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 10 

Abstract 11 

Changes in land use, warming climate and increased drought have amplified wildfire frequency 12 

and magnitude globally. Ash mixing into aquatic systems after wildfires rapidly increases water 13 

pH, creating an additional threat to wildlife, especially species that are already threatened, 14 

endangered and/or migratory. Here, Chinook salmon (Oncorhynchus tshawytscha) yearlings 15 

acclimated to 15 or 20°C were exposed to an environmentally relevant concentration of ash 16 

(0.25% w/v) which caused water pH to rapidly rise from ~8.1 to ~9.2. Mortalities occurred 17 

within the first 12 hours, and was higher at the higher temperature (33 versus 20 %). The greatest 18 

differences in blood chemistry between the two temperatures were dramatically greater (~7.5-19 

fold) and very rapid (within 1 hour) spikes in both plasma total ammonia (to ~1200 µM) and 20 

lactate (to ~6 mM) in warm-acclimated salmon, whereas cold-acclimated salmon experienced a 21 

much smaller and gradual rise in plasma total ammonia. Salmon at both temperatures 22 
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experienced extracellular and intracellular alkalosis within 1 hour that recovered within 24 hours, 23 

but the alkalosis was smaller in magnitude in fish at warmer temperature. Impacts on plasma ion 24 

concentrations were relatively mild and plasma glucose increased by 2- to 4-fold at both 25 

temperatures. Notably, the increase in plasma total ammonia in fish at the warmer temperature 26 

was far faster and much greater than those reported in previous studies exposing fish despite 27 

higher water pH (9.4-10.5) induced without using ash. This suggests that ash has physiological 28 

impacts that cannot be explained by high water pH alone which may relate to the complex 29 

mixture of metals and organic compounds also released from ash. This demonstrates post-30 

wildfire ash input can induce lethal yet previously unexplored physiological disturbances in fish 31 

and highlights the complex interaction with warmer temperatures typical of wildfire-scarred 32 

landscapes. 33 

 34 

Introduction 35 

Wildfires (controlled, cultural, and natural) are known to aid in pest removal and native 36 

plant reproduction (Pausas and Keeley, 2019), and are essential for healthy Mediterranean 37 

climate ecosystems (Syphard et al., 2007). The frequency and magnitude of wildfires across the 38 

world have increased, and this is attributed to anthropogenic factors including changes in land 39 

use, warming climate, and increased droughts (Westerling et al., 2006; Huang et al., 2015; 40 

Pausas and Keeley, 2021). In the aftermath of wildfires, subsequent precipitation (snowmelt, 41 

rainstorms) can move ash across the charred watershed, and ultimately increase the concentration 42 

of sediments, trace elements, pollutants, and fire retardants in aquatic systems (Adams and 43 

Simmons, 1999; Giménez et al., 2004; Costa et al., 2014; Burton et al., 2016; Emelko et al., 44 

2016; Raoelison et al., 2023). Adverse impacts to diverse aquatic organisms have been reported 45 
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and include slower development, behavioral change, and shifts in food web dynamics (Spencer 46 

et al., 2003; Wells et al., 2004; Beganyi and Batzer, 2011; Nunes et al., 2017; Gonino et al., 47 

2019; Gomez Isaza et al., 2022; Muñiz González et al., 2023). 48 

Wildfires are also known to alter the pH of freshwater systems. The ash-alkaline hypothesis 49 

proposes post-wildfire ash input releases alkaline elements (anions) into aquatic systems, which 50 

in principle should increase both pH and alkalinity levels (Bayley and Schindler, 1991). This 51 

impact on the environment has been observed in many wildfire studies, and its impact can be 52 

observed lasting ~5 years (Paul et al., 2022). For instance, one month after the 2012 High Park 53 

fire near Fort Collins (Colorado, United States), the Cache la Poudre River water pH had risen 54 

from ~7.9 to ~8.5 (Son et al., 2015). In another instance, two years after the 2007 Angora Fire at 55 

Lake Tahoe (California, United States), the pH of Angora Creek in the unburned forest was 56 

~6.25, whereas the pH at the site of the wildfire and downstream remained elevated at ~7.0 57 

(Oliver et al., 2012). Moreover, algal growth in freshwater systems is stimulated by greater 58 

seasonal light availability and increased nutrients as ash is washed into the system (Spencer et 59 

al., 2003; Robson et al., 2018), and this can result in dramatic diurnal swings in water pH 60 

(Sherson et al., 2015; Kwan and Lehmann, unpublished data). Other factors (e.g. baseline water 61 

pH, rainfall, flow rate, soil pH, wildfire burn intensity) also influence these dynamic aquatic 62 

systems, and altogether these dramatic changes in water pH would undoubtedly challenge the 63 

acid-base regulatory capacities of aquatic organisms. 64 

Current United States Environmental Protection Agency’s Water Quality Criteria deems 65 

freshwater pH to be between 6.5 to 9.0 to be suitable for aquatic life. Although the above 66 

examples do not exceed these values, there are many aquatic systems with naturally high pH 67 

averaging at ~8.0 (e.g. Putah Creek near Davis CA; Roaring Fork River near Glenwood Springs, 68 
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CO; Snake River near Twin Falls, ID; Mississippi River near Fulton, IL), ~8.5 (e.g. Green River, 69 

UT; Lake Mattamuskeet, NC), to ~9.0 (e.g. Upper Klamath River, OR; Truckee River and 70 

Pyramid Lake, NV) (U.S. Geological Survey, 2016; Pyramid Lake Paiute Tribe, 2019) that are 71 

near to or already exceeding the upper limit of the recommended pH range (U.S. Environmental 72 

Protection Agency., 2013). Not only are these systems more susceptible to the alkalinizing 73 

impacts of post-wildfire ash-input, but they are also home to a variety of threatened and 74 

endangered species and could complicate their conservation management. Some of these 75 

organisms include the endangered coho salmon (Oncorhynchus kisutch) and threatened steelhead 76 

trout (Oncorhynchus mykiss) at Scott Creek, CA, the threatened Chinook salmon (Oncorhynchus 77 

tshawytscha) at Putah Creek, CA, the threatened green sturgeon (Acipenser medirostris) at 78 

