

1 **Potential pandemic risk of circulating swine H1N2 influenza viruses**

2

3 Valerie Le Sage^{1,2}, Nicole C. Rockey¹⁺, Kevin R. McCarthy^{1,2}, Andrea J. French¹, Meredith J.
4 Shephard³, Ryan McBride⁴, Jennifer E. Jones¹, Sydney G. Walter¹, Joshua D. Doyle^{2,5}, Lingqing
5 Xu^{2,5}, Dominique J. Barbeau^{2,5}, Shengyang Wang⁴, Sheila A. Frizzell⁶, Lora H. Rigatti⁷, Michael
6 M. Myerburg⁶, James C. Paulson⁴, Anita K. McElroy^{2,5}, Tavis K. Anderson⁹, Amy L. Vincent
7 Baker⁹, Seema S. Lakdawala^{1,2,3*}

8

9 ¹Department of Microbiology and Molecular Genetics, University of Pittsburgh School of
10 Medicine, Pittsburgh, Pennsylvania, USA

11 ²Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh,
12 Pennsylvania, USA

13 ³Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta,
14 Georgia, USA

15 ⁴Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research
16 Institute, La Jolla, California, USA

17 ⁵Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of
18 Pittsburgh, Pittsburgh, Pennsylvania, USA

19 ⁶Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University
20 of Pittsburgh School of Medicine, Pennsylvania, USA

21 ⁷Division of Laboratory Animals, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

22 ⁸Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla,
23 California, USA

24 ⁹Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA

25

26 *Address correspondence to Seema S. Lakdawala, seema.s.lakdawala@emory.edu

27 **ABSTRACT**

28

29 Influenza A viruses in swine have considerable genetic diversity and continue to pose a pandemic
30 threat to humans. They were the source of the most recent influenza pandemic, and since 2010,
31 novel swine viruses have spilled over into humans more than 400 times in the United States.
32 Although these zoonotic infections generally result in mild illness with limited onward human
33 transmission, the potential for sustained transmission of an emerging influenza virus between
34 individuals due to lack of population level immunity is of great concern. Compiling the literature
35 on pandemic threat assessment, we established a pipeline to characterize and triage influenza
36 viruses for their pandemic risk and examined the pandemic potential of two widespread swine
37 origin viruses. Our analysis revealed that a panel of human sera collected from healthy adults in
38 2020 has no cross-reactive neutralizing antibodies against an α -H1 clade strain but do against a γ -
39 H1 clade strain. Swine H1N2 virus from the α -H1 clade (α -swH1N2) replicated efficiently in
40 human airway cultures and exhibited phenotypic signatures similar to the human H1N1 pandemic
41 strain from 2009 (H1N1pdm09). Furthermore, α -swH1N2 was capable of efficient airborne
42 transmission to both naïve ferrets and ferrets with prior seasonal influenza immunity. Ferrets with
43 H1N1pdm09 pre-existing immunity had reduced α -swH1N2 viral shedding from the upper
44 respiratory tract and cleared the infection faster. Despite this, H1N1pdm09-immune ferrets that
45 became infected via the air could still onward transmit α -swH1N2 with an efficiency of 50%.
46 Taken together, these results indicate that this α -swH1N2 strain has a higher pandemic potential,
47 but a moderate level of impact since there is reduced replication fitness in animals with prior
48 immunity.

49 **Influenza A virus pandemic assessment**

50 Influenza viruses cause acute respiratory infections in humans, and their wide host range
51 provides many sources of strains with human pandemic potential. Influenza viruses exhibit strong
52 host species preferences, which limits interspecies transmission, but they can evolve specific traits
53 that allow sustained transmission within a new species. Although the major natural global reservoir
54 of influenza virus is wild aquatic birds¹, swine are an important natural host and can act as a mixing
55 vessel for reassortment of the eight viral gene segments of influenza A viruses from different host
56 species. For example, the most recent H1N1 influenza virus pandemic from 2009 (H1N1pdm09)
57 emerged from swine following reassortment events^{2,3}. Emergence of future pandemic strains is a
58 continuing threat necessitating the monitoring and characterization of currently circulating swine
59 viruses.

60 Influenza viruses are classified into subtypes based on the antigenicity of the surface viral
61 glycoproteins, hemagglutinin (HA) and neuraminidase (NA). HA and NA are important
62 determinants of virus infectivity, transmissibility, pathogenicity, and host specificity and evolve
63 seasonally due to antigenic drift. In swine, three endemic subtypes predominate: swH1N1,
64 swH1N2, and swH3N2 (Extended Data Fig. 1A), which have roughly equal detections over the
65 last four and a half seasons⁴. In the United States, the H1 classical swine lineage (1A) is divided
66 into clades including α -H1 (1A.1), β -H1 (1A.2), and γ -H1 (1A.3), while the pre-2009 human
67 seasonal-origin swine lineage (1B) includes the δ -H1 (1B.2) clades⁵. The majority of circulating
68 swine strains distributed across the United States are classified within three genetically and
69 antigenically distinct clades from the H1 1A classical swine lineage (1A.1.1.3, 1A.3.3.2, 1A.3.3.3:
70 Extended Data Fig. 1B, 1C and 2)^{4,6}. Since the 2010-2011 influenza season, there have been 18
71 H1N1, 35 H1N2 and 439 H3N2 infections in humans with variants of swine origin in the United
72 States, with six from the α -H1 clade and 21 from γ -H1 clade
73 (https://gis.cdc.gov/grasp/fluvview/Novel_Influenza.html).

74 The current genetic diversity of influenza A virus (IAV) in swine reflects reassortment
75 between avian-, swine-, and human-origin viruses, resulting in multiple lineages of the eight gene
76 segments that continue to reassort among endemic swine strains. The subsequent antigenic drift of
77 HA and NA while circulating in swine resulted in viruses to which the human population may
78 have little to no immunity⁷. Given the potential threat of such swine influenza viruses to humans,
79 we created a decision tree to guide the characterization and pandemic risk assessment of endemic

80 swine IAV (Figure 1). Using a combination of both *in vitro* and *in vivo* methods, this decision tree
81 capitalizes on the extensive research that has been conducted since the 2009 H1N1 pandemic on
82 the molecular properties that promote efficient airborne transmission of influenza⁸⁻²⁰. In this study,
83 we assessed the pandemic potential of the γ -H1 (1A.3.3.3) clade strain
84 A/swine/Minnesota/A02245409/2020 (herein referred to as ‘ γ -swH1N1’) and an α -H1 (1A.1.1.3)
85 clade strain A/swine/Texas/A02245420/2020 (herein referred to as ‘ α -swH1N2’). These swine
86 IAV clades were prioritized based on: detection frequency (Extended Data Fig. 1B); geographical
87 distribution (Extended Data Fig. 1C); reported human variant events; significant loss in cross-
88 reactivity to human seasonal vaccines or pre-pandemic candidate vaccine virus antisera⁷; limited
89 detection by human population sera⁷; and interspecies transmission from pigs to ferrets²¹.

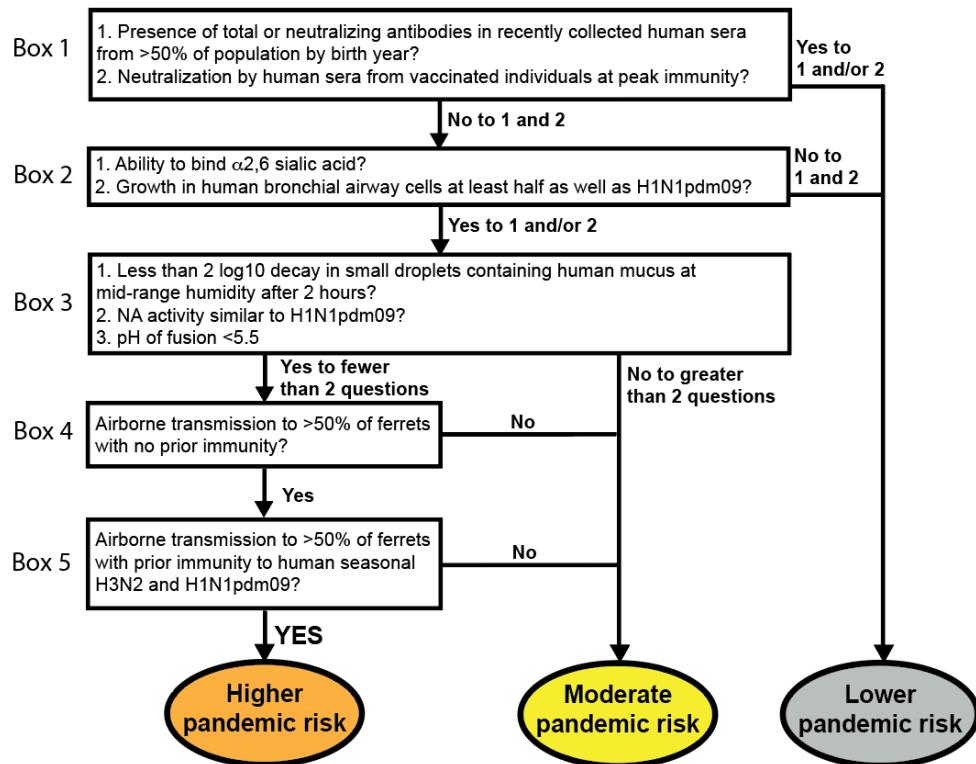
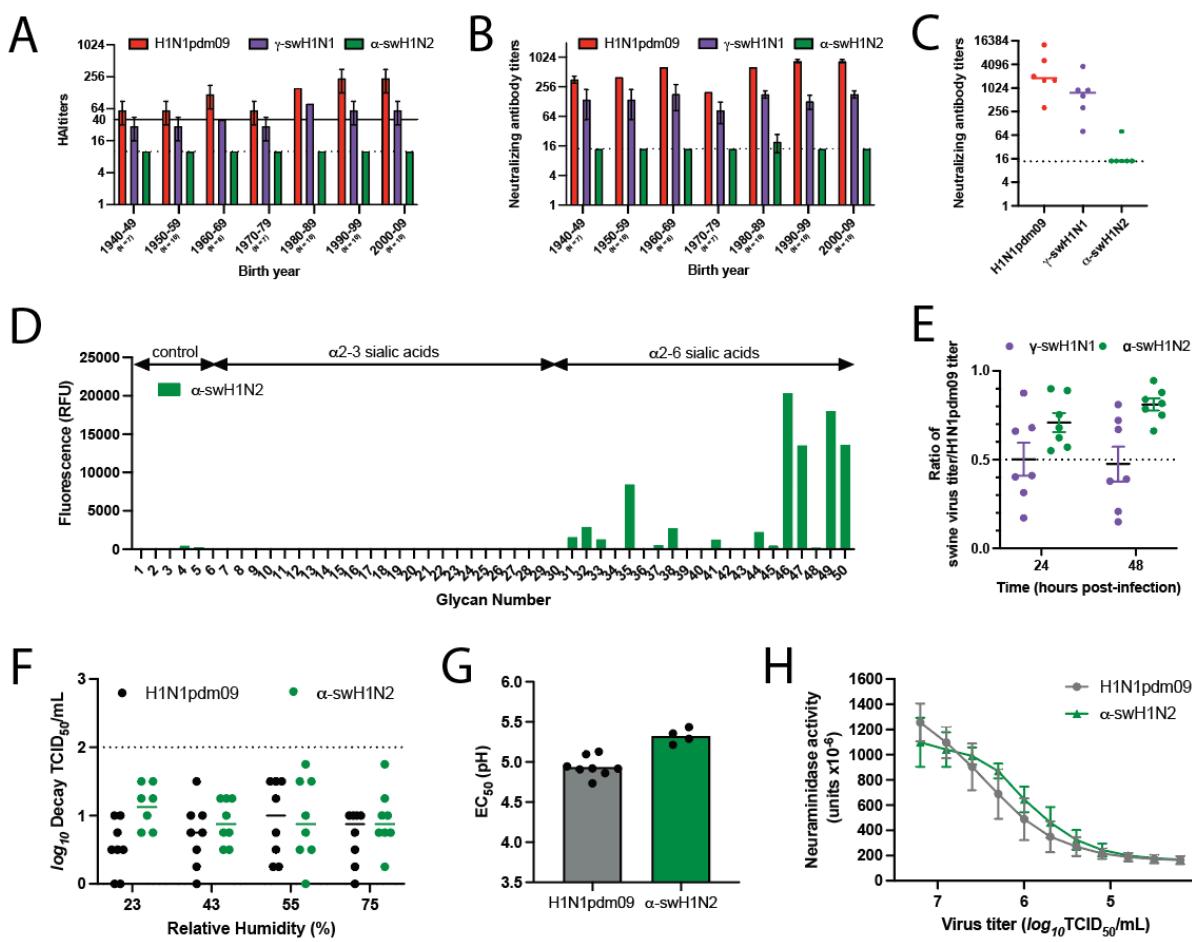



Figure 1. Decision tree of influenza virus pandemic threat assessment.

