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Abstract

Background: Formalin-fixed, paraffin-embedded (FFPE) tissues have many advantages for identification of risk
biomarkers, including wide availability and potential for extended follow-up endpoints. However, RNA derived from
archival FFPE samples has limited quality. Here we identified parameters that determine which FFPE samples have the
potential for successful RNA extraction, library preparation, and generation of usable RNAseq data.

Methods: We optimized library preparation protocols designed for use with FFPE samples using seven FFPE and
Fresh Frozen replicate pairs, and tested optimized protocols using a study set of 130 FFPE biopsies from women
with benign breast disease. Metrics from RNA extraction and preparation procedures were collected and compared
with bioinformatics sequencing summary statistics. Finally, a decision tree model was built to learn the relationship
between pre-sequencing lab metrics and qc pass/fail status as determined by bioinformatics metrics.

Results: Samples that failed bioinformatics qc tended to have low median sample-wise correlation within the cohort
(Spearman correlation < 0.75), low number of reads mapped to gene regions (< 25 million), or low number of detect-
able genes (11,400 # of detected genes with TPM > 4). The median RNA concentration and pre-capture library Qubit
values for qc failed samples were 18.9 ng/ul and 2.08 ng/ul respectively, which were significantly lower than those of
qc pass samples (40.8 ng/ul and 5.82 ng/ul). We built a decision tree model based on input RNA concentration, input
library qubit values, and achieved an F score of 0.848 in predicting QC status (pass/fail) of FFPE samples.

Conclusions: We provide a bioinformatics quality control recommendation for FFPE samples from breast tissue

by evaluating bioinformatic and sample metrics. Our results suggest a minimum concentration of 25 ng/ul FFPE-
extracted RNA for library preparation and 1.7 ng/ul pre-capture library output to achieve adequate RNA-seq data for
downstream bioinformatics analysis.
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Background Methods
For decades, clinical biospecimens have been typi- Study design

cally fixed in formalin then embedded in paraffin wax
to make formalin-fixed paraffin-embedded (FFPE) tis-
sue blocks for diagnosis and long-term storage. FFPE
tissue archiving has many advantages, including room
temperature stability, long-term storage, and suitability
for subsequent immunohistochemical (IHC) analyses,
which had led to use of FFPE in IHC-based biomarker
investigations [1, 2]. However, FFPE processing and
tissue storage are known to result in highly degraded
RNAs which limits gene expression-based biomarker
discovery using RNA sequencing [3—-5]. Transcriptional
profiling by RNA sequencing (RNA-seq) is a powerful
tool for genome wide quantification of RNA expres-
sion with high sensitivity that has been routinely used
in breast cancer research and clinical diagnosis [6-9].
RNA-seq involves an enrichment step to remove the
abundant ribosomal RNAs by either ribosomal deple-
tion or Poly(A) selection [10, 11]. However, Poly(A)
selection protocol is less suitable for low quality RNA
derived from FFPE samples [12]. During recent years,
RNA library protocols tailored for FFPE samples have
been developed, including the NEBNext rRNA Deple-
tion and the TruSeq RNA Exome panel, although the
relative performance of these methods with FFPE-
derived RNA has not been published, and there are lim-
ited studies that provide insight for selection of FFPE
samples of adequate quality [13, 14].

Our study aim is to compare two commonly used
RNA library preparation protocols for FFPE samples,
and to provide a recommendation on RNA input met-
rics, including RNA concentration and library con-
centration, to achieve adequate RNA-seq data for
downstream bioinformatics analysis.

For the first part of the study, we evaluated two com-
monly used RNA library protocols for FFPE samples
using seven paired FFPE and fresh frozen (FFzn) sam-
ples. All samples were prepared through both protocols
and compared based on bioinformatics metrics, includ-
ing alignment, SNP concordance, junction coverage and
sample-wise correlation. For the second part of the study,
we sequenced 130 benign breast disease (BBD) samples
along with technical replicates in ten sequencing batches.
Thorough bioinformatics quality control was performed
to identify QC-failed samples. Finally, a decision tree
model was constructed to correlate pre-sequencing met-
rics with QC status defined by bioinformatics metrics.