Klamath River, OR, and the threatened Lahontan cutthroat trout (Oncorhychus clarki henshawi) 79 

at Truckee River and Pyramid Lake, NV). Moreover, anadromous fishes with fixed reproductive 80 

timelines such as salmon species and steelhead trout (many of which are threatened or 81 

endangered) may be among the most vulnerable as the required ionic, osmotic, and acid-base 82 

(IOA-B) regulation to mitigate ash-induced alkalinization could further aggravate the exhausted 83 

spawning adults returning from the ocean and/or compromise their eggs and larval offspring by 84 

challenging their internal pH and NH3 regulation (see below). Furthermore, fishes living in low 85 

alkalinity conditions (e.g. ~9 µmol/kg at Lake Notasha in OR, United States) (Stoddard, 1987; 86 

Eilers et al., 1990; Catalan and Camarero, 1993; Clow et al., 1996) are more vulnerable as ash-87 

induced alkalization as water pH can be more greatly affected. Finally, while this paper focused 88 

primarily on the United States, other areas of around the world such as Canada (Reavie and 89 

Smol, 2001) and China (Wang et al., 2003) also have high pH systems that could be influenced 90 

by wildfire-ash input. 91 
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Despite over a century of investigation and many excellent reviews detailing ionic, osmotic, 92 

and acid-base regulation (IOA-B) in teleost fish (Claiborne and Heisler, 1984; Cameron, 1989; 93 

Claiborne et al., 2002; Evans et al., 2005; Marshall and Grosell, 2006; Tresguerres et al., 2023), 94 

only a handful of studies have investigated blood pH and acid-base response to environmental 95 

alkalosis (Wilkie and Wood, 1991; Hemming and Hanson, 1992; Wilkie et al., 1993; McGeer 96 

and Eddy, 1998; Scott et al., 2005; Mcgeer et al., 2011). When freshwater teleosts are exposed to 97 

high pH conditions, there is an immediate increase in blood pH (pHe) (Wilkie and Wood, 1991; 98 

Wilkie et al., 1993). According to the classic Davenport acid-base physiology, fish must quickly 99 

compensate for blood alkalosis by simultaneously accumulating H+ in their blood and expelling 100 

HCO3
- into the water, presumably through their gill ionocytes. Rainbow trout (Oncorhynchus 101 

mykiss) exposed to pH 9.5 water were able to stabilize their pHe within 8-24 hours of exposure 102 

(Wilkie and Wood, 1991), and the few mortalities observed were associated with cannulation 103 

procedures rather than the acid-base stress. In contrast, Lahontan cutthroat trout, which resides in 104 

pH 9.4 at Pyramid Lake (Nevada, United States), were exposed to pH 10 but were unable to 105 

recover their pHe and >50% died after 72 hours of exposure (Wilkie et al., 1993). In addition, the 106 

high pH exposure and subsequent rise in blood pHe reduce [H+] and hinders the process of 107 

ammonia excretion as increased proportion of gaseous NH3 (compared to ionic NH4
+) in the 108 

environment slows the outward diffusion of NH3 as well as net total ammonia excretion rate, 109 

which ultimately results in a rapid rise in blood total ammonia (Wilkie and Wood, 1991, 1996; 110 

Wilkie et al., 1993). The alkalosis-induced disruption to ammonia excretion is likely further 111 

aggravated by increased ambient temperature typical of aquatic systems after the wildfire 112 

denudes the overhead shading vegetation in riparian habitats (Warren et al., 2022), and this trend 113 

is observed in the majority of studies (Paul et al., 2022). Warmer temperature would inevitably 114 
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elevate basal metabolic demands, increases organismal metabolism, promote faster ammonia 115 

production, and decrease the energy budget available for mitigating the IOA-B disturbance 116 

(Gomez Isaza et al., 2022). As such, post wildfire ash-input poses a significant IOA-B challenge 117 

in need of greater research and consideration. To the best of our knowledge, there have been no 118 

studies examining teleost IOA-B response to ash-induced environmental alkalosis, nor their 119 

concurrent response to warmer conditions. 120 

The objective of this study was to quantify how ash input can greatly and rapidly induce an 121 

acid-base challenge for aquatic organisms, and the fish’s initial physiological response to 122 

environmental alkalinization. Our first objective was to identify the amount of ash-input relevant 123 

for environmental comparison. We accomplished this by characterizing the water quality 124 

parameters of our experimental water and its response to different ash concentration, and 125 

determined 0.25% (w/v) as the appropriate ash concentration to use for our study (see below). 126 

Our second objective was to determine the biological response to post-wildfire ash-input. 127 

Chinook salmon were acclimated to 15 and 20°C to represent temperature downstream or at the 128 

site of the burn, respectively. Two weeks later, Chinook salmon response to no ash exposure or 129 

after 1, 12, or 24 hours of ash (0.25% w/v) by measuring a suite of blood ionic and acid-base 130 

parameters to determine their initial and short-term response to the ash-induced environmental 131 

alkalosis.  132 

 133 

Methods 134 

Fish Husbandry Condition  135 

This experiment was conducted in April and May 2023 in accordance to the protocol no. 136 

23316 in compliance with the Institutional Animal Care and Use Committee (IACUC) at the 137 
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Center for Aquatic Biology and Aquaculture (CABA) at University of California Davis (UCD). 138 

Fall-run Chinook Salmon hatched on December 4th, 2021 at the Feather River Hatchery 139 

(Oroville, CA, United States) were transferred to the CABA on January 31st, 2022, and they were 140 

reared in a flow-through well-water system at 13-15°C and fed at 4% body mass per day. Fish 141 