90
91 A pandemic virus represents an antigenic shift, where a large proportion of the population
92 is vulnerable due to a lack of immunity to this novel strain. To assess the presence of cross-
93 reactive influenza virus-specific antibodies (Figure 1, Box 1), human sera collected from healthy
94 adults in Pennsylvania during the fall of 2020 were sorted by birth year and used in
95 hemagglutination inhibition (HAI) (Figure 2A) and neutralization assays (Figure 2B). The

96 prevalence of HAI and/or neutralizing antibodies against γ -swH1N1, α -swH1N2, or H1N1pdm09
97 was determined, and a threshold HAI titer of 40 was used as it is generally recognized as
98 corresponding to a 50% reduction in the risk of infection^{22,23}. H1N1pdm09 and γ -swH1N1-active
99 antibodies as well as neutralizing antibodies were found across all birth year cohorts tested,
100 whereas no HAI titer or neutralizing antibodies were detected against α -swH1N2 in any of the
101 birth years tested (Figure 2A and 2B). In addition, sera from individuals who recently received an
102 influenza virus vaccine were tested to analyze samples with peak immunity from circulating
103 antibodies (Figure 2C). Recently vaccinated individuals had neutralizing antibodies against
104 H1N1pdm09 and γ -swH1N1, but not α -swH1N2 (Figure 2C). Based on the decision tree (Figure
105 1, Box 1), the presence of cross-reacting antibodies against γ -swH1N1 would funnel the virus to a
106 lower pandemic risk, while α -swH1N2 would require further characterization. However, for this
107 study we proceeded to characterize both γ -swH1N1 and α -swH1N2 to provide empirical evidence
108 for the decision tree criteria.

109

Figure 2. *In vitro* characterization of swine γ -H1N1 and α -H1N2 influenza viruses. Pooled sera from the indicated number of humans for each decade of birth were tested for antibodies to H1N1pdm09 (red bars), γ -swH1N1 (purple bars), and α -swH1N2 (green bars) by HAI (A) and neutralization (B) assay. (C) Sera from individuals vaccinated in October 2021 (14 to 21 days post-vaccination) were assessed for cross-reactive neutralizing antibodies. Each dot represents an individual. Dashed lines indicate the limit of detection for each assay. Solid line indicates an HAI titer of 40, which corresponds to a 50% reduction in the risk of influenza virus infection. (D) Binding of α -swH1N2 virus to a sialoside microarray containing glycans with α 2-3 or α 2-6 linked sialic acids representing avian-type and human-type influenza receptors, respectively. Bars represent the fluorescence intensity of bound α -swH1N2. Glycan structures corresponding to numbers are shown on the x-axis are found in Extended Data Table 1. (E) Replication of swine influenza virus in human bronchial epithelial (HBE) air-liquid interface cell cultures. HBE cell cultures were infected in triplicate with 10^3 TCID₅₀ (tissue culture infectious dose 50) per well of H1N1pdm09, γ -swH1N1, or α -swH1N2. The apical supernatant was collected at the indicated time points and virus titers were determined on MDCK cells using TCID₅₀ assays. A ratio of swine virus titer relative to H1N1pdm09 titer at 24 and 48 hours of all HBE patient cell cultures is shown. Each dot represents an average of three transwells from seven different HBE patient cultures. (F) Stability of α -swH1N2 influenza virus in small droplets over a range of relative humidity (RH) conditions. Aqueous saturated salts were placed at the bottom of a glass desiccator, which was monitored over the duration of the experiment using an Onset HOBO

temperature/RH logger. Ten 1uL droplets of pooled virus from panel E were spotted into the wells of a tissue culture dish for 2 hours. Decay of the virus at each RH was calculated compared to the titer of ten 1uL droplets deposited and immediately recovered from a tissue culture dish. Log₁₀ decay of H1N1pdm09 (black) and α -swH1N2 (green) is shown and represents mean values \pm standard deviations from three biological replicates performed in triplicate. (G) H1N1pdm09 (grey) and α -swH1N2 (green) viruses were incubated in PBS solutions of different pHs for 1 hour at 37°C. Virus titers were determined by TCID₅₀ assay and the EC₅₀ values were plotted using regression analysis of the dose-response curve. The reported mean (\pm SD) corresponds to four biological replicates, each performed in triplicate. (H) The NA activities of H1N1pdm09 (grey) and α -swH1N2 (green) were determined using an enzyme-linked lectin assay with fetuin as the substrate. Viruses were normalized for equal infectivity and displayed data are the mean (\pm SD) of three independent experiments performed in duplicate.

110

111 Molecular characterization of swine strains

112 The H1N1pdm09 HA segment is of swine-origin from the classical H1 lineage³. To
113 examine the similarities between the three strains, amino acid differences of the γ -swH1N1
114 (Extended Data Fig. 3A) and the α -swH1N2 (Extended Data Fig. 3C) HA were mapped onto the
115 H1N1pdm09 HA structure. The γ -swH1N1 HA has 46 amino acid differences as compared to the
116 H1N1pdm09 HA, while α -swH1N2 has 86. Similarity between γ -swH1N1 and H1N1pdm09 HA
117 likely accounts for the cross-neutralizing and cross-receptor blocking antibodies present in human
118 serum (Figure 2 and Extended Data Fig. 3A, purple residues). Diversity in the α -swH1N2 HA is
119 greatest in the globular HA head domain, at sites surrounding the receptor binding site (RBS)
120 (130-strand, 140-loop, 150-loop, 190-helix and the 220-loop²⁴) (Extended Data Fig. 3C, green
121 residues). The otherwise conserved RBS is responsible for engaging cell surface sialic acids (SA).
122 In the 130-strand, α -swH1N2 has a two-amino acid deletion (Extended Data Fig. 3D, yellow
123 residues), which may impact antibody binding. Additionally, γ -swH1N1 and α -swH1N2 have an
124 additional putative glycosylation site at the same position on the side of the HA head domain,
125 whereas α -swH1N2 has a second putative glycosylation site near the apex of the HA and its three-
126 fold axis of symmetry (Extended Data Fig. 3A and 3C, pink residues). The evolution of
127 glycosylation sites is thought to contribute to immune escape by shielding antigenic sites on HA²⁵⁻
128 ²⁷. During the H1N1 2009 pandemic, differences in the number of putative glycosylation sites
129 between H1N1pdm09 and seasonal viruses were associated with the lack of cross-neutralizing
130 antibodies²⁸. Differences in amino acids and glycosylation sites in the α -swH1N2 HA head could

131 contribute to the lack of detectable cross-reactive antibodies observed in Figure 2 and Extended
132 Data Table 1 compared to the γ -swH1N1 or alter receptor preference.

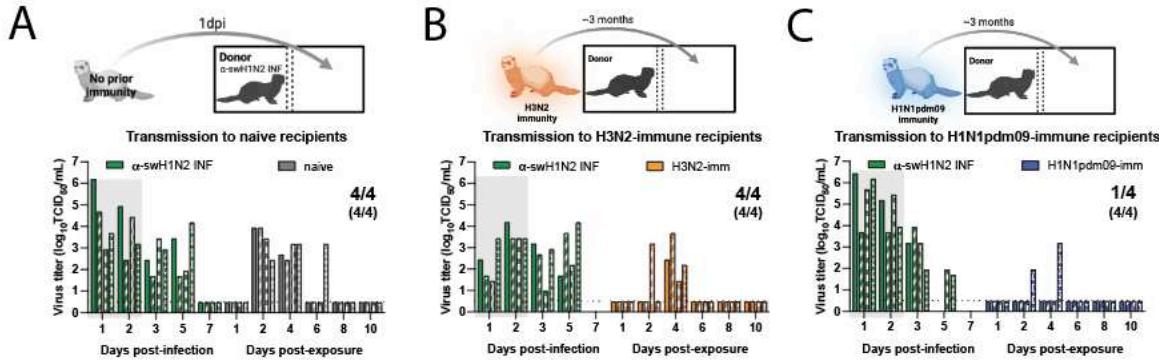
133 Receptor preference of influenza A viruses is a critical host adaptive property and one
134 known to be important for successful adaptation of influenza viruses to the human population²⁹.
135 Human and swine influenza viruses are known to have an α 2-6 SA preference, while avian
136 influenza viruses have an α 2-3 SA preference. Analysis of H1N1pdm09 and recently circulating
137 human seasonal H3N2 viruses suggests that human viruses adapt to preferential recognition of
138 extended glycans capped with α 2-6 SA²⁹⁻³³. Analysis of α -swH1N2 receptor specificity using a
139 glycan array with a focused panel of α 2-3- and α 2-6-linked sialoside glycans showed a strict
140 specificity for glycans with α 2-6 sialic acids. For N-linked glycans extended with 1-3 LacNAc
141 (Gal β 1-4GlcNAc) repeats, clear preference is shown for extended glycans with two (#47, #49) or
142 three (#47, #50) LacNAc repeats over those with a single LacNAc repeat (#45, #48) (Figure 2D
143 and Extended Data Table 1). Thus, the α -swH1N2 virus exhibits a receptor specificity well adapted
144 for human-type receptors.

145 To assess fitness of swine viruses to replicate within the human respiratory tract, replication
146 capacity of γ -swH1N1 and α -swH1N2 was determined in human bronchial epithelial (HBE)
147 patient cell cultures grown at an air-liquid interface (Figure 2E). Multiple human HBE cultures
148 were tested, and an H1N1pdm09 virus control was included in all experiments. The ratio of swine
149 virus titer over H1N1pdm09 virus titer for each HBE culture is reported. The representative γ -
150 swH1N1 strain replicated approximately half as well as H1N1pdm09, whereas the representative
151 α -swH1N2 strain had a titer ratio of 0.71 and 0.81 at 24 and 48 hours, respectively (Figure 2E).
152 These data indicate that, regardless of deletions in the RBS 130-loop (Extended Data Fig. 3D,
153 yellow residues), α -swH1N2 replicates to levels similar to H1N1pdm09 (Figure 1, Box 2) and
154 would support α -swH1N2 being selected for additional characterization of parameters correlated
155 with efficient human-to-human transmission of influenza viruses (Figure 1, Box 3).

156 Airborne transmission requires viral persistence in expelled aerosols and droplets, which
157 can be influenced by environmental conditions, including relative humidity (RH)³⁴ or respiratory
158 secretions like HBE airway surface liquid^{35,36}. To study the impact of RH on influenza virus
159 viability, droplets of H1N1pdm09 and α -swH1N2 viruses propagated from HBE cultures in Figure
160 2E were exposed to different RH conditions. HBE-propagated H1N1pdm09 and α -swH1N2

161 experienced very little decay in infectivity at all RH tested (Figure 2F). These data indicate that α -
162 swH1N2 expelled in small droplets in the presence of human respiratory secretions remains viable
163 over a range of RH conditions, which is important for efficient airborne transmission and viral
164 persistence.

165 In addition to receptor binding, HA-mediated membrane fusion between the viral envelope
166 and cellular endosome is required for viral entry and is driven by pH changes. A conformational
167 change in the HA from human influenza viruses is triggered between pH 5.3 and 5.5, while avian
168 HA proteins are triggered at a higher pH range of 5.5 to 6.2, suggesting that human adaptation
169 necessitates increased acid stability³⁷. To determine the pH at which HA undergoes its
170 conformational change, an acid stability assay was performed on H1N1pdm09 and α -swH1N2, as
171 a surrogate for the pH of fusion^{20,38}. The pH that reduces the viral titer by 50% (EC₅₀) for α -
172 swH1N2 was 5.3, which was similar to H1N1pdm09 at 5.0 (Figure 2G), indicating that α -swH1N2
173 has a pH of fusion comparable to human influenza viruses, which is below pH 5.5.


174 The neuraminidase activity of the NA receptor is necessary to cleave SA from the host cell
175 surface and release the virus. A functional balance between HA and NA is necessary for airborne
176 transmission of swine viruses^{18,19,39}. Higher NA activity has also been implicated in the efficient
177 airborne transmission of H1N1pdm09 compared to its swine precursor strains, which had very
178 little NA activity¹². To measure NA activity, we used an enzyme-linked lectin assay with fetuin as
179 a substrate and a bacterial neuraminidase standard. The NA activity of α -swH1N2 was observed
180 to be similar to that of H1N1pdm09 (Figure 2H). Taken together, these *in vitro* results indicate that
181 α -swH1N2 has the molecular features consistent with a virus capable of airborne transmission and
182 requires further characterization.

183

184 **Swine α -H1N2 airborne transmission in ferrets**

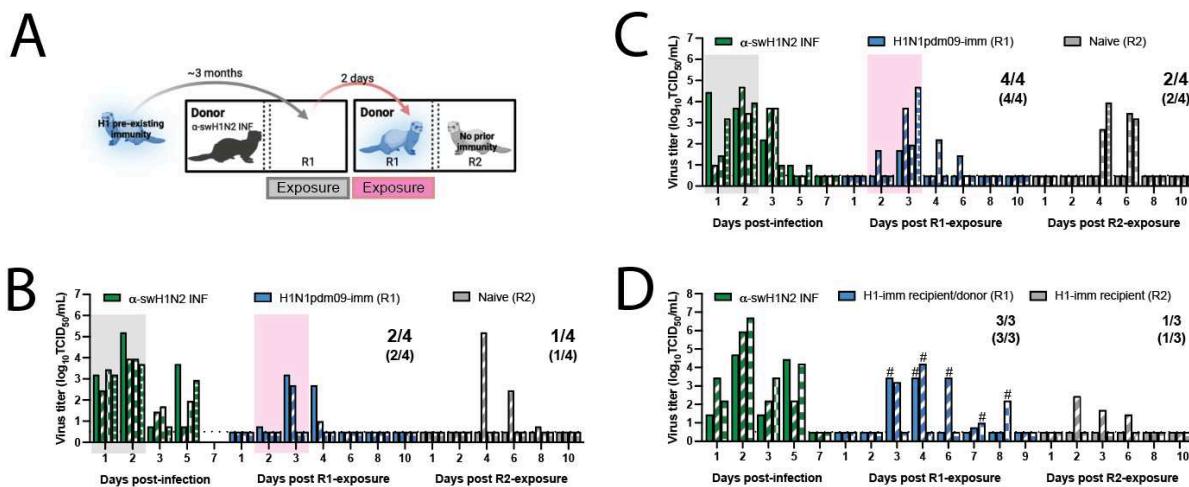
185 Following the decision tree criteria (Figure 1), we next characterized α -swH1N2 *in vivo*
186 for the efficiency of airborne transmission in the ferret model (Figure 1, Box 4). Epidemiologically
187 successful human seasonal influenza viruses transmit to naïve recipients after a 2-day exposure⁴⁰.
188 Using this methodology, experimentally infected α -swH1N2 donors were housed with naïve
189 recipients in cages where the animals were separated by a divider. A successful transmission event
190 was defined as recovery of infectious virus in recipient nasal secretions or seroconversion at 21
191 days post-infection (dpi). In the infected donors, α -swH1N2 was detected in nasal secretions on 1,

192 2, 3 and 5 dpi (Figure 3A, green bars). Four of four recipients without prior immunity shed α -
193 swH1N2 starting 2 days post-exposure (dpe) (Figure 3A, gray bars). All recipient animals
194 seroconverted at 14 dpi, with increases in antibody titers the following week (Extended Data Table
195 2). These data indicate that α -swH1N2 transmits efficiently to animals without prior immunity
196 within a short 2-day exposure, similar to published reports of H1N1pdm09⁴⁰.

