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Abstract 

Functional connectivity holds promise as a biomarker of psychiatric disorders. Yet, its high 

dimensionality, combined with small sample sizes in clinical research, increases the risk of 

overfitting when the aim is prediction. Recently, low-dimensional representations of the connectome 

such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting 

consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown 

which of these derived measures has the highest predictive capacity and how they compare to raw 

connectivity. Our study evaluates which connectome features — functional connectivity, gradients, 

or gradient dispersion — best identify schizophrenia. Figure 1 summarizes this work. 

Surprisingly, our findings indicate that functional connectivity outperforms its low-dimensional 

derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia. 

Additionally, we demonstrated that the edges which contribute the most to classification performance 

are the ones connecting primary sensory regions. 
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Figure 1. Overview of the methods and main outcome of the paper. Schematic images: Flaticon.com. NC: neurotypical 
controls, SCZ: patients with schizophrenia. 

I. Introduction 

Functional connectivity holds promise as a potential biomarker for psychiatric disorders1,2, a

evidenced by a robust body of literature that highlights distinct functional profiles between patient

with schizophrenia and neurotypical individuals. Prior studies have reported lower connectivit

across regions, reduced small-worldness of the resting state networks, and lower functional networ

segregation3–5. However, the high dimensionality of connectivity data, combined with small sample

sizes in clinical research, poses a risk of overfitting when the aim is prediction6–8. 

Recently, low-dimensional representations of the connectome such as macroscale cortica

gradients9,10 and gradient dispersion11,12 have been proposed. The gradients are derived from

functional connectivity matrices through dimensionality reduction with the aim to maximize th

cumulative amount of variance explained by the resulting components. The first component (or th

principal gradient) reflects the functional hierarchy of the cortex9,10,13, spanning from the primar

sensory (unimodal) regions to higher-order (transmodal) regions. It has been demonstrated to be

consistent across individuals14. 

Dong et al.15 revealed that the principal gradient is contracted in schizophrenia, i.e., the primary

sensory regions were closer to the higher-order regions in terms of their functional profile, a

indicated by their principal gradient values. This finding indicates lower functional differentiatio

between uni- and transmodal regions. Based on the gradient framework, more differences in th

cortical functional hierarchy between neurotypical individuals and subjects with neurodevelopmenta

and psychiatric disorders have been reported12,14,16–18. 
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As an extension of the gradient framework, gradient dispersion further quantifies the density of 

local connectivity, known as functional modularity. Specifically, higher dispersion would indicate 

lower functional modularity within the cluster, whereas lower dispersion would mean higher 

modularity. Thus, gradient dispersion characterizes functional differentiation across the cortical 

hierarchy. This measure is of interest to us since changes in the functional hierarchy of the cortex are 

reported to be idiosyncratic to schizophrenia2,15,19,20. 

Nevertheless, it is unknown if these connectivity derivatives can discriminate between patients 

with schizophrenia and neurotypical individuals, or if they outperform raw connectivity. Here, we 

attempt to identify the features with the largest biomarker potential from a large set of features 

including functional connectivity, gradients, and gradient dispersion. In addition, we explore the 

impact of the number of features on the choice of classifier. We also seek to address the question 

germane to neuroscience and computational psychiatry: when one has a limited number of subjects 

and a disproportionately rich set of independent variables, how does one justify the choice of 

features? Additionally, we elaborate on putative functional underpinnings of schizophrenia based on 

the features with the highest predictive potential. 

II. Methods 

Data & Preprocessing 

The present study's sample was derived from three open-source datasets: COBRE21, LA5c study from 

UCLA Consortium for Neuropsychiatric Phenomics22, and SRPBS multidisorder MRI dataset23. All 

data were acquired in accordance with the Declaration of Helsinki. The links to the datasets are 

provided in the data availability statement below. 

The initial cohort for our investigation consisted of 996 individuals; subsequently, 40 subjects 

were excluded from analysis due to substantial motion artifacts (average framewise displacement 

(FD) > 0.5mm). The analyzed sample comprised 248 patients with schizophrenia (SCZ) and 688 
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neurotypical controls (NC; see Table 1). The scanning parameters of each dataset are reported in 

Supplementary Table 1. 

