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Abstract

Objective: Given the importance AI in genomics and its potential impact on human health, the American Medical Informatics Association—
Genomics and Translational Biomedical Informatics (GenTBI) Workgroup developed this assessment of factors that can further enable the clinical
application of AI in this space.

Process: A list of relevant factors was developed through GenTBI workgroup discussions in multiple in-person and online meetings, along with
review of pertinent publications. This list was then summarized and reviewed to achieve consensus among the group members.

Conclusions: Substantial informatics research and development are needed to fully realize the clinical potential of such technologies. The devel-
opment of larger datasets is crucial to emulating the success AI is achieving in other domains. It is important that AI methods do not exacerbate
existing socio-economic, racial, and ethnic disparities. Genomic data standards are critical to effectively scale such technologies across institu-
tions. With so much uncertainty, complexity and novelty in genomics and medicine, and with an evolving regulatory environment, the current
focus should be on using these technologies in an interface with clinicians that emphasizes the value each brings to clinical decision-making.

Key words: clinical genomics; artificial intelligence; machine learning; bioinformatics; genomics; translational bioinformatics.

Introduction

Artificial Intelligence (AI) is revolutionizing several domains,
from art where diffusion models like MidJourney are driving
transformative changes,1 to law,2 education,3 and medicine

where large language models such as ChatGPT are reshaping
the landscape. The pace of AI advancements in these areas
suggests what might be possible in genomics if done properly.
While the potential of AI for genomic discovery is
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tremendous, there is also significant potential to build AI
models that utilize genomic data to make complex genetic
diagnoses,4,5 personalize treatment plans,6,7 and identify and
prevent health risks.8

The inherent complexities of genomic data including large
dimensionality and lack of prior knowledge regarding the
functional aspects of most genomic variants present major
challenges for AI application. The human haploid genome
consists of over 3 billion bases, and susceptibility to disease is
usually a complex interplay of these variants.9 There is uncer-
tainty in the exact number of protein-coding genes,9 the func-
tions of most of these genes, and the impact of individual
coding variants on these genes and their products. This uncer-
tainty is dwarfed by variants in noncoding DNA, the under-
standing of which is in its infancy. While a complete human
reference genome was recently released,9 many populations
remain underrepresented,10 necessitating the further develop-
ment of reference genomes such as the recently released pan-
genome.11 DNA is transcribed in different ways depending on
the stage of development, the type of tissue, its physical loca-
tion in the body, and its function. Therefore a single genetic
variant can have a myriad of effects on RNA transcription,
protein production, and the ultimate cellular and phenotypic
consequences, as is evidenced in many Mendelian disor-
ders.12,13 Finally, redundancy of compensatory pathways
may play a role in penetrance of any specific variant; whereby
a variant in one individual will have a deleterious effect but
may have low or no effect in another individual based on the
cumulative set of genetic and environmental factors acting on
these individuals. In contrast to Mendelian diseases, most
common diseases are orchestrated through variation in multi-
ple genes with complex interactions.14,15 This complexity
underlies the concept of polygenic risk scores (PRS).16

Despite these challenges, the complexity and magnitude of
genomic data make it an attractive target for AI, although
clinical application adds to the challenges already identified.
To address these, the American Medical Informatics Associa-
tion Genomics and Translational Bioinformatics Workgroup
(AMIA GEN-TBI), has identified a comprehensive list of fac-
tors that are crucial for advancing the adoption and clinical
use of AI in genomics.

Factors facilitating clinical use of AI in
genomics

These factors, grouped into 5 categories—Data Availability
and Accessibility, Technical Aspects of Genomic Data, Ethical
and Analytical Considerations, Stakeholder Engagement and
Education, and Regulatory Frameworks—provide a roadmap
for the successful clinical deployment of AI in genomics. Each
category represents a critical aspect of the broader ecosystem
that must be addressed to fully leverage the potential of AI in
genomics.

