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Abstract 

Background: Formalin-fixed, paraffin-embedded (FFPE) tissues have many advantages for identification of risk 

biomarkers, including wide availability and potential for extended follow-up endpoints. However, RNA derived from 

archival FFPE samples has limited quality. Here we identified parameters that determine which FFPE samples have the 

potential for successful RNA extraction, library preparation, and generation of usable RNAseq data.

Methods: We optimized library preparation protocols designed for use with FFPE samples using seven FFPE and 

Fresh Frozen replicate pairs, and tested optimized protocols using a study set of 130 FFPE biopsies from women 

with benign breast disease. Metrics from RNA extraction and preparation procedures were collected and compared 

with bioinformatics sequencing summary statistics. Finally, a decision tree model was built to learn the relationship 

between pre-sequencing lab metrics and qc pass/fail status as determined by bioinformatics metrics.

Results: Samples that failed bioinformatics qc tended to have low median sample-wise correlation within the cohort 

(Spearman correlation < 0.75), low number of reads mapped to gene regions (< 25 million), or low number of detect-

able genes (11,400 # of detected genes with TPM > 4). The median RNA concentration and pre-capture library Qubit 

values for qc failed samples were 18.9 ng/ul and 2.08 ng/ul respectively, which were significantly lower than those of 

qc pass samples (40.8 ng/ul and 5.82 ng/ul). We built a decision tree model based on input RNA concentration, input 

library qubit values, and achieved an F score of 0.848 in predicting QC status (pass/fail) of FFPE samples.

Conclusions: We provide a bioinformatics quality control recommendation for FFPE samples from breast tissue 

by evaluating bioinformatic and sample metrics. Our results suggest a minimum concentration of 25 ng/ul FFPE-

extracted RNA for library preparation and 1.7 ng/ul pre-capture library output to achieve adequate RNA-seq data for 

downstream bioinformatics analysis.
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Background
For decades, clinical biospecimens have been typi-

cally fixed in formalin then embedded in paraffin wax 

to make formalin-fixed paraffin-embedded (FFPE) tis-

sue blocks for diagnosis and long-term storage. FFPE 

tissue archiving has many advantages, including room 

temperature stability, long-term storage, and suitability 

for subsequent immunohistochemical (IHC) analyses, 

which had led to use of FFPE in IHC-based biomarker 

investigations [1, 2]. However, FFPE processing and 

tissue storage are known to result in highly degraded 

RNAs which limits gene expression-based biomarker 

discovery using RNA sequencing [3–5]. Transcriptional 

profiling by RNA sequencing (RNA-seq) is a powerful 

tool for genome wide quantification of RNA expres-

sion with high sensitivity that has been routinely used 

in breast cancer research and clinical diagnosis [6–9]. 

RNA-seq involves an enrichment step to remove the 

abundant ribosomal RNAs by either ribosomal deple-

tion or Poly(A) selection [10, 11]. However, Poly(A) 

selection protocol is less suitable for low quality RNA 

derived from FFPE samples [12]. During recent years, 

RNA library protocols tailored for FFPE samples have 

been developed, including the NEBNext rRNA Deple-

tion and the TruSeq RNA Exome panel, although the 

relative performance of these methods with FFPE-

derived RNA has not been published, and there are lim-

ited studies that provide insight for selection of FFPE 

samples of adequate quality [13, 14].

Our study aim is to compare two commonly used 

RNA library preparation protocols for FFPE samples, 

and to provide a recommendation on RNA input met-

rics, including RNA concentration and library con-

centration, to achieve adequate RNA-seq data for 

downstream bioinformatics analysis.

For the first part of the study, we evaluated two com-

monly used RNA library protocols for FFPE samples 

using seven paired FFPE and fresh frozen (FFzn) sam-

ples. All samples were prepared through both protocols 

and compared based on bioinformatics metrics, includ-

ing alignment, SNP concordance, junction coverage and 

sample-wise correlation. For the second part of the study, 

we sequenced 130 benign breast disease (BBD) samples 

along with technical replicates in ten sequencing batches. 

�orough bioinformatics quality control was performed 

to identify QC-failed samples. Finally, a decision tree 

model was constructed to correlate pre-sequencing met-

rics with QC status defined by bioinformatics metrics.

Methods
Study design

Institutional Review Board approval was obtained for 

research use of human samples in this project (#IRB 

75–87). A pilot study was performed using FFPE and 

fresh frozen pairs for seven women diagnosed with 

benign breast disease to evaluate the performance of 

two library preparation protocol, Illumina’s TruSeq RNA 

Exome and NEBNext rRNA Depletion (Fig. 1a). To eval-

uate the precision of SNPs identified by the two proto-

cols, we also performed whole exome sequencing (WES) 

for the three selected fresh frozen samples. �e TruSeq 

Exome protocol exhibited better performance in bioin-

formatics metrics and was selected to process all study 

samples and technical controls in the main study. A total 

of 158 samples including study samples and technical 

controls were submitted for RNA extraction (Fig.  1b). 

Forty samples failed library preparation due to low RNA 

input quantity. �e remaining samples were submitted 

for RNA sequencing in ten sequencing batches. Batches 

were designed so that samples with similar RNA quality 

were included in the same batch. �is helped to minimize 

the potential sequencing bias toward high quality samples 

in the same batch. To examine the potential sequencing 

batching effect, the same two technical controls (FFPE 

and FFzn pair for the same subject) were included in 

each sequencing batch 1–7. For sequencing batch 8–10 

where samples are of low RNA quality, we only included 

the FFPE technical control as the FFzn technical control 

would potentially attract more sequencing reads and bias 

the quantification of other low-quality study samples. 

