

Age at 1st visit [Mean (SD)] 74.5 (9.4) 66.7 (11.6) 71.4 (9.9) 

Female (%) 190 (50.1) 166 (69.2) 212 (54.8) 

College educated [N (%)] 264 (69.7) 165 (68.8) 253 (65.4) 

APOE ·4 carriers [N (%)] 185 (48.4) 55 (22.9) 82 (21.2) 

Last Draw CDR sum of boxes [Mean (SD)] 5.0 (4.5) 0.2 (0.5) 3.9 (4.6) 

Last Draw MMSE [Mean (SD)]1
 18.0 (8.2) 26.6 (2.8) 21.5 (7.2) 

Last Draw pTau-181 (pg/mL) [Mean (SD)]1 4.7 (3.3) 2.5 (1.3) 2.5 (1.4) 

Last Draw NfL (pg/mL) [Mean (SD)]1 319.4 (213.0) 180.2 (106.7) 326.7 (322.9) 

Last Draw GFAP (pg/mL) [Mean (SD)]1 146.9 (125.5) 80.5 (44.2) 99.2 (66.1) 

 

 

 

Standard Protocol Approvals, RegistraPons, and PaPent Consents 

The study was approved by the Mass General Brigham InsPtuPonal Review Board (2006P002104) and all 

parPcipants or their assigned surrogate decision makers provided wriAen informed consent. 

 

 

 
1 Not available in all par.cipants, sta.s.cs based on non-null values. 
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Sample Prepara%on 

Plasma samples used in this study had been collected between 2008 and 2019 and were banked in the 

Harvard Biomarkers Study Biobank11. Samples were collected in K2EDTA tubes, centrifuged at 2000 g or 5 

min, frozen in low retenPon polypropylene cryovials within 4 hours of collecPon and stored at -80°C unPl 

use. 

Plasma from 1,786 individual samples (including subsequent plasma collecPon samples from the same 

individuals) and a plasma control sample (PC6), consisPng of pooled citrate phosphate dextrose 

anPcoagulant plasma from 15 healthy individuals, were processed with the Proteograph XT Assay Kit 

(Seer). Plasma tubes containing 240 µL of plasma were loaded onto the SP100 AutomaPon Instrument 

(Seer) for sample preparaPon to generate puriûed pepPdes for LC-MS analysis. The samples were 

incubated to form each of the two proprietary, physicochemically disPnct nanoparPcle (NP) suspensions 

for protein corona formaPon. Samples (40 samples/plate; 38-39 individual plasma samples and 1-2 PC6 

samples) were automaPcally plated, including process controls, digesPon control, and MPE pepPde clean-

up control. Aqer a one-hour incubaPon, leveraging the paramagnePc property of NPs, NP-bound proteins 

were captured using magnePc isolaPon. A series of gentle washes removed nonspeciûc and weakly bound 

proteins. This process results in a highly speciûc and reproducible protein corona. Protein coronas are 

denatured, reduced, alkylated, and digested with Trypsin/Lys-C to generate trypPc pepPdes for LC-MS 

analysis. All steps were performed in a one-pot reacPon directly on the NPs. The in-soluPon digesPon 

mixture was then desalted and all detergents were removed using a solid phase extracPon and posiPve 

pressure (Monitored MulP-Flow PosiPve Pressure EvaporaPve ExtracPon module [MPE]2 TM; Hamilton) 

system on SP100 AutomaPon Instrument. Clean pepPdes were eluted in a high-organic buûer within a 

deep-well collecPon plate and quanPûed. Equal volumes of pepPde eluPon were dried down in a SpeedVac 

(3 hours-overnight), and the resulPng dried pepPdes were either reconstuited for immediate analysis by 

liquid-chromatography mass-spectroscopy (LC-MS) or stored at -80 °C to be analyzed later. PepPdes were 

reconsPtuted to a ûnal concentraPon of 0.06 µg/µL in Proteograph XT Assay Kit ReconsPtuPon Buûer.   