(fork length: 17.5 ± 0.2 cm, body mass: 61.0 ± 2.2 g) were acclimated to 15°C or 20°C for at 142 

least 2 weeks before experimentation, which took place between March to May, 2023. Fish were 143 

starved for 24 hours prior to experimentation. 144 

 145 

Water Quality of Experimental Condition 146 

Experimental water temperature, DO, pH, and salinity were measured daily using YSI 556 147 

MPS (Yellow Springs, Ohio, USA). Temperature was also recorded with temperature loggers at 148 

15-min intervals (Onset Corporation, Cape Cod, MA, USA). Discrete water samples were taken 149 

for alkalinity (HACH digital titrator, HACH; Loveland, CO, USA), and an end point was 150 

detected using a pH microelectrode (HI1083B, Hanna Instruments, Woonsocket, RI, United 151 

States) and meter (HI8424, Hanna Instruments). Turbidity was measured (HACH 2100Q 152 

Handheld Turbidity Meter) following manufacturer instructions. Alkalinity, pH, salinity, and 153 

temperature values were used to calculate pCO2 using CO2SYS (version 1.05; Lewis and 154 

Wallace, 1998). In addition, experimental water was collected before ash-dosing and after the 155 

exposure duration for elemental analysis. Experimental water was filtered (0.45 µm) and stored 156 

in a sterile plastic container, mixed at a 13:1 ratio with 1% nitric acid (Certified ACS Plus), 157 

stored at room temperature, then later analyzed by the Interdisciplinary Center for Plasma Mass 158 

Spectrometry at the University of California at Davis (ICPMS.UCDavis.edu) using an Agilent 159 

8900 ICP-MS Triple Quad instrument (Agilent Technologies, Santa Clara, CA 95051).  160 
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 161 

Water Quality of Field Condition 162 

Spot measurements of several aquatic systems local to Davis (California, United States) were 163 

used to determine the relevant experimental treatment (explained below). These include 164 

measurements collected from fresh rainwater (collected in plastic buckets and measured in the 165 

rain) and mud puddles around CABA, river water at the nearby Putah Creek, and lake water at 166 

Lake Berryessa (collected at UC Davis Putah Creek Facility) taken between February to April 167 

2023.  168 

 169 

Assessing Ash Impact on Well and Deionized water  170 

Leachate tests were performed on well and deionized (DI) water to illustrate the relationship 171 

of ash and alkalinity. Briefly, sieved ash (pore size = 0.841 mm) were mixed with CABA well 172 

water (0, 0.1, 0.25, 0.5, 1, 3%) or DI water (0, 0.25%) and stirred with a magnetic stirrer for 5 173 

min. Next, their temperature, DO, pH, salinity, alkalinity, and turbidity were measured as 174 

previously described. As a reference, leachate methods detailed in USGS Field sampling guide 175 

and (Burton et al., 2016) utilizes a 5% (w/v) mixture (1 g in 20 mL). 176 

 177 

Experimental Condition 178 

The ash used in this experiment were derived from a combination of oak trees burnt in a 179 

furnace and local control burning of pomegranate, oak, and redwood trees. An experimental 180 

exposure of 0.25 % ash was achieved by mixing 250 g of ash into the 100 L tank. Each tank was 181 

stocked at a density of 6-8 fish per tank. To minimize disturbance, ash was mixed with water in 182 

an external bucket, then transferred into the experimental chambers using aquarium submersible 183 
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pumps. CABA well water inflow was halted during the experimental ash exposure. Air bubbling 184 

and a second submersible pump within the experimental tanks assisted with water mixing. Ash 185 

addition increased the pH of 15 and 20°C treatment water from 8.13 and 8.06 to 9.27 and 9.17, 186 

respectively (Table 1). Temperature remained relatively consistent throughout exposure, though 187 

the 15°C treatment warmed slightly over time due to the warmer air temperature (Table 1). Ash 188 

input increased pH, alkalinity, and salinity, but decreased pCO2 (Table 1). Sample size at each 189 

ash exposure timepoint are as followed: 0 hour (15°C: n=9; 20°C: n=10), 1 hour (15°C: n=9; 190 

20°C: n=5), 12 hours (15°C: n=9; 20°C: n=11), 24 hours (15°C: n=12; 20°C: n=14).  191 

 192 

Table 1: Water quality of experimental tanks at pre- and post-ash exposure held at 15 or 20°C. 193 

Values are mean ± SEM. 194 

 
15°C 20°C 

Pre-Ash 

Exposure 

Post-Ash 

Exposure 

Pre-Ash 

Exposure 

Post-Ash 

Exposure 

pH 8.13 ± 0.01 9.27 ± 0.09 8.06 ± 0.01 9.17 ± 0.09 

DO (mg/L) 9.98 ± 0.15 9.89 ± 0.10 8.76 ± 0.15 8.00 ± 0.13 

Temperature (°C) 15.6 ± 0.1 16.5 ± 0.3 20.0 ± 0.2 19.9 ± 0.1 

Alkalinity (µmol/kg) 3,954 ± 157 4,694 ± 342 3,787 ± 245 4,732 ± 394 

pCO2 (µatm) 1,378 ± 65 84 ± 22 1,680 ± 114 95 ± 29 

Salinity (ppt) 0.44 ± 0.002 0.54 ± 0.015 0.45 ± 0.001 0.54 ± 0.009 

 195 

Blood Sampling and Analysis 196 

We sampled blood without the use of cannulation via a gill irrigation technique described in 197 

past studies (Harter et al., 2021; Kwan and Tresguerres, 2022; Davison et al., 2023). After ash 198 

exposure reached the designated timepoint, fish were anesthetized in their treatment tank by 199 

pouring a benzocaine stock solution through an extended tube that is out of view of the fish to 200 

minimize disturbance to achieve a concentration of 75 mg/L benzocaine in the tank. After loss of 201 
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equilibrium (~3 min), fish were moved to a surgery table where their gills were irrigated with 202 

aerated treatment water with maintenance anesthetic (benzocaine, 30 mg/L). Blood was drawn 203 

from a caudal vessel using a heparinized syringe (21 gage needle; 100 IU lithium heparin), 204 

placed on ice, then processed within 5 minutes of sampling. All sampling took place between the 205 

hours of 8:00 and 13:00. 206 

Whole blood pH (pHe) was first measured with a micro pH electrode (HI1083B, Hanna 207 

