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Abstract
Functional connectivity holds promise as a biomarker of psychiaric disorders. Yet, its high
dimensionality, combined with small sample sizes in clinical research, increases the risk of
overfitting when the aim is prediction. Recently, low-dimensional representations of the connectome
such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting
consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown
which of these derived measures has the highest predictive capacity and how they compare to raw
connectivity. Our study evaluates which connectome features — functional connectivity, gradients,
or gradient dispersion — best identify schizophrenia. Figure 1 summarizes this work.

Surprisingly, our findings indicate that functional connectivity outperforms its low-dimensi onal
derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia.
Additionally, we demonstrated that the edges which contribute the most to classification performance

are the ones connecting primary sensory regions.
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Figure 1. Overview of the methods and main outcome of the paper. Schematic images: Flaticon.com. NC: neurotypical
controls, SCZ: patients with schizophrenia.

|. Introduction

Functional connectivity holds promise as a potential biomarker for psychiatric disorders™, as
evidenced by a robust body of literature that highlights distinct functional profiles between patients
with schizophrenia and neurotypical individuals. Prior studies have reported lower connectivity
across regions, reduced small-worldness of the resting state networks, and lower functional network
segregation® . However, the high dimensionality of connectivity data, combined with small sample
sizesin clinical research, poses a risk of overfitting when the aim is prediction®®.

Recently, low-dimensional representations of the connectome such as macroscale cortical

s and gradient dispersion'>? have been proposed. The gradients are derived from

gradient
functional connectivity matrices through dimensionality reduction with the aim to maximize the
cumulative amount of variance explained by the resulting components. The first component (or the

principal gradient) reflects the functional hierarchy of the cortex®'*3

, Spanning from the primary
sensory (unimodal) regions to higher-order (transmodal) regions. It has been demonstrated to be
consistent across individuals™.

Dong et al.*® revealed that the principal gradient is contracted in schizophrenia, i.e., the primary
sensory regions were closer to the higher-order regions in terms of their functiona profile, as
indicated by their principal gradient values. This finding indicates lower functional differentiation
between uni- and transmodal regions. Based on the gradient framework, more differences in the
cortical functional hierarchy between neurotypical individuals and subjects with neurodevel opmental

and psychiatric disorders have been reported*?41-8,
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As an extension of the gradient framework, gradient dispersion further quantifies the density of
local connectivity, known as functional modularity. Specifically, higher dispersion would indicate
lower functional modularity within the cluster, whereas lower dispersion would mean higher
modularity. Thus, gradient dispersion characterizes functional differentiation across the cortical
hierarchy. This measure is of interest to us since changes in the functional hierarchy of the cortex are
reported to be idiosyncratic to schizophrenia® %%,

Nevertheless, it is unknown if these connectivity derivatives can discriminate between patients
with schizophrenia and neurotypical individuals, or if they outperform raw connectivity. Here, we
attempt to identify the features with the largest biomarker potential from a large set of features
including functional connectivity, gradients, and gradient dispersion. In addition, we explore the
impact of the number of features on the choice of classifier. We also seek to address the question
germane to neuroscience and computational psychiatry: when one has a limited number of subjects
and a disproportionately rich set of independent variables, how does one justify the choice of

features? Additionally, we elaborate on putative functional underpinnings of schizophrenia based on

the features with the highest predictive potential.

Il. Methods

Data & Preprocessing

The present study's sample was derived from three open-source datasets: COBRE?, LA5c study from
UCLA Consortium for Neuropsychiatric Phenomics?, and SRPBS multidisorder MRI dataset®. All
data were acquired in accordance with the Declaration of Helsinki. The links to the datasets are
provided in the data availability statement below.

The initial cohort for our investigation consisted of 996 individuals; subsequently, 40 subjects
were excluded from analysis due to substantial motion artifacts (average framewise displacement

(FD) > 0.5mm). The analyzed sample comprised 248 patients with schizophrenia (SCZ) and 688


https://doi.org/10.1101/2024.01.05.573898
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.05.573898; this version posted January 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

neurotypical controls (NC; see Table 1). The scanning parameters of each dataset are reported in
Supplementary Table 1.