Figure 3. Swine α -H1N2 transmits efficiently via the air after a short exposure. (A) Schematic of experimental procedure to naïve recipients. Shaded gray box depicts exposure period. Four donor ferrets were infected intranasally with α -swH1N2 (α -swH1N2 INF), as in Methods. Recipient ferrets with no prior immunity (naïve recipients) were placed in the adjacent cages at 24 hours post-infection for two continuous days. **(B)** Schematic of procedure, whereby four ferrets were infected with H3N2 A/Perth/16/2009 strain (H3N2-imm) 137 days prior to acting as recipients to α -swH1N2 infected donors. Four donor ferrets were infected with α -swH1N2 and H3N2-imm recipients were placed in the adjacent cage 24 hours later. **(C)** Schematic of procedure, whereby four ferrets were infected with H1N1pdm09 (H1N1pdm09-imm) 126 days prior to acting as recipients to α -swH1N2 infected donors. H1N1pdm09-imm recipients were placed in the adjacent cage 24 hours later. Nasal washes were collected from all ferrets on the indicated days and titrated for virus by TCID₅₀ (tissue culture infectious dose 50). Each bar indicates an individual ferret. For all graphs, the number of recipient ferrets with detectable virus in nasal secretions out of four total is shown; the number of recipient animals that seroconverted at 14- or 21-days post α -swH1N2 exposure out of four total is shown in parentheses. Gray shaded box indicates shedding of the donor during the exposure period. The limit of detection is indicated by the dashed line.

197
198 Pandemic influenza viruses do not emerge in immunologically naïve populations as most
199 individuals have experienced influenza by the age of 5⁴¹. We have previously established a pre-
200 immune ferret model that can be used to assess the pandemic potential of emerging strains in the
201 context of prior immunity⁴⁰. To determine the impact of pre-existing immunity on the transmission
202 efficiency of α -swH1N2, four recipient ferrets were first infected with the H3N2 A/Perth/16/2009
203 strain ('H3N2-imm recipient') or H1N1pdm09 ('H1N1pdm09-imm recipient'). Roughly 4 months

204 later, once the response to the primary infection was allowed to wane^{40,42-45}, these ferrets were then
205 exposed to infected α -swH1N2 donors for 2 days (Figure 3B and 3C). In replicate 1, four of four
206 H3N2-imm recipients shed α -swH1N2 at 4 dpe (Figure 3B), whereas only two of four shed virus
207 in replicate 2 (Extended Data Fig 4). All H3N2-imm recipients that shed virus also seroconverted
208 with increasing antibody titers over time (Extended Data Table 2). All four of four H1N1pdm09-
209 imm recipients seroconverted at 13dpe and had rising antibody titers at 20 dpe (Extended Data
210 Table 2). Intriguingly, only one of four H1N1pdm09-imm recipients shed detectable levels of α -
211 swH1N2 (Figure 3C). It is possible that shedding of virus was missed in the recipients either
212 because the nasal wash samples were not taken at 3 dpe or that replication of the virus was
213 occurring in a place that was not sampled by the nasal wash, such as the mid-turbinates,
214 nasopharynx, trachea, or lungs. However, based on serology we can conclude that all four
215 H1N1pdm09 pre-immune animals were infected (Extended Data Table 2). These data suggest that
216 α -swH1N2 can transmit to animals with prior immunity, which categorizes α -swH1N2 into the
217 higher pandemic risk. However, whether naturally infected ferrets with prior immunity could
218 spread the virus onward is unclear.


219

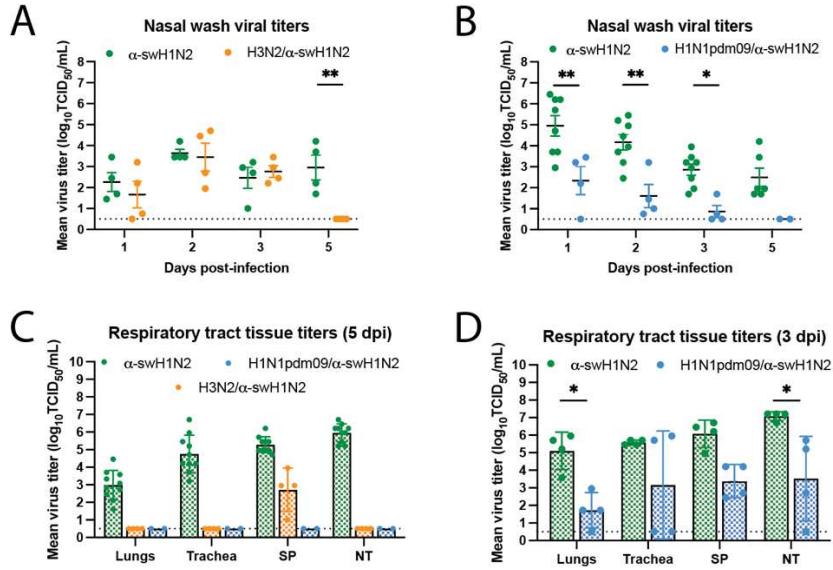
220 **Potential α -swH1N2 pandemic severity**

221 Person-to-person airborne transmission is a concern for pandemic emergence and can be
222 experimentally assessed using transmission chain experiments. Given the lack of detectable
223 shedding of α -swH1N2 in three of four H1N1pdm09-imm recipients yet seroconversion in all four
224 recipients in Figure 3C, we examined whether H1N1pdm09-imm recipients would shed enough
225 virus to onward transmit α -swH1N2 to naïve recipients. Two independent replicate transmission
226 chains were performed with four α -swH1N2 infected donors being exposed to H1N1pdm09-imm
227 recipients in the adjacent cage for 2 days. The exposed H1N1pdm09-imm recipients (R1) were
228 then transferred to a new cage to act as donors to naïve recipients (R2) (Figure 4A). In the first
229 replicate (Figure 4B), two of four R1 ferrets shed α -swH1N2, whereas in the second replicate
230 (Figure 4C), all four R1 ferrets had α -swH1N2 in their nasal secretions. Much of the viral shedding
231 was observed on day 3 post exposure, which may account for the absence of robust shedding in
232 Figure 3C. When R1 ferrets became donors (Figure 4B and 4C, pink box), only 50% of the infected
233 donors transmitted α -swH1N2 onward to influenza immunologically naïve recipients. To further

234 examine the ability of α -swH1N2 to transmit from H1N1pdm09-imm ferrets in the context of pre-
 235 existing immunity, a transmission chain experiment was performed using R2 recipients with
 236 H1N1pdm09 immunity (Figure 4D). To ensure that the exposure window of viral shedding of R1
 237 was captured, rapid antigen tests were performed immediately following the nasal wash, when
 238 positive that animal was transferred into a cage to act as a donor animal to an H1N1pdm09 R2
 239 immune ferret (Figure 4D). In this study, all three R1 became infected and of these three α -
 240 swH1N2-infected H1N1pdm09-imm R1 recipients only one onward transmitted to the
 241 H1N1pdm09-imm R2 recipients (Figure 4D). Seroconversion only occurred in R1 and R2
 242 recipients that shed detectable α -swH1N2 virus (Extended Data Table 2). These data suggest that
 243 onward transmission of α -swH1N2 is possible, even in the context of pre-existing immunity,
 244 contributing to a higher risk potential of α -swH1N2.

245

Figure 4. Swine H1N2 virus transmission chain. (A) Schematic of transmission chain experiment in panels B and C. Four ferrets were infected with H1N1pdm09 (R1) 127 days before being exposed to a donor that was infected with α -swH1N2 24 hours prior. After a 2-day exposure, H1N1pdm09-imm recipients were transferred to a new transmission cage to act as the donors. The transfer of each R1 animal was done without knowledge of its infection status. A naïve recipient (R2) was immediately placed in the adjacent cage and exposed for 2 days. The transmission chain experiment was performed two independent times. Nasal secretions were collected for all animals on the indicated days post-infection or post-exposure, with each bar representing the virus titer shed by an individual animal for replicate 1 (B) and replicate 2 (C). Gray shaded boxes indicate the days upon which the α -swH1N2 infected (α -swH1N2 INF) donor was exposing the H1N1pdm09-imm recipient (R1), and the pink shaded box indicates the days upon which R1 was acting as the donor to R2. Limit of detection is denoted by a dashed line. The numbers in parentheses indicate the proportion of animals that seroconverted. (D) Donors were infected with α -swH1N2 24 hours prior to exposing H1N1pdm09-imm recipients.


Nasal washes from R1 recipients were collected and immediately tested using a rapid antigen test. Once positive for influenza virus antigen, the H1N1pdm09-imm R1 recipient was moved into a new transmission cage to act as the donor and expose an H1N1pdm09-imm R2 recipient for 2 days. # indicates the 2-day window in which each of the R1 ferret exposed the R2 recipients.

246

247 We next examined the impact of prior influenza virus exposure on α -swH1N2 replication
248 and pathogenesis; ferrets with no prior immunity, pre-existing immunity against H3N2 (H3N2-
249 imm) or H1N1pdm09 (H1N1pdm09-imm) were intranasally infected with α -swH1N2 and their
250 nasal secretions were collected over time. No difference in α -swH1N2 titers was observed between
251 H3N2-imm ferrets and those with no prior immunity from 1-3 dpi, however, H3N2-imm ferrets
252 cleared α -swH1N2 by 5 dpi (Figure 5A). This observation is consistent with our previous reports
253 of a reduced viral shedding period in animals with heterosubtypic immunity^{40,46}. Interestingly,
254 ferrets with pre-existing H1N1pdm09-imm shed significantly less α -swH1N2 virus on 1, 2, and 3
255 dpi as compared to ferrets with no prior immunity (Figure 5B).

256 To characterize tissue-specific α -swH1N2 replication, infected ferrets from panels 5A and
257 5B were sacrificed at 5 dpi and the respiratory tract was collected for viral titration (Figure 5C). In
258 ferrets with no prior immunity, robust replication was detected in the lungs, trachea, soft palate,
259 and nasal turbinates, whereas H3N2-imm ferrets only had detectable α -swH1N2 in the soft palate
260 (Figure 5C). H1N1pdm09-imm ferrets had completely cleared α -swH1N2 from their respiratory
261 tracts on day 5, as no detectable infectious virus was detected in any of the collected tissues (Figure
262 5C). Since viral titers from nasal washes were already reduced in these animals by 3 dpi, we next
263 assessed viral replication in the respiratory tract at this time point. H1N1pdm09-imm and non-
264 immune ferrets were infected with α -swH1N2 and sacrificed on day 3 (Figure 5D). H1N1pdm09-
265 imm ferrets had detectable α -swH1N2 in the respiratory tract, although viral titers were
266 significantly less in the lungs and nasal turbinates compared to animals without prior immunity.
267 Taken together, these data indicate that prior H1N1pdm09 immunity can reduce the viral load in
268 the ferret respiratory tract and decrease time to clearance of α -swH1N2.

269

Figure 5. H1N1pdm09-immune ferrets have reduced α-swH1N2 viral titers in nasal secretions and tissues. (A) Ferrets with no pre-existing immunity (α-swH1N2, N=4) or those infected with H3N2 137 days prior (H3N2/α-swH1N2, N=4) were intranasally infected with α-swH1N2. The mean \pm SD viral titers from nasal secretions are shown with each circle representing an individual animal. Two-way ANOVA analysis was used to determine statistically significant differences (** p<0.005). (B) α-swH1N2 mean \pm SD viral titers from nasal secretions from animals with no prior immunity (α-swH1N2 INF, N=8) or those infected with H1N1pdm09 126 days prior (H1N1pdm09/α-swH1N2, N=4). Two-way ANOVA analysis was used to determine statistically significant differences (** p<0.005 and * p<0.05). (C) Respiratory tissues from α-swH1N2 infected ferrets with no prior immunity (green; N=10), H3N2 prior immunity (orange; N=4), or H1N1pdm09 prior immunity (blue; N=2) were collected at 5 dpi. Graphs show the mean \pm SD viral titers. SP-soft palate, NT-nasal turbinates. (D) Respiratory tissues from α-swH1N2 infected ferrets with no prior immunity (green; N=4) or H1N1pdm09 prior immunity (blue; N=4) were collected at 3 dpi. Graphs show the mean \pm SD viral titers. Two-way ANOVA analysis was used to determine statistically significant differences (* p<0.05). The dashed line indicates the limit of detection for all graphs.