Preprocessing of MRI data was done using fMRIPrep 20.2.124 which is based on Nipype 1.5.125 

(Supplementary Methods 1). The preprocessed BOLD time series were parcellated with the Schaefer 

parcellation (1000 parcels, 7 Yeo networks)26. Then, we computed a connectivity matrix (Pearson 

correlation) for each subject. 

Table 1: Demographic statistics of the sample. *These datasets are part of a larger dataset, SPRBS-1600. FD: framewise 

displacement. 

 COBRE LA5c KTT* KUT* SWA* UTO* 

NSCZ (248) 59 45 46 43 19 36 

NNC (688) 81 102 75 159 101 170 

Mean age (std) 37.3 (12.5) 32.3 (8.8) 32.2 (10.2) 37.7 (13.2) 30.7 (9.5) 34.9 (16.5) 

Sex: female (male) 33 (107) 59 (88) 47 (74) 89 (113) 19 (101) 104 (102) 

Mean FD (std), mm 0.27 (0.11) 0.17 (0.09) 0.11 (0.05) 0.15 (0.07) 0.16 (0.08) 0.13 (0.07) 

Macroscale Cortical Gradients 

For each subject, we computed cortical gradients by applying the principal component analysis 

(PCA) to the Fisher z-transformed and thresholded connectivity matrix (Figure 2A).  Hong et al.14 

showed that PCA, when applied to thresholded connectivity matrices, yields more reliable gradients 

compared to the other dimensionality reduction techniques frequently featured in the gradient 

literature10,27,28. We thresholded the connectivity matrices by discarding 90% of the lowest 

correlation values including negative values. We used Procrustes alignment to align the gradients of 

all subjects29. To avoid introducing dataset-specific bias to the alignment, we used the gradients 

computed from the group connectivity matrix of the Human Connectome Project (HCP)30 as 

reference gradients. Figure 2B displays mean variance explained across all subjects for 200 gradients. 

On average, the principal gradient accounted for ~6% of variance of thresholded connectivity 

matrices. Collectively, 200 gradients accounted for ~80% of variance. 
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Figure 2. A: Parcellated time series (Schaefer atlas, 1000 parcels, 7 Yeo networks31) of each subject were correlated to 
produce a 1000 x 1000 connectivity matrix. Principal component analysis (PCA) was applied to the thresholded matrix to
extract 200 gradients. B: Variance explained by 200 gradients, mean across subjects ± 1 s.d. 

Centroid Dispersion 

Gradient dispersion has been quantified before with different approaches11,12,32. These prio

investigations, akin to the present study, used dispersion to operationalize functional modularity

across the cortex. However, these methods necessitated the identification of centroids of networks fo

which dispersion was computed relative to the regions encompassed within the network. Thus

dispersion values were only assigned to centroids and categorized as within- or between-network

dispersion. 
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Following this procedure, we computed within- and between-network dispersion for seven Yeo 

networks31 in the 3-dimensional gradient space. Within-network dispersion was quantified as the sum 

of squares of Euclidean distances from the centroid of the network to the rest of its regions. For the 

gradient values belonging to a given network, the centroid was defined as three median values of the 

first three cortical gradients, as in Bethlehem et al.11; the position of the centroid in the 3D latent 

gradient space is defined by these three values. Between-network dispersion was defined as the 

Euclidean distance between the network centroids. Thus, centroid dispersion amounted to 28 values 

per subject: 7 values for within-network and 21 values for between-network dispersion. Centroid 

dispersion is schematically illustrated in Figure 4B (right). 

Neighborhood dispersion 

     Centroid dispersion can vary depending on how the networks are delineated (e.g., if a different 

number of networks is used). Hence, we computed neighborhood dispersion with the aim to 

circumvent this potential confounding factor. Specifically, we calculated dispersion for individual 

regions which enabled us to maintain the spatial resolution congruent with the gradients (1000 

regions per measure). 