LC-MS Analysis 

8 µL of the reconsPtuted pepPdes were loaded on an Acclaim PepMap 100 C18 (0.3 mm ID x 5 mm) trap 

column and then separated on an UlPmate 3000 HPLC System and a 50 cm ¿PAC HPLC column (Thermo 

Fisher ScienPûc) at a ûow rate of 1 ¿L/minute using a gradient of 5 3 25% solvent B (0.1% FA, 100 % ACN) 

in solvent A (0.1% FA, 100% water) over 22 minutes, resulPng in a 33-minute total run Pme. For the MS 

analysis on the Thermo Fisher ScienPûc Orbitrap Exploris 480 MS, 480 ng of material per NP was analyzed 

in DIA mode using 10 m/z isolaPon windows from 380-1000 m/z. MS1 scans were acquired at 60k 

resoluPon and MS2 at 30k resoluPon.  

Spectral Library Genera%on 

Gas Phase Frac+ona+on (GPF) 

We used an MS-only workûow that combines GPF and DIA LC-MS, saving signiûcant experiment Pme while 

maintaining high data completeness and reproducibility1. This strategy generated a chromatogram 

spectral library with GPF deep scanning experiments, consisPng of staggered m/z window analysis of the 

pooled pepPdes leq over from Proteograph XT Assay plates by pooling up to 5 µL of trypPc pepPdes leq 

for each sample in the plate into separate pools for each NP suspension. Six DIA LC-MS injecPons of 10 µL 

each containing a pepPde concentraPon of 0.06 ug/µL from each NP pool were analyzed. The six injecPons 

covered mass over charge (m/z) ranges of 400-500 m/z, 500-600 m/z, 600-700 m/z, 700-800 m/z, 800-900 

m/z, and 900-1000 m/z, with each injecPon having 50 staggered windows covering 4 m/z.  MS1 was run 

in 60K resoluPon and MS2 was run in 30K resoluPon on another Orbitrap Exploris 480 MS with similar 
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chromatographic setup (LC, trap, and column). A library-free search of the DIA LC-MS data was performed 

using DIA-NN 1.8.112 to create the empirically corrected GPF library. 

 

Data Analysis and Protein Representa%on 

All MS ûles were developed to run DIA-NN 1.8.1 with a GPF library search.  All idenPûcaPons are reported 

at 1% FDR. Panel protein representaPons integrated nanoparPcle:precursor representaPons with 

MaxLFQ13,14. 

Func%onal Annota%on Enrichment and Diûeren%al Expression Analysis 

To determine how the biological variables in this cohort correlate with protein abundances 

comparing proûles across the 4,007 protein groups and 1,786 plasma samples, we trained a 

linear mixed-eûects model (LMM; lme4) with 

 

ProteinIntensity ~ Diagnosis + Diagnosis:(Age + Sex + Educa%on + globalCDR +  ApoE_score) + 

Educa%on + Sex + Age + SampleVaria%on + (1|Collec%onYear) + (1|NP:AssayPlate), where 

Diagnosis contains 3 levels of AD, other demen%a, and no neurodegenera%ve disease, and ApoE 

score is calculated as (-0.5 * n of e2 alleles + 1 * n of e4 alleles). SampleVariaPon is a technical variable 

that accounts for variabiliPes in the samples resulPng from diûerences in NP:protein interacPons that 

are due to variaPons in sample collecPon. We calculated this variable the median fold-change of proteins 

annotated as <Nucleolus= for each plasma sample and NP. We picked Nucleolus as the term describing 

the sample variaPon here because we observed the highest variaPon between samples with this term 

compared to other GOCC terms such as <extracellular=, <intracellular=, <cytoskeleton=, and <humoral 

immune response=. CollecPonYear is included as a random eûect to account for sample variability based 

on the year of sample collecPon, and NP and assay plates associated with the NP is accounPng for 

sample preparaPon variabiliPes. The missing protein intensiPes are imputed for the NP that has the 

lowest number of missingness across all samples, and in the case of equal missingness the NP with 

higher protein intensity is picked for imputaPon. The imputaPon is done by sampling 3 Pmes from a 

shiqed normal distribuPon for that feature with mean shiq = -1.8 and width = 0.315.  

 

To determine funcPonal annotaPons associated with the LMM results, annotaPons were matched with 

UniProt idenPûers and enrichments calculated based on the coeûcient distribuPons using the R 

AnnoCrawler package and implementaPon of 1D annotaPon enrichment16. 