Besides the two technical controls, we also included 11 

study replicate samples in different sequencing batches. 

�orough bioinformatics evaluations were performed to 

identify samples passing the qc metrics.

RNA quantitation and quality

Total RNA concentration was determined using the 

Qubit 2.0 Fluorometer and RNA HS Assay (Life Technol-

ogies Corp., Carlsbad, CA). RNA integrity was assessed 

and recorded with DV50, DV100, and DV200 values 

using the RNA 6000 Nano Kit on an Agilent 2100 Bio-

analyzer (Agilent Technologies, Santa Clara, CA), but 

was not used for sample exclusion in the library prepara-

tion. DV values are a commonly used metric that repre-

sents the proportion of RNA fragments in a sample with 

greater length than the numeric value (i.e., DV200 equals 

the percentage of RNA fragments > 200 nucleotides).

Keywords: FFPE, RNA-seq, Quality control, Breast tissue, RNA concentration, Library concentration, Decision tree, 

DV200, DV50
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RNA exome library preparation and sequencing

40–100  ng of experimental FFPE RNA, FFPE con-

trol RNA, or 20  ng fresh frozen control RNA was used 

for library preparation using the TruSeq RNA Library 

Prep for Enrichment and the Illumina Exome Panel-

Enrichment Oligos kit (llumina, Inc., San Diego, CA) 

following the manufacturers protocol for FFPE RNA or 

high-quality total RNA respectively. As per the protocol, 

fragmentation of FFPE RNA was not performed. Follow-

ing adaptor ligation and enrichment, the libraries were 

quantitated by Qubit and pooled for subsequent exome 

capture based on available yield. Up to a 4-plex pooling 

strategy was used for the exome capture, with capture 

groups consisting of 200  ng, 100  ng, 50  ng, 40  ng, and 
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Fig. 1 Flow-chart of library optimization and bioinformatics evaluation. a A pilot study consisting of FFPE and fresh frozen pairs for 7 BBD patients 

were submitted for sequencing to evaluate two protocols of library preparation for RNA-seq, Ribo-depletion and RNA exome capture. Several 

bioinformatics metrics were evaluated for the two protocols. Whole exome sequencing (WES) data was used to estimate SNP confirmation rate, and 

the RNA exome capture showed superior performance in all categories and was selected as the library preparation protocol to process all samples. 

b 130 study samples (ER+ estrogen receptor positive, ER− estrogen receptor negative, Cont control) along with 17 technical replicates and 11 study 

replicates were submitted for library preparation using the RNA exome capture protocol. 40 samples failed library preparation step with insufficient 

RNA. All remaining samples were submitted for sequencing in 10 batches. Rigorous bioinformatics evaluation was performed to identify qc failed 

samples based on defined bioinformatics metrics. The final dataset comprised 62 study samples
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30  ng of input library for each sample in the pre-cap-

ture pool. Up to 12 samples (3 pools) were batched for 

sequencing and included a paired FFPE control RNA 

and fresh frozen control RNA in each batch. Following 

two rounds of hybridization to the capture probes, the 

pools were PCR amplified and purified using AMPure XP 

beads. �e amplified and enriched libraries were qual-

ity assessed using a combination of the Qubit dsDNA 

HS Assay (Invitrogen), the Bioanalyzer DNA 7500 Assay 

(Agilent Technologies), and KAPA Library Quantifica-

tion Kit for Illumina (KAPA Biosystems, Boston, MA). 

�e three capture pools for each batch were combined 

in equal molar amounts and sequenced across 3 lanes 

of an Illumina NextSeq 500 High Output flowcell using 

75 × 2  bp paired end reads. Each flowcell generated a 

minimum of 700 million reads passing filter.

rRNA depletion library preparation and sequencing

20–100  ng of FFPE RNA and paired fresh frozen RNA 

was used for library preparation using the NEBNext 

rRNA Depletion Kit (Human/Mouse/Rat) and Ultra II 

Directional RNA Library Prep Kit for Illumina (New Eng-

land Biolabs Inc., Ipswich, MA), following the manufac-

turers protocol for highly degraded (RIN ≤ 2) or intact 

(RIN > 7) samples respectively. Fragmentation is based 

on RIN value of RNA input and conducted as outlined 

in the protocol. Fragmentation for FFPE RNA was not 

performed. Experimental FFPE RNA and paired fresh 

frozen RNA from the same patient was used if avail-

able using similar input amounts for each sample type. A 

total of 13 libraries were prepared, including six patient 

pairs. Libraries were quality assessed using a combina-

tion of the Qubit dsDNA HS Assay (Invitrogen), the Bio-

analyzer DNA 7500 Assay (Agilent Technologies), and 

KAPA Library Quantification Kit for Illumina (KAPA 

Biosystems, Boston, MA). Libraries were combined in 

equal molar amounts and sequenced across three lanes 

of an Illumina NextSeq 500 High Output flowcell using 

75 × 2  bp paired end reads. Each flowcell generated a 

minimum of 800 million reads passing filter.