Data availability and accessibility
Growth of genomic data

The cost of genome sequencing (GS) continues to decrease,
from �$300 million for the first genome17 to a recently
announced $100 genome.18 The decrease in cost, along with
the large number of population sequencing initiatives, has dra-
matically increased the amount of sequencing data available,
making it easier to investigate genomic data with AI
approaches. There are also increased efforts in the United States

to collect genomic data that better reflect the racial and ethnic
diversity of the population such as the All of Us project19 and
TOPMed.20 These efforts are expected to assist in developing
AI models with enhanced generalizability, minimizing health
disparities related to the current data gaps. We are also seeing
an acceleration in the clinical adoption of exome sequencing
and GS for diagnostic purposes, as these are now recom-
mended as first-line tests for several groups of disorders21,22

and are being investigated for use in newborn screening.23

Even with all these developments we do not have the num-
ber of sequences that would allow us to see the kind of prog-
ress being made with AI applied to text or visual images.
While we are approaching the availability of millions of
genomes, ChatGPT was trained on billions of text files
scraped from the internet,24 and MidJourney (a diffusion
model for art) was trained on over 100 million images.25

These domains have much more available data and are argu-
ably less complex than genomic data particularly when one
includes the associated healthcare data. Traditional research
funding mechanisms have modest caps on costs which limits
how much sequencing can be done in an investigator-initiated
project. We argue that with lower sequencing costs there
should be larger government funded sequencing initiatives
that also include pertinent health information and require a
degree of data sharing.

Democratization of data

Despite the existence of several large repositories of genomic
data, the usability of the data is limited as much of it is siloed
and accessible only by a few who have the resources to mine
and extract its value.26,27 Sharing genomic data are critical for
improved statistical power. Moreover, it is expected to acceler-
ate AI research, adoption, and crowd-sourcing efforts. Initia-
tives such as “All of Us” facilitate genomic data sharing.28 This
initiative currently has more than 250 000 genomes with a sig-
nificant amount of racial and ethnic diversity.19 The UK Bio-
bank is another large genomic data sharing initiative.29 These
efforts have fueled data-driven approaches with potential AI
applications that would have otherwise been impossible.30,31

While we advocate for the continuation and expansion of these
efforts, we also posit that there might be a more pressing need
to develop government supported federated architectures for
genomic data sharing. These structures could facilitate more
efficient sharing of existing genomic datasets, all while safe-
guarding patient and organizational privacy. We believe such
federated networks should be deployed in a way that allows
for global data sharing as the data needed to drive this field are
tremendous as is the need for diversity.

Clinical availability of genomic data

Clinical next generation sequencing (NGS) data are generated
by CLIA-certified laboratories and only a summary of
“actionable variants” is available at the point of care, usually
in the form of a PDF.32 A comprehensive adoption of NGS
data would demand changes to clinical and laboratory proc-
esses surrounding genomics data, requiring a seamless inter-
face to the larger dataset generated by the lab. Genomic data
have longitudinal value that can be utilized at different points
throughout an individual’s healthcare journey. Therefore, it
would make economic sense to separate the processes of
sequencing and interpretation.33 This would require an infra-
structure that supports storage, query, and secondary analysis
of the genomic data by both the clinic and competing
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laboratories. Such infrastructure would facilitate exploratory
analysis and empower patients and clinicians to interpret
datasets with the aid of informatics tools. This approach must
fall within the guidelines of established regulations to avoid
misinterpretation. Currently, only genetic information deliv-
ered in a summary report from a CLIA laboratory can be
acted on clinically. A framework is required to certify all
information from the genome for clinical use. This would
allow the clinical use of multiple PRS and encourage develop-
ment of context-specific AI models for clinical decision sup-
port (CDS) while validating those reported by vendors.33