 

To indicate how proteins are diûerenPally abundant in AD cases in contrast to the group without 

neurodegeneraPve disease, the LMM coeûcients, where Diagnosis = AD, were ploAed against the 

negaPve log10 transformed p-values where the p-values are corrected for mulPple tesPng according to 

the Benjamini-Hochberg method (Figure 2B). 

 

Diagnos%c Cohort and Machine Learning Diagnos%c Model 

 

We established a DiagnosPc cohort using the ûnal draw from each sample for the purpose of evaluaPng 

the use of protein biomarkers for determining AD status and idenPfying AD related proteins. We then 

further restricted these data to only those parPcipants which diagnosed as <AD= or <No 

NeurodegeneraPve Disease=. As we wished to evaluate pTau-181 as a biomarker and to avoid 

confounding of diagnosPc state, we also excluded cases where the diagnosis was made on the basis of 

pTau-181. Ideally, we would remove all cases which used a biomarker to determine AD status, but this 
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would yield too few healthy controls. The ûnal set of samples included 141 AD parPcipants, and 217 

healthy controls. 

 

We developed a machine learning model to classify AD and Healthy controls based on their plasma 

proteomics features from LC-MS, in addiPon to pTau-181 concentraPon. Our logisPc regression model 

includes a preprocessing pipeline for the proteomics features that appropriately handles missing data, 

imputaPon, normalizaPon, and feature selecPon (Figure 3a). Protein intensiPes are ûrst ûltered by 

missingness, keeping only features that have a missing rate of less than or equal to 75% among the 

training samples. We then normalize the features by taking the logarithm and subtracPng each feature9s 

median. Any remaining missing values are imputed by sampling from a shiqed normal distribuPon for 

that feature with mean shiq = -1.8 and width = 0.31515. The top-K features are then idenPûed by 

compuPng the ANOVA F-score between the labels and features, and keeping the K highest scoring 

features. Finally, pTau-181 (pg/mL) is added as a feature and the whole set of features is mean centered 

and unit variance scaled, before passing to a penalized logisPc regression classiûer. 

 

The model described above has hyperparameters (K for feature selecPon, and penalty kind and amount 

for logisPc regression) that must be tuned, and logisPc regression coeûcients that must be ût to the 

data. To avoid overû}ng, we adopt a nested cross-validaPon strategy. We create 10 outer folds. For each 

of these 10 folds, the other 9 are taken as the training set. This training set is then further split in an 

inner hyperparameter tuning stage, where 80% of it is used to ût a model for each possible 

hyperparameter se}ng, and the other 20% is a validaPon set used to evaluate the hyperparameter 

se}ng. The best hyperparameter se}ng (highest area under the receiver operator characterisPc curve 

(AUROC)) is then reût on the full 9-fold training set, and a test score is computed on the test fold. 

 

Time-to-Event Analysis 

 

Cox proporPonal hazards (CPH) and Cox Pme-varying (CTV) regression models were built to determine 

the associaPon of each protein group with the Pme to CDRg increase (the event) from either CDRg of 0.0 

or CDRg of 0.5. ParPcipants who showed an increase from baseline (0.0 to 0.5 or 0.5 to 1) aqer a 

minimum of 1 post-draw visit were labeled as E=1 while those that did not show an increase for their 

observaPon Pme and for at least 3 years were categorized as E=0 (censored). With these criteria, the 

original dataset was subset in the CDRg baseline 0.0 model with 300 parPcipants and 540 biosamples 

(n=145 parPcipants with mulPple draws) and the CDRg baseline of 0.5 model had 391 parPcipants and 

684 biosamples (n=209 parPcipants with mulPple draws). 70 parPcipants were in the models for both 

baselines. We describe three sets of Cox regression model types in this study: 

 

Table 2 

 Model type Pa,ent samples Uses Delayed 

Entry 

Timescale Purpose 

Model 1 CTV All before event Yes Age Represent mul,ple blood 

draws and ,me-varying 

protein levels 

Model 2 CPH Last before event Yes Age Comparison with CTV 

model 

Model 3 CPH Last before event No Follow-up ,me Check of PH assump,on 

and genera,on of 

survival curves 
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The equaPons for these models are shown below, with a detailed explanaPon of predictor variables to 

follow: 

 