Whole exome sequencing of fresh frozen samples

�ree fresh frozen samples were submitted for whole 

exome sequencing at Mayo Clinic molecular genomic 

facility. In brief, paired-end libraries were prepared with 

1.0 μg of genomic DNA in accordance with the manu-

facturer’s protocol (Agilent Technologies, Inc, Santa 

Clara, Calif ). Whole-exon capture was performed with 

750  ng of the prepped library following the protocol 

for the SureSelect Human All Exon v5 + UTRs 75  Mb 

kit (Agilent Technologies, Inc). �e purified capture 

products were then amplified with use of SureSelect 

Post-Capture Indexing forward and Index polymerase 

chain reaction reverse primers (Agilent Technologies, 

Inc) for 12 cycles. Concentration and size distribution 

of the completed captured libraries were assessed on 

Qubit (Invitrogen, Waltham, Mass) and Bioanalyzer 

DNA 1000 chip (Agilent Technologies, Inc). Libraries 

were sequenced at an average coverage of about 80× 

in accordance with standard protocol of the cBot and 

HiSeq 3000/4000 PE Cluster Kit (Illumina, San Diego, 

Calif ). �e flow cells were sequenced as 150 × 2 paired 

end reads on the HiSeq 4000 with the HiSeq 3000/4000 

sequencing kit and collection software (HCS version 

3.3.52; Illumina). Base calling was performed with Real-

Time Analysis version 2.7.3 (Illumina). All procedures 

were performed in accordance with the manufacturer’s 

instructions.

RNA-seq alignment and gene quanti�cation

After sequencing procedure, raw FASTQ files were pro-

cessed through Mayo’s internal MAP-RSeq pipeline 

[15] (Version 3.0). MAP-RSeq uses a variety of pub-

licly available bioinformatics tools tailored by in-house 

developed methods. Briefly, the aligning and mapping 

of reads are performed using Star aligner [16] against 

hg38 genome build. �e gene and exon counts are gen-

erated by FeatureCounts [17] using the gene definitions 

files from Ensembl v78. Quality control was carried out 

using RSeqQC [18]. Gene expression data was normal-

ized to counts per million (CPM) and transcript per mil-

lion (TPM) using Trimmed Mean of M-values (TMM) 

method as implemented in edgeR [19] followed by log2 

transformation.

Estimation of SNP con�rmation rate and false positive rate

SNPs were identified using GATK haplotype caller [20] 

and further filtered by RVBoost [21]. For the pilot study, 

SNP confirmation rate (precision) was calculated for each 

mutation type (C>T, C>G, etc.) as:

where SNPRNA represents the SNPs identified in RNA-

seq data and SNPDNA represents the SNPs identified in 

WES data for the same set of samples. For both pilot and 

main study, false positive rate (FPR) between either tech-

nical or study replicate samples was calculated as:

where Ntotal denotes the total number of genes and 

NMAD>lfc denotes the number of genes with maximum 

absolute difference (MAD) above a certain logarithm fold 

change cutoff.

(1)
SNP confirmation rate = SNPrna ∩ SNPdna/SNPrna,

(2)FPR = NMAD>lfc/Ntotal ,
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Bioinformatics QC and model building

We defined three bioinformatics metrics for QC pur-

pose, including sample-wise median correlation of gene 

expression (median_cor_expr), number of genes mapped 

to genic regions (gene_reads), number of detectable 

genes with transcript per million (TPM) larger than 4 

(gene_tpm4). TPM was calculated based on:

FPKM was calculated as described earlier [22]. For each 

sample, we firstly calculate its Spearman rank correla-

tion of gene expression with each of the rest of samples 

in the cohort. �en, ‘median_cor_expr’ for each sample 

is the median Spearman correlation value with the rest 

of samples in the cohort. After thorough bioinformat-

ics evaluation, samples meeting any of the below criteria 

were flagged as QC-fail:

1. Sample-wise median gene expression correlation 

smaller than 0.75

2. Gene mapped reads smaller than 25 million gene 

mapped reads,

3. Less than 11,400 # of detected genes with TPM > 4

For each of the sequencing batch, if the technical con-

trols/replicates failed QC, the whole batch of samples 

will be flagged as QC-fail as well. For our study, all tech-

nical controls/replicates have passed QC. A decision tree 

model was built based on CART Modeling via rpart R 

package to learn the relationship between pre-sequenc-

ing QC metrics, such as RNA qubit or pre-capture library 

qubit, and QC pass/fail status predicted by post sequenc-

ing bioinformatics metrics. Samples were split into train-

ing and testing set with a ratio of 7:3. Repeated cross 

validation were performed to optimal parameters (com-

plexity parameter) during model training. Similarly, an 

alternative model based on logistic regression was also 

constructed:

All models were built based on Caret R package [23] and 

all statistical analysis was carried out in R under R ver-

sion 4.0.3.

Results
Evaluating FFPE library preparation kits using FFPE 

and fresh frozen replicates

We evaluated two RNA-seq library preparation proto-

cols optimized for low quality, highly degraded samples 

(3)TPM =

FPKM
∑

FPKM
× 10

6
,

(4)ln
p(X)

1 − p(X)
= β0 + β1X

(such as FFPE): Illumina’s TruSeq RNA Exome proto-

col and NEBNext rRNA Depletion protocol (Fig.  1a). 

FFPE and Fresh Frozen (FFzn) replicates for seven BBD 

patients were prepared using the two selected protocols 

and submitted for RNA sequencing as described in the 

Methods section. While the Depletion protocol gener-

ated more sequenced reads compared to RNA Exome, a 

significantly lower proportion of reads were mappable to 

genic or exon-exon junction regions for both FFzn and 

FFPE samples (Additional file 1), and captured a smaller 

number of canonical exon-exon junctions (Additional 

file  1). We also examined the two protocols in terms of 

their ability to accurately capture SNP genotypes. SNP 

confirmation rate (precision) was calculated for three 

FFzn samples by using SNPs identified from their cor-

responding DNA whole exome sequencing (WES) data 

(Additional file 1). �e calculation was performed sepa-

rately for six conventional mutation categories (C>T, 

C>G, C>A, T>A, T>C, and T>G.). �e Depletion proto-

col generated many false positive calls with consistently 

low SNP confirmation rate across all mutation categories. 