Technical aspects of genomic data
Functional genomics

Having prior knowledge about gene function can reduce the
search space by focusing on variants in a context-specific
manner. Resources such as ClinVar, which compiles
community-contributed information about pathogenicity of
variants and employs variant curation expert panels, has dem-
onstrated tremendous benefit in deciphering clinical value
from genomic data.34 Large-scale functional studies, and a
recent announcement by the NIH to launch the Molecular
Phenotypes of Null Alleles in Cells (MorPhiC) program to
establish the function of every human gene,35 will generate
significant improvements in functional knowledge and open
venues for the application of AI in a context-specific manner.
Continued efforts to uncover clinical impacts of genes and
variants will improve our ability to build AI models with
smaller datasets. While we are supportive of these efforts, we
would argue that having larger datasets including genomic,
transcriptomic, and clinical data, would enable the use of AI
to more rapidly elucidate gene function.

Genomic data standards

Efforts continue to standardize the application and reporting
of discrete genomic data and knowledge,36–39 including its
use in algorithms such as PRS.40 Standards development
should also support the integration of genomic data and
derived knowledge (eg, risk scores) into the EHR. From an AI
context, standardization is critical to ensuring the develop-
ment of accurate and portable models. Standards should be
established to both structure the input data to ensure consis-
tency across health systems and set quality metrics to validate
the data utilized in the models. Many standards currently
exist to support genomic data. Global Alliance for Genomics
and Health (GA4GH) is developing standards for the
computable representation of genomic variations and knowl-
edge,36–39 which could enable the development of AI models.
HL7 FHIR is widely used in EHRs and is primarily used for
clinical reporting of genomic test results; the FHIR genomics
specification is currently expanding to support more nuanced
data types, improved harmonization with GA4GH standards,
and improved computability of data. The ClinGen Allele
Registry is actively creating global canonical IDs for genomic
variants with mapping to other nomenclatures to reconcile
competing variant nomenclatures.41

EHR integration

Efforts continue to integrate genomic data in EHRs in a struc-
tured format32,42 but are primarily focused on specific var-
iants and summaries that drive phenotypes as opposed to
genome-level representation. Genome Archiving and Commu-
nication Systems (GACS)43 interfaced to the EHR through

standards-based interfaces, such as SMART on FHIR, would
allow for use of large genetics datasets external to the EHR
that can be ingested by AI approaches. Integrated AI plat-
forms that can facilitate clinical use of genomic data in a real-
time environment are critical to moving this field forward.

Ethical and analytical considerations
Privacy

While traditionally, large training datasets for AI algorithms
have been based on real patient data, the landscape is evolving.
Researchers are exploring the use of artificially generated data
and leveraging pretrained algorithms to enhance the training
process and overcome limitations associated with real patient
data.44–46 There are particularly sensitive aspects of genomics
data that warrant special protections as addressed by recent
guidance from the American College of Medical Genetics and
Genomics; these include but are not limited to consanguinity,
misattributed parentage, and presymptomatic test results.47

Despite significant advancements in data security in the public
cloud computing settings, there is still concern about uploading
genomic data into the cloud environments. Even without tradi-
tional identifiers, genomic data can potentially be reidenti-
fied.48 Genomic data must be protected, and algorithms
deployed in a way that preserves patient privacy using techni-
ques such as federated learning49 and swarm learning.50

Accuracy

The accuracy of the output of ML algorithms is directly
related to the accuracy of the input data. The genomic data
used in such algorithms should be generated in a CLIA-
certified lab to ensure data integrity and be subject to an
acceptable threshold of data quality standards prior to clinical
use. Equally important, the data must be expressed in seman-
tically unambiguous and computable forms. Such standards
need to be established as we venture into using genomic data
outside of the clinical report.