Preprocessing of MRI data was done using fMRIPrep 20.2.1* which is based on Nipype 1.5.1%
(Supplementary Methods 1). The preprocessed BOLD time series were parcellated with the Schaefer
parcellation (1000 parcels, 7 Yeo networks)®. Then, we computed a connectivity matrix (Pearson

correlation) for each subject.

Table 1: Demographic datistics of the sanmple. * These datasets are part of a larger dataset, SPRBS-1600. FD: framewise

displacement.
COBRE LA5c KTT* KUT* SWA* uTto*
Nscz (248) 59 45 46 43 19 36
Nyc (688) 81 102 75 159 101 170
Mean age (std) | 37.3(125) 32.3(8.8) 322(102) 37.7(132) 30.7(95 349(16.5)
Sex: female (male) | 33 (107) 59 (88) 47 (74) 89 (113) 19 (101) 104 (102)
Mean FD (std), mm | 0.27 (0.11) 0.17(0.09) 0.11(0.05) 0.15(0.07) 0.16(0.08) 0.13(0.07)

Macroscale Cortical Gradients

For each subject, we computed cortical gradients by applying the principal component analysis
(PCA) to the Fisher z-transformed and thresholded connectivity matrix (Figure 2A). Hong et a.**
showed that PCA, when applied to thresholded connectivity matrices, yields more reliable gradients
compared to the other dimensionality reduction techniques frequently featured in the gradient
literature'®?"?®. We thresholded the connectivity matrices by discarding 90% of the lowest
correlation values including negative values. We used Procrustes alignment to align the gradients of
all subjects®. To avoid introducing dataset-specific bias to the alignment, we used the gradients
computed from the group connectivity matrix of the Human Connectome Project (HCP)® as
reference gradients. Figure 2B displays mean variance explained across all subjects for 200 gradients.
On average, the principal gradient accounted for ~6% of variance of thresholded connectivity

matrices. Collectively, 200 gradients accounted for ~80% of variance.
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Figure2. A: Parcellated time series (Schaefer atlas, 1000 parcels, 7 Yeo networks™) of each subject were correlated to
produce a 1000 x 1000 connectivity matrix. Principal component analysis (PCA) was applied to the thresholded matrix to
extract 200 gradients. B: Variance explained by 200 gradients, mean across subjects + 1 s.d.

Centroid Dispersion

Gradient dispersion has been quantified before with different approaches™'#*. These prior
investigations, akin to the present study, used dispersion to operationalize functional modularity
across the cortex. However, these methods necessitated the identification of centroids of networks for
which dispersion was computed relative to the regions encompassed within the network. Thus,

dispersion values were only assigned to centroids and categorized as within- or between-network

dispersion.
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Following this procedure, we computed within- and between-network dispersion for seven Y eo
networks® in the 3-dimensional gradient space. Within-network dispersion was quantified as the sum
of squares of Euclidean distances from the centroid of the network to the rest of its regions. For the
gradient values belonging to a given network, the centroid was defined as three median values of the
first three cortical gradients, as in Bethlehem et al.™"; the position of the centroid in the 3D latent
gradient space is defined by these three values. Between-network dispersion was defined as the
Euclidean distance between the network centroids. Thus, centroid dispersion amounted to 28 values
per subject: 7 values for within-network and 21 values for between-network dispersion. Centroid

dispersion is schematically illustrated in Figure 4B (right).

Neighborhood dispersion

Centroid dispersion can vary depending on how the networks are delineated (e.g., if a different
number of networks is used). Hence, we computed neighborhood dispersion with the aim to
circumvent this potential confounding factor. Specifically, we calculated dispersion for individual
regions which enabled us to maintain the spatial resolution congruent with the gradients (1000
regions per measure).