Model 1:  /"�, �(�)) = /!(�|�!) ���/£³"Xi + £·$Xj(�)5     
 

Model 2:  /(�, �) = /!(�|�!) ���[£³"Xi] 
 

Model 3: /(�, �) = /!(�) ���[£³"�"] 
 

The variables common to all three models are / represenPng the hazard rate,	³" , the regression 

coeûcient corresponding to Xi, and �, a vector of Pme-independent covariates. In Model 1 only, ·$  

represents the coeûcients of Xj and �(�) is a vector of Pme-dependent covariates. In Models 1 and 2, � 

is the age at event or censorship, �! is the age of last blood draw before the event or censorship, 

indicaPng that both models adjust for delayed entry and use age as Pme-scale. In Model 3, the variable � 

represents the duraPon between the last blood draw and the event or censorship, does not account for 

delayed entry, and instead age of the last blood draw is used as a covariate. 

 

The Pme-varying model (Model 1) maximizes the data available from parPcipants with mulPple blood 

draws and represents proteins as a Pme-varying covariate. Models 2 and 3 only used the last available 

blood draw before an event. The last draw model showed a greater correlaPon with the CTV model than 

the ûrst draw model (Supp. Fig X) and therefore the last draw was the basis for assessing the 

proporPonal hazards assumpPon and survival curve generaPon in Model 3. Models 1 and 2 used age as 

Pme-scale given the importance of age in demenPa17. Both models also accounted for delayed entry, 

where entry Pme is the age of earliest draw at a subject9s baseline since the MADRC cohort is an 

observaPonal study with an open cohort18. Model 3 did not use age as Pme-scale and used age as a 

covariate instead. All models assessed the associaPon of each protein group while controlling for the 

subject-level covariates sex, educaPon, ApoEe4 risk score (-0.5 * n of e2 alleles + 1 * n of e4 alleles) and 

technical-level covariates that contributed to variaPon of the protein group itself (Supp. Figure X), 

including plate group idenPûer, collecPon year, and nucleolus score. Models were created for a protein 

group only if there was a minimum completeness of 25%; samples with missing values for a protein 

group were not considered in that model. The intensity values of each protein group were median 

normalized, log2 transformed and standardized. Since one model was built for each protein group, we 

accounted for mulPple hypothesis tesPng by applying Benjamini-Hochberg adjustment to nominal p-

values. In parPal regression coeûcient plots, the levels of protein group features are shown as z-scores. 

The python package lifelines was used to create the Cox models19. 

 

Results & Discussion 

 

Study design and protein quan%ûca%on metrics 

 

Samples were collected from an observaPonal study of a group of individuals with or without cogniPve 

impairment in a longitudinal fashion with data collected on a nearly annual basis. Data include cogniPve 

tests and blood collecPon (average 6.2 ± standard deviaPon 3.80 visits per subject), although proteomics 

was obtained for only a subset of blood draws (1.8 ± 1.04 blood draws per subject). Final primary disease 

diagnoses were also provided along with a method of determinaPon such as neuropathology, molecular 

neuroimaging, CSF and/or plasma biomarker. Plasma samples were processed for deep LC-MS 
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proteomics. In our analysis of 1,786 plasma samples, we idenPûed 4,007 protein groups (3,692 for those 

in at least 25% of samples) and 36,259 pepPdes using the GPF library. 

 

 

 
Figure 1. Study design, plasma proteomics quan0ûca0ons, and cohort subse=ng for ques0ons of interest. 

 

Diûeren%al Expression of Proteins in Alzheimer9s Pa%ents 

 

To invesPgate the biological pathways involved in AD and the idenPûcaPon of proteins that are 

diûerenPally abundant between AD and control samples, we analyzed all 1786 plasma samples, 

including 498 plasma samples from parPcipants without neurodegeneraPve disease, 653 plasma 

samples from parPcipants with AD, and 635 plasma samples from parPcipants with other types of 

demenPa. 