270

271 To extend the observation on viral titers, we compared the lung pathology of α-swH1N2-
 272 infected ferrets with no prior immunity to those with H1N1pdm09 pre-existing immunity (from
 273 Figure 5D). Regardless of immunity, at 3 dpi α-swH1N2-infected ferrets had bronchial glands that
 274 were multifocally necrotic and contained neutrophils as well as peripheral lymphocytes, whereas
 275 uninfected ferrets had intact glands and no inflammation (Extended Data Fig. 5). The bronchioles
 276 from infected ferrets with no prior immunity were ulcerated and had evidence of macrophage and
 277 neutrophil accumulation within the airway lumen, whereas, H1N1pdm09-imm ferrets were similar
 278 to uninfected ferrets in that their bronchioles were clear of cellular debris with intact ciliated

279 columnar lining epithelium (Extended Data Fig. 5). Furthermore, H1N1pdm09-imm alveolar
280 interstitium had large airways that were clear with mild to moderate peripheral lymphocytic
281 infiltrates and blood vessels that were multifocally surrounded by edema and lymphocytic
282 infiltrates (Extended Data Fig. 5). In the absence of prior immunity, the large airways of the
283 alveolar interstitium were partially ulcerated and filled with immune cells, and the alveolar spaces
284 were filled with fibrin edema (Extended Data Fig. 5). These data indicate that pre-existing
285 H1N1pdm09 immunity can reduce the pathology caused by α -swH1N2 infection.

286 Lastly, we examined the clinical outcomes for α -swH1N2 infected ferrets during these
287 studies by cataloging the activity, weight loss, and other signs of the animals⁴⁷. Intranasally α -
288 swH1N2-infected ferrets with no prior immunity and H3N2-imm displayed a similar number of
289 symptoms, while intranasally infected H1N1pdm09-imm ferrets displayed almost no symptoms
290 (Extended Data Fig. 6A). Ferrets with no prior immunity displayed a greater range of symptoms
291 than those with pre-existing immunity (Extended Data Fig. 6C). In airborne-infected animals, all
292 ferrets, regardless of immunity, displayed a similar mean total number of symptoms (Extended
293 Data Fig. 6B), which included similar clinical signs over multiple days being reduced activity
294 scores, nasal discharge and weight loss (Extended Data Fig. 6D). Overall, ferrets intranasally or
295 airborne infected with α -swH1N2 had mild symptoms, which varied by the category of symptoms.
296

297 **Discussion**

298 Identification of emerging respiratory viruses with pandemic potential is critical for
299 enacting preparedness measures to mitigate their impact. Swine viruses are particularly
300 concerning, given their agricultural importance that places them within close physical proximity
301 to humans and the wide diversity of swine influenza strains⁴⁸. Current risk assessment of pandemic
302 threats is done through the WHO and CDC risk assessment tools^{49,50}, which use subject-area expert
303 opinion to assign weighted scores for various categories and limited experimental data derived
304 from multiple different *in vitro* and *in vivo* sources. In this study, we present a streamlined,
305 adaptable strategy to experimentally triage influenza viruses that reduces the need for complete
306 virus characterization since certain criteria must be met before proceeding to the next box in the
307 decision tree. This pipeline represents a breathable framework that can and will be updated as
308 additional data from characterization studies are conducted.

309 Using our decision tree, we analyzed representative circulating swine H1 strains from the
310 alpha and gamma genetic clades that have a wide geographic distribution, are frequently detected
311 in swine populations in the United States (Extended Data Fig. 1C), and have exhibited sporadic
312 human spillover events⁵¹. Previous representatives of the α -swH1N2 clade were shown to have
313 antigenic distance from human vaccine strains, reduced recognition by human sera from two
314 different cohorts⁶, and transmitted efficiently from infected pigs to naive recipient ferrets⁵². While
315 highly efficient at controlling antigenically similar influenza viruses, antibodies directed towards
316 HA become less effective over each subsequent flu season as surface glycoproteins rapidly mutate
317 through antigenic drift. No cross-neutralizing antibodies were detected against α -swH1N2 in
318 H1N1pdm09- or H3N2-imm ferrets (Extended Data Table 2), suggesting that an initial infection
319 with human seasonal viruses does not produce antibodies that cross-neutralize, and this was
320 consistent with our human serum data (Figure 2). Interestingly, human sera across all birth years
321 tested had variable levels of anti-N2 antibodies (Extended Data Fig. 7), which may suggest that
322 this NA-based immunity could provide some level of protection in a subset of the population⁵³⁻⁵⁶.
323 Our prior work previously determined that prior immunity can influence the susceptibility to
324 heterosubtypic viruses in a mechanism not mediated by neutralizing antibodies⁴⁰. Thus, prior
325 immunity from divergent strains can impact susceptibility of viruses through the air. We found
326 that α -swH1N2 transmitted efficiently through the air to ferrets regardless of immune status, but
327 the severity of disease after experimental infection with α -swH1N2 was lower in animals with
328 prior immunity. A similar phenomenon may explain the lower-than-expected morbidity and
329 mortality of the 2009 pandemic in humans⁵⁷.

330 Protection against emerging influenza virus strains in hosts without neutralizing antibodies
331 can be conferred from CD8⁺ T cells, which recognize conserved internal influenza virus proteins.
332 Although prior adaptive immunity may not prevent influenza virus infection, CD8⁺ T cells that
333 display cross-reactivity against different subtypes of influenza virus have been linked to more
334 efficient clearance of virus and faster recovery from illness⁵⁸⁻⁶⁰. Indeed, prior immunity to human
335 seasonal viruses was not protective against α -swH1N2 airborne infection (Figure 3C and D).
336 Encouragingly, experimentally infected ferrets with pre-existing immunity were able to clear α -
337 swH1N2 faster and H1N1pdm09 immunity resulted in an overall decrease in virus shedding over
338 time (Figure 5B) and decreased lung pathology early during infection (Extended Data Fig. 5).
339 However, the lack of disease severity in immune animals may also provide an opportunity for this

340 virus to spread undetected and gain a foothold in the population, creating a pandemic risk. Taken
341 together, our data demonstrate that this α -swH1N2 virus strain poses a high pandemic risk that
342 warrants continued surveillance efforts to capture zoonotic events and an increased campaign to
343 vaccinate swine against this H1 clade to reduce the amount of virus in source populations.

344 **References**

345

346 1 Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution
347 and ecology of influenza A viruses. *Microbiol Rev* **56**, 152-179 (1992).
<https://doi.org:10.1128/mr.56.1.152-179.1992>

348

349 2 Mena, I. *et al.* Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. *Elife* **5**
350 (2016). <https://doi.org:10.7554/elife.16777>

351 3 Smith, G. J. *et al.* Origins and evolutionary genomics of the 2009 swine-origin H1N1
352 influenza A epidemic. *Nature* **459**, 1122-1125 (2009). <https://doi.org:10.1038/nature08182>

353 4 Arendsee, Z. W. *et al.* octoFLUshow: an Interactive Tool Describing Spatial and Temporal
354 Trends in the Genetic Diversity of Influenza A Virus in U.S. Swine. *Microbiol Resour
355 Announc* **10**, e0108121 (2021). <https://doi.org:10.1128/MRA.01081-21>

356 5 Anderson, T. K. *et al.* A Phylogeny-Based Global Nomenclature System and Automated
357 Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. *mSphere*
358 **1** (2016). <https://doi.org:10.1128/mSphere.00275-16>

359 6 Venkatesh, D., Anderson, T. K., Kimble, J. B., Chang, J., Lopes, S., Souza, C. K., Pekosz,
360 A., Shaw-Saliba, K., Rothman, R. E., Chen, K. F. and Lewis, N. Antigenic characterization
361 and pandemic risk assessment of North American H1 influenza A viruses circulating in
362 swine. *bioRxiv* 2022.05.04.490709 (2022).
<https://doi.org:https://doi.org/10.1101/2022.05.04.490709>

363

364 7 Venkatesh, D. *et al.* Antigenic Characterization and Pandemic Risk Assessment of North
365 American H1 Influenza A Viruses Circulating in Swine. *Microbiol Spectr* **10**, e0178122
366 (2022). <https://doi.org:10.1128/spectrum.01781-22>

367 8 Campbell, P. J. *et al.* The M segment of the 2009 pandemic influenza virus confers
368 increased neuraminidase activity, filamentous morphology, and efficient contact
369 transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. *J Virol* **88**, 3802-3814
370 (2014). <https://doi.org:10.1128/JVI.03607-13>

371 9 Chen, L. M. *et al.* In vitro evolution of H5N1 avian influenza virus toward human-type
372 receptor specificity. *Virology* **422**, 105-113 (2012).
<https://doi.org:10.1016/j.virol.2011.10.006>

373

374 10 Herfst, S. *et al.* Airborne transmission of influenza A/H5N1 virus between ferrets. *Science*
375 **336**, 1534-1541 (2012). <https://doi.org:10.1126/science.1213362>

376 11 Imai, M. *et al.* Experimental adaptation of an influenza H5 HA confers respiratory droplet
377 transmission to a reassortant H5 HA/H1N1 virus in ferrets. *Nature* **486**, 420-428 (2012).
<https://doi.org:10.1038/nature10831>

378

379 12 Lakdawala, S. S. *et al.* Eurasian-origin gene segments contribute to the transmissibility,
380 aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. *PLoS Pathog*
381 **7**, e1002443 (2011). <https://doi.org:10.1371/journal.ppat.1002443>

382 13 Pappas, C. *et al.* Receptor specificity and transmission of H2N2 subtype viruses isolated
383 from the pandemic of 1957. *PLoS One* **5**, e11158 (2010).
<https://doi.org:10.1371/journal.pone.0011158>

384

385 14 Roberts, K. L., Shelton, H., Scull, M., Pickles, R. & Barclay, W. S. Lack of transmission
386 of a human influenza virus with avian receptor specificity between ferrets is not due to
387 decreased virus shedding but rather a lower infectivity in vivo. *J Gen Virol* **92**, 1822-1831
388 (2011). <https://doi.org:10.1099/vir.0.031203-0>

389 15 Russier, M. *et al.* Molecular requirements for a pandemic influenza virus: An acid-stable
390 hemagglutinin protein. *Proc Natl Acad Sci U S A* **113**, 1636-1641 (2016).
391 <https://doi.org/10.1073/pnas.1524384113>

392 16 Steel, J., Lowen, A. C., Mubareka, S. & Palese, P. Transmission of influenza virus in a
393 mammalian host is increased by PB2 amino acids 627K or 627E/701N. *PLoS Pathog* **5**,
394 e1000252 (2009). <https://doi.org/10.1371/journal.ppat.1000252>

395 17 Van Hoeven, N. *et al.* Human HA and polymerase subunit PB2 proteins confer
396 transmission of an avian influenza virus through the air. *Proc Natl Acad Sci U S A* **106**,
397 3366-3371 (2009). <https://doi.org/10.1073/pnas.0813172106>

398 18 Yen, H. L. *et al.* Hemagglutinin-neuraminidase balance confers respiratory-droplet
399 transmissibility of the pandemic H1N1 influenza virus in ferrets. *Proc Natl Acad Sci U S
400 A* **108**, 14264-14269 (2011). <https://doi.org/10.1073/pnas.1111000108>

401 19 Zanin, M. *et al.* Pandemic Swine H1N1 Influenza Viruses with Almost Undetectable
402 Neuraminidase Activity Are Not Transmitted via Aerosols in Ferrets and Are Inhibited by
403 Human Mucus but Not Swine Mucus. *J Virol* **89**, 5935-5948 (2015).
404 <https://doi.org/10.1128/JVI.02537-14>

405 20 Zaraket, H. *et al.* Increased acid stability of the hemagglutinin protein enhances H5N1
406 influenza virus growth in the upper respiratory tract but is insufficient for transmission in
407 ferrets. *J Virol* **87**, 9911-9922 (2013). <https://doi.org/10.1128/JVI.01175-13>

408 21 Kimble, J. B. *et al.* Interspecies Transmission from Pigs to Ferrets of Antigenically Distinct
409 Swine H1 Influenza A Viruses with Reduced Reactivity to Candidate Vaccine Virus
410 Antisera as Measures of Relative Zoonotic Risk. *Viruses* **14** (2022).
411 <https://doi.org/10.3390/v14112398>

412 22 Hobson, D., Curry, R. L., Beare, A. S. & Ward-Gardner, A. The role of serum
413 haemagglutination-inhibiting antibody in protection against challenge infection with
414 influenza A2 and B viruses. *J Hyg (Lond)* **70**, 767-777 (1972).
415 <https://doi.org/10.1017/s0022172400022610>

416 23 Potter, C. W. & Oxford, J. S. Determinants of immunity to influenza infection in man. *Br
417 Med Bull* **35**, 69-75 (1979). <https://doi.org/10.1093/oxfordjournals.bmb.a071545>

418 24 Weis, W. *et al.* Structure of the influenza virus haemagglutinin complexed with its receptor,
419 sialic acid. *Nature* **333**, 426-431 (1988). <https://doi.org/10.1038/333426a0>

420 25 Job, E. R. *et al.* Addition of glycosylation to influenza A virus hemagglutinin modulates
421 antibody-mediated recognition of H1N1 2009 pandemic viruses. *J Immunol* **190**, 2169-
422 2177 (2013). <https://doi.org/10.4049/jimmunol.1202433>

423 26 Kobayashi, Y. & Suzuki, Y. Evidence for N-glycan shielding of antigenic sites during
424 evolution of human influenza A virus hemagglutinin. *J Virol* **86**, 3446-3451 (2012).
425 <https://doi.org/10.1128/JVI.06147-11>