To compute neighborhood dispersion for every region, we identified K closest neighboring 

regions (Figure 3) via the K-Nearest Neighbors (KNN) algorithm. Then, we computed the mean 

Euclidean distance between the focal region and its designated neighboring regions in the gradient 

space. The resulting value quantified dispersion for that specific region. Neighborhood dispersion 

was computed for combinations of gradients spanning from 1 to 200. 

Unlike previous investigations where the primary source of variability in dispersion originated 

from network delineation, our study has its own unique challenge in determining the number of the 

nearest neighbors (K). To address this issue, we included all dispersion values computed based on a 

range of nearest neighbors from 10 to 170 with a step size of 40. Basing the calculation of dispersion 

on differing sets of gradients (each including up to 200 gradients), we derived 1000 x 200 x 5 = 
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1,000,000 dispersion values, which we then used as input to our analytic workflow (along with

flattened connectivity matrices and gradients). 

Figure 3. Illustration of neighborhood dispersion. A: In a multidimensional gradient embedding, for a given region (red)
K closest neighbors are identified (blue). These regions are shown within the black circle. B: Gradient (neighborhood) 
dispersion of a given region is the mean distance between said region and its K closest neighbors. The same operation is 
done for every region (N regions = 1000). 

Analytic Workflow 

The objective of our workflow was to identify the features with the largest predictive capacity from

an extensive array of connectivity-based features. Our dataset included vectorized connectivity

matrices (N = 499,500), 200 gradients (N = 200,000; 200 values for each region), neighborhood

dispersion (N = 1,000,000) and centroid dispersion (N = 28). The schematic representation of the

feature selection procedure is depicted in Figure 4. For each participant, we combined all feature

into one flat vector. Then, we concatenated the vectors for all 936 participants, resulting in a matrix

of size [936 x 1,699,528] (Figure 4B, 1).  Next, we applied principal component analysis (PCA) to

each type of features separately and retained 20% of variance for each type (effectively compressing

the feature dimension), except for the centroid dispersion for which all variance was included (Figur

4B, 2). The aim of the decomposition was to retain the same amount of variance for all feature types
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and to ensure that for each feature type more than one component is extracted when applying PCA. 

We retained 149 components in total (Nconn = 7, Ngrad = 72, Ncentroid_disp = 28, Ncortex_disp = 42; Figure 

4B, 2.). The decomposed dataset was divided into the train (75% of participants) and holdout (25%) 

sets, with the ratio of NSCZ/NNC = 0.35 in both. 

The purpose of the following steps was to quantify the importance of each component for 

classification performance. We fitted an L2-regularized logistic regression on the train set (Figure 

4B, 3). Logistic regression was determined as the best model to compute component importance 

since the resulting coefficients are interpretable and the logic behind their computation is well 

understood. We used permutation feature importance (Figure 4C, 1) as the measure of the 

contribution of each component and feature to classification performance. Initially conceived for 

random forests33,34, it allows us to estimate the importance of the features in a classifier-agnostic way 

using the holdout set. First, the classifier is trained on the train set and the baseline accuracy on the 

holdout set is obtained. Second, each feature of the holdout set is randomly shuffled Nperm times and 

at each shuffle the permutation accuracy is computed. Permutation feature importance is the 

difference between the baseline accuracy and the permutation accuracy at each permutation. This 

importance metric can be estimated for any classifier; it quantifies the extent to which classification 

performance deteriorates or improves as every feature is shuffled. The feature with the largest 

permutation importance contributes the most to classification performance (Figure 4C, 1). We 

computed mean permutation importance for each component (Nperm = 10,000) and inverse 

transformed it based on the components’ projection matrices to obtain feature importance in the 

feature space (Figure 4C, 2). Permutation feature importance enabled the selection of features for 

further assessment of their utility for classification. 
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Figure 4. A: The types of predictors tested in this work (left to right): connectivity matrices (vectorized), macroscal
cortical gradients, neighborhood, and centroid dispersion. B: All four types of features are concatenated together (2) an
decomposed using group PCA (2) (each feature group is decomposed separately). The resulting dataset, along with
covariates, was divided into the train and holdout set; 10-fold cross-validation (CV) was used to assess the performanc
of L2-regularized logistic regression on the PCA dataset (3). C: Permutation component importance was computed fo
each component using the holdout set (1). For each feature type, component importance was imverse transformed to
obtain feature importance (2). 
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Classifier Analysis 