 

We use a linear mixed model describing the normalized intensiPes of all idenPûed proteins as a funcPon 

of diagnosis, age, sex, educaPon, global CDR score, APOE alleles, and technical variables such as NPs, 

assay plates, sample collecPon year, and plasma protein composiPon. The resulPng coeûcients from this 

model were then used in a 1D annotaPon enrichment analysis to evaluate how these biological variables 

are diûerenPally associated with funcPonal annotaPons. Figure 2A shows the biological processes that 

are signiûcantly dysregulated in AD. For example, oxidaPve phosphorylaPon is shown to be 

downregulated (Enrichment score = -0.34). In a recent study by Misrani et. al, mitochondrial dysfuncPon, 

associated with a decrease in neuronal ATP levels, has been shown to be a characterisPc feature of AD. 

This dysfuncPon is partly due to the overproducPon of reacPve oxygen species (ROS), leading to 

oxidaPve stress and damage to mitochondrial funcPon. In AD, this results in compromised oxidaPve 

phosphorylaPon, leading to neuronal cell death20. The extracellular matrix (ECM) is another biological 

processes that has been shown to be dysregulated in AD (Figure 2A). DysregulaPon of ECM plays a 

signiûcant role in its pathogenesis, and it is involved in various aspects of AD, including synapPc 

transmission, amyloid-b plague generaPon and degeneraPon, tau-protein producPon, oxidaPve stress 

response, and inûammatory response. AlteraPons in ECM components can aûect the stability of 

perineuronal nets, impacPng the clearance of amyloid-³ and the producPon of neuroûbrillary 

tangles21,22. Signaling pathways such as mTOR, ErbB, and Jak-STAT that are shown to be upregulated in 

AD parPcipants in this dataset, are known pathways related to the pathogenesis of AD23325 (Figure 2A). 

In addiPon, pathways related to Parkinson9s disease (PD) and HunPngton9s disease (HD) are shown to be 

signiûcantly dysregulated. Although each of these diseases has its unique pathophysiological 
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mechanisms, they do share some common mechanisms, including misfolding and aggregaPon of beta-

amyloid and a-synuclein, leading to neuronal apoptosis26,27.  

 

To gain insights into which proteins are diûerenPally abundant in the plasma of AD paPents compared 

the control group, we performed a diûerenPal expression analysis using the same linear mixed model as 

that above. This analysis resulted in 138 diûerenPally abundant proteins of which 38 are down-regulated 

proteins and 100 up-regulated proteins (Figure 2B). For instance, MAPK3, one of the up-regulated 

proteins in AD parPcipants in this dataset, is known to play a crucial role in AD28. The MAPK pathways, 

including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 pathways, 

are acPvated in neurons vulnerable to AD. The MAPK pathways are linked to signiûcant pathological 

processes in AD, such as tau phosphorylaPon, amyloid-beta deposiPon, and amyloid-beta protein 

precursor funcPoning29. ACLS4 is another upregulated protein in AD parPcipants. ACLS4 is involved in the 

regulaPon of synapPc funcPon and neuronal signaling and previous studies have shown that its level is 

signiûcantly increased in AD paPents30. DKK2 which is the most up-regulated amongst AD parPcipants in 

this dataset, is an inhibitor of the Wnt signaling pathway, which is known to be crucial for cogniPve 

funcPon, and its upregulaPon may contribute to reduced WnT signaling in AD31333(Figure 2B).  

 

MGST3 which is one of the downregulated proteins in AD parPcipants (Figure 2B), is known to be 

signiûcantly associated with hippocampus size and found to be linked to neurodegeneraPve disorders 

associated with reduced hippocampus volume such as AD, PD, and HD34. ADH1B which we found to have 

a protecPve associaPon in our data, has also been found to suppress A³-induced neuron apoptosis35, 

and mutaPons in its gene have been found to be associated with the development of AD36. 

 

To invesPgate how abundant these signature proteins are in blood plasma, we mapped the idenPûed 

proteins in our cohort to the Human Plasma proteome (HPPP) Database37. Figure 2C shows that the 

dysregulated proteins are distributed across the dynamic range of the plasma proteome with some of 

the highlighted proteins such as MAPK3, MGST3, and ACSL4 being at the lower abundance range. In this 

regard,  our ûnding of their diûerenPal expression in AD is noteworthy because these proteins would 

have been assayed in a unbiased proteomics assay in a large cohort without the use of Proteograph XT. 
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Figure 2. Pathway enrichment analysis and diûeren0al expression analysis in Alzheimer's disease. A) 1D annota0on enrichment 

analysis for AD. 1D score was calculated for KEGG and GOBP terms as described in Method. The p-values are adjusted based on 