For the RNA Exome protocol, the SNP confirmation rate 

was significantly higher across different mutation catego-

ries with C>T being highest (p value < 2.2E−16) as was 

previously reported [24]. Finally, we compared the two 

protocols in terms of their correlation with data from 

the TruSeq protocol with PolyA selection using five FFzn 

samples (Additional file  1). For the Depletion protocol, 

only two of five samples successfully clustered by subject 

ID instead of library protocol. �e RNA Exome protocol 

showed good concordance with the TruSeq PolyA data 

where all samples were clustered by subject ID regard-

less of their library protocol. Overall, the RNA Exome 

protocol showed superior performance compared to the 

Depletion protocol in terms of these bioinformatics met-

rics and was selected as the library protocol to process all 

samples in the main study (Additional file 1, Fig. 1b).

Sample QC based on bioinformatics metrics

All study samples and technical controls were submit-

ted for library preparation using RNA Exome protocol. 

Library concentration was gathered on the individual 

samples prior to hybridization capture and is hereaf-

ter referred to as the “pre-capture” library. 40 samples 

failed this step due to low pre-capture library out-

put. �e remaining samples were submitted for RNA 

sequencing in ten batches as detailed in the methods 

section (Fig. 1b). Bioinformatics quantification of gene 

expression was then performed, and qc metrics were 

collected, including sample-wise median gene expres-

sion correlation (median_cor_expr), number of gene 

mapped reads (gene_reads), number of detectable 

genes with transcript per million (TPM) larger than 4 
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(gene_tpm4). Median_cor_expr was calculated for each 

sample as its median correlation of gene expression 

with all other samples in the cohort, and was between 

0.8 and 0.9 for most samples (Fig. 2a). Based on the 11 

study sample replicates, we first evaluated the relation-

ship between false positive rate (FPR) and median_cor_

expr (Fig.  2b). Replicates with lower median_cor_expr 

tend to have higher FPR. For samples with extremely 

low median_cor_expr, FPR decreased and plateaued 

around 20% likely due to a reduced number of detect-

able genes. Similar trends were observed between FPR 

and median_cor_expr when applying an expression cut-

off before calculating FPR. Due to the limited number 

of study replicates within median_cor_expr range of 0.7 

and 0.8, a median_cor_expr value around the inflection 

point (0.75) was selected as a cutoff to identify qc failed 

samples. We next investigated the relationship between 

median_cor_expr and gene_tpm4 (Fig.  2c). Samples 
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Fig. 2 Bioinformatics QC to identify pass versus fail samples. a Heatmap of sample pairwise correlation of gene expression. Row color annotation 

bar indicate sequencing batch (seqb) 1–7 and 8–10. Right lower panel shows a histogram of the distribution of sample wise median correlation 

based on gene expression data. b Relationship between sample wise median correlation of gene expression with false positive rate using 11 study 

replicate samples. Samples with a sample-wise median correlation below 0.75 were classified as QC failed samples. Loess is used curve fitting 

and 95% confidence interval is plotted in grey bands. c Relationship between sample wise median correlation of gene expression with number 

of detectable genes with transcript per million (TPM) > 4. A cutoff of 11,400# of genes was selected to identify QC failed samples. d Relationship 

between number of gene mapped reads and total number of detected genes with transcript per million (TPM) > 4. A cutoff was selected at 80% of 

saturation point (20 million gene mapped reads, 10,400 # of detected genes with TPM > 4)
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with higher gene_tpm4 had better median_cor_expr; a 

median_cor_expr of 0.75 corresponding to a value of 

11,400 for gene_tpm4 was selected as the threshold. 

Finally, we examined the relationship between gene_

reads and gene_tpm4 (Fig. 2d). Samples with increased 

gene_reads had higher gene_tpm4. �e trend saturated 

with gene_tpm4 around 13,000, with a gene_tpm4 of 

11,400 (roughly 85% of saturation) corresponding to 

25 million gene_reads. Samples were therefore iden-

tified as QC failed when meeting any of the following 

criteria: 1) low median sample-wise correlation within 

the cohort (median_cor_expr < 0.75); 2) low number 

of detectable genes (gene_tpm4 < 11,400); 3) low num-

ber of reads mapped to gene regions (gene_reads < 25 

million). We also evaluated the effect of sample size on 

the calculating of median_cor_expr (Additional file  2). 

Median_cor_expr are very stable with different sample 

sizes, and we start to achieve a good estimation even 

when the sample size is small (10–20 range). �is con-

firms that our using of median correlation is robust and 

applicable even to small study size.

Relationship between pre-sequencing lab metrics 

and post sequencing bioinformatics metrics

We next examined the relationship between pre-

sequencing RNA metrics and post sequencing bioin-

formatics metrics. Among those pre-sequencing lab 

metrics, pre-capture library qubit values showed high 

correlation with bioinformatics metrics, including 

median_cor_expr, gene_tpm4 and gene_reads (Addi-

tional file  3). Samples failing bioinformatics qc had 

significantly lower library qubit values compared to 

qc-passed samples (p value = 2.8E−6). Figure  3 shows 

the detailed relationship of library qubit values with 

bioinformatics metrics, including median_cor_expr, 

gene_tpm4 and gene_reads, which were all positively 

correlated with library qubit (Fig.  3a–c). Local fail-

ure rate was calculated based on these bioinformatics 

metrics under different library qubit values. As shown 

in Fig.  3d, local failure rate decreased with increasing 

library qubit values and saturated at 20% with library 

qubit value around 2–4  ng/ul. We observed a similar 

trend with input RNA qubit (Additional file  4). Local 

failure rate decreased with increasing RNA qubit val-

ues and saturated at 25% with an RNA qubit value ~ 20 

to 30  ng/ul. �e recommended quantities of starting 

FFPE material according to the vendor corresponds to 

a range of DV200 values, with the lowest recommended 

quality at DV200 of 30–50%, and lowest corresponding 

input of 4.7  ng/ul. Recommendations for input RNA 

using DV50 or DV100 values has not been evaluated by 

the vendor.