Finally, we assessed the predictive capacity of each feature type in a classifier-agnostic manner so as 

to prevent the results from being driven by the choice of a specific classifier. To this end, we selected 

936 features with the largest permutation feature importance from each type and we trained and 

tested 13 distinct classifiers on them: 

- Logistic regression (L2-regularized, LR). 

- K-Neighbors Classifier (KN). 

- Naïve Bayes (NB). 

- Decision Tree Classifier (DT). 

- Support Vector Machine (SVM). 

- Ridge Classifier (Ridge). 

- Random Forest Classifier (RF). 

- Ada Boost Classifier (AB). 

- Gradient Boosting Classifier (GB). 

- Light Gradient Boosting Machine (LGB). 

- Linear Discriminant Analysis (LDA). 

- Extra Trees Classifier (ET). 

- Quadratic Discriminant Analysis (QDA). 

To verify that the difference in classification performance between feature types persists for larger 

numbers of features, we repeated this analysis for a range of 100 to 10,000 features with the largest 

permutation feature importance from each type. 

For each feature count, we identified the best classifier based on its mean cross-validation (CV) 

accuracy across 10 folds. Next, we tested the best classifier on the holdout set. All data 

transformations were done within Scikit-Learn pipelines. The multi-classifier assessment was done 
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using Pycaret (https://github.com/pycaret/pycaret). Age, sex, dataset of origin, and framewise 

displacement (FD) were always included as covariates. 

For classifier performance, we report both accuracy and the F1-score. The F1-score, calculated 

using the Scikit-Learn package in Python, represents the harmonic mean of precision and recall. This 

metric is particularly useful in cases where class distribution is imbalanced, as it accounts for both 

false positives and false negatives. 

The CV and test performance across all classifiers and feature subsets was compared to two 

baselines, namely: 

1) Test performance on the PCA dataset (all 149 components) of the logistic regression. 

2) the dummy classifier which randomly picks the class for each sample. It is frequently used as a 

baseline in machine learning research35,36. 

Note that in this study the accuracy of the dummy classifier consistently remained at 73.7%. In 

contrast, the F1 score for this classifier is always 0, meaning that it does not differentiate between the 

two classes. These values constitute our chance reference. 

III. Results 

Permutation Feature Importance & Classification Performance 

Upon visual inspection, we observed that the principal components of functional connectivity had the 

largest permutation feature importance, followed by gradients, centroid dispersion, and neighborhood 

dispersion (Figure 5A).  We sought to verify that permutation feature importance indeed reflects an 

advantage in classification performance regardless of classifier. To this end, we selected the 936 

features (as many as subjects) with the largest permutation feature importance for each type and 

trained and tested 13 classifiers on them (Figure 5). Connectivity outperformed the other feature 

types. This conclusion was supported by the Mann-Whitney U test (Figure 5B): when trained on 

connectivity, the classifiers had significantly higher F1-score than when trained on the 1st (principal) 
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gradient (U = 164, p = 0.003), neighborhood dispersion (U = 169, p = 0.001) and centroid dispersion 

(U = 156, p = 0.009). The other contrasts did not survive the correction for multiple comparisons 

(Bonferroni: α = 0.013). 

Multi-classifier analyses further emphasized the superior predictive capacity of functional 

connectivity compared to the other feature types. Here we report CV and test accuracy and F1-score 

across all classifiers and for the best classifier (Figure 5C). Connectivity edges with the largest 

permutation feature importance consistently outperformed logistic regression fitted on all feature 

components. The other feature types performed substantially worse. 