Benjamini-Hochberg (BH) mul0ple tes0ng correc0on and ûltered at 5% FDR. Enrichment (score > 0) is depicted in red; Deple0on 

(score < 0) is depicted in blue. B) Diûeren0al expression analysis for AD vs. healthy controls. Volcano plot showing log2 fold 

change of proteins (x axis) and -log10 p-values a\er BH mul0ple tes0ng correc0on (y axis). The upregulated proteins are 

depicted in red; the downregulated proteins are depicted in blue. C) Dynamic range of iden0ûed proteins matched with HPPP 

database37. All proteins iden0ûed in the cohort that could match to the HPPP database shown in grey; upregulated protein in AD 

shown in red; downregulated proteins in AD shown in blue. 

Biomarker-Based Classiûca%on of Alzheimer9s Pa%ents 

 

Next, we invesPgated if there is a mulPmarker signature of AD that can be idenPûed from the 

proteomics data. While pTau measurement has been established as the best marker for determining AD 

status, we were curious to see if protein features could provide addiPonal evidence of an AD signature 

beyond known autopsy, PET, CSF and plasma biomarkers. We also aimed to use this approach to 

determine AD related proteins. To this end, we focused on a subset of samples using the last draw from 

each subject that has at least two clinical visits. We then further restricted these data to only those 

parPcipants which diagnosed as <AD= or <No NeurodegeneraPve Disease= and took care to ensure that 

there was no confounding informaPon through inclusion of cases where the diagnosPc status is based on 

biomarkers we intended to evaluate.  The ûnal set of samples included 141 AD parPcipants, and 217 

healthy controls. 

 

We developed a logisPc regression-based machine learning model to classify AD versus healthy controls 

using both pTau-181 concentraPon and our LC-MS proteomics features and evaluate it using nested cross 

validaPon (Methods, DiagnosPc Cohort and Machine Learning Diagnos%c Model). Since our dataset is 

imbalanced (AD is the minority class), we report the average precision (average posiPve predicPve value) 

in addiPon to AUROC (Figure 3b). We compared our model to a rule-of-thumb classiûer that would just 

report the prior class distribuPon as the predicted probability of AD, in addiPon to comparing to the 

value of pTau-181 concentraPon alone. 
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We can see in Figure 3b that the model using proteomics features (<pTau+Prot=) does not have a 

signiûcant increase in diagnosPc performance over pTau-181 on its own. Furthermore, we plan to 

measure plasma pTau-217 levels in these samples which we anPcipate will provide beAer discriminaPon 

of AD status compared to our general protein model. We hypothesize that this is because pTau markers 

have been developed highly studies in relaPonship to AD leaving liAle room for improvement and we do 

not measure phosphorylaPon state in the unbiased proteomics assay. Nevertheless, we can use these 

models to give us potenPal insight into biomarkers driving the various pathophysiological processes that 

contribute to neurodegeneraPon and cogniPve decline.  

 

To that end, we can interrogate the ûAed models to determine which input features were most 

inûuenPal in classifying AD and healthy controls. The average of the logisPc regression coeûcients across 

the 10 models (from the 10 folds) was computed, and the top 20 (based on absolute value) are reported 

in Figure 3c. While pTau-181 concentraPon was the most inûuenPal feature, other noteworthy 

proteomics features also had large coeûcients. Myeloid basic protein (MBP) was associated with Healthy 

controls (negaPve coeûcient, protecPve), and prior studies have shown that MBP acts as an amyloid ³-

protein (A³) chaperone and can be an inhibitor of accumulaPon of A³ ûbrils38344. Other studies have 

found the opposite associaPon as well, and the relaPon of MBP to AD pathology is sPll an open area of 

research45. In addiPon45 to osteocalcin (OSTCN), a marker of processes involved in osteoporosis such as 

bone remodeling and anabolism, and prior studies have shown some comorbidity of AD and 

osteoporosis46. Apolipoprotein D (APOD) also had a large posiPve coeûcient and is known to have 

increased levels in AD where it plays a neuroprotecPve role against	oxidative	stress47,48. 