To compute neighborhood dispersion for every region, we identified K closest neighboring
regions (Figure 3) via the K-Nearest Neighbors (KNN) algorithm. Then, we computed the mean
Euclidean distance between the focal region and its designated neighboring regions in the gradient
space. The resulting value quantified dispersion for that specific region. Neighborhood dispersion
was computed for combinations of gradients spanning from 1 to 200.

Unlike previous investigations where the primary source of variability in dispersion originated
from network delineation, our study has its own unique challenge in determining the number of the
nearest neighbors (K). To address this issue, we included all dispersion values computed based on a
range of nearest neighbors from 10 to 170 with a step size of 40. Basing the calculation of dispersion

on differing sets of gradients (each including up to 200 gradients), we derived 1000 x 200 x 5 =
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1,000,000 dispersion values, which we then used as input to our analytic workflow (along with

flattened connectivity matrices and gradients).
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Figure 3. lllustration of neighborhood dispersion. A: In a multidimensional gradient embedding, for a given region (red)
K closest neighbors are identified (blue). These regions are shown within the black circle. B: Gradient (neighborhood)
dispersion of a given region is the mean distance between said region and its K closest neighbors. The same operationiis
donefor every region (N regions = 1000).

Analytic Workflow

The objective of our workflow was to identify the features with the largest predictive capacity from
an extensive array of connectivity-based features. Our dataset included vectorized connectivity
matrices (N = 499,500), 200 gradients (N = 200,000; 200 values for each region), neighborhood
dispersion (N = 1,000,000) and centroid dispersion (N = 28). The schematic representation of the
feature selection procedure is depicted in Figure 4. For each participant, we combined all features
into one flat vector. Then, we concatenated the vectors for al 936 participants, resulting in a matrix
of size [936 x 1,699,528] (Figure 4B, 1). Next, we applied principa component analysis (PCA) to
each type of features separately and retained 20% of variance for each type (effectively compressing
the feature dimension), except for the centroid dispersion for which all variance was included (Figure

4B, 2). The aim of the decomposition was to retain the same amount of variance for all feature types
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and to ensure that for each feature type more than one component is extracted when applying PCA.
We retained 149 components in total (Nconn = 7, Ngad = 72, Neentroid disp = 28, Neortex_dgisp = 42; Figure
4B, 2.). The decomposed dataset was divided into the train (75% of participants) and holdout (25%)
sets, with the ratio of Nscz/Nnc = 0.35 in both.

The purpose of the following steps was to quantify the importance of each component for
classification performance. We fitted an L2-regularized logistic regression on the train set (Figure
4B, 3). Logistic regression was determined as the best model to compute component importance
since the resulting coefficients are interpretable and the logic behind their computation is well
understood. We used permutation feature importance (Figure 4C, 1) as the measure of the
contribution of each component and feature to classification performance. Initially conceived for

random forests®3*

, it allows us to estimate the importance of the features in a classifier-agnostic way
using the holdout set. First, the classifier is trained on the train set and the baseline accuracy on the
holdout set is obtained. Second, each feature of the holdout set is randomly shuffled Nperm times and
at each shuffle the permutation accuracy is computed. Permutation feature importance is the
difference between the baseline accuracy and the permutation accuracy at each permutation. This
importance metric can be estimated for any classifier; it quantifies the extent to which classification
performance deteriorates or improves as every feature is shuffled. The feature with the largest
permutation importance contributes the most to classification performance (Figure 4C, 1). We
computed mean permutation importance for each component (Npem = 10,000) and inverse
transformed it based on the components projection matrices to obtain feature importance in the

feature space (Figure 4C, 2). Permutation feature importance enabled the selection of features for

further assessment of their utility for classification.
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Figure 4. A: The types of predictors tested in this work (left to right): connectivity matrices (vectorized), macroscale
cortical gradients, neighborhood, and centroid dispersion. B: All four types of features are concatenated together (2) and
decomposed using group PCA (2) (each feature group is deconposed separately). The resulting dataset, along with
covariates, was divided into the train and holdout set; 10-fold cross-validation (CV) was used to assess the performance
of L2-regularized logistic regression on the PCA dataset (3). C: Permutation component importance was computed for

each component using the holdout set (1). For each feature type, component importance was imverse transformed to
obtain feature importance (2).
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Classifier Analysis

