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ABSTRACT

Cryo-electron tomography allows us to visualize and analyze
the native cellular environment on a molecular level in 3D.
To reliably study structures and interactions of proteins, they
need to be accurately localized. Recent detection methods
train a segmentation network and use post-processing to de-
termine protein locations, often leading to inaccurate and in-
consistent locations.

We present an end-to-end learning approach for more ac-
curate protein center identification by introducing a differen-
tiable, scoremap-guided Mean Shift clustering implementa-
tion. To make training computationally feasible, we sample
random cluster points instead of processing the entire image.

We show that our Mean Shift loss leads to more accu-
rate cluster center positions compared to the classical Dice
loss. When combining these loss functions, we can enhance
3D protein shape preservation and improve clustering with
more accurate, localization-focused score maps. In addition
to improved protein localization, our method provides more
efficient training with sparse ground truth annotations, due to
our point sampling strategy.

Index Terms— Mean Shift clustering, Cryo-electron to-
mography, protein localization, protein segmentation, end-to-
end learning

1. INTRODUCTION

Cryo-electron tomography (Cryo-ET) is a promising imaging
technique [1] that enables the study of cells in their native en-
vironment and in three dimensions. This innovative approach
significantly advances our understanding of protein interac-
tions in their native environment. A notable application is the
determination of protein structures through subtomogram av-
eraging (STA) [2]], where small volumes are extracted around
center positions of proteins within the tomogram, aligned, and
then averaged to generate a high-resolution structure.

For STA, it is important to detect as many instances of the
same protein as possible. These proteins must be precisely
located to make STA efficient or even feasible. Therefore,

determining initial center points as close as possible to the
true protein centers is a critical step for the successful and
efficient reconstruction of protein structures from native cells.

Classically, template matching [3]] has been used for lo-
calizing proteins in Cryo-ET, and is still often used due to
the lack of large public annotated datasets in Cryo-ET that
could be used for training neural networks. The few available
datasets often do not contain complete annotations and miss
several true proteins [4]. Recently, template matching has
been outperformed by new deep learning-based approaches in
several cases [3} 16} 4} [7, [8]. Many of these methods [4, (7, 8]
first train a neural network to segment protein shapes, and
then use Mean Shift clustering [9] to extract protein center
locations. Since the training is thus not focused on protein
localization, resulting cluster centers may be inaccurate. Be-
sides, these approaches require the often cumbersome gener-
ation of target maps depicting the protein shapes and do not
directly utilize the protein center positions given by frame-
works like template matching.

Mean shift clustering has been used for several deep learn-
ing tasks, including image segmentation [10, [11] and self-
supervised learning [12]. However, to our knowledge, it has
not been proposed as a loss function for object center location,
due to its non-differentiable nature.

We propose to integrate Mean Shift clustering into our
network for end-to-end optimization of protein center loca-
tions. We introduce a score-weighted, differentiable Mean
Shift module and attach it to a U-Net [[13]] architecture, en-
abling training with just protein center coordinates or com-
bined with traditional segmentation loss. We show in multiple
Cryo-ET datasets that this leads to more precise protein cen-
ter locations, particularly in the case of non-spherical protein
shapes. Furthermore, we show that our loss function yields
good results even with incomplete ground truth annotations.

The code accompanying Mean Shift loss function and
generating toy data can be accessed here via GitHub,
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Fig. 1. Mean Shift clustering as a loss function: A: Existing methods (e.g., [4} [8]) train a 3D U-Net to segment protein shapes.
Subsequently, Mean Shift clustering gives protein center positions. Our Mean Shift loss allows to train this process end-to-end.
B: Implementation of our Mean Shift loss: After computing U-Net score maps, random positions (green) are sampled around
GT centers. Our differentiable Mean Shift clustering gives converged positions (red) from the sampled coordinates. These can

be compared to GT positions (yellow) to compute a loss value.

2. METHODS

As shown in Figure [TJA, existing approaches first train a U-
Net [[13] to segment protein shapes, and then use Mean Shift
clustering [9]] as post-processing to extract protein center lo-
cations. We propose to train this workflow end-to-end by in-
corporating our differentiable variant of Mean Shift cluster-
ing into the architecture, enabling us to directly utilize ground
truth (GT) protein center positions instead of (or in combina-
tion with) segmentation masks.

2.1. Mean Shift clustering

Mean Shift clustering [9]] is a clustering technique that itera-
tively shifts data points towards the densest part of a dataset.
It is often used when the exact number of expected cluster
centers is unknown, as its only adjustable parameter is the
bandwidth b. The clustering processes each point separately
by iteratively updating the point’s position by the weighted
average of all points within radius b of the current point. All
points thus converge to locally dense point regions.