Instruments), then a subset (65 µL; 1-3 sample per fish) was analyzed using the ABL90 Flex 208 

Plus (Radiometer, Copenhagen, Denmark) to measure blood pCO2 and the concentration of Na+, 209 

K+, Cl-, Ca2+, glucose and lactate. The remainder of the samples were spun for 2 min on a 210 

tabletop centrifuge, and the separated red blood cell (RBC) and plasma fractions were flash 211 

frozen with liquid N2 for later intracellular pH (pHi), total ammonia and CO2 measurements. 212 

RBC pHi was measured using the freeze-thaw technique (Zeidler and Kim, 1977). Following 213 

best practices (Baker et al., 2009), pHi was measured with a pH microelectrode (HI1083B, 214 

Hanna Instruments) within 2-weeks of the conclusion of the experiment to limit pH change. 215 

pCO2 values were temperature corrected using the following equation (Siggaard-Andersen, 216 

1974). 217 

���$(�) = ���$(37) 7 10
[/./$17(2345)] 218 

Next, blood pHe and pCO2 values were used to calculate [HCO3
-] using the Henderson-219 

Hasselbalch equation. The solubility coefficient of CO2 (0.0578 mmol l-1 Torr -1), ionic strength 220 

(0.15 M), and pK1 (6.20) were based upon (Boutilier et al., 1984). Plasma total ammonia 221 

([TAmm]i.e. [NH3 + NH4
+]) was determined spectrophotometrically in 25 µL aliquots of flash 222 

frozen plasma by enzymatic ammonia assay (Sigma-Aldrich, USA, Catalog number: AA0100). 223 

[TAmm] was calculated from the delta absorbance at 340 nm wavelength before and after the 224 
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addition of the enzyme L-glutamate dehydrogenase. Absorbance was measured in Greiner UV-225 

star® 96-well plates using a microplate reader (Infinite® M200 PRO, Tecan, Switzerland). 226 

Finally, pNH3 and [NH4
+] were calculated with the Henderson-Hasselbalch equation using the 227 

solubility coefficients and pKAmm values from Cameron and Heisler (1983). 228 

 229 

Statistical Analysis 230 

Statistical analyses were performed using R (version 4.0.3) (R Development Core Team, 231 

2013). Water quality parameters were analyzed with two-tailed Student’s t-test, one-way 232 

Analysis of Variance (ANOVA), and linear regressions with water source and ash input as 233 

covarying factors. Blood and plasma variables were analyzed with Analysis of Covariance 234 

(ANCOVA), with temperature and duration of ash exposure as factors. Normality and 235 

homogeneity of residuals were assessed through visual inspection of QQ plots and residual 236 

boxplots, respectively. An alpha level of 0.05 was used for significance in all statistical 237 

tests. Unless noted otherwise, results are reported as mean ± SEM. 238 

 239 

Results  240 

Part 1: Water Quality Impact from Ash Input 241 

Water quality parameters were measured in stagnant and fresh rain and mud puddles, DI 242 

water, CABA well water, Putah Creek, and Lake Berryessa (Supplemental Figure 1). Fresh 243 

rainwater (pH ~6.2, alkalinity ~40 µmol/kg) is more acidic and less buffered than adjacent mud 244 

puddles (pH~7.3, alkalinity ~300 µmol/kg), which reflects the slightly alkaline soil reported 245 

around Davis, CA (Walkinshaw et al., 2022). DI water (pH ~7.0, alkalinity ~40 µmol/kg) is 246 
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neutral in pH, but has a similar level of alkalinity as rainwater. In contrast, natural overland 247 

water bodies such as Putah Creek and Lake Berryessa have pH ~8.3 and alkalinity ~1,800 248 

µmol/kg, and these elevated values are likely attributed to mineral absorption from soil and rock 249 

erosion over time. Well water has similar pH (~8.1) to that of overland water, but its alkalinity 250 

(~3,700 µmol/kg) is more than double that of Putah Creek and Lake Berryessa. This is likely 251 

because the well water has had the most time to interact with minerals as it permeated through 252 

the groundwater system, but pCO2 levels is elevated because it has not yet equilibrated with the 253 

atmosphere giving rise to a similar pH overall. Likewise, freshwater alkalinity, turbidity, and 254 

salinity also correlated with time spent interacting in the watershed, though turbidity of DI, Lake 255 

Berryessa, and CABA well water were likely low due to removal by filtration systems at UCD. 256 

The relationship between ash input across concentration was examined by mixing CABA 257 

well water with 0, 0.1, 0.25, 0.5, 1, and 3% (w/v) locally burned ash. Ash input induces a 258 

logarithmic increase in water pH and alkalinity, and a logarithmic decrease in pCO2 (Figure 1A-259 

C). In contrast, ash input linearly increased salinity and turbidity (Figure 1D, E), and did not 260 

affect DO (Figure 1F). The magnitude of pH change induced by ash input was dependent on the 261 

starting alkalinity of the water. To demonstrate this, DI and well water response to an ash input 262 

of 0.25% (w/v) were compared. DI water increased pH much more (~7.0 to ~10.5) than the more 263 

buffered well water (~8.1 to ~9.2) during ash exposure (Figure 2A). In contrast, the rate of ash-264 

induced changes in alkalinity, pCO2, salinity, and turbidity were relatively similar (Figure 2B-E). 265 

Finally, ash input did not impact DO (Figure 2F).  266 

 267 

 268 
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 269 

 270 

Figure 1: CABA well water and ash dosing curve. The impact of adding 0.1, 0.25, 0.5, 1, and 271 