 

 
Figure 3. Classiûca0on of AD vs Healthy controls. A) Flowchart of our machine learning pipeline for our <pTau+Prot= model. Blue 

nodes are steps that ût parameters based on training data and apply them to valida0on and test data (e.g. a list of features that 

pass missingness ûlters, the median value for a feature, or the coeûcients of the logis0c regression classiûer. Grey nodes are 

parameterless. Some nodes have hyperparameters listed, which we tune using nested cross valida0on. B) Results of 10 fold cross 

valida0on comparing the AUROC and Average Precision of the Rule-of-thumb baseline classiûer, pTau-181 concentra0on alone, 

and our model shown in panel (A). C) The top 20 average coeûcient values for the pTau+Prot model (when sorted by absolute 

values) across the 10 folds. Error bars indicate 95% conûdence internal es0mated using 1000 bootstraps with replacement. 

Cox regression models iden%fy mul%ple biomarkers associated with demen%a progression 
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To determine the associaPon of protein groups to demenPa progression, we employed mulPple Cox 

regression models where we assessed the Pme to CDRg increase. The primary model (Model 1) is a Cox 

Pme-varying model that represents delayed entry, due to open cohort enrollment, right-censored 

events, and age as Pmescale. The Pme-varying component of this model allows the protein expression to 

be represented over Pme when mulPple draws are available for a subject (Fig. 4a, b) and for the 

proporPonal hazard assumpPon to be relaxed. We reasoned that cogniPvely healthy controls (CDRg of 

0.0 ) would have diûerent rates of demenPa progression than those already showing mild cogniPve 

impairment (MCI, CDRg of 0.5). We therefore built one model for parPcipants with a baseline CDRg=0 

and another for baseline CDRg = 0.5. The distribuPon in parPcipants9 ûnal diagnoses for non-

neurodegeneraPve, AD, and other demenPas was 179, 43, and 78 parPcipants respecPvely in the CDRg 

0.0 cohort and  40, 164, and 188 parPcipants, respecPvely, in the CDRg 0.5 cohort. 

 

We found that the CTV models for events greater than 0.0 model had no protein groups signiûcantly 

associated with Pme-to-CDRg increase. However, the CTV models for events greater than 0.5 idenPûed 

eight protein groups with coeûcients that were signiûcantly associated (p-adj < 0.05 aqer BH correcPon) 

(Fig. 4b). Seven protein groups had posiPve coeûcients indicaPng that elevated levels would implicate a 

shorter Pme-to-CDRg increase: CRISPLD2 (Q9H0B8), CLNS1A (P54105), BLVRB (P30043), SMYD5 

(Q6GMV2), PRPS1 (P60891), SELENBP1 (Q13228_Q13228.4), and OXSR1 (O95747). One signiûcantly 

associated protein group GOLPH3 (Q9H4A6) had a negaPve coeûcient, implying that higher levels are 

associated with delays in CDRg increase. AddiPonally, VGF (O15240), idenPûed as a signiûcant biomarker 

of AD in brain Pssue, CSF and mouse model proteomics studies49351, but not previously in plasma,  was 

just outside signiûcance (p-adj < 0.1 aqer BH correcPon) and was also negaPvely associated with the 

Pme-to-CDRg increase. 

 

To further assess our Pme-to-event approach, we evaluated a CPH model using the latest draw available 

(nearest to but before the event) with delayed entry and age as Pmescale (Model 2). We found that the 

CPH models did not show any signiûcantly associated proteins aqer BH correcPon, demonstraPng that 

the CTV model provided greater staPsPcal power than the CPH models (Supp. Fig X.) However, amongst 

those in the top 20 of lowest nominal p-values of Model 2 were six proteins (CLNS1A, CRISPLD2, 

GOLPH3, OXSR1, PRPS1, SELENBP1) that were also signiûcantly associated in the CTV model. A diûerent 