2.2. Our differentiable Mean Shift clustering

Similar to [[14)], we implement Mean Shift using PyTorch on
GPU in a batch-wise fashion. During inference, other meth-
ods [4} 8] perform thresholding of scoremaps to yield ini-

Algorithm 1 Our differentiable Mean Shift loss

Inputs: image, bandwidth b

Returns: Mean Shift loss
1: Predict score map scoresy.net for image
2: Sample point coordinates p around ground truth positions
3: for pyrq in sampled points do

for i = 1 to itery,x do

Find points ¢ within radius b: {q | ||pprea—¢|| < b}
. [|Pprea—qll
b

Compute weights: w, = scoresy.net(q)
Update position ppred = ﬁ >, We g

8: loss = MSE(ppreda PGT) —+ MSE(pGT, Ppred)

A

tial cluster coordinates. Compared to that, during training,
we randomly sample points within a certain radius around
ground truth (GT) locations from the voxel grid (see Fig-
ure [TB). Then, we weight the sampled positions using the
network-assigned scores of the corresponding voxels. Us-
ing these weights, we perform our score-guided Mean Shift
clustering by iteratively computing the weighted averages of
all points within bandwidth b of a sampled point p. For fur-
ther efficiency, we limit the maximum of iterations to a low
number (10 in all experiments). Algorithm [I] describes our
score-weighted Mean Shift clustering in more detail.

The introduction of network score-based weighting and
random sampling of points without thresholding allows the
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backpropagation through the Mean Shift module and thus en-
ables us to define our Mean Shift loss function. The advan-
tages of sampling only a few positions (in practice, we use
256) around GT positions are twofold: First, it leads to a
much more efficient clustering performance than processing
all coordinates of the 3D patch. Second, this sampling allows
us to focus our training on regions with available annotations:
If a true protein position is not captured by the GT, we will
not sample points close to this position and thus not severely
distort the training process. Compared to that, classic seg-
mentation metrics like Dice loss will be influenced strongly
by to the false negative GT annotations.

After convergence, we have a set of predicted points
Dpred € Ppred, and we use Mean Squared Error to compare to
the GT positions pgr € FPgr:

MSE(ppreda PGT) = min ||ppred - pGT”g (1)
par € Por

MSE(pGTa Ppred) = min HpGT - ppred”g (2)
ppredeppred

This ensures that GT positions are close to a predicted posi-
tion, while prediction positions are close to a GT position.
2.3. Evaluation metrics

For evaluation, we define the average distances of predicted
positions to their closest ground truth position and vice versa:

. 1 .
distoa = 17 > min [Ip = gll2, 3)
peEP
1
distgr = —— min|p — , 4
istor G| QEZGTPEIPHP gll2 4)

where P and G'T are the sets of all predicted and GT posi-
tions, respectively. We also show the F}-score using different
hit-radii: A GT position is counted as true positive (TP) with
hit-radius 4 if a predicted position is within a radius of 4, and
vice versa. Together with false positives (FP) and false nega-
tives (FN), we compute precision, recall, and F}-score:

#TP #TP
P = — Rec= ———— 5
= Iy A T Zmpr N O
2 x Rec * Prec
FR=——_ " 6
! Rec + Prec ©)
3. RESULTS

3.1. Datasets

We collected several datasets to benchmark our Mean Shift
loss with the commonly used Dice loss. Figure 2] shows sam-
ple images of each dataset. As a proof of concept, we gener-
ated the Sandclock toy dataset by placing two spheres in op-
posite directions of a randomly drawn center point. Next, we
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Fig. 2. Images and predictions: 2D slices of the 3D patches
of the Sandclock, Shrec, Ribo, and Ribo (Sparse) experiments.
Shown are the raw input together with ground truth positions
(yellow), as well as score maps for the experiments using only
Dice as a loss functions, only our Mean Shift loss, or a com-
bination. Predicted cluster centers are highlighted in red.
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Fig. 3. F1 scores for different hit-thresholds for all datasets
and our three training settings using only Dice loss (red), only
Mean Shift loss (blue), and a combination of both (green).

used the synthetic Shrec Challenge Cryo-ET dataset [[15]], de-
picting proteins of different sizes in realistically simulated to-
mograms. Finally, we evaluated our approach using the Ribo
dataset: a tomogram from an experimental dataset (EMPIAR-
10045 [[16[]) containing 3D locations of ribosomes.

For the Shrec dataset, we sampled training (1558), valida-
tion (426) and test (440) patches that contained proteins from
different tomograms. For the Ribo dataset, we generated non-
overlapping patches containing at least one protein, and split
them into 50 training, 11 validation, and 11 test patches. For
all datasets, we used a 3D patch size of 56 both during train-
ing and evaluation.