3% ash (w/v) on CABA well water A) pH, B) alkalinity, C) pCO2, D) salinity, E) turbidity, and 272 

F) dissolved oxygen levels. Shaded area denotes 95% confidence interval.  273 

 274 

 275 

 276 
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 277 
Figure 2: Influence of salinity on ash-induced water chemistry change. Comparison of DI and 278 

CABA well water with and without 0.25% (w/v) ash input on A) pH, B) alkalinity, C) pCO2, D) 279 

salinity, E) turbidity, and F) dissolved oxygen levels. Shaded area denotes 95% confidence 280 

interval.  281 

 282 

 ICP-MS analysis identified 25 of 31 elements within detectable range (Supplemental 283 

Figure 2-4). None of the 25 elements was affected by temperature, nor were there significant 284 

decline in concentration after ash input. Ash input significantly increased the concentration of 13 285 

elements: Al, B, Ba, Cr, K, Li, Mo, Mn, Ni, P, Sb, Se, and Sn (Supplemental Figure 2-4). 286 
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 287 

Part 2: Blood Response to Ash Exposure in 15 and 20°C acclimated Fish 288 

Because the majority of past wildfire studies responded with an increase of ~1 pH units 289 

(Paul et al., 2022), we selected the concentration of 0.25% (w/v) was selected as our 290 

experimental condition. This value would induce a pH increase from ~8.0 to ~9.2, which is 291 

slightly higher than the EPA recommended upper limit of ~9.0 (U.S. Environmental Protection 292 

Agency., 2013) yet demonstrated to be within tolerable range by the related rainbow trout 293 

(Wilkie and Wood, 1991). Chinook salmon yearlings acclimated to 15 or 20°C were exposed to 294 

0, 1, 12, or 24 hours of 0.25% (w/v) ash exposure. In total, we observed 20% (6 of 30) and 295 

33.3% (10 of 30) mortalities in the 15°C and 20°C treatment, respectively, all of which occurred 296 

between 1 to 12 hours of ash exposure. 297 

Prior to ash exposure, the pHe of salmon reared at 15°C (7.81 ± 0.02) were slightly but 298 

not significantly lower than those reared at 20°C (7.92 ± 0.02) in fishes (p = 0.2148; Figure 3A). 299 

In contrast, RBC pHi (15°C: 7.55 ± 0.02, 20°C: 7.56 ± 0.02) were extremely similar (p = 1.0000; 300 

Figure 3B). Salmon reared at 20°C had significantly higher pCO2 (4615 ± 269 µatm; p = 0.0089) 301 

than 15°C acclimated fish (3583 ± 251 µatm; Figure 3C). Warmer temperature also significantly 302 

elevated baseline plasma [HCO3
-] (p < 0.0001) (15°C: 4.75 ± 0.13 mM; 20°C: 7.06 ± 0.16 mM; 303 

Figure 3D). 304 

 305 
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 306 
Figure 3: Blood acid-base response to ash-induced pH ~9.2 exposure at 15 and 20°C. Salmon 307 

blood A) pHe, B) pHi, C) pCO2 and D) [HCO3
-] over the 0, 1, 12, and 24 hours of ash exposure. 308 

Values are mean ± SEM. Asterisk (teal = 15°C, salmon = 20°C) indicates significance (³ = 0.05) 309 

from respective control (0 hour exposure), which is represented as a dotted line. Black diesis 310 

(double dagger) indicates significance between the 15 and 20°C 0-hour controls.  311 

 312 
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Ash input rapidly increased water pH from ~8.1 to ~9.2 and simultaneously decreased 313 

pCO2 from 1,400 – 1,700 to ~100 µatm (Table 1), challenging the salmon with acute 314 

environmental alkalosis. This study shows that 1 hour was not enough time for the salmon to 315 

mitigate the acid-base disturbance: both salmon pHe (15°C: p < 0.0001, 20°C: p = 0.0051) and 316 

pHi (15°C: p = 0.0386, 20°C: p = 0.0057) were significantly elevated compared to their 317 

respective baselines (Figure 3A, B). However, salmon acclimated to 20°C returned to baseline 318 

pHe levels after 12 hours (12 hours: p = 0.9995), whereas salmon acclimated to 15°C needed 24 319 

hours to no longer be significantly different from baseline (24 hours, p = 0.1214). Salmon RBC 320 

pHi also significantly rose (15°C: p = 0.0386, 20°C: p = 0.0057), but both treatments had fully 321 

recovered by 12 hours of exposure. In contrast, blood pCO2 (15°C and 20°C: p < 0.0001) and 322 

[HCO3
-] (15°C: p < 0.0001, 20°C: p = 0.0050) significantly decreased after 1 hour of ash 323 

exposure (Figure 3C, D), and they remained low or further declined with prolonged exposure. 324 

Plasma [Na+], [K+], and [Ca2+] were not significantly affected by ash exposure (Figure 325 

4A, C-D). In contrast, plasma [Cl-] was differentially affected by ash exposure (Figure 4B): [Cl-] 326 

was significantly lower than baseline after 12 hours of exposure in 15°C salmon (p = 0.0041), 327 

and significantly higher than baseline after 24 hours of exposure in 20°C salmon (p = 0.0300). 328 

Plasma glucose was significantly increased with ash exposure in 15°C fish after 24 hours of 329 

exposure (p < 0.0001) and in 20°C salmons after both 12 hours (p = 0.0001) and 24 hours of 330 

exposure (p = 0.0002; Figure 5A). In general, plasma lactate in both temperature treatments 331 

spiked at 1 hour (15°C: p = 0.0565, 20°C: p < 0.0001) and decreased over the next 12 (15°C: p = 332 

0.7302, 20°C: p = 0.1098) and 24 hours (15°C: p = 0.6876, 20°C: p = 0.0167), but only those of 333 

20°C salmon was statistically significant (Figure 5B). 334 
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 335 