Finally, we assessed the predictive capacity of each feature type in a classifier-agnostic manner so as
to prevent the results from being driven by the choice of a specific classifier. To this end, we selected
936 features with the largest permutation feature importance from each type and we trained and
tested 13 distinct classifiers on them:

- Logistic regression (L2-regularized, LR).

- K-Neighbors Classifier (KN).

- Naive Bayes (NB).

- Decision Tree Classifier (DT).

- Support Vector Machine (SVM).

- Ridge Classifier (Ridge).

- Random Forest Classifier (RF).

- AdaBoost Classifier (AB).

- Gradient Boosting Classifier (GB).

- Light Gradient Boosting Machine (LGB).

- Linear Discriminant Analysis (LDA).

- ExtraTreesClassifier (ET).

- Quadratic Discriminant Analysis (QDA).
To verify that the difference in classification performance between feature types persists for larger
numbers of features, we repeated this analysis for a range of 100 to 10,000 features with the largest
permutation feature importance from each type.

For each feature count, we identified the best classifier based on its mean cross-validation (CV)
accuracy across 10 folds. Next, we tested the best classifier on the holdout set. All data

transformations were done within Scikit-Learn pipelines. The multi-classifier assessment was done

10
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using Pycaret (https://github.com/pycaret/pycaret). Age, sex, dataset of origin, and framewise

displacement (FD) were always included as covariates.

For classifier performance, we report both accuracy and the F1-score. The F1-score, calculated
using the Scikit-Learn package in Python, represents the harmonic mean of precision and recall. This
metric is particularly useful in cases where class distribution is imbalanced, as it accounts for both
false positives and false negatives.

The CV and test performance across all classifiers and feature subsets was compared to two
baselines, namely:

1) Test performance on the PCA dataset (all 149 components) of the logistic regression.

2) the dummy classifier which randomly picks the class for each sample. It is frequently used as a
baseline in machine learning research® %,

Note that in this study the accuracy of the dummy classifier consistently remained at 73.7%. In
contrast, the F1 score for this classifier is always 0, meaning that it does not differentiate between the

two classes. These values constitute our chance reference.

I11. Results

Permutation Feature I mportance & Classification Performance

Upon visual inspection, we observed that the principal components of functional connectivity had the
largest permutation feature importance, followed by gradients, centroid dispersion, and neighborhood
dispersion (Figure 5A). We sought to verify that permutation feature importance indeed reflects an
advantage in classification performance regardless of classifier. To this end, we selected the 936
features (as many as subjects) with the largest permutation feature importance for each type and
trained and tested 13 classifiers on them (Figure 5). Connectivity outperformed the other feature
types. This conclusion was supported by the Mann-Whitney U test (Figure 5B): when trained on

connectivity, the classifiers had significantly higher F1-score than when trained on the 1% (principal)

11
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gradient (U = 164, p = 0.003), neighborhood dispersion (U = 169, p = 0.001) and centroid dispersion
(U = 156, p = 0.009). The other contrasts did not survive the correction for multiple comparisons
(Bonferroni: o = 0.013).

Multi-classifier analyses further emphasized the superior predictive capacity of functional
connectivity compared to the other feature types. Here we report CV and test accuracy and F1-score
across al classifiers and for the best classifier (Figure 5C). Connectivity edges with the largest
permutation feature importance consistently outperformed logistic regression fitted on al feature
components. The other feature types performed substantially worse.