426 27 Wanzeck, K., Boyd, K. L. & McCullers, J. A. Glycan shielding of the influenza virus
427 hemagglutinin contributes to immunopathology in mice. *Am J Respir Crit Care Med* **183**,
428 767-773 (2011). <https://doi.org/10.1164/rccm.201007-1184OC>

429 28 Tate, M. D. *et al.* Playing hide and seek: how glycosylation of the influenza virus
430 hemagglutinin can modulate the immune response to infection. *Viruses* **6**, 1294-1316
431 (2014). <https://doi.org/10.3390/v6031294>

432 29 Thompson, A. J. & Paulson, J. C. Adaptation of influenza viruses to human airway
433 receptors. *J Biol Chem* **296**, 100017 (2021). <https://doi.org/10.1074/jbc.REV120.013309>

434 30 Canales, A. *et al.* Revealing the Specificity of Human H1 Influenza A Viruses to Complex
435 N-Glycans. *JACS Au* **3**, 868-878 (2023). <https://doi.org/10.1021/jacsau.2c00664>

436 31 Chandrasekaran, A. *et al.* Glycan topology determines human adaptation of avian H5N1
437 virus hemagglutinin. *Nat Biotechnol* **26**, 107-113 (2008). <https://doi.org/10.1038/nbt1375>

438 32 Lakdawala, S. S. *et al.* The soft palate is an important site of adaptation for transmissible
439 influenza viruses. *Nature* **526**, 122-125 (2015). <https://doi.org/10.1038/nature15379>

440 33 Peng, W. *et al.* Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched
441 Human-type Receptors, Conferring Potential for Increased Avidity. *Cell Host Microbe* **21**,
442 23-34 (2017). <https://doi.org/10.1016/j.chom.2016.11.004>

443 34 Tang, J. W. The effect of environmental parameters on the survival of airborne infectious
444 agents. *J R Soc Interface* **6 Suppl 6**, S737-746 (2009).
445 <https://doi.org/10.1098/rsif.2009.0227.focus>

446 35 Kormuth, K. A. *et al.* Influenza Virus Infectivity Is Retained in Aerosols and Droplets
447 Independent of Relative Humidity. *J Infect Dis* **218**, 739-747 (2018).
448 <https://doi.org/10.1093/infdis/jiy221>

449 36 Kormuth, K. A. *et al.* Environmental Persistence of Influenza Viruses Is Dependent upon
450 Virus Type and Host Origin. *mSphere* **4** (2019). <https://doi.org/10.1128/mSphere.00552-19>

452 37 Russell, C. J., Hu, M. & Okda, F. A. Influenza Hemagglutinin Protein Stability, Activation,
453 and Pandemic Risk. *Trends Microbiol* **26**, 841-853 (2018).
454 <https://doi.org/10.1016/j.tim.2018.03.005>

455 38 Zaraket, H., Bridges, O. A. & Russell, C. J. The pH of activation of the hemagglutinin
456 protein regulates H5N1 influenza virus replication and pathogenesis in mice. *J Virol* **87**,
457 4826-4834 (2013). <https://doi.org/10.1128/JVI.03110-12>

458 39 Xu, R. *et al.* Functional balance of the hemagglutinin and neuraminidase activities
459 accompanies the emergence of the 2009 H1N1 influenza pandemic. *J Virol* **86**, 9221-9232
460 (2012). <https://doi.org/10.1128/JVI.00697-12>

461 40 Le Sage, V. *et al.* Pre-existing heterosubtypic immunity provides a barrier to airborne
462 transmission of influenza viruses. *PLoS Pathog* **17**, e1009273 (2021).
463 <https://doi.org/10.1371/journal.ppat.1009273>

464 41 Bodewes, R. *et al.* Prevalence of antibodies against seasonal influenza A and B viruses in
465 children in Netherlands. *Clin Vaccine Immunol* **18**, 469-476 (2011).
466 <https://doi.org/10.1128/CVI.00396-10>

467 42 Allen, J. D., Jang, H., DiNapoli, J., Kleanthous, H. & Ross, T. M. Elicitation of Protective
468 Antibodies against 20 Years of Future H3N2 Cocirculating Influenza Virus Variants in
469 Ferrets Preimmune to Historical H3N2 Influenza Viruses. *J Virol* **93** (2019).
470 <https://doi.org/10.1128/JVI.00946-18>

471 43 Carter, D. M. *et al.* Sequential seasonal H1N1 influenza virus infections protect ferrets
472 against novel 2009 H1N1 influenza virus. *J Virol* **87**, 1400-1410 (2013).
473 <https://doi.org/10.1128/JVI.02257-12>

474 44 Francis, M. E. *et al.* Historical H1N1 Influenza Virus Imprinting Increases Vaccine
475 Protection by Influencing the Activity and Sustained Production of Antibodies Elicited at
476 Vaccination in Ferrets. *Vaccines (Basel)* **7** (2019).
477 <https://doi.org/10.3390/vaccines7040133>

478 45 Kirchenbaum, G. A., Carter, D. M. & Ross, T. M. Sequential Infection in Ferrets with
479 Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-
480 Specific Antibodies. *J Virol* **90**, 1116-1128 (2016). <https://doi.org/10.1128/JVI.02372-15>

481 46 Arevalo, C. P. *et al.* Original antigenic sin priming of influenza virus hemagglutinin stalk
482 antibodies. *Proc Natl Acad Sci U S A* **117**, 17221-17227 (2020).
483 <https://doi.org/10.1073/pnas.1920321117>

484 47 Mueller Brown, K. *et al.* Secondary infection with *Streptococcus pneumoniae* decreases
485 influenza virus replication and is linked to severe disease. *FEMS Microbes* **3**, xtac007
486 (2022). <https://doi.org/10.1093/femsdc/xtac007>

487 48 Lewis, N. S. *et al.* The global antigenic diversity of swine influenza A viruses. *eLife* **5**,
488 e12217 (2016). <https://doi.org/10.7554/eLife.12217>

489 49 Cox, N. J., Trock, S. C. & Burke, S. A. Pandemic preparedness and the Influenza Risk
490 Assessment Tool (IRAT). *Curr Top Microbiol Immunol* **385**, 119-136 (2014).
491 https://doi.org/10.1007/82_2014_419

492 50 Organization, W. H. (2016).

493 51 Anderson, T. K. *et al.* Swine Influenza A Viruses and the Tangled Relationship with
494 Humans. *Cold Spring Harb Perspect Med* **11** (2021).
495 <https://doi.org/10.1101/cshperspect.a038737>

496 52 Kimble, J. B., Souza, C. K., Anderson, T. K., Arendsee, Z. W., Hufnagel, D. E., Young,
497 K. M., Lewis, N. S., Davis, C. T., Vincent Baker, A. L. Interspecies transmission from pigs
498 to ferrets of antigenically distinct swine H1 influenza A viruses with loss in reactivity to
499 human vaccine virus antisera as measures of relative zoonotic risk.
500 *bioRxiv* 2022.09.12.507661 (2022).
501 <https://doi.org/https://doi.org/10.1101/2022.09.12.507661>

502 53 Deroo, T., Jou, W. M. & Fiers, W. Recombinant neuraminidase vaccine protects against
503 lethal influenza. *Vaccine* **14**, 561-569 (1996). [https://doi.org/10.1016/0264-410x\(95\)00157-v](https://doi.org/10.1016/0264-410x(95)00157-v)

505 54 Kawai, A. *et al.* The Potential of Neuraminidase as an Antigen for Nasal Vaccines To
506 Increase Cross-Protection against Influenza Viruses. *J Virol* **95**, e0118021 (2021).
507 <https://doi.org/10.1128/JVI.01180-21>

508 55 McMahon, M. *et al.* Mucosal Immunity against Neuraminidase Prevents Influenza B Virus
509 Transmission in Guinea Pigs. *mBio* **10** (2019). <https://doi.org/10.1128/mBio.00560-19>

510 56 Wohlbold, T. J. *et al.* Vaccination with adjuvanted recombinant neuraminidase induces
511 broad heterologous, but not heterosubtypic, cross-protection against influenza virus
512 infection in mice. *mBio* **6**, e02556 (2015). <https://doi.org/10.1128/mBio.02556-14>

513 57 Nguyen, A. M. & Noymer, A. Influenza mortality in the United States, 2009 pandemic:
514 burden, timing and age distribution. *PLoS One* **8**, e64198 (2013).
515 <https://doi.org/10.1371/journal.pone.0064198>

516 58 McMichael, A. J., Gotch, F. M., Noble, G. R. & Beare, P. A. Cytotoxic T-cell immunity to
517 influenza. *N Engl J Med* **309**, 13-17 (1983).
518 <https://doi.org/10.1056/NEJM198307073090103>

519 59 Sridhar, S. *et al.* Cellular immune correlates of protection against symptomatic pandemic
520 influenza. *Nat Med* **19**, 1305-1312 (2013). <https://doi.org/10.1038/nm.3350>

521 60 Wang, Z. *et al.* Recovery from severe H7N9 disease is associated with diverse response
522 mechanisms dominated by CD8(+) T cells. *Nat Commun* **6**, 6833 (2015).
523 <https://doi.org/10.1038/ncomms7833>

524 61 Zhang, Y. *et al.* Influenza Research Database: An integrated bioinformatics resource for
525 influenza virus research. *Nucleic Acids Res* **45**, D466-D474 (2017).
<https://doi.org/10.1093/nar/gkw857>

527 62 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
528 improvements in performance and usability. *Mol Biol Evol* **30**, 772-780 (2013).
<https://doi.org/10.1093/molbev/mst010>

530 63 Minh, B. Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
531 Inference in the Genomic Era. *Mol Biol Evol* **37**, 1530-1534 (2020).
<https://doi.org/10.1093/molbev/msaa015>

533 64 Arendsee, Z. W., Baker, A.L.V. and Anderson, T.K. smot: a python package and CLI tool
534 for contextual phylogenetic subsampling. *Journal of Open Source Software* **7**, 4193 (2022).

535 65 Zeller, M. A., Anderson, T. K., Walia, R. W., Vincent, A. L. & Gauger, P. C. ISU FLUture:
536 a veterinary diagnostic laboratory web-based platform to monitor the temporal genetic
537 patterns of Influenza A virus in swine. *BMC Bioinformatics* **19**, 397 (2018).
<https://doi.org/10.1186/s12859-018-2408-7>

539 66 Myerburg, M. M., Harvey, P. R., Heidrich, E. M., Pilewski, J. M. & Butterworth, M. B.
540 Acute regulation of the epithelial sodium channel in airway epithelia by proteases and
541 trafficking. *Am J Respir Cell Mol Biol* **43**, 712-719 (2010).
<https://doi.org/10.1165/rmmb.2009-0348OC>

543 67 Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA
544 transfection system for generation of influenza A virus from eight plasmids. *Proc Natl
545 Acad Sci U S A* **97**, 6108-6113 (2000). <https://doi.org/10.1073/pnas.100133697>

546 68 Thompson, A. J. *et al.* Human Influenza Virus Hemagglutinins Contain Conserved
547 Oligomannose N-Linked Glycans Allowing Potent Neutralization by Lectins. *Cell Host
548 Microbe* **27**, 725-735 e725 (2020). <https://doi.org/10.1016/j.chom.2020.03.009>

549 69 Reed, L. J. a. M., H. A simple method of estimating fifty per cent endpoints. *Am. J.
550 Epidemiol.* **27**, 493-497 (1938). <https://doi.org/10.1093/oxfordjournals.aje.a118408>

551 70 Russier, M. *et al.* H1N1 influenza viruses varying widely in hemagglutinin stability
552 transmit efficiently from swine to swine and to ferrets. *PLoS Pathog* **13**, e1006276 (2017).
<https://doi.org/10.1371/journal.ppat.1006276>

554

555

556 **Acknowledgements**

557 This project has been funded in part with Federal funds from the National Institute of Allergy and
558 Infectious Diseases, National Institutes of Health, Department of Health and Human Services,
559 under Contract No. 75N93021C00015; the United States Department of Agriculture, Agricultural
560 Research Service, project number 5030-32000-231-000-D, Cystic Fibrosis Foundation Research
561 Development Program to the University of Pittsburgh, and Burroughs Wellcome CAMS
562 1013362.02 to AKM. We thank Dr. Daniel Perez for generously providing plasmids. We thank
563 Dr. Rachel Duron for critical review and feedback. The funders had no role in study design, data
564 collection and interpretation, or the decision to submit the work for publication. Mention of trade
565 names or commercial products in this article is solely for the purpose of providing specific
566 information and does not imply recommendation or endorsement by the USDA. USDA is an equal
567 opportunity provider and employer.

568

569 **Author Contributions**

570 VL and SSL designed the experiments, analyzed, interpreted the data and wrote the manuscript.
571 VL, NRC, KRM, AJF, MJS, RM, JEJ, SGW and LHR performed the experiments. JDD, LX, DJB,
572 SW, SAF, MMM, JCP, AKM, TKA and ALVB contributed resources and analysis. All authors
573 edited and approved the manuscript.