 336 
Figure 4: Plasma ion response to ash-induced pH ~9.2 exposure at 15 and 20°C. Salmon plasma 337 

A) [Na+], B) [Cl-], C) [K+] and D) [Ca2+] over the 0, 1, 12, and 24 hours of ash exposure. Values 338 

are mean ± SEM. Asterisk (teal = 15°C, salmon = 20°C) indicates significance (³ = 0.05) from 339 

respective control (0 hour exposure). 340 

 341 
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 342 
Figure 5: Plasma glucose, lactate, and ammonia response to ash-induced pH ~9.2 exposure at 15 343 

and 20°C. Salmon plasma A) glucose and B) lactate over the 0, 1, 12, and 24 hours of ash 344 

exposure. Values are mean ± SEM. Asterisk (teal = 15°C, salmon = 20°C) indicates significance 345 

(³ = 0.05) from respective control (0 hour exposure). 346 

 347 

Plasma total ammonia generally increased with ash exposure (Figure 6A), but the two 348 

temperature treatments exhibited different response patterns: plasma total ammonia in 15°C 349 

salmon gradually increased until it was significantly higher at 24 hours of exposure (p = 0.0340), 350 

whereas 20°C salmon experienced a 7.5-fold increase after 1 hour of exposure (p < 0.0001), 351 

remained significantly ~3-fold elevated at 12 hours of exposure (p = 0.0105), and finally tapered 352 

down to non-significant levels at 24 hours of exposure (Figure 6A). Plasma [NH4
+] followed a 353 

similar pattern: [NH4
+] in 15°C salmon was significantly elevated after 24 hours of ash exposure 354 

(p = 0.030), whereas [NH4
+] in 20°C salmon was significantly elevated after 1 (p < 0.0001) and 355 

12 hours of exposure (p < 0.0001), but returning back to control levels by 24 hours (p = 0.6836; 356 

Figure 6B). Finally, [NH3] in 20°C salmon was significantly elevated at 1 (p < 0.0001) and 12 357 
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hours (p < 0.0001), but returned to control levels by 24 hours of exposure (Figure 6C). In 358 

contrast, [NH3] in 15°C salmon was not significantly elevated relative to control levels 359 

regardless of ash exposure duration (Figure 6C). 360 

 361 

 362 
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Figure 6: Plasma total ammonia, [NH3], and [NH4
+] response to ash-induced pH ~9.2 exposure 363 

at 15 and 20°C. Salmon plasma A) total ammonia, B) [NH3], and C) [NH4
+] over the 0, 1, 12, 364 

and 24 hours of ash exposure. Values are mean ± SEM. Asterisk (teal = 15°C, salmon = 20°C) 365 

indicates significance (³ = 0.05) from respective control (0 hour exposure). 366 

 367 

Discussion 368 

In agreement with the classic Davenport acid-base physiology and Wilkie & Wood (1991), 369 

exposure to pH ~9.3 initially induced an elevation in blood pHe and pHi, and a simultaneous 370 

reduction in plasma pCO2 and [HCO3
-]. Most salmon were able to recover their pHe and pHi for 371 

the ash-induced environmental alkalinization after 12-24 hours of exposure, which matches the 372 

response time of the rainbow trout (Wilkie and Wood, 1991). One potential mechanism for pH 373 

recovery is through the coordinated effort of apical anion exchanger (AE), cytoplasmic carbonic 374 

anhydrase, and basolateral Na+/H+ Exchanger (NHE1) and electrochemically driven by 375 

basolateral vacuolar-type H+-ATPase similar to base-secreting gill ionocytes in elasmobranchs 376 

(Tresguerres et al., 2005; Roa et al., 2014) or basolateral NKA as in teleost intestinal epithelium 377 

(Grosell and Genz, 2006). In concept, the increased ions leached from the ash should ease IOA-B 378 

recovery. Yet not all of the salmon were successful in this endeavor: we observed a 20% and 379 

33.3% mortality rate in Chinook salmon reared at 15°C and 20°C, respectively. The timing of the 380 

mortality occurred between 1 and 12 hours of exposure, and the greater mortality at the warmer 381 

temperature cannot be explained by worse acid-base disturbance (in fact it was less disturbed in 382 

the warmer fish). Instead, the greater mortality may correlate better with the rapid and substantial 383 

increase in plasma total ammonia. Although not directly comparable due to differences in 384 

experimental parameter and species, mortality appeared to be greater when water alkalization 385 

was induced with ash input rather than NaOH (Wilkie and Wood, 1991) or using naturally 386 

occurring alkaline lake water (Wilkie et al., 1994); Wilkie and Wood (1991) reported one 387 
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rainbow trout perished during 72 hours of exposure to pH 9.5, and in a subsequent experiment 388 

reported in the same study no rainbow trout mortality during a 5-week exposure to pH 9.5. 389 

Despite this, Wilkie and Wood (1991) concluded that high pH exposure does “render the fish 390 

more susceptible to other stresses” as they observed recovery from surgical procedures (e.g. 391 

cannulation) was more successful when kept at a lower pH (8.15).  392 

Salmon in the 15°C treatment appeared to have experienced greater alkalosis, and this may 393 

explain why salmon reared at 20°C appear to have recovered their pHe more quickly and 394 

completely than those reared at 15°C. One possibility is that salmon reared at 20°C are 395 

generating CO2 at a faster rate and therefore potentially have access to more H+ to recover pHe 396 

more quickly (providing they can excrete the HCO3
- generated by CO2 hydration). Interestingly, 397 

past results showed rainbow trout reared at 15°C (the colder temperature we used) and 398 

challenged with environmental alkalinization (pH 9.5) also could not return to their baseline pHe 399 

of ~7.83, and instead stabilized their pHe at 7.97 (Wilkie and Wood, 1991). These results suggest 400 

that although warmer temperature may increase mortality, their higher metabolic rate (and by 401 

extension basal pCO2) could facilitate pH recovery by promoting H+ synthesis. 402 