Institutional Review Board approval was obtained for
research use of human samples in this project (#IRB
75-87). A pilot study was performed using FFPE and
fresh frozen pairs for seven women diagnosed with
benign breast disease to evaluate the performance of
two library preparation protocol, Illumina’s TruSeq RNA
Exome and NEBNext rRNA Depletion (Fig. 1a). To eval-
uate the precision of SNPs identified by the two proto-
cols, we also performed whole exome sequencing (WES)
for the three selected fresh frozen samples. The TruSeq
Exome protocol exhibited better performance in bioin-
formatics metrics and was selected to process all study
samples and technical controls in the main study. A total
of 158 samples including study samples and technical
controls were submitted for RNA extraction (Fig. 1b).
Forty samples failed library preparation due to low RNA
input quantity. The remaining samples were submitted
for RNA sequencing in ten sequencing batches. Batches
were designed so that samples with similar RNA quality
were included in the same batch. This helped to minimize
the potential sequencing bias toward high quality samples
in the same batch. To examine the potential sequencing
batching effect, the same two technical controls (FFPE
and FFzn pair for the same subject) were included in
each sequencing batch 1-7. For sequencing batch 8-10
where samples are of low RNA quality, we only included
the FFPE technical control as the FFzn technical control
would potentially attract more sequencing reads and bias
the quantification of other low-quality study samples.
Besides the two technical controls, we also included 11
study replicate samples in different sequencing batches.
Thorough bioinformatics evaluations were performed to
identify samples passing the qc metrics.

RNA quantitation and quality

Total RNA concentration was determined using the
Qubit 2.0 Fluorometer and RNA HS Assay (Life Technol-
ogies Corp., Carlsbad, CA). RNA integrity was assessed
and recorded with DV50, DV100, and DV200 values
using the RNA 6000 Nano Kit on an Agilent 2100 Bio-
analyzer (Agilent Technologies, Santa Clara, CA), but
was not used for sample exclusion in the library prepara-
tion. DV values are a commonly used metric that repre-
sents the proportion of RNA fragments in a sample with
greater length than the numeric value (i.e., DV200 equals
the percentage of RNA fragments > 200 nucleotides).
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Fig. 1 Flow-chart of library optimization and bioinformatics evaluation. a A pilot study consisting of FFPE and fresh frozen pairs for 7 BBD patients
were submitted for sequencing to evaluate two protocols of library preparation for RNA-seq, Ribo-depletion and RNA exome capture. Several
bioinformatics metrics were evaluated for the two protocols. Whole exome sequencing (WES) data was used to estimate SNP confirmation rate, and
the RNA exome capture showed superior performance in all categories and was selected as the library preparation protocol to process all samples.
b 130 study samples (ER+ estrogen receptor positive, ER— estrogen receptor negative, Cont control) along with 17 technical replicates and 11 study
replicates were submitted for library preparation using the RNA exome capture protocol. 40 samples failed library preparation step with insufficient
RNA. All remaining samples were submitted for sequencing in 10 batches. Rigorous bioinformatics evaluation was performed to identify qc failed
samples based on defined bioinformatics metrics. The final dataset comprised 62 study samples

RNA exome library preparation and sequencing

40-100 ng of experimental FFPE RNA, FFPE con-
trol RNA, or 20 ng fresh frozen control RNA was used
for library preparation using the TruSeq RNA Library
Prep for Enrichment and the Illumina Exome Panel-
Enrichment Oligos kit (llumina, Inc., San Diego, CA)
following the manufacturers protocol for FFPE RNA or

high-quality total RNA respectively. As per the protocol,
fragmentation of FFPE RNA was not performed. Follow-
ing adaptor ligation and enrichment, the libraries were
quantitated by Qubit and pooled for subsequent exome
capture based on available yield. Up to a 4-plex pooling
strategy was used for the exome capture, with capture
groups consisting of 200 ng, 100 ng, 50 ng, 40 ng, and
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30 ng of input library for each sample in the pre-cap-
ture pool. Up to 12 samples (3 pools) were batched for
sequencing and included a paired FFPE control RNA
and fresh frozen control RNA in each batch. Following
two rounds of hybridization to the capture probes, the
pools were PCR amplified and purified using AMPure XP
beads. The amplified and enriched libraries were qual-
ity assessed using a combination of the Qubit dsDNA
HS Assay (Invitrogen), the Bioanalyzer DNA 7500 Assay
(Agilent Technologies), and KAPA Library Quantifica-
tion Kit for Illumina (KAPA Biosystems, Boston, MA).
The three capture pools for each batch were combined
in equal molar amounts and sequenced across 3 lanes
of an Illumina NextSeq 500 High Output flowcell using
75x 2 bp paired end reads. Each flowcell generated a
minimum of 700 million reads passing filter.