In addition, we examined the impact of the number of best features on the choice of the best 

classifier (fits on all feature types are considered). Figure 5D illustrates the evolution of the best 

classifier with the increasing number of features as the change in relative density of instances where 

the classifiers were identified as best. Three main patterns can be noted. Firstly, several classifiers 

clearly performed better with N_features < 3000: GB, SVM, RF, KN and Ridge. Secondly, ET and 

LGB had a relatively stable winning rate across all feature subsets. Thirdly, LR and LDA had an 

increased performance when N_features > 3000. However, LDA rarely outperformed the other 

classifiers, whereas LR and LGB often emerged as optimal. 
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Figure 5. A. Permutation importance across feature types. B: Accuracy and F1 score across 13 classifiers (mean cros
CV folds; the classifiers performing worse than the dummy classifier were excluded) fit on 936 best features from
connectivity, the principal gradient, all gradients, neighborhood dispersion and the 28 values of centroid dispersio
(light red). P-values indicate significant difference as per Mann-Whitney U test, α ≤ 0.013 (connectivity vs. all
Bonferroni-corrected). The stars denote the performance of the best classifier as identified based on the mean accuracy
across 10 CV folds. C: Mean ± s.e.m. CV and test performance across classifiers for N features 100-10,000 fo
connectivity (left), gradients (middle), and neighborhood dispersion (right). Horizontal lines represent test performanc
of the logistic regression on all principal components (blue), and the performance of the dummy classifier (brown). The
shading indicates s.e.m. D: Relative density of fits where the corresponding classifier was identified as best. Larger area
indicates that the corresponding classifier had the highest CV accuracy more often. The legend features all classifier
that were tested in this study; the classifiers in black were never identified as the best. 
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The Features with The Largest Permutation Feature Importance 

To get a better understanding of the contribution of the most important connectivity features to the 

diagnosis prediction, we conducted an additional exploratory analysis. For three feature subsets 

including 500, 1000 and 5000 connectivity edges with the largest permutation feature importance, we 

computed weighted degree centrality. For each subset, the selected edges were transformed back to a 

1000x1000 connectivity matrix and for each region the sum of edges was computed, each edge 

weighted by its correlation value. Thus, for each region, we sought to quantify its connectivity 

strength to the other regions given the selected edges. 

For each edge subset, we plotted the difference in group degree centrality between SCZ and NC 

(Figure 6). Degree centrality was overall lower in patients with schizophrenia which is in line with 

previous accounts of lower overall functional connectivity characteristic of this disease37–42. This 

finding lends support to the dysconnectivity hypothesis43,44. 

Secondly, the spatial pattern illustrated in Figure 6 indicated that the significant differences in 

degree centrality were concentrated in the primary regions for all edge subsets displayed here. Put 

differently, the edges with the largest permutation feature importance reflect connectivity strength in 

the primary regions, indicating that their connectivity profiles contribute the most to classification 

performance. 
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Figure 6. The difference in weighted degree centrality between the two groups for 500, 1000 and 5000 connectivity edge
with the largest permutation feature importance. Inset violinplots display weighted degree centrality averaged acros
regions for the two groups. SCZ: patients with schizophrenia, NC: neurotypical controls, WDG: weighted degre
centrality. 

IV. Discussion 

Here, we extend the effort to determine the optimal connectivity-based predictors of behavior (R

Kong et al., 2023) to psychopathology by attempting to benchmark connectivity-based feature

against each other for the prediction of the diagnosis of schizophrenia. To this end, we applied 

feature selection workflow based on permutation feature importance to a large dataset comprising

connectivity, macroscale cortical gradients and gradient dispersion. Our analysis revealed that

despite growing interest in cortical gradients and gradient dispersion12,15,18,45, functional connectivity

holds superior predictive potential for schizophrenia over its low-dimensional derivatives (Figure 5B

C). Additionally, we demonstrated that the connectivity edges connecting the primary sensory

regions have the largest permutation feature importance. This result indicates that variations in

connectivity strength of these regions encapsulate critical information for distinguishing patients

from controls. This finding, however, does not discard the relevance of the gradients for the studie

looking specifically into functional hierarchical variations. Regarding our use case, the diminished
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predictive capacity of the gradients could stem from the conservative matrix thresholding applied 

prior to dimensionality reduction. Future studies are needed to test this hypothesis.  