Recovery from environmental alkalosis requires the excretion of plasma HCO3
- and 403 

retention of H+ to return blood pH to nominal levels. Past studies typically find fishes exposed to 404 

environmental alkalinization between 10°C to 15°C have decreased [Na+] and [Cl-] as well as 405 

elevated [K+] by 8 hours of exposure, with these effects persisting up to 72 hours of exposure 406 

(Wilkie and Wood, 1991; Hemming and Hanson, 1992; Wilkie et al., 1993; Scott et al., 2005). In 407 

contrast, the present study finds Chinook salmon plasma ion responses to be relatively muted, 408 

with only [Cl-] exhibiting a divergent response: salmon reared at 15°C had significantly less [Cl-] 409 

by 12 hours of ash exposure, whereas salmon reared at 20°C had significantly greater [Cl-] by 24 410 
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hours of ash exposure. Differences in experimental design may explain the muted ionic 411 

responses: ash-input increases the ions available for IOA-B regulation (e.g. ~8,000-fold increase 412 

in environmental K+ levels; Supplemental Figure Elemental 3), and warmer acclimation 413 

temperature (and by extension greater metabolic rate) leads to higher basal pCO2 level and 414 

greater metabolic H+ generation. Future studies should continue to explore the interactions 415 

between acid-base regulation in an environment with greater ion availability. 416 

Acclimation temperature appears to have influenced plasma total ammonia, [NH3], and 417 

[NH4
+] levels throughout ash exposure. Chinook salmon in the 15°C treatment experienced a 418 

gradual accumulation of ammonia, with levels that were not significantly different until 24-hours 419 

of exposure. This gradual rise over 24 hours was similar to previous alkaline water exposure 420 

studies at somewhat higher water pH levels (e.g. Wilkie and Wood, 1991; Wilkie et al., 1994; 421 

McGeer and Eddy, 1998). In contrast, Chinook salmon in the 20°C treatment experienced a ~7.5-422 

fold spike at 1 hour of exposure to ~1200 µM total ammonia, which remained highly elevated at 423 

12 hours, and returned to baseline levels after 24 hours of exposure. This may be linked to the 424 

higher observed mortality in the 20°C salmon as the inability to regulate ammonia during high 425 

pH exposure has been attributed to fish mortality in past studies (Wilkie et al., 1993; Wilkie and 426 

Wood, 1996). Interestingly, the peak level reached here (1200 µM in just 1 hour) was 427 

substantially higher and reached far faster than in those previous studies (250-600 µM) in which 428 

the water pH levels used were somewhat higher than in the present ash-exposure study (pH 9.4-429 

10.5; Wilkie and Wood, 1991; Wilkie et al, 1994; McGeer and Eddy, 1998). As such, while 430 

higher temperature may assist in pH recovery (see above), it also may lead to a greater ammonia 431 

challenge during high pH exposure. It additionally suggests that ash may cause such 432 

physiological impacts in a way that cannot be explained by high water pH alone. This may relate 433 
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to the complex mixture of metals and organic compounds also released into freshwater from ash, 434 

but the precise mechanisms and causative agents are beyond the scope of the present study 435 

(although see below). 436 

To rapidly address the acute acid-base challenge, salmon appeared to have released glucose 437 

from glycogen stores and upregulated anaerobic respiration. However, the strategy appears to be 438 

temperature specific: salmon in the 20°C treatment have a lower aerobic scope than their 15°C 439 

counterparts (Zillig et al., 2023), so they may have 1) hastened their release of glucose from 440 

glycogen stores and 2) upregulated metabolic proton production (as evident by plasma lactate 441 

build-up (Robergs et al., 2004) to aid in rapid recovery of pHe. In contrast, salmon in the 15°C 442 

treatment did not significantly upregulate their glucose until 24 hours of exposure, and lactate 443 

levels were consistently about half those in fish at the warmer temperature. Future studies are 444 

needed to determine whether the metabolic protons were upregulated to assist with pHe 445 

recovery. Moreover, respirometry studies are necessary to determine whether the salmon’s 446 

temperature-dependent aerobic capacity influence their pHe recovery, and whether the slowing 447 

of ventilation rates could have accumulated greater CO2 in an effort to acidify their blood as our 448 

current methods using artificial gill ventilation necessary to collect blood samples for 449 

physiologically-relevant IOA-B values could have masked potential blood pCO2 impact. 450 

In the wild, fishes (especially those trapped in lakes and reservoirs) would likely experience 451 

ash exposure at longer duration than those in the present study. Despite surviving the initial 452 

environmental alkalinization, the potential impacts of trace metal accumulation and their putative 453 

inhibition of IOA-B regulation could have long-lasting impacts on the fish (reviewed in Wood et 454 

al., 2012a, b). For instance, Cr exposure has been shown to induce oxidative stress and 455 

negatively impact DNA integrity in the gill and kidney of the European eel (Anguilla anguilla L.) 456 
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(Ahmad et al., 2006). In addition, weeks to month-long exposure to Cu have been shown to 457 

induce apoptosis of gill ionocytes and overall lower gill NKA activity (Li et al., 1998; Lorin-458 