574

575 **Author Information**

576 The authors to declare no competing financial and/or non-financial interests in relation to the work
577 described.

578 **METHODS**

579

580 **Genetic analysis and strain selection.** All available swine H1 HA sequences from the USA
581 collected between January 2019 and December 2021 were downloaded from the Bacterial and
582 Viral Bioinformatics Research Center (BV-BRC)⁶¹. These data (n=2144) were aligned with the
583 World Health Organization (WHO)-recommended human seasonal H1 HA vaccine sequences and
584 candidate vaccine sequences. The swine and human IAV HA sequences were aligned using mafft
585 v7⁶², and a maximum likelihood phylogeny for the alignment was inferred, following automatic
586 model selection, using IQ-TREE v2⁶³ and visualized using smot v1.0.0⁶⁴ (Extended Data Fig. 2).
587 The evolutionary lineage and genetic clade of each swine HA gene was identified using the BV-
588 BRC Subspecies Classification tool, and the predominant clades and their geographic distribution
589 were identified^{4,65}. The 1A and 1B lineages were detected in the USA and the genetic clades
590 1A.3.3.3 (38%, n=806), 1B.2.1 (29%, n=622), 1A.3.3.2 (12%, n=263), 1A.1.1.3 (11%, n=233),
591 1B.2.2.1 (5%, n=109) and 1B.2.2.2 (3%, n=69) represented 98% of detections. Given human
592 variant detections, evidence for interspecies transmission, a significant reduction in cross-
593 reactivity to human seasonal vaccines or candidate vaccine viruses, and limited detection by
594 human population sera, we prioritized the 1A.1.1.3 and 1A.3.3.3 clades for characterization^{7,21}.
595 Representative selections within these clades were identified by generating an HA1 consensus
596 sequence and identifying the best-matched field strain to the consensus that had an NA and internal
597 gene constellation that reflected the predominant evolutionary lineages detected in surveillance
598 (1A.1.1.3/α-swH1N2, A/swine/Texas/A02245420/2020, 97.2% to HA1 consensus: and
599 1A.3.3.3/γ-swH1N1, A/swine/Minnesota/A02245409/2020, 98.5% to consensus). Furthermore,
600 the selected viruses had NA and internal gene patterns that matched the predominant evolutionary
601 lineages detected between 2019-2021 (<https://flu-crew.org/octoflushow/>). The 1A.1.1.3/α-
602 swH1N2 was paired with a N2-2002A gene with a TTTTPT internal gene constellation, and the
603 1A.3.3.3/γ-swH1N1 was paired with a N1-Classical gene with a TTPPT internal gene
604 constellation.

605

606 **Cells and viruses.** Madin Darby canine kidney (MDCK) epithelial cells (ATCC, CCL-34) were
607 maintained in Eagle's minimal essential medium supplemented with 10% fetal bovine serum,
608 penicillin/streptomycin and L-glutamine. Primary HBE cell cultures were derived from human

609 lung tissue that were differentiated and cultured at an air-liquid interface using a protocol approved
610 by the relevant institutional review board at the University of Pittsburgh⁶⁶. The influenza A virus
611 strains, A/swine/Texas/A02245420/2020 (α-swH1N2, 1A.1.1.3) and
612 A/swine/Minnesota/A02245409/2020 (γ-swH1N1, 1A.3.3.3) were obtained from the National
613 Veterinary Services Laboratories (NVSL) repository for the USDA IAV-S surveillance system.
614 Reverse genetic derived strains of A/California/07/2009 (H1N1pdm09) and A/Perth/16/2009
615 (H3N2) were a generous gift from Dr Jesse Bloom (Fred Hutch Cancer Research Center, Seattle)
616 and were rescued as previously described in⁶⁷.

617
618 **TCID₅₀ assay.** MDCK cells were seeded at a density of 10,000 cells per well in 96-well plate three
619 days prior to the assay. Cells were washed with sterile phosphate-buffered saline (PBS) followed
620 by addition of 180 μL of Eagle's minimal essential medium supplemented with Anti-Anti, L-
621 glutamine and 0.5 μg/mL TPCK-treated trypsin. 20 μL of virus was diluted in the first row and
622 tenfold serial dilutions on cells were performed. The assay was carried out across the plate with
623 the last row as the cell control without virus. The cells were incubated for 96 hours at 37°C in 5%
624 CO₂ and scored for cytopathic effect (CPE).

625
626 **Serological assays.** Hemagglutination inhibition (HAI) was used to assess the presence of
627 receptor-binding antibodies to HA protein from the selected viruses in human sera. Briefly, one-
628 part sera were treated with three parts receptor destroying enzyme (RDE) overnight at 37°C to
629 remove non-specific inhibitors. The following day, the sera was heat inactivated at 56°C for 30
630 minutes and six parts of normal saline added. In a V-bottom microtiter plate, two-fold serial
631 dilutions of RDE-treated sera were performed and incubated with eight hemagglutinating units of
632 virus for 15 minutes. Turkey red blood cells were added at a concentration of 0.5% and incubated
633 for 30 minutes. The reciprocal of the highest dilution of serum that inhibited hemagglutination was
634 determined to be the HAI titer. The titer of neutralizing antibodies was determined using the
635 microneutralization assay. Human or ferret sera was heat inactivated at 56°C for 30 minutes and
636 serially diluted 2-fold in a 96-well flat-bottom plate. 10^{3.3} TCID₅₀ of influenza virus was incubated
637 with the sera for 1 hour at room temperature before being transferred to a 96-well plate on
638 confluent MDCK cells. Sera was maintained for the duration of the experiment and CPE was
639 determined on day 4 post-infection. The neutralizing titer was expressed as the reciprocal of the

640 highest dilution of serum required to completely neutralize the infectivity of $10^{3.3}$ TCID₅₀ of virus
641 on MDCK cells. The concentration of antibody required to neutralize 100 TCID₅₀ of virus was
642 calculated based on the neutralizing titer dilution divided by the initial dilution factor, multiplied
643 by the antibody concentration.

644

645 **Glycan array.**

646 Glycan arrays were prepared as previously described^{33,68}. Briefly, glycans were prepared at 100
647 μ M in 150 mM Na₃PO₄ buffer (pH 8.4) and printed onto NHS-activated glass microscope slides
648 (SlideH, Schott) using a MicroGridII (Digilab) contact microarray printer equipped with Stealth
649 Microarray Pins (SMP3, ArrayIt). Residual NHS was blocked by treatment with 50mM
650 ethanolamine in 50mM borate buffer, pH 9.2 for 1 hour and washed with water. Slides were
651 centrifuged to remove excess water and were stored at -20C. For analysis of receptor specificity
652 glycan arrays were overlayed with culture fluid containing intact influenza virus prepared in
653 MDCK cells for one hour at room temperature. Slides were then washed with phosphate buffered
654 saline (PBS) and water, followed by incubation with biotinylated Galanthus Novalis Lectin
655 (GNL; Vector Labs) at 1ug/mL in 1X PBS for one hour⁶⁸. Slides were washed with PBS and
656 overlayed with 1 μ g/ml Streptavidin-AlexaFluor488 (LifeTech) for one hour, and washed with
657 PBS and water. Slides were then scanned using an Innoscan 1100AL microarray scanner
658 (Innopsys). Signal values are calculated from the mean intensities of 4 of 6 replicate spots with the
659 highest and lowest signal omitted and graphed.

660

661 **Replication kinetics.** Four different HBE patient cell cultures were used (HBE0344, HBE0338,
662 HBE0342, HBE0370). The apical surface of the HBE cells was washed in PBS and 10^3 TCID₅₀ of
663 virus was added per 100 μ L of HBE growth medium. After 1 hour incubation, the inoculum was
664 removed and the apical surface was washed three times with PBS. At the indicated time points,
665 150 μ L of HBE medium was added to the apical surface for 10 minutes to capture released virus
666 particles. The experiment was performed in triplicate in at least three different patient cell cultures.
667 Infectious virus was quantified by TCID₅₀ using the endpoint method⁶⁹.

668

669 **Enzyme-linked lectin assay (ELLA).** The neuraminidase activity was determined using a peanut-
670 agglutinin based ELLA. A 96-well ultra-high binding polystyrene plate was coated with 25 μ g/mL

671 of fetuin diluted in coating buffer overnight at 4°C and the excess fetuin was removed using wash
672 buffer (0.01M PBS, pH 7.4, 0.05% Tween 20). Two-fold serial dilutions of $10^{7.5}$ TCID₅₀/mL virus
673 stock or 62.5 mU/mL *Clostridium perfringens* neuraminidase (to standardize the viruses between
674 different plates) were performed in a 96-well plate. Serial dilutions were then transferred to the
675 plates coated with fetuin and incubated overnight at 37°C. Plates were thoroughly washed 6 times
676 with wash buffer and incubated in the dark at room temperature with peroxidase-labeled peanut
677 agglutinin solution for 2 hours. O-phenylenediamine dihydrochloride substrate was added for 10
678 minutes to and the reaction was stopped using sulfuric acid. Absorbance was read at 490 nm. NA
679 activity was assayed in duplicate and performed in three independent replicates.

680

681 **pH inactivation assay.** The pH of inactivation assay⁷⁰ was used to determine the pH at which HA
682 undergoes its irreversible conformational change. 10 μ L of virus stock was incubated in 990 μ L
683 of PBS adjusted to the indicated pH values for 1 hour at 37 °C and immediately neutralized by
684 titering on MDCK cells using the TCID₅₀ endpoint titration method⁶⁹ to determine the remaining
685 infectious virus titer. The pH that reduced the titer by 50 % (EC₅₀) was calculated by regression
686 analysis of the dose-response curves. Each experiment was performed in triplicate in at least three
687 independent biological replicates.

688

689 **Stability of stationary droplets.** Desiccator chambers containing saturated salt solutions of
690 potassium acetate, potassium carbonate, magnesium nitrate or sodium chloride were equilibrated
691 to 23%, 43%, 55% or 75% relative humidity (RH), respectively. Ten 1 μ L droplets of HBE-
692 propagated virus were spotted onto a 6-well plate in duplicate and immediately incubated in the
693 desiccator chamber for 2 hours. Chambers were maintained in a biosafety cabinet for the duration
694 of the experiment and a HOBO UX100011 data logger was used to collect RH and temperature
695 data. After 2 hours, the droplets were collected in 500 μ L of L-15 medium, which was titrated on
696 MDCK cells using the TCID₅₀ endpoint method⁶⁹. Decay was determined by subtracting the titer
697 of the virus aged for 2 hours from the titer of the virus that had been deposited and then
698 immediately recovered.

699

700 **Animal ethics statement.** Ferret experiments were conducted in a BSL2 facility at the University
701 of Pittsburgh in compliance with the guidelines of the Institutional Animal Care and Use

702 Committee (approved protocol 22061230). Animals were sedated with isoflurane following
703 approved methods for all nasal washes and survival blood draws. Ketamine and xylazine were
704 used for sedation for all terminal procedures, followed by cardiac administration of euthanasia
705 solution. Approved University of Pittsburgh Division of Laboratory Animal Resources (DLAR)
706 staff administered euthanasia at time of sacrifice.

707

708 **Human subjects research ethics statement.** Human serum samples used in this study were
709 collected from healthy adult donors who provided written informed consent for their samples to
710 be used in infectious disease research. The University of Pittsburgh Institutional Review Board
711 approved this protocol (STUDY20030228). All participants self-reported their age, sex, race,
712 ethnicity, residential zip code, history of travel and immunization. HBE cultures are obtained from
713 deidentified patients (STUDY19100326) and provided from the tissue airway core to for these
714 studies.

715

716 **Ferret screening.** Four- to six-month-old male ferrets were purchased from Triple F Farms (Sayre,
717 PA, USA). All ferrets were screened by HAI for antibodies against circulating influenza A and B
718 viruses, as described in ‘Serology’ section. The following antigens were obtained through the
719 International Reagent Resource, Influenza Division, WHO Collaborating Center for Surveillance,
720 Epidemiology and Control of Influenza, Centers for Disease Control and Prevention, Atlanta, GA,
721 USA: 2018–2019 WHO Antigen, Influenza A (H3) Control Antigen (A/Singapore/INFIMH-16-
722 0019/2016), BPL-Inactivated, FR-1606; 2014–2015 WHO Antigen, Influenza A (H1N1)pdm09
723 Control Antigen (A/California/07/2009 NYMC X-179A), BPL-Inactivated, FR-1184; 2018–2019
724 WHO Antigen, Influenza B Control Antigen, Victoria Lineage (B/Colorado/06/2017), BPL-
725 Inactivated, FR-1607; 2015–2016 WHO Antigen, Influenza B Control Antigen, Yamagata
726 Lineage (B/Phuket/3073/2013), BPL-Inactivated, FR-1403.

727

728 **Ferret infections.** To generate ferrets with pre-existing immunity against seasonal influenza
729 viruses, ferrets were inoculated intranasally with 10^6 TCID₅₀ in 500 μ L (250 μ L in each nostril) of
730 recombinant A/California/07/2009 or A/Perth/16/2009. These animals were allowed to recover
731 and housed for 126 to 137 days before acting as a recipient in a transmission experiment or being
732 similarly infected with A/swine/Texas/A02245420/2020.

733

734 **Transmission studies.** The transmission cage setup was a modified Allentown ferret and rabbit
735 bioisolator cage^{12,32}. For each study, four ferrets were anesthetized with isoflurane and inoculated
736 intranasally with 10^6 TCID₅₀ in 500 μ L (250 μ L in each nostril) of
737 A/swine/Texas/A02245420/2020 to act as donors. Twenty-four hours later, a naïve or immune
738 recipient ferret was placed into the adjacent cage, which is separated by two staggered perforated
739 steel plates welded together one inch apart with directional airflow from the donor to the recipient.
740 Recipients were exposed to the donors for 2 days with nasal washes being collected from each
741 donor and recipient every other day for 11 days. For the transmission chain experiment (Figure 4),
742 after the initial 2-day exposure, the recipients were transferred to the donor side of a new
743 transmission cage where a naïve recipient ferret was on the other side of the divider. These animals
744 were subsequently singled housed following 48 hours. To prevent accidental contact or fomite
745 transmission by investigators, the recipients were handled first and extensive cleaning of gloves,
746 sedation chamber, biosafety cabinet, and temperature monitoring wand was performed between
747 each pair of animals. Sera from donor and recipient ferrets were collected upon completion of
748 experiments to confirm seroconversion. To ensure no accidental contact or fomite transmission
749 during husbandry procedures, recipient animal sections of the cage were cleaned prior to the donor
750 sides, with one cage being done at a time. Fresh scrapers, gloves, and sleeve covers were used for
751 each subsequent cage cleaning. Clinical symptoms such as weight loss and temperature were
752 recorded during each nasal wash procedure and other symptoms such as sneezing, coughing,
753 activity, diarrhea or nasal discharge were noted during any handling events. Once animals reached
754 10% weight loss, their feed was supplemented with A/D diet twice a day to entice eating. Clinical
755 scoring was previously described in⁴⁷.