rRNA depletion library preparation and sequencing
20-100 ng of FFPE RNA and paired fresh frozen RNA
was used for library preparation using the NEBNext
rRNA Depletion Kit (Human/Mouse/Rat) and Ultra II
Directional RNA Library Prep Kit for Illumina (New Eng-
land Biolabs Inc., Ipswich, MA), following the manufac-
turers protocol for highly degraded (RIN<2) or intact
(RIN>7) samples respectively. Fragmentation is based
on RIN value of RNA input and conducted as outlined
in the protocol. Fragmentation for FFPE RNA was not
performed. Experimental FFPE RNA and paired fresh
frozen RNA from the same patient was used if avail-
able using similar input amounts for each sample type. A
total of 13 libraries were prepared, including six patient
pairs. Libraries were quality assessed using a combina-
tion of the Qubit dsDNA HS Assay (Invitrogen), the Bio-
analyzer DNA 7500 Assay (Agilent Technologies), and
KAPA Library Quantification Kit for Illumina (KAPA
Biosystems, Boston, MA). Libraries were combined in
equal molar amounts and sequenced across three lanes
of an Illumina NextSeq 500 High Output flowcell using
75x 2 bp paired end reads. Each flowcell generated a
minimum of 800 million reads passing filter.

Whole exome sequencing of fresh frozen samples

Three fresh frozen samples were submitted for whole
exome sequencing at Mayo Clinic molecular genomic
facility. In brief, paired-end libraries were prepared with
1.0 pg of genomic DNA in accordance with the manu-
facturer’s protocol (Agilent Technologies, Inc, Santa
Clara, Calif). Whole-exon capture was performed with
750 ng of the prepped library following the protocol
for the SureSelect Human All Exon v5+UTRs 75 Mb
kit (Agilent Technologies, Inc). The purified capture
products were then amplified with use of SureSelect
Post-Capture Indexing forward and Index polymerase
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chain reaction reverse primers (Agilent Technologies,
Inc) for 12 cycles. Concentration and size distribution
of the completed captured libraries were assessed on
Qubit (Invitrogen, Waltham, Mass) and Bioanalyzer
DNA 1000 chip (Agilent Technologies, Inc). Libraries
were sequenced at an average coverage of about 80x
in accordance with standard protocol of the cBot and
HiSeq 3000/4000 PE Cluster Kit (Illumina, San Diego,
Calif). The flow cells were sequenced as 150 x 2 paired
end reads on the HiSeq 4000 with the HiSeq 3000/4000
sequencing kit and collection software (HCS version
3.3.52; Illumina). Base calling was performed with Real-
Time Analysis version 2.7.3 (Illumina). All procedures
were performed in accordance with the manufacturer’s
instructions.

RNA-seq alignment and gene quantification

After sequencing procedure, raw FASTQ files were pro-
cessed through Mayo’s internal MAP-RSeq pipeline
[15] (Version 3.0). MAP-RSeq uses a variety of pub-
licly available bioinformatics tools tailored by in-house
developed methods. Briefly, the aligning and mapping
of reads are performed using Star aligner [16] against
hg38 genome build. The gene and exon counts are gen-
erated by FeatureCounts [17] using the gene definitions
files from Ensembl v78. Quality control was carried out
using RSeqQC [18]. Gene expression data was normal-
ized to counts per million (CPM) and transcript per mil-
lion (TPM) using Trimmed Mean of M-values (TMM)
method as implemented in edgeR [19] followed by log2
transformation.