Nebel et al., 2013), whereas weeks-long exposure to Li has been shown to decrease fat stores, 459 

but did not affect gill NKA activity (Tkatcheva et al., 2007). Even if the concentration for each 460 

element is sublethal, the additive effect along with other stressors could accumulate to induce 461 

greater impacts or even mortality. Moreover, the elemental signatures and their concentrations 462 

should greatly vary depending on factors including (but not limited to) wildfire intensity, 463 

vegetation, soil type, anthropogenic input (e.g. fire retardants, buildings, vehicles) – and thus 464 

warrant species- and region-specific examination. Behavioral response such as boldness and 465 

shoaling have also been shown to be affected by wildfire-ash exposure (Gonino et al., 2019), and 466 

downstream food web impacts and ecological dynamics (Spencer et al., 2003) should also be 467 

investigated. 468 

 469 

Environmental Relevance and Potential Management Strategies 470 

Over the past decades, numerous studies have examined fish responses to high-CO2 low-pH 471 

conditions in the context of ocean acidification and aquaculture (Ellis et al., 2016; Tresguerres 472 

and Hamilton, 2017). Perhaps due to a lack of recognized environmental relevance, responses of 473 

aquatic organisms to low-CO2 high-pH conditions remain relatively unexplored, leaving an 474 

abundance of exciting research questions that need answering. Would the absence of plasma 475 

accessible carbonic anhydrase (which could reduce the magnitude of blood pHe increase) in fish 476 

such as sturgeon be more tolerant of environmental alkalosis? This could potentially explain 477 

their survival in the Klamath River, which naturally reaches pH ~10 during the summer (U.S. 478 

Geological Survey, 2016). Moreover, what are some conservation management solutions that 479 
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could reduce the impacts of post-wildfire ash-input in areas inhabited by endangered fishes and 480 

other aquatic organisms? Undoubtedly, further comparative physiology and conservation biology 481 

research is necessary as wildfires become increasingly common due to global climate change.  482 

The present study uses high alkalinity well water, which would dampen ash-induced pH 483 

alkalinization as well as provides more counterions for IOA-B regulation. Therefore, our results 484 

may be a conservative estimate of water quality and fish responses to ash input. Many natural 485 

systems, especially those found at mid- to high-elevation and sourced with snowmelt, have very 486 

low alkalinity levels (Stoddard, 1987; Eilers et al., 1990; Catalan and Camarero, 1993; Clow et 487 

al., 1996) and are experiencing more rapid warming than lower elevation aquatic systems (Zhi et 488 

al., 2020). Thus, these systems are potentially more susceptible to post-wildfire ash-induced pH 489 

changes, which could be detrimental to fishes that are endemic to remote mid- to high-elevation 490 

stream habitats like the Paiute Cutthroat Trout (Oncorhynchus clarkia seleniris), the California 491 

state fish golden trout (Oncorhynchus aguabonita), and various salmon runs returning from the 492 

ocean. Moreover, and as mentioned earlier in this study, organisms living in systems with 493 

naturally high pH levels (e.g. green sturgeon in Klamath River, Lahontan cutthroat trout in 494 

Pyramid Lake) and migratory species with rigid reproductive strategies (e.g. salmon) are also 495 

more susceptible to the alkalinization-linked impacts of post-wildfire ash-input. Besides baseline 496 

water pH and alkalinity, there are many other variables that could influence post-wildfire pH 497 

responses including wildfire intensity (Santín et al., 2015; Sánchez-García et al., 2023), 498 

including soil pH and composition (Marcotte et al., 2022), amount of rainfall or snowmelt 499 

(Rhoades et al., 2011), watershed size and slope (Neary et al., 2003), and algal biomass (Hohner 500 

et al., 2019). Taken together, the impacts of wildfire on aquatic watersheds will likely be system-501 

specific, and subsequent organismal response species-specific. 502 
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 Vulnerable habitats can be identified with greater pH and alkalinity monitoring effort. 503 

Monitoring stations equipped and maintained with calibrated pH probes would provide valuable 504 

information on pre-wildfire baseline and natural pH variation, which would in turn help 505 

determine whether further management action is necessary following a wildfire. For instance, the 506 

release of dam water could help dilute the ash-induced alkalization, as well as to mitigate 507 

potential co-stressors such as high temperature, low oxygen, and the accumulation of heavy 508 

metals. Moreover, the opportunistic capture and removal of migratory species (e.g. returning 509 

adults, fertilized redds) from areas of concerns to rear in another area or aquacultures could be 510 

another method to safeguard the population. These two strategies are already employed for other 511 

scenarios, and with greater monitoring could be applied to help mitigate exposure to excessive 512 

ash-input. In principle, ash could be neutralized to prevent the system from reaching lethal pH 513 

levels to protect endangered and endemic species. However, many of these strategies may only 514 

be employable in the aquaculture setting and/or require additional investigation before they can 515 

be safely deployed. For instance, the addition of H+ through an acidifying agent (e.g. HCl, 516 

CaSO4, CH3COOH) should lower water pH levels; however, past experiments with freshwater 517 

aquaculture ponds have revealed direct acidification is too expensive or temporary to be of 518 

practical use (Pote et al., 1990; Tucker and D’Abramo, 2008). One current best practice to 519 

reduce high pH in freshwater aquaculture includes the addition of cracked corn or soybean meal, 520 

of which their decay would generate CO2 through microbial activity (Pote et al., 1990; Tucker 521 

and D’Abramo, 2008). However, the decay of organic matter would also deplete O2 – which 522 

could be mitigated in aquaculture settings with air bubblers but is not feasible for the natural 523 

environment. Another technique proposed for freshwater aquaculture is to acidify high pH water 524 

by adding aluminum sulfate (Al2(SO4)3), which not only produces H+ but also coalesces algae 525 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2024. ; https://doi.org/10.1101/2024.01.05.574400doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574400
http://creativecommons.org/licenses/by-nc-nd/4.0/


and suspended particles (Tucker and D’Abramo, 2008; Hohner et al., 2019). However, whether 526 

aluminum sulfate could neutralize and/or reduce suspended ash in natural riverine systems is not 527 

known. Moreover, aluminum is toxic to organisms (especially in freshwater habitats) and can 528 

inhibit both active ion-uptake and accelerate passive ion-losses (reviewed in Wilson, 2012). As 529 

such, the use of aluminum sulfate must be critically examined and its downstream impacts and 530 

interaction with other chemicals present in the natural environment must be robustly explored 531 

before being considered as a management tool. Altogether, there is a great need to further 532 

investigate aquatic organismal responses to post-wildfire, and to synthesize and develop relevant 533 

management strategies to help them survive in an increasingly wildfire-prone climate.  534 
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