3.2. Experimental evaluation

For each dataset, we performed training runs with Dice loss,
Mean Shift loss, and their combination (Table [T] Figure [2)),
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Experiment diStpred distgr F1,244

Sandclockpice [4.02 £ 0.01|3.82 £0.01|0.46 4 0.01
Sandclockyg 243 +£0.17[1.64 £ 0.24 | 0.81 + 0.03
Sandclockpen | 2.62 4 0.06 | 1.26 £ 0.08 | 0.82 £ 0.01
Shrecpice 6.21 +0.29 2.09 + 0.16|0.53 + 0.02
Shrecys 7.75+4.70(3.99 £ 1.70|0.70 £ 0.10
Shrecpom 7.22 +£0.42(1.69 + 0.15|0.55 + 0.01
Ribopjce 8.58 +0.35|4.03 - 0.04|0.56 4+ 0.02
Riboys 8.97 +0.38|4.82 + 0.85|0.55 4+ 0.05
Ribopom 8.44 +0.23|3.54 +0.10| 0.61 & 0.02
Ribo(sparse)p. | 8.24 £ 0.68 | 8.65 = 3.06|0.45 £+ 0.10
Ribo(sparse)yg | 8.41 £0.44|6.46 £ 1.54|0.53 £ 0.05
Ribo(sparse), ., | 8.87 £ 0.49 |4.13 £+ 0.47 | 0.55 £+ 0.05

Table 1. Results for different experiments. For each setting
(Sandclock, Shrec, Ribo, Ribo(sparse)), we trained models
using only Dice loss (pjce), only our Mean Shift loss (vs), and
a combination of both (o). We show the means and stan-
dard deviations (5 training runs) of each predicted position’s
distance to the closest ground truth position (dist,eq), and vice
versa (distgr), as well as the F1-score with a hit-radius of 4.

selecting the best model from 1000 epochs based on valida-
tion loss. We used a constant learning rate of 10~° without
weight decay or other regularization, and a bandwidth of 4 for
Mean Shift clustering, tuned on the Shrec validation set.

For the Sandclock dataset, we observe lower average dis-
tance values (distpeq), distgr)) as well as better F1-scores
when training with our Mean Shift loss or a combination.
Figure 2] shows that while Dice loss offers more precise seg-
mentations, it falls short in accurate cluster center identifica-
tion. Conversely, our Mean Shift loss produces score maps
that lead to more precise clustering and, consequently, more
accurate protein center localization.

For the Shrec dataset, we observe mixed results: Dice loss
or the combination show lower distance scores, but Mean
Shift alone achieves the highest Fj-score. The score maps
from Dice loss training (Figure [2) more accurately predict
protein shapes, but Shrec’s varying protein sizes lead to am-
biguous cluster centers and potential protein oversampling,
as uniform bandwidth clustering struggles with size variabil-
ity. Conversely, Mean Shift loss generates score maps bet-
ter suited for precise cluster center prediction, reflected in
higher Fj-scores. However, upon close inspection, we ob-
served some significantly deviant outlier cluster centers, im-
pacting distance values, as evident from the high standard de-
viations. The F}-score plot in Figure [3| further supports this,
with Mean Shift loss achieving higher scores already at lower
hit-thresholds, indicating overall accuracy despite outliers.

For the experimental dataset Ribo, we performed two
experiments: First, we generated spherical masks around
all ground truth positions and trained again using Dice loss,
Mean Shift loss, and their combination. Here, we observe

slightly improved distance scores and F}-scores when using
the combined loss compared to only Dice loss. However, due
to the roughly globular shape of the ribosomes, the advantage
of using Mean Shift loss is not fully given.

Our second experiment Ribo (sparse) highlights our loss
function’s ability to deal with sparse annotations: During
training, we only used a single GT position and correspond-
ing mask per patch to optimize our network. For the test
set, we considered all GT positions again. While the perfor-
mance using only Dice loss decreases notably (in particular
distgr, indicating many missed GT positions), training with
the combined loss maintained similar results to full annota-
tion training. This underscores our loss function’s capability
to handle the sparse annotations common in Cryo-ET, where
accurately localizing all proteins is often challenging.

4. CONCLUSION

To improve the accuracy of recent protein localization pro-
grams, we introduced a Mean Shift loss function that allows
end-to-end training of a segmentation task with subsequent
clustering. In order to use the originally non-differentiable
Mean Shift clustering for training, we introduced a network-
score-based weighting to the clustering and implemented a
point sampling scheme around GT positions to make the clus-
tering computationally feasible. Using this Mean Shift loss,
we can avoid tediously generating a segmentation target map
and utilize ground truth locations directly.

We showed that, particularly for non-globular protein
shapes, our loss function learns score maps that are more
tailored towards a precise localization, compared to previous
workflows with two separated steps to segment protein shapes
and then perform independent clustering. Our point sampling
strategy in the Mean Shift loss computation enhances robust-
ness against sparsely annotated protein locations, a frequent
issue in Cryo-ET.

In follow-up work, we would like to extend our loss func-
tion to a multi-class setting, and evaluate the benefits of the
Mean Shift loss function on more experimental datasets (more
diverse, non-globular protein shapes) and in more detail, e.g.,
by showing the effects of more accurate protein positions on
downstream tasks like subtomogram averaging.
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