Estimation of SNP confirmation rate and false positive rate
SNPs were identified using GATK haplotype caller [20]
and further filtered by RVBoost [21]. For the pilot study,
SNP confirmation rate (precision) was calculated for each
mutation type (C>T, C>G, etc.) as:

SNP confirmation rate = SNPyyu; N SNP 4,/ SNPyyy4,
(1)
where SNPpy, represents the SNPs identified in RNA-
seq data and SNPp,, represents the SNPs identified in
WES data for the same set of samples. For both pilot and
main study, false positive rate (FPR) between either tech-
nical or study replicate samples was calculated as:

FPR = NMAD>lfc/Ntoml’ (2)

where N,,, denotes the total number of genes and
Nyapsye denotes the number of genes with maximum
absolute difference (MAD) above a certain logarithm fold
change cutoff.
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Bioinformatics QC and model building

We defined three bioinformatics metrics for QC pur-
pose, including sample-wise median correlation of gene
expression (median_cor_expr), number of genes mapped
to genic regions (gene_reads), number of detectable
genes with transcript per million (TPM) larger than 4
(gene_tpm4). TPM was calculated based on:

FPKM

TPM = ——
S EPKM

10°, 3)

FPKM was calculated as described earlier [22]. For each
sample, we firstly calculate its Spearman rank correla-
tion of gene expression with each of the rest of samples
in the cohort. Then, ‘median_cor_expr’ for each sample
is the median Spearman correlation value with the rest
of samples in the cohort. After thorough bioinformat-
ics evaluation, samples meeting any of the below criteria
were flagged as QC-fail:

1. Sample-wise median gene expression correlation
smaller than 0.75

2. Gene mapped reads smaller than 25 million gene
mapped reads,

3. Less than 11,400 # of detected genes with TPM >4

For each of the sequencing batch, if the technical con-
trols/replicates failed QC, the whole batch of samples
will be flagged as QC-fail as well. For our study, all tech-
nical controls/replicates have passed QC. A decision tree
model was built based on CART Modeling via rpart R
package to learn the relationship between pre-sequenc-
ing QC metrics, such as RNA qubit or pre-capture library
qubit, and QC pass/fail status predicted by post sequenc-
ing bioinformatics metrics. Samples were split into train-
ing and testing set with a ratio of 7:3. Repeated cross
validation were performed to optimal parameters (com-
plexity parameter) during model training. Similarly, an
alternative model based on logistic regression was also
constructed:

n ( pX)
1= pX)
All models were built based on Caret R package [23] and

all statistical analysis was carried out in R under R ver-
sion 4.0.3.

) = o+ f1X (4)

Results

Evaluating FFPE library preparation kits using FFPE

and fresh frozen replicates

We evaluated two RNA-seq library preparation proto-
cols optimized for low quality, highly degraded samples
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(such as FFPE): Illumina’s TruSeq RNA Exome proto-
col and NEBNext rRNA Depletion protocol (Fig. 1a).
FFPE and Fresh Frozen (FFzn) replicates for seven BBD
patients were prepared using the two selected protocols
and submitted for RNA sequencing as described in the
Methods section. While the Depletion protocol gener-
ated more sequenced reads compared to RNA Exome, a
significantly lower proportion of reads were mappable to
genic or exon-exon junction regions for both FFzn and
FFPE samples (Additional file 1), and captured a smaller
number of canonical exon-exon junctions (Additional
file 1). We also examined the two protocols in terms of
their ability to accurately capture SNP genotypes. SNP
confirmation rate (precision) was calculated for three
FFzn samples by using SNPs identified from their cor-
responding DNA whole exome sequencing (WES) data
(Additional file 1). The calculation was performed sepa-
rately for six conventional mutation categories (C>T,
C>@G, C>A, T>A, T>C, and T>@G.). The Depletion proto-
col generated many false positive calls with consistently
low SNP confirmation rate across all mutation categories.
For the RNA Exome protocol, the SNP confirmation rate
was significantly higher across different mutation catego-
ries with C>T being highest (p value<2.2E—16) as was
previously reported [24]. Finally, we compared the two
protocols in terms of their correlation with data from
the TruSeq protocol with PolyA selection using five FFzn
samples (Additional file 1). For the Depletion protocol,
only two of five samples successfully clustered by subject
ID instead of library protocol. The RNA Exome protocol
showed good concordance with the TruSeq PolyA data
where all samples were clustered by subject ID regard-
less of their library protocol. Overall, the RNA Exome
protocol showed superior performance compared to the
Depletion protocol in terms of these bioinformatics met-
rics and was selected as the library protocol to process all
samples in the main study (Additional file 1, Fig. 1b).