Prediction of QC failed samples based on pre-sequencing 

metrics

We next built a decision tree model to learn the relation-

ship between pre-sequencing lab metrics and qc pass/fail 

status as determined by bioinformatics metrics. Samples 

were split into training and testing sets with a ratio of 

7:3. Repeated cross validation was used to determine the 

optimal ‘complexity’ parameter used to build the train-

ing model (Fig.  4a). We found that pre-capture library 

concentration had higher feature importance compared 

to RNA concentration (Fig. 4c). Finally, we evaluated the 

performance of the training model by applying it to the 

testing set and were able to achieve an F score of 0.848. 

As shown in Fig. 4b, we grouped the samples into three 

categories based on RNA and pre-capture library concen-

trations: 1. Low/marginal quality (RNA qubit < 25 ng/ul); 

2. Intermediate quality (RNA qubit ≥ 25 ng/ul and library 

qubit < 1.7  ng/ul); 3. Good quality (RNA qubit ≥ 25  ng/

ul and library qubit ≥ 1.7 ng/ul). �e decision tree-based 

model was chosen due to its high interpretability. Logis-

tic regression analysis on the model achieved a similar 

performance in terms of F score (0.844).

False positives evaluation based on FFPE and fresh frozen 

replicates

We also evaluated the reproducibility across sequenc-

ing batches using FFPE and FFzn replicates (Additional 

file  5). As expected, FFPE replicates had higher over-

all FPR compared to FFzn replicates (18.4% vs. 12.7%). 

By applying an expression cutoff of tpm > 4, FPR for 

both FFPE and FFzn replicates decreased significantly 

(1.35e−2 vs. 4.19e−3). We further investigated the rela-

tionship between MAD (Max Absolute Difference) and 

gene-level features including gene length and GC content 

for FFPE replicates. As shown in Additional file 5, shorter 

genes were more variable and had larger MAD compared 

to longer genes. GC content had a moderate positive cor-

relation with MAD indicating that genes with high GC 

content were more likely to be influenced by FFPE proce-

dure. In summary, FFPE replicates showed similar repro-

ducibility as FFzn replicates across sequencing batches. 

Genes with short length or high GC content are more 

likely to be influenced by FFPE procedure.

Discussion
In this study, we evaluated two commonly used RNA 

library protocols for FFPE samples: RNA exome cap-

ture and rRNA-depletion, using seven paired FFPE-

FFzn samples. Samples processed using the RNA exome 

capture protocol showed a higher percentage of gene 

mapped reads, captured a higher number of canonical 

junctions, generated better SNP concordance rate and 
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demonstrated better concordance with TruSeq PolyA 

data. Next, we sought to identify pre-sequencing metrics 

that could be used to predict sample pass/fail status based 

on post-sequencing bioinformatics metrics. All study 

samples along with replicate samples were processed 

using the RNA exome protocol. �ree bioinformatics 

metrics were determined to identify qc-failed samples, 

including sample-wise median correlation (median_cor_

expr), number of gene mapped reads (gene_reads), num-

ber of detectable genes with transcript per million (TPM) 

larger than 4 (gene_tpm4). Finally, a decision tree-based 

model was built to examine the relationship between pre-

sequencing lab metrics and qc-status as defined by post-

sequencing bioinformatics metrics. Based on the model, 

we recommend a minimum of 25 ng/ul for RNA concen-

tration and 1.7  ng/ul for pre-capture library concentra-

tion for FFPE samples to generate good quality RNA-seq 

data for bioinformatics analysis. We also demonstrated 

that FFPE replicates have similar reproducibility com-

pared to FFzn replicates across sequencing batches. 
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However, genes with short length or high GC content are 

more likely to be influenced by the FFPE procedure.

Clinical biospecimens are typically stored as FFPE 

blocks, representing an invaluable source of material 

for biomedical research. FFPE blocks enable prolonged 

storage of clinical samples, preserving both tissue mor-

phology and nucleic acids information. However, FFPE 

processing and tissue storage have been shown to affect 

RNA quality, thus limiting gene expression quantifica-

tion by technologies like RNA sequencing. Our study 

Complexity Parameter

A
c
c
u

ra
c
y
 (

R
e
p

e
a
te

d
 C

ro
s
s
−

V
a
li
d

a
ti

o
n

)

0.70

0.75

0.80

0.0 0.1 0.2 0.3 0.4

RNAQubit > 25

libraryQubit > 1.7

PASS

0.66

100%

FAIL

0.25

29%

PASS

0.82

71%

FAIL

0.25

11%

PASS

0.93

60%

no yes

RNAQubit

libraryQubit

0 5 10

Relative influence

medianCor

TPM4

Genereads

−2

−1

0

1

2

a) b)

c)

Fig. 4 A decision tree model to predict QC pass/fail based on pre-sequencing lab metrics. QC pass and fail refer to sample status defined by 

bioinformatics metrics; QC failed samples were those excluded from the final dataset. a Parameter tuning based on repeated cross validation using 

grid search with 10 choices of complexity parameter. Complexity parameter with the highest cross-validation accuracy was used to build the final 

model. b Decision tree diagram with branches indicating specific cutoffs based on pre-sequencing metrics that were predictive of the qc pass/

fail status. Samples with RNA qubit higher than 25 ng/ul and pre-capture library qubit higher than 1.7 ng/ul shows the best RNA-seq data quality. 