756

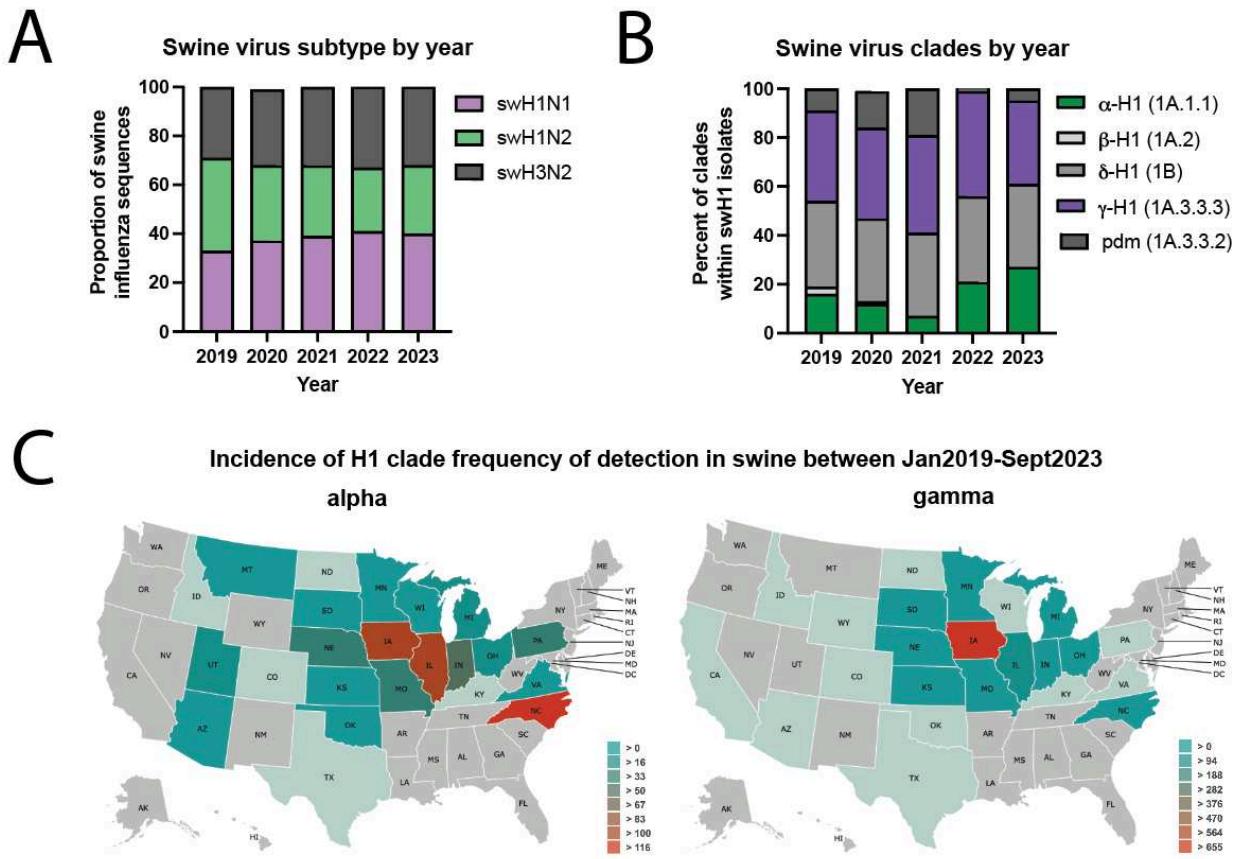
757 **Tissue collection and processing.** The respiratory tissues were collected from euthanized ferrets
758 aseptically in the following order: entire right middle lung, left cranial lung (a portion equivalent
759 to the right middle lung lobe), one inch of trachea cut lengthwise, entire soft palate, and nasal
760 turbinates, as described previously in³². Tissue samples were weighed, and Leibovitz's L-15
761 medium was added to make a 10% (lungs) or 5% (trachea) w/v homogenate. Tissues were
762 dissociated using an OMNI GLH homogenizer (OMNI International) and cell debris was removed
763 by centrifugation at 900 xg for 10 minutes. Influenza virus titers were determined by endpoint

764 TCID₅₀ assay⁶⁹. The lungs were fixed in 10% neutral buffered formalin and subsequently
765 processed in alcohols for dehydration and embedded in paraffin wax. Sections were stained with
766 haematoxylin and eosin (H&E). The sections were examined ‘blind’ to experimental groups to
767 eliminate observer bias by a board-certified animal pathologist (LHR).

768

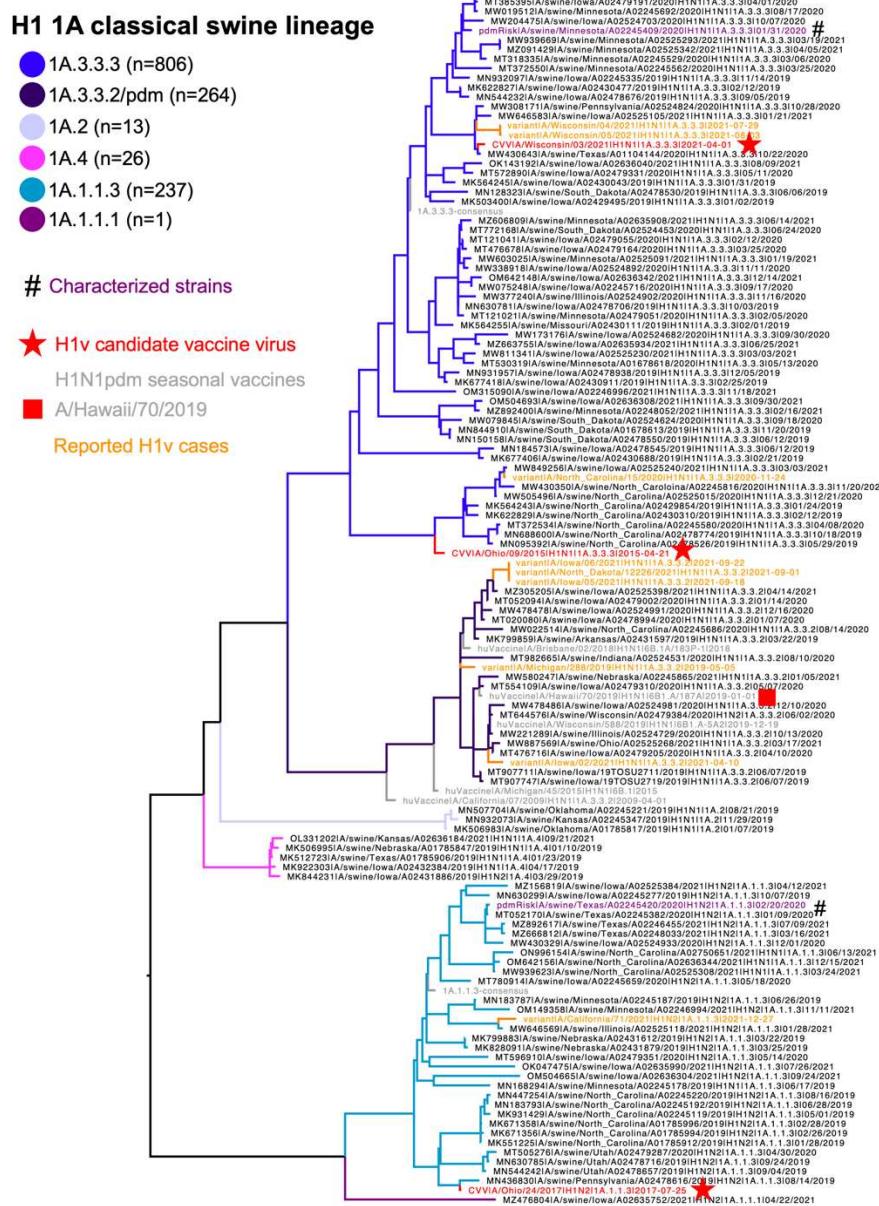
769 **Data availability.** The raw data generated and analyzed during the current study have been
770 archived on FigShare ([10.6084/m9.figshare.c.6982905](https://doi.org/10.6084/m9.figshare.c.6982905)). Phylogenetic analyses and associated
771 strain selection data are archived at <https://github.com/flu-crew/datasets>

Extended Data Table 2: Serology of donor and recipient ferrets for each transmission study									
Figure	Virus	Status	Transmission efficiency	α -swH1N2 MN titers (D0)	α -swH1N2 MN titers (D14)	α -swH1N2 MN titers (D21)	H1N1pdm09/H3N2 MN titers (D0)	H1N1pdm09/H3N2 MN titers (D14)	H1N1pdm09/H3N2 MN titers (D21)
3A	α -swH1N2	INF	<20, <20, <20, <20	80, 113, 320, 202	NA	ND	ND	ND	ND
		Naïve	4/4	<20, <20, <20, <20	113, 40, 80, 80	1016, 806, 905, 905	NA	NA	NA
3B	α -swH1N2	INF	NA	NA	NA	NA	NA	NA	NA
		H3N2-imm	4/4	<20, <20, <20, <20	403, 453, 453, 453	905, 806, 1280, 640	226, 254, 1016, 320	2032, 905, 1016, 806	3620, 806, 320, 640
3C	α -swH1N2	INF	NA	NA	NA	NA	ND	ND	ND
		H1N1pdm09-imm	4/4	<20, <20, <20, <20	50, 40, 40, 20	2560, 3620, 640, 905	7241, 2560, 2560, 2032	12902, 14482, 10240, 14482, 14482, 7241, 12902	
4B	α -swH1N2	INF	NA	NA	NA	ND	ND	ND	ND
		H1N1pdm09-imm	2/4	<20, <20, <20, <20	1016, 806, <20, <20	1613, 640, <20, <20	1280, 640, 3225, 3225	14482, 10240, 2560, 2560	8127, 10240, 2560, 3620
4C	α -swH1N2	INF	NA	NA	NA	NA	NA	NA	NA
		H1N1pdm09-imm	1/4	<20, <20, <20, <20	<20, 403, <20, <20	<20, 640, <20, <20	NA	NA	NA
4C	α -swH1N2	INF	<20, <20, <20, <20	3620, 3225, 1613, 2032	ND	ND	ND	ND	ND
		H1N1pdm09-imm	4/4	<20, <20, <20, <20	508, 905, 806, 905	806, 1280, 905, 1810	1280, 1280, 1280, 5120	14482, 14482, 14482, 14482	12902, 7241, 10240, 14482
4D	α -swH1N2	INF	NA	NA	NA	NA	NA	NA	NA
		H1N1pdm09-imm	2/4	<20, <20, <20, <20	<20, <20, 1613, 806	<20, <20, 1280, 905	ND	ND	ND
4D	α -swH1N2	INF	NA	NA	NA	NA	NA	NA	NA
		H1N1pdm09-imm	3/3	<20, <20, <20, <20	905, 508, 640	ND	ND	ND	ND
S4	α -swH1N2	INF	NA	NA	NA	NA	ND	ND	ND
		H3N2-imm	2/4	<20, <20, <20, <20	<20, <20, 508, 1810	<20, <20, 1016, 403	453, 453, 3225, 403	508, 640, 14482, 806	508, 453, 14482, 2032

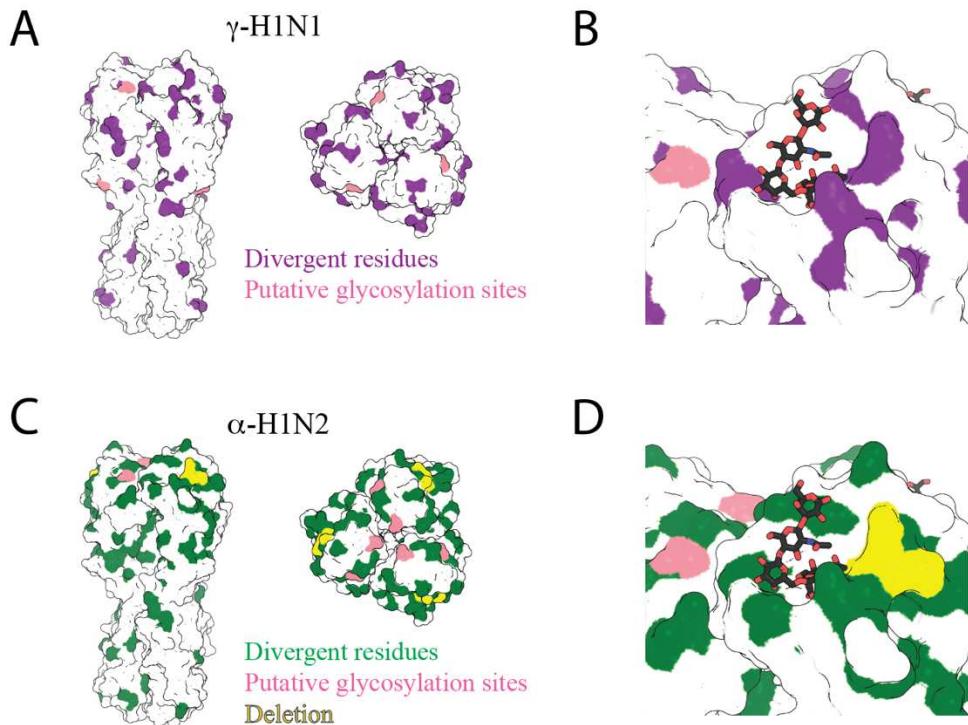

ND = Not determined; NA = Not available, as animals were euthanized at endpoint prior to day 14