Sample QC based on bioinformatics metrics

All study samples and technical controls were submit-
ted for library preparation using RNA Exome protocol.
Library concentration was gathered on the individual
samples prior to hybridization capture and is hereaf-
ter referred to as the “pre-capture” library. 40 samples
failed this step due to low pre-capture library out-
put. The remaining samples were submitted for RNA
sequencing in ten batches as detailed in the methods
section (Fig. 1b). Bioinformatics quantification of gene
expression was then performed, and qc metrics were
collected, including sample-wise median gene expres-
sion correlation (median_cor_expr), number of gene
mapped reads (gene_reads), number of detectable
genes with transcript per million (TPM) larger than 4
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(gene_tpm4). Median_cor_expr was calculated for each
sample as its median correlation of gene expression
with all other samples in the cohort, and was between
0.8 and 0.9 for most samples (Fig. 2a). Based on the 11
study sample replicates, we first evaluated the relation-
ship between false positive rate (FPR) and median_cor_
expr (Fig. 2b). Replicates with lower median_cor_expr
tend to have higher FPR. For samples with extremely
low median_cor_expr, FPR decreased and plateaued
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around 20% likely due to a reduced number of detect-
able genes. Similar trends were observed between FPR
and median_cor_expr when applying an expression cut-
off before calculating FPR. Due to the limited number
of study replicates within median_cor_expr range of 0.7
and 0.8, a median_cor_expr value around the inflection
point (0.75) was selected as a cutoff to identify qc failed
samples. We next investigated the relationship between
median_cor_expr and gene_tpm4 (Fig. 2c). Samples
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with higher gene_tpm4 had better median_cor_expr; a
median_cor_expr of 0.75 corresponding to a value of
11,400 for gene_tpm4 was selected as the threshold.
Finally, we examined the relationship between gene_
reads and gene_tpm4 (Fig. 2d). Samples with increased
gene_reads had higher gene_tpm4. The trend saturated
with gene_tpm4 around 13,000, with a gene_tpm4 of
11,400 (roughly 85% of saturation) corresponding to
25 million gene_reads. Samples were therefore iden-
tified as QC failed when meeting any of the following
criteria: 1) low median sample-wise correlation within
the cohort (median_cor_expr<0.75); 2) low number
of detectable genes (gene_tpm4 <11,400); 3) low num-
ber of reads mapped to gene regions (gene_reads <25
million). We also evaluated the effect of sample size on
the calculating of median_cor_expr (Additional file 2).
Median_cor_expr are very stable with different sample
sizes, and we start to achieve a good estimation even
when the sample size is small (10-20 range). This con-
firms that our using of median correlation is robust and
applicable even to small study size.

Relationship between pre-sequencing lab metrics

and post sequencing bioinformatics metrics

We next examined the relationship between pre-
sequencing RNA metrics and post sequencing bioin-
formatics metrics. Among those pre-sequencing lab
metrics, pre-capture library qubit values showed high
correlation with bioinformatics metrics, including
median_cor_expr, gene_tpm4 and gene_reads (Addi-
tional file 3). Samples failing bioinformatics qc had
significantly lower library qubit values compared to
qc-passed samples (p value =2.8E—6). Figure 3 shows
the detailed relationship of library qubit values with
bioinformatics metrics, including median_cor_expr,
gene_tpm4 and gene_reads, which were all positively
correlated with library qubit (Fig. 3a—c). Local fail-
ure rate was calculated based on these bioinformatics
metrics under different library qubit values. As shown
in Fig. 3d, local failure rate decreased with increasing
library qubit values and saturated at 20% with library
qubit value around 2-4 ng/ul. We observed a similar
trend with input RNA qubit (Additional file 4). Local
failure rate decreased with increasing RNA qubit val-
ues and saturated at 25% with an RNA qubit value ~ 20
to 30 ng/ul. The recommended quantities of starting
FFPE material according to the vendor corresponds to
a range of DV200 values, with the lowest recommended
quality at DV200 of 30-50%, and lowest corresponding
input of 4.7 ng/ul. Recommendations for input RNA
using DV50 or DV100 values has not been evaluated by
the vendor.
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Prediction of QC failed samples based on pre-sequencing
metrics

We next built a decision tree model to learn the relation-
ship between pre-sequencing lab metrics and qc pass/fail
status as determined by bioinformatics metrics. Samples
were split into training and testing sets with a ratio of
7:3. Repeated cross validation was used to determine the
optimal ‘complexity’ parameter used to build the train-
ing model (Fig. 4a). We found that pre-capture library
concentration had higher feature importance compared
to RNA concentration (Fig. 4c). Finally, we evaluated the
performance of the training model by applying it to the
testing set and were able to achieve an F score of 0.848.
As shown in Fig. 4b, we grouped the samples into three
categories based on RNA and pre-capture library concen-
trations: 1. Low/marginal quality (RNA qubit <25 ng/ul);
2. Intermediate quality (RNA qubit > 25 ng/ul and library
qubit<1.7 ng/ul); 3. Good quality (RNA qubit>25 ng/
ul and library qubit> 1.7 ng/ul). The decision tree-based
model was chosen due to its high interpretability. Logis-
tic regression analysis on the model achieved a similar
performance in terms of F score (0.844).