There are three values in each box/node. The upper value (PASS/FAIL) in each box indicates the predicted qc status based on pre-sequencing lab 

metrics at each branch of decision tree. The middle number in each box indicates the ratio of qc-pass samples as defined by bioinformatics metrics. 

The bottom number in each box indicates the percentage of total number of samples within each box. The lower panel indicates a heatmap of the 

three metrics (number of gene mapped reads, number of detected genes with TPM higher than 4, sample-wise median correlation) that were used 

to define QC status. The upper annotation bar of the heatmap indicates the three leaf nodes predicted by the decision tree. c Relative contribution/

influence of the pre-sequencing lab metrics in building the final model



Page 10 of 12Liu et al. BMC Medical Genomics          (2022) 15:195 

provides a guideline for future research that utilizes FFPE 

samples for RNA-seq. By following these recommenda-

tions, sequencing samples with RNA and library input 

higher than our recommended values will not only help 

yield a better success rate for RNA sequencing, but also 

help to prevent unnecessary cost for sequencing.

�ere are several limitations for our study. Firstly, we 

benchmarked two commonly used library preparation 

protocols for FFPE samples using bioinformatics met-

rics, including SNP confirmation rate. SNP confirmation 

rate (precision) was calculated as the percentage of true 

SNPs (called by WES data) within the SNPs identified 

by RNA-seq for the same sample. �is does not consider 

RNA specific mutations introduced by events like RNA 

editing. However, RNA editing events are considered 

very rare and the expected SNP confirmation rate should 

be very close to our calculation in Additional file 1 [25]. 

Allele specific gene expression could lead to discordance 

between SNP calls generated from RNA-seq and WES, 

e.g., RNA-seq might fail to capture mutations where the 

non-mutant allele is expressed [26]. �is is also the rea-

son that we are focusing on precision rather than sen-

sitivity of SNPs called by RNA-seq and WES. Secondly, 

when performing bioinformatics QC using replicate 

samples, due to the limited number of replicate samples 

with median_cor_expr around 0.7 and 0.8 range, we arbi-

trarily selected a cutoff value (0.75) around the inflection 

point of the loess-fitted curve between median_cor_expr 

and FPR. �is criterion will potentially affect our defini-

tion of qc pass/fail as determined by those bioinformat-

ics metrics. To provide the user with more flexibility in 

selecting cutoffs for those bioinformatics metrics, we 

have provided a documentation that enables the end-user 

to define customized cutoffs based on their preference 

of stringency: https:// github. com/ Liuy12/ FFPEi nput. 

�irdly, the concentration of RNA in the original samples 

is highly dependent on the amount of input tissue, origi-

nal handling and storage of the sample, the extraction 

method used, and perhaps most importantly, the elu-

tion volume used following extraction and purification. It 

is difficult to compare these amounts across samples or 

studies unless all these factors are controlled. �e library 

concentrations are more comparable since they are based 

on a consistent total RNA amount going into the library 

prep. Finally, bioinformatics metrics in this study were 

derived from breast tissue and might not be readily appli-

cable to other tissue types, but our recommendations for 

study design and bioinformatics QC procedure can be 

tailored for other studies involving different tissue types.

Other than RNA and library input metrics, we also 

investigated other pre-sequencing lab metrics including 

DV50, DV100, DV200 values. �e recommended quan-

tities of starting FFPE material according to the vendor 

corresponds to a range of DV200 values, with the low-

est recommended quality at DV200 of 30–50%. Rec-

ommendations for input using DV50 or DV100 values 

has not been evaluated by the vendor. Due to the RNA 

input limit, we were only able to quantify around 70% of 

all study samples for DV metrics. Based on those lim-

ited data, we observed that DV50 is highly correlated 

with DV100 values. Both DV50 and DV100 have mod-

erate correlation with DV200, a conventional metric for 

measuring RNA quality (Additional file 6). DV50 value is 

identified as the top predictive feature for sample failure 

using a recursive feature elimination algorithm. Including 

DV50 in building the decision tree model showed similar 

performance compared to using RNA/library input met-

rics alone (Additional file 7). We suspect that this could 

be due to the decreased sample size with available DV 

values. According to the model, samples with DV50 val-

ues bigger than 82 are more likely to generate successful 

RNAseq data. We have included a detailed table contain-

ing all sample-related metrics (Additional file 8).

Conclusions
We benchmarked two commonly used library prepa-

ration protocols for FFPE samples. �e TruSeq RNA 

exome capture protocol showed a superior performance. 

We also provide a common bioinformatics quality con-

trol recommendation for FFPE samples. Based on our 

defined bioinformatics criteria, we recommend a mini-

mum of 25  ng/ul for RNA concentration and 1.7  ng/ul 

for pre-capture library concentration for FFPE samples 

to achieve adequate RNA-seq data for downstream bio-

informatics analysis.