Bias

The issue of bias in AI is of critical importance, particularly in
healthcare where it can significantly impact patient outcomes.
Biases can occur at various stages, from data collection to
algorithm development and interpretation. Bias and variance
can occur during the training phase of AI, often a result of
underfitting or overfitting data. Regularization of these
approaches can assist in minimizing bias-variance. This is
especially critical in genomics data, where the number of fea-
tures or dimensions is orders of magnitude higher than the
sample size. As with all observational data, genomic data are
prone to selection bias attributed to nonrandom distribution
of the subjects between cohorts of interest (eg, case–control
studies). Low representation of diverse populations in the
data can also contribute to bias and lead to AI models with
the potential to exacerbate inequities. Similarly, nonuniform
representation can also lead to class-imbalance that may
encourage prudent choice of performance measures in evalu-
ating AI approaches. We encourage continued efforts to cre-
ate large diverse genomic datasets with corresponding clinical
outcome information on which AI models can train that more
fully represent the population being served. Such datasets
should be shared across federated networks to allow for
building of complex AI models while safeguarding privacy,
particularly for vulnerable populations. In addition to a more
diverse and representative data collection, strategies to
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mitigate these biases include the use of bias correction algo-
rithms, and increased transparency in AI development.

Stakeholder engagement and education
Clinician education

AI/ML is increasingly prevalent in common consumer devices.
While the fundamental mechanisms of AI/ML are well-
understood, the challenge lies in effectively addressing the
complexities and problems these mechanisms present. Igno-
rance can lead to mistrust and unrealistic expectations. It is
critical that providers understand AI limitations and do not
use it to override sound clinical judgment. Educating clini-
cians in this field is crucial as an understanding of the benefits
and limitations of AI will increase trust and adoption.51

Explainability, transparency, and interpretability

Clinicians are less likely to adopt or utilize systems they do
not understand.52 Explainability in AI53,54 is not just about
addressing the “black box” problem. It is also about ensuring
that AI models are interpretable and understandable to clini-
cians, patients, and regulators. Approaches to improving
explainability include the use of interpretable models, explan-
ation interfaces that provide insights into the model’s
decision-making process, and post hoc explanation techni-
ques that explain the model’s decisions after they are made. A
clear rationale for their choice, along with understanding of
underlying assumptions in a context-specific manner, can
improve their adoption. AI models developed for clinical use
should strive for transparency and interpretability that facili-
tate caregiver trust and allow caregivers to utilize the models’
output in conjunction with their clinical judgment.

Regulatory frameworks

The FDA’s existing framework does not account for adaptive
AI approaches. Under current regulations, a manufacturer must
gain additional clearance each time there is a significant change
to a device.55 In January 2021, the FDA issued the “Artificial
Intelligence/Machine Learning (AI/ML)-Based Software as a
Medical Device (SaMD) Action Plan” from the Center for Devi-
ces and Radiological Health’s Digital Health Center of Excel-
lence.56 In the SaMD Action Plan, the FDA proposed a new
regulatory framework tailored to these new technologies. How-
ever, to date, no new regulatory framework has been developed.
Recent FDA guidance regarding CDS may exempt such models
if they are used as support to augment physician judgment but
are not the primary factor on which the clinical decisions are
based.57 As new regulatory frameworks evolve, balance is
needed between regulation and patient safety without stifling
innovation through overregulation of AI approaches.58,59

Discussion

The factors presented inform challenges and opportunities
that shape the application of AI to genomics. As we begin to
implement AI applications in genomics, the health informatics
community should develop best-practice guidelines, ideally
based on an expanded research agenda60 and a rigorous
evidence-review process. Engagement should promote devel-
opment of AI applications that are: (1) evaluated through best
practices in a clinical environment, (2) transparent in contrast
to black-box offerings, and (3) reproducible and generalizable
across diverse settings. Algorithms should not introduce, rein-
force, or exacerbate socio-economic or ethnic/racial biases

that could lead to health disparities and inequity of care. It is
also important to ensure that AI tools will protect patient pri-
vacy and information security. AI’s legal and regulatory impli-
cations must be studied to ensure safe and adequate
deployment if its tools are used in the treatment of patients
and should be subject to appropriate oversight.
Active involvement of the clinical genomics and medical