False positives evaluation based on FFPE and fresh frozen
replicates

We also evaluated the reproducibility across sequenc-
ing batches using FFPE and FFzn replicates (Additional
file 5). As expected, FFPE replicates had higher over-
all FPR compared to FFzn replicates (18.4% vs. 12.7%).
By applying an expression cutoff of tpm>4, FPR for
both FFPE and FFzn replicates decreased significantly
(1.35e—2 vs. 4.19e—3). We further investigated the rela-
tionship between MAD (Max Absolute Difference) and
gene-level features including gene length and GC content
for FFPE replicates. As shown in Additional file 5, shorter
genes were more variable and had larger MAD compared
to longer genes. GC content had a moderate positive cor-
relation with MAD indicating that genes with high GC
content were more likely to be influenced by FFPE proce-
dure. In summary, FFPE replicates showed similar repro-
ducibility as FFzn replicates across sequencing batches.
Genes with short length or high GC content are more
likely to be influenced by FFPE procedure.

Discussion

In this study, we evaluated two commonly used RNA
library protocols for FFPE samples: RNA exome cap-
ture and rRNA-depletion, using seven paired FFPE-
FFzn samples. Samples processed using the RNA exome
capture protocol showed a higher percentage of gene
mapped reads, captured a higher number of canonical
junctions, generated better SNP concordance rate and
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demonstrated better concordance with TruSeq PolyA
data. Next, we sought to identify pre-sequencing metrics
that could be used to predict sample pass/fail status based
on post-sequencing bioinformatics metrics. All study
samples along with replicate samples were processed
using the RNA exome protocol. Three bioinformatics
metrics were determined to identify qc-failed samples,
including sample-wise median correlation (median_cor_
expr), number of gene mapped reads (gene_reads), num-
ber of detectable genes with transcript per million (TPM)

larger than 4 (gene_tpm4). Finally, a decision tree-based
model was built to examine the relationship between pre-
sequencing lab metrics and qc-status as defined by post-
sequencing bioinformatics metrics. Based on the model,
we recommend a minimum of 25 ng/ul for RNA concen-
tration and 1.7 ng/ul for pre-capture library concentra-
tion for FFPE samples to generate good quality RNA-seq
data for bioinformatics analysis. We also demonstrated
that FFPE replicates have similar reproducibility com-
pared to FFzn replicates across sequencing batches.
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Fig. 4 A decision tree model to predict QC pass/fail based on pre-sequencing lab metrics. QC pass and fail refer to sample status defined by
bioinformatics metrics; QC failed samples were those excluded from the final dataset. a Parameter tuning based on repeated cross validation using
grid search with 10 choices of complexity parameter. Complexity parameter with the highest cross-validation accuracy was used to build the final
model. b Decision tree diagram with branches indicating specific cutoffs based on pre-sequencing metrics that were predictive of the qc pass/

fail status. Samples with RNA qubit higher than 25 ng/ul and pre-capture library qubit higher than 1.7 ng/ul shows the best RNA-seq data quality.
There are three values in each box/node. The upper value (PASS/FAIL) in each box indicates the predicted gc status based on pre-sequencing lab
metrics at each branch of decision tree. The middle number in each box indicates the ratio of gc-pass samples as defined by bioinformatics metrics.
The bottom number in each box indicates the percentage of total number of samples within each box. The lower panel indicates a heatmap of the
three metrics (number of gene mapped reads, number of detected genes with TPM higher than 4, sample-wise median correlation) that were used
to define QC status. The upper annotation bar of the heatmap indicates the three leaf nodes predicted by the decision tree. c Relative contribution/