Abbreviations

FFPE: Formalin-fixed paraffin-embedded; IHC: Immunohistochemical; RNA-

seq: RNA sequencing; FFzn: Fresh frozen; BBD: Benign breast disease; ER+: 

Estrogen receptor positive; ER−: Estrogen receptor negative; Cont: Control; 

WES: Whole exome sequencing; median_cor_expr: Sample-wise median 

gene expression correlation; gene_reads: Number of gene mapped reads; 

CPM: Counts per million; TPM: Transcript per million; gene_tpm4: Number 

of detectable genes with TPM larger than 4; FPR: False positive rate; DV200: 

The percentage of RNA fragments > 200 nt; DV100: The percentage of RNA 

fragments > 100 nt; DV50: The percentage of RNA fragments > 50 nt; MAD: 

Max absolute difference; seqb: Sequencing batch; TMM: Trimmed mean of 

M-values.

Supplementary Information
The online version contains supplementary material available at https:// doi. 

org/ 10. 1186/ s12920- 022- 01355-0.

Additional �le 1. Bioinformatics evaluation of library preparation proto-

cols using FFPE and FFzn pairs.

Additional �le 2. Evaluation of sample size on the calculation of sample 

wise median correlation.

Additional �le 3. Pair-wise scatter plot among pre-sequencing lab met-

rics and post sequencing bioinformatics metrics.

https://github.com/Liuy12/FFPEinput
https://doi.org/10.1186/s12920-022-01355-0
https://doi.org/10.1186/s12920-022-01355-0


Page 11 of 12Liu et al. BMC Medical Genomics          (2022) 15:195  

Additional �le 4. Correlation of pre-capture library concentration with 

bioinformatics metrics for all samples excluding FFzn controls.

Additional �le 5. Evaluation of false positives based on FFPE and FFzn 

replicates.

Additional �le 6. Pair-wise scatter plot among pre-sequencing lab met-

rics and DV50/100/200 metrics.

Additional �le 7. A decision tree model to predict QC pass/fail based on 

DV50.

Additional �le 8. All sample related metrics including pre-sequencing lab 

metrics and post sequencing bioinformatics metrics.

Acknowledgements

Not applicable.

Author contributions

YL performed bioinformatics analysis; participated in interpretation of results 

and manuscript drafting. AB participated in interpretation of results and 

manuscript drafting. SJW supervised statistical analyses and interpretation; 

participated in study design and drafting the manuscript. BWH performed 

RNA sequencing and generation of lab metrics. SJM, MEP and LL supervised 

RNA sequencing; participated in interpretation of results and manuscript 

drafting; SJM and MLS performed laboratory analysis of samples; EPH, RAV 

and TLH participated in data retrieval and statistical interpretation. MHF and 

JMC1 participated in study design, review of tissue samples, and interpreta-

tion of results. DCR and JMC2 supervised laboratory analysis of samples, and 

participated in study design and interpretation of results. ACD supervised 

and coordinated project efforts; participated in study design, interpretation 

of results, and manuscript drafting. CW supervised bioinformatics analyses 

and interpretation; participated in study design and manuscript drafting. All 

authors read and approved the final manuscript.

Funding

This work was supported by a grant from the National Institutes of Health 

(R01 CA187112) and by the Mayo Clinic Breast SPORE Biospecimen Resource 

for Breast Cancer Research (CA116201). The funding bodies had no role in the 

design of the study, collection, analysis, or interpretation of data, or in writing 

the manuscript.

Availability of data and materials

Documentation is provided to enable the end-user to define customized 

cutoffs based on their preference of stringency: https:// github. com/ Liuy12/ 

FFPEi nput. Raw sequencing data are available from the corresponding author 

on reasonable request.

Declarations

Ethics approval and consent to participate

This work was approved by the Mayo Clinic Institutional Review Board (IRB 

#75-87). As required by Mayo Clinic Institutional Review Board policies, all 

subject provided written research consent or authorization for use of their 

tissues and data. Informed consent was obtained from all study participants. 

All methods were performed in accordance with the relevant guidelines and 

regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1 Department of Quantitative Health Sciences, Mayo Clinic, 200 1st Street SW, 

Rochester, MN 55905, USA. 2 Genomics and Bioinformatics Core Facility, 019 

Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, 

USA. 3 Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 

1st Street SW, Rochester, MN 55905, USA. 4 Department of Neuroscience, 

Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. 5 Department 

of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, 

USA. 6 Department of Biological Sciences, 109B Galvin Life Science Center, Uni-

versity of Notre Dame, Notre Dame, IN 46556, USA. 7 Department of Chemistry 

and Biochemistry, Harper Cancer Research Center, University of Notre Dame, 

Notre Dame, IN 46556, USA. 8 Department of Cancer Biology, Mayo Clinic, 4500 

San Pablo Road, Jacksonville, FL 32224, USA. 9 Department of Surgery, Mayo 

Clinic, 200 1st Street SW, Rochester, MN 55905, USA. 

Received: 7 March 2022   Accepted: 12 September 2022

References

 1. Ludyga N, Grunwald B, Azimzadeh O, Englert S, Hofler H, Tapio S, Aubele 

M. Nucleic acids from long-term preserved FFPE tissues are suitable for 

downstream analyses. Virchows Arch. 2012;460(2):131–40.

 2. Sorokin M, Ignatev K, Poddubskaya E, Vladimirova U, Gaifullin N, Lantsov 

D, Garazha A, Allina D, Suntsova M, Barbara V, et al. RNA sequencing in 

comparison to immunohistochemistry for measuring cancer biomarkers 

in breast cancer and lung cancer specimens. Biomedicines. 2020;8(5):66.

 3. Jovanovic B, Sheng Q, Seitz RS, Lawrence KD, Morris SW, Thomas LR, 

Hout DR, Schweitzer BL, Guo Y, Pietenpol JA, et al. Comparison of triple-

negative breast cancer molecular subtyping using RNA from matched 

fresh-frozen versus formalin-fixed paraffin-embedded tissue. BMC Cancer. 