In addition, we examined the impact of the number of best features on the choice of the best
classifier (fits on all feature types are considered). Figure 5D illustrates the evolution of the best
classifier with the increasing number of features as the change in relative density of instances where
the classifiers were identified as best. Three main patterns can be noted. Firstly, several classifiers
clearly performed better with N_features < 3000: GB, SVM, RF, KN and Ridge. Secondly, ET and
LGB had a relatively stable winning rate across all feature subsets. Thirdly, LR and LDA had an
increased performance when N_features > 3000. However, LDA rarely outperformed the other

classifiers, whereas LR and LGB often emerged as optimal.

12
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Figure 5. A. Permutation importance across feature types. B: Accuracy and F1 score across 13 classifiers (mean cross
CV folds; the classifiers performing worse than the dummy classifier were excluded) fit on 936 best features from
connectivity, the principal gradient, all gradients, neighborhood dispersion and the 28 values of centroid dispersion
(light red). P-values indicate significant difference as per Mann-Whitney U test, o< 0.013 (connectivity vs. all:
Bonferroni-corrected). The stars denote the performance of the best classifier as identified based on the mean accuracy
across 10 CV folds. C: Mean + sem. CV and test performance across classifiers for N features 100-10,000 for
connectivity (left), gradients (middl€), and neighborhood dispersion (right). Horizontal lines represent test performance
of the logistic regression on all principal components (blue), and the performance of the dummy classifier (brown). The
shading indicates s.e.m. D: Relative density of fits where the corresponding classifier was identified as best. Larger area
indicates that the corresponding classifier had the highest CV accuracy more often. The legend features all classifiers
that were tested in this study; the classifiersin black were never identified as the best.
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The Featureswith The Largest Permutation Feature | mportance

To get a better understanding of the contribution of the most important connectivity features to the
diagnosis prediction, we conducted an additional exploratory analysis. For three feature subsets
including 500, 1000 and 5000 connectivity edges with the largest permutation feature importance, we
computed weighted degree centrality. For each subset, the selected edges were transformed back to a
1000x1000 connectivity matrix and for each region the sum of edges was computed, each edge
weighted by its correlation value. Thus, for each region, we sought to quantify its connectivity
strength to the other regions given the selected edges.

For each edge subset, we plotted the difference in group degree centrality between SCZ and NC
(Figure 6). Degree centrality was overall lower in patients with schizophrenia which is in line with
previous accounts of lower overall functional connectivity characteristic of this disease® . This
finding lends support to the dysconnectivity hypothesis®™*.

Secondly, the spatial pattern illustrated in Figure 6 indicated that the significant differences in
degree centrality were concentrated in the primary regions for all edge subsets displayed here. Put
differently, the edges with the largest permutation feature importance reflect connectivity strength in
the primary regions, indicating that their connectivity profiles contribute the most to classification

performance.
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Weighted Degree Centrality: SCZ vs. NC
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Figure 6. The difference in weighted degree centrality between the two groups for 500, 1000 and 5000 connectivity edges
with the largest permutation feature importance. Inset violinplots display weighted degree centrality averaged across
regions for the two groups. SCZ: patients with schizophrenia, NC: neurotypical controls, WDG: weighted degree
centrality.

V. Discussion

Here, we extend the effort to determine the optimal connectivity-based predictors of behavior (R.
Kong et a., 2023) to psychopathology by attempting to benchmark connectivity-based features
against each other for the prediction of the diagnosis of schizophrenia. To this end, we applied a
feature selection workflow based on permutation feature importance to a large dataset comprising
connectivity, macroscale cortical gradients and gradient dispersion. Our analysis revealed that,
despite growing interest in cortical gradients and gradient dispersion'®*>*®**, functional connectivity
holds superior predictive potential for schizophrenia over its low-dimensional derivatives (Figure 5B,
C). Additionally, we demonstrated that the connectivity edges connecting the primary sensory
regions have the largest permutation feature importance. This result indicates that variations in
connectivity strength of these regions encapsulate critical information for distinguishing patients
from controls. This finding, however, does not discard the relevance of the gradients for the studies

looking specifically into functional hierarchical variations. Regarding our use case, the diminished
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predictive capacity of the gradients could stem from the conservative matrix thresholding applied
prior to dimensionality reduction. Future studies are needed to test this hypothesis.