influence of the pre-sequencing lab metrics in building the final model

However, genes with short length or high GC content are
more likely to be influenced by the FFPE procedure.
Clinical biospecimens are typically stored as FFPE
blocks, representing an invaluable source of material
for biomedical research. FFPE blocks enable prolonged

storage of clinical samples, preserving both tissue mor-
phology and nucleic acids information. However, FFPE
processing and tissue storage have been shown to affect
RNA quality, thus limiting gene expression quantifica-
tion by technologies like RNA sequencing. Our study
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provides a guideline for future research that utilizes FFPE
samples for RNA-seq. By following these recommenda-
tions, sequencing samples with RNA and library input
higher than our recommended values will not only help
yield a better success rate for RNA sequencing, but also
help to prevent unnecessary cost for sequencing.

There are several limitations for our study. Firstly, we
benchmarked two commonly used library preparation
protocols for FFPE samples using bioinformatics met-
rics, including SNP confirmation rate. SNP confirmation
rate (precision) was calculated as the percentage of true
SNPs (called by WES data) within the SNPs identified
by RNA-seq for the same sample. This does not consider
RNA specific mutations introduced by events like RNA
editing. However, RNA editing events are considered
very rare and the expected SNP confirmation rate should
be very close to our calculation in Additional file 1 [25].
Allele specific gene expression could lead to discordance
between SNP calls generated from RNA-seq and WES,
e.g., RNA-seq might fail to capture mutations where the
non-mutant allele is expressed [26]. This is also the rea-
son that we are focusing on precision rather than sen-
sitivity of SNPs called by RNA-seq and WES. Secondly,
when performing bioinformatics QC using replicate
samples, due to the limited number of replicate samples
with median_cor_expr around 0.7 and 0.8 range, we arbi-
trarily selected a cutoff value (0.75) around the inflection
point of the loess-fitted curve between median_cor_expr
and FPR. This criterion will potentially affect our defini-
tion of qc pass/fail as determined by those bioinformat-
ics metrics. To provide the user with more flexibility in
selecting cutoffs for those bioinformatics metrics, we
have provided a documentation that enables the end-user
to define customized cutoffs based on their preference
of stringency: https://github.com/Liuyl2/FFPEinput.
Thirdly, the concentration of RNA in the original samples
is highly dependent on the amount of input tissue, origi-
nal handling and storage of the sample, the extraction
method used, and perhaps most importantly, the elu-
tion volume used following extraction and purification. It
is difficult to compare these amounts across samples or
studies unless all these factors are controlled. The library
concentrations are more comparable since they are based
on a consistent total RNA amount going into the library
prep. Finally, bioinformatics metrics in this study were
derived from breast tissue and might not be readily appli-
cable to other tissue types, but our recommendations for
study design and bioinformatics QC procedure can be
tailored for other studies involving different tissue types.

Other than RNA and library input metrics, we also
investigated other pre-sequencing lab metrics including
DV50, DV100, DV200 values. The recommended quan-
tities of starting FFPE material according to the vendor
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corresponds to a range of DV200 values, with the low-
est recommended quality at DV200 of 30-50%. Rec-
ommendations for input using DV50 or DV100 values
has not been evaluated by the vendor. Due to the RNA
input limit, we were only able to quantify around 70% of
all study samples for DV metrics. Based on those lim-
ited data, we observed that DV50 is highly correlated
with DV100 values. Both DV50 and DV100 have mod-
erate correlation with DV200, a conventional metric for
measuring RNA quality (Additional file 6). DV50 value is
identified as the top predictive feature for sample failure
using a recursive feature elimination algorithm. Including
DV50 in building the decision tree model showed similar
performance compared to using RNA/library input met-
rics alone (Additional file 7). We suspect that this could
be due to the decreased sample size with available DV
values. According to the model, samples with DV50 val-
ues bigger than 82 are more likely to generate successful
RNAseq data. We have included a detailed table contain-
ing all sample-related metrics (Additional file 8).

Conclusions

We benchmarked two commonly used library prepa-
ration protocols for FFPE samples. The TruSeq RNA
exome capture protocol showed a superior performance.
We also provide a common bioinformatics quality con-
trol recommendation for FFPE samples. Based on our
defined bioinformatics criteria, we recommend a mini-
mum of 25 ng/ul for RNA concentration and 1.7 ng/ul
for pre-capture library concentration for FFPE samples
to achieve adequate RNA-seq data for downstream bio-
informatics analysis.
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