MN = microneutralization

772

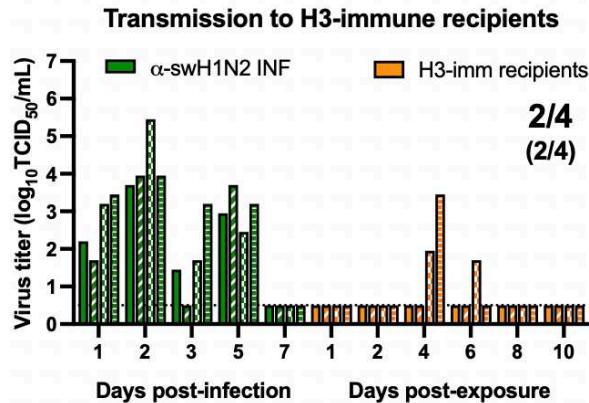

773

774


Extended Data Figure 1. Influenza A virus detected in swine between January 2019 and September 2023 in the USA. (A) Influenza A virus subtype detection proportions. **(B)** H1 influenza A virus hemagglutinin clade detection proportions. pdm; pandemic. Data for A and B obtained from octoFLUshow⁴. **(C)** Detections of α -swH1N2 (alpha) and γ -swH1N1 (gamma) influenza A virus in swine across the United States between 2019 and 2021. Data retrieved from ISU FLUture⁶⁵ on September 30, 2023.

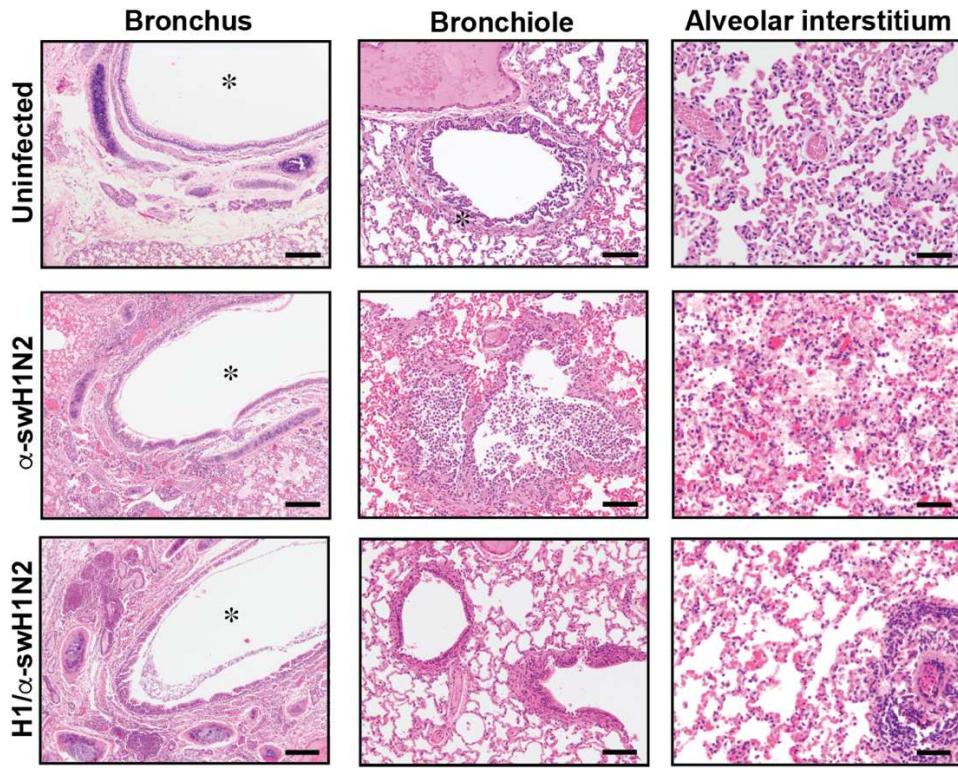
775

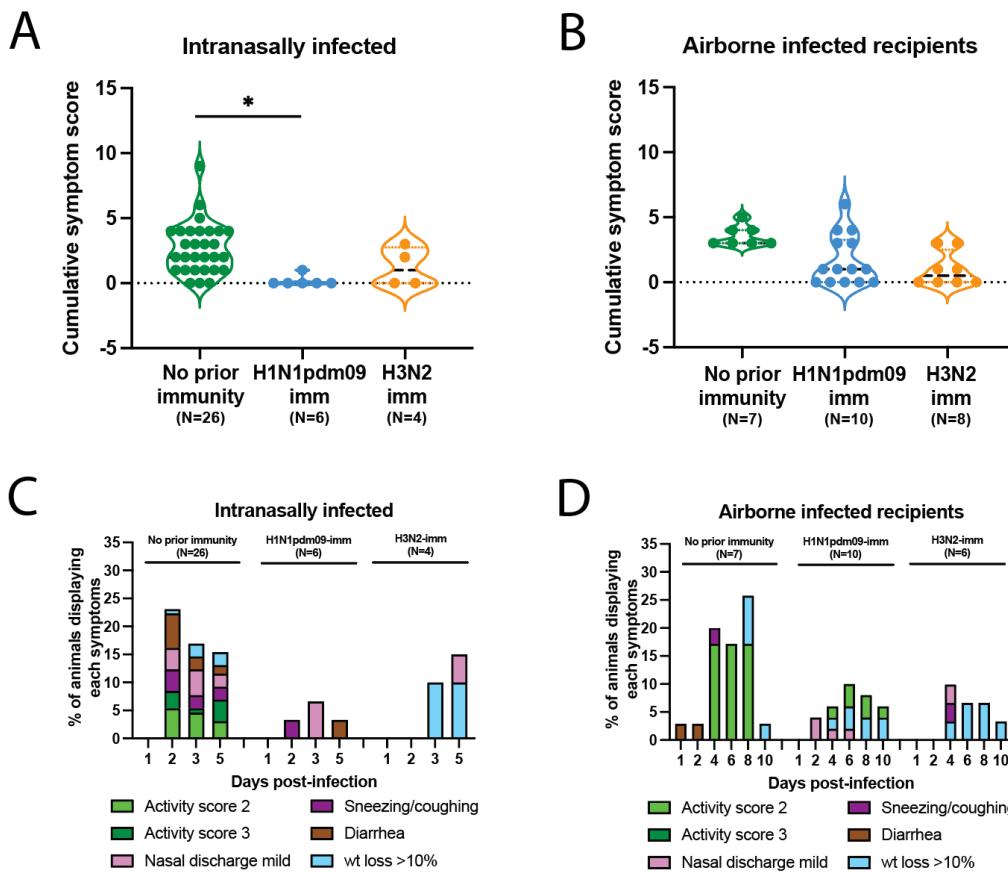
776
777
778
779
780
781
782
783
784
785
786
787


Extended Data Figure 2. Representative phylogenetic relationships of North American swine H1 1A classical swine lineage influenza A viruses from 2019 to 2021. Each genetic clade was proportionately down sampled using smot⁶⁴ and branches were colored. Swine influenza A virus strains characterized are marked by hash signs (#) and colored purple with the genetic clade consensus colored gray. The numbers in parentheses in the color key indicate number of each genetic clade detected between 2019 and 2021. Human seasonal H1 vaccine strains were colored gray; candidate vaccine viruses were colored red; and reported H1 variant cases detected between 2019 and 2021 were colored orange. The tree was midpoint rooted; all branch lengths are drawn to scale, and the scale bar indicates the number of nucleotide substitutions per site. The complete H1 phylogeny and input data are presented at <https://github.com/flu-crew/datasets>.

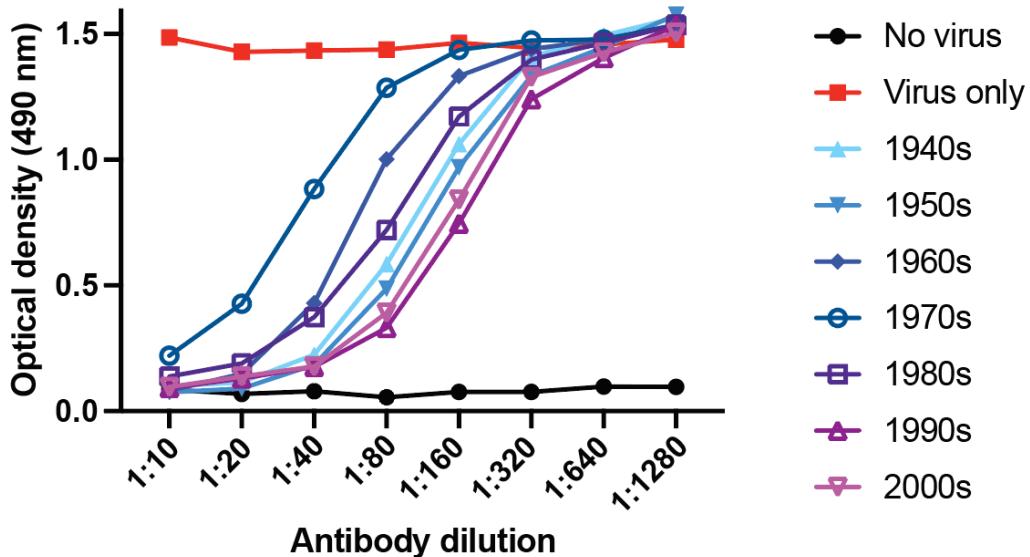
Extended Data Figure 3. HA structure comparison between H1N1pdm09 and swine viruses. **(A)** Top and side views of a surface representation of HA colored to compare the amino acid sequence of H1N1pdm09 HA and γ -swH1N1. Differences in amino acid sequences are represented in purple and differential putative glycosylation sites are colored pink. **(B)** γ -swH1N1 receptor binding site including α 2-6-linked SA (sticks). **(C)** Top and side views of a surface representation of HA comparing the amino acid sequence of H1N1pdm09 HA and α -swH1N2. Differences in amino acid sequences are represented in green and differential putative glycosylation sites are colored pink. The two amino acid residue deletion at residue 133 and 133a (H3N2 numbering) in α -swH1N2 HA are highlighted in yellow. **(D)** α -swH1N2 receptor binding site including α 2-6-linked SA (sticks). Images created in PyMOL and is based on PDB 3UBE.

788


789


Extended Data Figure 4. α -swH1N2 transmission to H3N2-imm recipients. Four ferrets were infected with H3N2 A/Perth/16/2009 strain (H3N2-imm) 137 days prior to acting as recipients to α -swH1N2 infected donors. Four donor ferrets were infected with α -swH1N2 and H3N2-imm recipients were placed in the adjacent cage 24 hours later. Nasal washes were collected from all ferrets on the indicated days and titered for virus by TCID₅₀. Each bar indicates an individual ferret. For all graphs, the number of recipient ferrets with detectable virus in nasal secretions out of four total is shown; the number of recipient animals that seroconverted at 14- or 21-days post α -swH1N2 exposure out of four total is shown in parentheses. Gray shaded box indicates shedding of the donor during the exposure period. The limit of detection is indicated by the dashed line.

790


791

Extended Data Figure 5. Lung pathology caused by swine α -H1N2 influenza virus is more severe in ferrets with no prior immunity. Lungs from uninfected or α -swH1N2 infected ferrets without or with H1N1pdm09 pre-existing immunity (from Figure 5D) were harvested at 3 dpi. Histopathology was examined by H&E staining. N=2 for each group. Bronchus and bronchiole are at 20x magnification and alveolar interstitium is at 10x. Scale bar is 100 μ m for bronchus and bronchiole and 200 μ m for alveolar interstitium.

Extended Data Figure 6. Pre-existing H1N1pdm09 immunity reduces swine α-H1N2 influenza virus clinical signs. **(A)** The symptoms for each intranasally α-swH1N2-infected ferret from Figures 3, 4 and 5 having either no prior immunity (N=22), H1N1pdm09-imm (N=6) or H3N2-imm (N=4) were added together to assign each animal a cumulative score. Each dot represents the cumulative symptoms score for a single ferret. Two-way ANOVA analysis was used to determine statistically significant differences (* p<0.05). **(B)** The symptoms for each airborne α-swH1N2-infected ferret from Figures 3 and 4 having either no prior immunity (N=7), H1N1pdm09-imm (N=10) or H3N2-imm (N=4) were added together to assign each animal a cumulative score. Each dot represents the cumulative symptoms score for a single ferret. **(C)** Percent number of intranasally infected ferrets from panel A displaying each symptom on the indicated days post-infection. **(D)** Percent number of recipient ferrets from panel B displaying each symptom on the indicated days post-exposure.

Extended Data Figure 7. Detection of human anti-NA antibodies that block NA activity.

Serially diluted human sera, pooled by birth year, was incubated with an H9 reassortant bearing a NA antigens from A/swine/NY/A01104005/2011. Inhibition of NA activity was tested using fetuin substrate coated plates. Negative control with PBS only (no virus) and positive control with no serum were added as comparators. The data are representative of three experiments run in duplicate.