2017;17(1):241.

 4. Zhao Y, Mehta M, Walton A, Talsania K, Levin Y, Shetty J, Gillanders EM, 

Tran B, Carrick DM. Robustness of RNA sequencing on older formalin-

fixed paraffin-embedded tissue from high-grade ovarian serous adeno-

carcinomas. PLoS ONE. 2019;14(5): e0216050.

 5. Webster AF, Zumbo P, Fostel J, Gandara J, Hester SD, Recio L, Williams 

A, Wood CE, Yauk CL, Mason CE. Mining the archives: a cross-platform 

analysis of gene expression profiles in archival formalin-fixed paraffin-

embedded tissues. Toxicol Sci. 2015;148(2):460–72.

 6. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. 

Translating RNA sequencing into clinical diagnostics: opportunities and 

challenges. Nat Rev Genet. 2016;17(5):257–71.

 7. Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, Xie SJ, Xiao ZD, 

Zhang H. RNA sequencing: new technologies and applications in cancer 

research. J Hematol Oncol. 2020;13(1):166.

 8. Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and human com-

plex diseases: recent accomplishments and future perspectives. Eur J 

Hum Genet. 2013;21(2):134–42.

 9. Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L. Next-generation 

sequencing and its applications in molecular diagnostics. Expert Rev Mol 

Diagn. 2011;11(3):333–43.

 10. Sultan M, Amstislavskiy V, Risch T, Schuette M, Dokel S, Ralser M, Balzereit 

D, Lehrach H, Yaspo ML. Influence of RNA extraction methods and library 

selection schemes on RNA-seq data. BMC Genomics. 2014;15:675.

 11. Zhao S, Zhang Y, Gamini R, Zhang B, von Schack D. Evaluation of 

two main RNA-seq approaches for gene quantification in clinical 

RNA sequencing: polyA+ selection versus rRNA depletion. Sci Rep. 

2018;8(1):4781.

 12. Cieslik M, Chugh R, Wu YM, Wu M, Brennan C, Lonigro R, Su F, Wang R, 

Siddiqui J, Mehra R, et al. The use of exome capture RNA-seq for highly 

degraded RNA with application to clinical cancer sequencing. Genome 

Res. 2015;25(9):1372–81.

 13. Song Y, Milon B, Ott S, Zhao X, Sadzewicz L, Shetty A, Boger ET, Tallon 

LJ, Morell RJ, Mahurkar A, et al. A comparative analysis of library prep 

approaches for sequencing low input translatome samples. BMC Genom-

ics. 2018;19(1):696.

 14. Schuierer S, Carbone W, Knehr J, Petitjean V, Fernandez A, Sultan M, Roma 

G. A comprehensive assessment of RNA-seq protocols for degraded and 

low-quantity samples. BMC Genomics. 2017;18(1):442.

 15. Kalari KR, Nair AA, Bhavsar JD, O’Brien DR, Davila JI, Bockol MA, Nie J, Tang 

X, Baheti S, Doughty JB, et al. MAP-RSeq: Mayo analysis pipeline for RNA 

sequencing. BMC Bioinform. 2014;15:224.

 16. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, 

Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioin-

form. 2013;29(1):15–21.

https://github.com/Liuy12/FFPEinput
https://github.com/Liuy12/FFPEinput


Page 12 of 12Liu et al. BMC Medical Genomics          (2022) 15:195 

•

 

fast, convenient online submission

 
•

  

thorough peer review by experienced researchers in your field

• 

 

rapid publication on acceptance

• 

 

support for research data, including large and complex data types

•

  

gold Open Access which fosters wider collaboration and increased citations 

 

maximum visibility for your research: over 100M website views per year •

  
At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research   ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 17. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose 

program for assigning sequence reads to genomic features. Bioinformat-

ics. 2014;30(7):923–30.

 18. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. 

Bioinformatics. 2012;28(16):2184–5.

 19. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package 

for differential expression analysis of digital gene expression data. Bioin-

formatics. 2010;26(1):139–40.

 20. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philip-

pakis AA, del Angel G, Rivas MA, Hanna M, et al. A framework for variation 

discovery and genotyping using next-generation DNA sequencing data. 

Nat Genet. 2011;43(5):491–8.

 21. Wang C, Davila JI, Baheti S, Bhagwate AV, Wang X, Kocher JP, Slager SL, 

Feldman AL, Novak AJ, Cerhan JR, et al. RVboost: RNA-seq variants prioriti-

zation using a boosting method. Bioinformatics. 2014;30(23):3414–6.

 22. Hart T, Komori HK, LaMere S, Podshivalova K, Salomon DR. Finding the 

active genes in deep RNA-seq gene expression studies. BMC Genomics. 

2013;14:778.

 23. Kuhn M. Building predictive models in R using the caret package. J Stat 

Softw. 2008;28(5):1–26.

 24. Graw S, Meier R, Minn K, Bloomer C, Godwin AK, Fridley B, Vlad A, 

Beyerlein P, Chien J. Robust gene expression and mutation analyses of 

RNA-sequencing of formalin-fixed diagnostic tumor samples. Sci Rep. 

2015;5:12335.

 25. Li S, Mason CE. The pivotal regulatory landscape of RNA modifications. 

Annu Rev Genomics Hum Genet. 2014;15:127–50.

 26. Kaya C, Dorsaint P, Mercurio S, Campbell AM, Eng KW, Nikiforova MN, 

Elemento O, Nikiforov YE, Sboner A. Limitations of detecting genetic vari-

ants from the RNA sequencing data in tissue and fine-needle aspiration 

samples. Thyroid. 2021;31(4):589–95.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.