To gain a deeper understanding of the connectivity patterns associated with schizophrenia, we 

conducted an exploratory analysis whereby we compared weighted degree centrality for the regions 

linked by the 500, 1000 and 5000 most important edges. Firstly, degree centrality appeared to be 

lower in patients with schizophrenia, corroborating previous evidence of overall hypoconnectivity 

typical for the disorder37–42. Secondly, for the edges with the largest importance, these differences 

were predominantly concentrated in the sensorimotor, auditory, and visual cortex. These findings 

appear to contrast with the studies highlighting discrepancies predominantly in higher-order areas, 

such as the default mode network (DMN)20,46–49. However, the differences we observed need to be 

contextualized as the ones relevant for classification performance: while they may or may not 

constitute the neurological basis of schizophrenia, they are most informative for the differentiation of 

the two groups. Viewed from this perspective, our results resonate with the research demonstrating 

that across individuals the measurements are most reliable in the primary, unimodal areas50,51. In 

addition, one study reported more accurate surface registration for the primary sensory areas52. It has 

been postulated that this stability can be attributed to the fact that the primary areas are 

phylogenetically the most ancient cortical areas and are therefore considered as evolutionary anchors 

around which most of the cortical expansion in humans unfolded31,51,53–55. The largest feature 

importance in the primary and most stable regions may indicate that the classifiers rely on those 

individual differences which are replicable across individuals of the same group. In such a setting, 

intra-individual variability cannot be accounted for. This shortcoming can be potentially addressed by 

studies focusing on datasets featuring hours of scanning time per individual56–58. 

We were also interested in how the ranking of the 13 classifiers tested in this work evolved 

with the number of best features selected based on permutation feature importance. As depicted in 

Figure 5D, some classifiers’ performance relative to each other fluctuated considerably depending on 
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the size of the feature subset. Overall, no classifier outperformed others at all times for any number of 

features. It is a clear indication of the necessity of empirical testing of the candidate classifiers. 

However, it appears that as the number of features increases, the performance of simpler classifiers 

— such as logistic regression and LDA — improves. 

Regarding limitations, a certain degree of caution is warranted when interpreting our results. 

Firstly, we did not account for the effect of medication in our study since the medication data were 

missing for a large number of patients. Excluding these subjects would have resulted in a drastically 

decreased sample size and, more importantly, in an increased imbalance of classes. 

Secondly, most classifiers in this study were fitted on datasets with more features than 

observations which increases the risk of overfitting. Nonetheless, we believe to have addressed this 

issue by employing a 10-fold CV for each classifier. In addition, we have also witnessed that for 

some classifiers test performance exceeded CV performance (Figure 5C) which is not characteristic 

of overfitting. 

In addition, we did not consider the issue of comorbidity and transdiagnostic phenomena across 

psychiatric disorders. While this topic lies beyond the purview of the present study, it is imperative to 

acknowledge its critical significance. The inquiry into transdiagnostic classification and symptom 

prediction holds potential to profoundly transform the paradigms governing the diagnosis and 

treatment of patients. Indeed, as of late, the research looking into transdiagnostic effects has garnered 

substantial momentum5,59–64.  

The emergence of novel connectivity-based methods broadens our toolkit for predicting 

psychiatric disorders, introducing a necessity for empirical validation. Our findings indicate that 

functional connectivity outperforms its more recent, low-dimensional derivatives such as cortical 

gradients and gradient dispersion in predicting schizophrenia. Additionally, in this study, the 

connectivity within the primary sensory regions showed the highest discrimination capabilities, 

possibly due to the reduced anatomical and functional variability of those regions. We anticipate, 
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however, that it is also informative for a broad spectrum of major psychiatric disorders. The 

exploration of this latter possibility warrants thorough examination in future work. 
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