CPH model, one without delayed entry and age of the blood draw as a covariate (Model 3), was used to 

assess the proporPonal hazard assumpPon and generate survival curves, with posiPve and negaPve 

associaPon examples with Pme-to-CDRg increase shown in (Fig 4 d,e). 
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Figure 4. Time-to-CDRg increase assessments with Cox regression models. (a, b) Two examples of parAcipants9 CDR 

history. All periods represented in a Cox Ame-varying model between obtained blood samples and before an event 

are characterized as E=0 and the period between last blood draw and an observed event (CDRg increase) is 

characterized as E=1. A subject must have at least three visits without a CDRg increase for the ûnal period to be 

labeled as censored (E=0). (c) CTV volcano plot where the y-axis is -log10 adjusted p-value (BH-corrected) and the 

dashed line represents adjusted p-value of 0.05. Proteins with posiAve coeûcients are indicaAve of proteins 

associated with increased risk of Ame-to-CDRg increase while those with negaAve coeûcients are associated with 

decreased risk. (d) CRISPLD2 survival curve generated from a CPH model between last draw and event as an 

example of a posiAve coeûcient. (e) GOLPH3 survival curve generated from a CPH model between last draw and 

event, as an example of a negaAve coeûcient.  

 

Several proteins idenPûed in the CTV and CPH models showed relevance to demenPa and/or Alzheimer9s 

disease in prior studies. CRISPLD2 was idenPûed as one of 89 genes regulated in an AD blood 

transcriptome study that accounted for white maAer hyperintensiPes52. CLNS1A was one of the 

signiûcant variably methylated probes associated with amyloid-³ in postmortem dorsolateral prefrontal 

cortex53. GOLPH3, which promotes vesicle exit for traûcking to the plasma membrane, has not been 

implicated directly in demenPa or AD, but it was cited as a potenPal mechanism for Golgi fragmentaPon 

in AD54. Studies on OXSR155, PRPS156, and SELENBP157 also show indirect evidence for these proteins in 

demenPa. In addiPon, a number of proteins just above the BH cutoû of 0.05 have greater support for a 

role in demenPa/AD, including VGF, MMP9, and CCN2. 

 

 

Discussion 

 
The goal of this study were to leverage deep, unbiased plasma proteomics to idenPfy biomarkers 

associated with demenPa progression and Alzheimer9s disease. We employed a variety of approaches 

using diûerent subsets of the proteomics data to discover biological pathways relevant to Alzheimer9s 

disease, uncover biomarkers of disease classiûcaPon, and reveal proteomic signatures of demenPa 

progression. While some of the pathways and proteins idenPûed are known to be involved with ADRD, 

many are not and may point to novel biology. The proteins associated with demenPa progression are of 
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parPcular interest. They may enable development of a model to predict individuals that are at risk of 

rapid cogniPve decline. Such a model could be used to aid treatment decisions in paPents.  

 

Some strengths of the study include the large sample sizes, the standardized clinical characterizaPon of 

cogniPon and funcPon over Pme, the depth of the plasma proteome covered that is enabled by Seer's 

Proteograph workûow and GPF and DIA LC-MS workûow, and the Cox regression models to idenPfy 

those proteins most associated with clinical prognosis.  

 

The open cohort and volunteer enrollment of the study implicates a bias in observed Pme for 

parPcipants compared to a randomized controlled trial. In addiPon, parPcipants may preferenPally enroll 

if they or their caregivers noPce signs of demenPa, as observed in the ûnal diagnoses of the CDRg 0.5 

cohort. Nevertheless, we aimed to minimize these sources of bias by using Cox models with appropriate 

modeling parameters including delayed entry, age as Pme-scale, right censorship, and Pme-varying 

protein covariates. Our cohort was predominantly composed of people of white race, European 

ethniciPes and high educaPon, thus limiPng our ability to generalize ûndings to people of non-European 

ancestry and less educaPon who are under-represented in AD research. 

 

A major advance of this work is the use of the next iteraPon of the Proteograph planorm for deep, 

unbiased proteomics. This planorm allowed us to run a large study of almost 1,800 samples while 

assaying over 4,000 proteins and 36,000 pepPdes. This depth at this scale was not previously possible for 

an unbiased workûow. As reported elsewhere, with newer MS analyzers this workûow can achieve 6,000 

proteins and more. Unbiased discovery provides an opportunity to learn new biology and develop a 

deeper understanding of disease. It also provides an opportunity for pepPde and hence isoform level 

analysis. Future work could invesPgate those aspects of the data in more detail as well as aAempPng to 

dissect the similariPes and diûerences in the pathophysiological pathways associated among ADRD, as 

well as heterogeneiPes among AD stage and subtypes. 
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