To gain a deeper understanding of the connectivity patterns associated with schizophrenia, we
conducted an exploratory analysis whereby we compared weighted degree centrality for the regions
linked by the 500, 1000 and 5000 most important edges. Firstly, degree centrality appeared to be
lower in patients with schizophrenia, corroborating previous evidence of overall hypoconnectivity

3742

typical for the disorder® . Secondly, for the edges with the largest importance, these differences
were predominantly concentrated in the sensorimotor, auditory, and visual cortex. These findings
appear to contrast with the studies highlighting discrepancies predominantly in higher-order areas,
such as the default mode network (DMN)* % However, the differences we observed need to be
contextualized as the ones relevant for classification performance: while they may or may not
constitute the neurological basis of schizophrenia, they are most informative for the differentiation of
the two groups. Viewed from this perspective, our results resonate with the research demonstrating
that across individuals the measurements are most reliable in the primary, unimodal areas®*. In
addition, one study reported more accurate surface registration for the primary sensory areas™. It has
been postulated that this stability can be attributed to the fact that the primary areas are
phylogenetically the most ancient cortical areas and are therefore considered as evolutionary anchors
around which most of the cortical expansion in humans unfolded®****°, The largest feature
importance in the primary and most stable regions may indicate that the classifiers rely on those
individual differences which are replicable across individuals of the same group. In such a setting,
intra-individual variability cannot be accounted for. This shortcoming can be potentially addressed by
studies focusing on datasets featuring hours of scanning time per individual **%.

We were aso interested in how the ranking of the 13 classifiers tested in this work evolved

with the number of best features selected based on permutation feature importance. As depicted in

Figure 5D, some classifiers' performance relative to each other fluctuated considerably depending on
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the size of the feature subset. Overall, no classifier outperformed others at dl times for any number of
features. It is a clear indication of the necessity of empirical testing of the candidate classifiers.
However, it appears that as the number of features increases, the performance of simpler classifiers
— such aslogistic regression and LDA — improves.

Regarding limitations, a certain degree of caution is warranted when interpreting our results.
Firstly, we did not account for the effect of medication in our study since the medication data were
missing for a large number of patients. Excluding these subjects would have resulted in a drastically
decreased sample size and, more importantly, in an increased imbalance of classes.

Secondly, most classifiers in this study were fitted on datasets with more features than
observations which increases the risk of overfitting. Nonetheless, we believe to have addressed this
issue by employing a 10-fold CV for each classifier. In addition, we have also witnessed that for
some classifiers test performance exceeded CV performance (Figure 5C) which is not characteristic
of overfitting.

In addition, we did not consider the issue of comorbidity and transdiagnostic phenomena across
psychiatric disorders. While this topic lies beyond the purview of the present study, it isimperative to
acknowledge its critical significance. The inquiry into transdiagnostic classification and symptom
prediction holds potential to profoundly transform the paradigms governing the diagnosis and
treatment of patients. Indeed, as of late, the research looking into transdiagnostic effects has garnered
substantial momentum®>>%,

The emergence of novel connectivity-based methods broadens our toolkit for predicting
psychiatric disorders, introducing a necessity for empirical validation. Our findings indicate that
functional connectivity outperforms its more recent, low-dimensional derivatives such as cortical
gradients and gradient dispersion in predicting schizophrenia. Additionally, in this study, the
connectivity within the primary sensory regions showed the highest discrimination capabilities,

possibly due to the reduced anatomical and functional variability of those regions. We anticipate,
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however, that it is aso informative for a broad spectrum of major psychiatric disorders. The

exploration of this latter possibility warrants thorough examination in future work.
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