informatics communities is critical for successful validation
and deployment of AI in genomics. AI algorithms implicitly
subscribe to optimizing a chosen objective function. Thus, it
is common for these algorithms to converge to locally optimal
solutions that might not necessarily be the best solution over-
all. Therefore, domain experts in genetics will be integral to
the implementation team and assisting patients in interpreting
results, especially when involving clinical recommendations.
While it is widely accepted that AI deployments for patient

care should outline known limitations of the algorithms,
establish generalizability, and incorporate human expertise,
we believe that these principles need to be reinforced with spe-
cific actions.61 AI developers should provide detailed docu-
mentation of their algorithms’ limitations and performance
across different settings. Healthcare organizations should
establish protocols for human oversight of AI decisions,
ensuring that expert clinicians are involved in critical
decision-making processes. Moreover, we advocate for rigor-
ous, independent validation of AI algorithms in diverse real-
world settings before they are deployed in patient care. As
with any data source used for clinical decision making, AI
results should be used with caution and always in the context
of the patient’s current health. Additionally, much genetic
data can be augmented with other patient information to
increase utility and adoption of these algorithms.
Given the limited knowledge surrounding the clinical

impact of genetic variation, validation of the results generated
by AI models requires critical assessment by domain experts.
AI implementations should have enough transparency for val-
idation across diverse settings and solicit feedback from clini-
cians which would support iterative improvement through
creation of a virtuous cycle, a concept highlighted in the Insti-
tute of Medicine (now National Academy of Medicine) publi-
cation on the Genomics-enabled Learning Health Care
System.62 Although AI has potential to significantly impact
genomics, dimensionality of genomic data necessitates larger
sample sizes for optimal performance of these algorithms.63

For AI models to discern complex patterns, detect uncommon
genetic variations, and extrapolate results across varied popu-
lations, substantial datasets are essential. This becomes even
more significant given the vast number of clinical outcomes
associated with the genomic feature set. Without sufficient
data, there is a heightened risk of models overfitting to spe-
cific examples, potentially overlooking crucial genetic nuances
and compromising their real-world predictive precision and
applicability. The use of large datasets requires advanced
computing infrastructures for effective data processing.
Ongoing national initiatives, in conjunction with standards in
sharing genomic data, can assist in generating large sample
sizes optimized for diversity while promoting enhanced trans-
parency and external validation of the AI algorithms and min-
imizing bias. Commercial AI implementations in genomics
data, with the stated purpose of recommending medications,
supplements, treatment plans, and life changes to improve
health outcomes, should clearly acknowledge known limita-
tions and demonstrate evidence of utility.
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As observed in other fields, the progress achievable in AI
and genomics is proportional to the volume of data available
for training our models. Even if existing initiatives like the
“All of Us” program, which aims to sequence a million indi-
viduals,19 achieve their targets, they would still not offer the
volume of data required for comparable advancements in this
field. Government-backed or private initiatives, and public–
private partnerships that fund both sequencing and the devel-
opment of infrastructures for responsible data sharing are piv-
otal for advancements in this domain. Maybe it is time for a
second human genome project, emphasizing the volume of
both genomic and clinical data, and engaging institutions
nationwide with data sharing enabled through a federated
network. While the scope of such a project would be vast, the
outcomes could exceed that of the original endeavor.

Conclusion

Genomics based AI models have tremendous potential to
impact patient care. Additional informatics research and
development are needed to fully realize the clinical impact of
such technologies. To achieve a similar impact to that seen
with AI in other domains we must create larger and more
diverse training datasets, establish responsible frameworks
for data sharing, and standardized approaches for analysis of
AI tools. With so much uncertainty, complexity, and novelty
in genomics and medicine, and with an evolving regulatory
space, the current focus should be on using these technologies
to create an interface with clinicians that emphasizes the value
each brings to clinical decision-making in healthcare.
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