

1 **Fish Blood Response to Ash-Induced Environmental Alkalization, and their Implications**
2 **to Wildfire-Scarred Watersheds**

3 Garfield T. Kwan^{1*}, Trystan Sanders², Sammuel Huang¹, Kristen Kilaghbian¹, Cameron Sam¹,
4 Junhan Wang¹, Kelly Weihrauch¹, Rod W. Wilson², Nann A. Fangue¹

5 ¹Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis,
6 CA, United States

7 ²Biosciences Department, College of Life and Environmental Sciences, University of Exeter,
8 Exeter, United Kingdom

9 *Corresponding Author

10

11 **Abstract**

12 Changes in land use, warming climate and increased drought have amplified wildfire frequency
13 and magnitude globally. Ash mixing into aquatic systems after wildfires rapidly increases water
14 pH, creating an additional threat to wildlife, especially species that are already threatened,
15 endangered and/or migratory. Here, Chinook salmon (*Oncorhynchus tshawytscha*) yearlings
16 acclimated to 15 or 20°C were exposed to an environmentally relevant concentration of ash
17 (0.25% w/v) which caused water pH to rapidly rise from ~8.1 to ~9.2. Mortalities occurred
18 within the first 12 hours, and was higher at the higher temperature (33 versus 20 %). The greatest
19 differences in blood chemistry between the two temperatures were dramatically greater (~7.5-
20 fold) and very rapid (within 1 hour) spikes in both plasma total ammonia (to ~1200 µM) and
21 lactate (to ~6 mM) in warm-acclimated salmon, whereas cold-acclimated salmon experienced a
22 much smaller and gradual rise in plasma total ammonia. Salmon at both temperatures

23 experienced extracellular and intracellular alkalosis within 1 hour that recovered within 24 hours,
24 but the alkalosis was smaller in magnitude in fish at warmer temperature. Impacts on plasma ion
25 concentrations were relatively mild and plasma glucose increased by 2- to 4-fold at both
26 temperatures. Notably, the increase in plasma total ammonia in fish at the warmer temperature
27 was far faster and much greater than those reported in previous studies exposing fish despite
28 higher water pH (9.4-10.5) induced without using ash. This suggests that ash has physiological
29 impacts that cannot be explained by high water pH alone which may relate to the complex
30 mixture of metals and organic compounds also released from ash. This demonstrates post-
31 wildfire ash input can induce lethal yet previously unexplored physiological disturbances in fish
32 and highlights the complex interaction with warmer temperatures typical of wildfire-scarred
33 landscapes.

34

35 **Introduction**

36 Wildfires (controlled, cultural, and natural) are known to aid in pest removal and native
37 plant reproduction (Pausas and Keeley, 2019), and are essential for healthy Mediterranean
38 climate ecosystems (Syphard et al., 2007). The frequency and magnitude of wildfires across the
39 world have increased, and this is attributed to anthropogenic factors including changes in land
40 use, warming climate, and increased droughts (Westerling et al., 2006; Huang et al., 2015;
41 Pausas and Keeley, 2021). In the aftermath of wildfires, subsequent precipitation (snowmelt,
42 rainstorms) can move ash across the charred watershed, and ultimately increase the concentration
43 of sediments, trace elements, pollutants, and fire retardants in aquatic systems (Adams and
44 Simmons, 1999; Giménez et al., 2004; Costa et al., 2014; Burton et al., 2016; Emelko et al.,
45 2016; Raoelison et al., 2023). Adverse impacts to diverse aquatic organisms have been reported

46 and include slower development, behavioral change, and shifts in food web dynamics (Spencer
47 et al., 2003; Wells et al., 2004; Beganyi and Batzer, 2011; Nunes et al., 2017; Gonino et al.,
48 2019; Gomez Isaza et al., 2022; Muñiz González et al., 2023).

49 Wildfires are also known to alter the pH of freshwater systems. The ash-alkaline hypothesis
50 proposes post-wildfire ash input releases alkaline elements (anions) into aquatic systems, which
51 in principle should increase both pH and alkalinity levels (Bayley and Schindler, 1991). This
52 impact on the environment has been observed in many wildfire studies, and its impact can be
53 observed lasting ~5 years (Paul et al., 2022). For instance, one month after the 2012 High Park
54 fire near Fort Collins (Colorado, United States), the Cache la Poudre River water pH had risen
55 from ~7.9 to ~8.5 (Son et al., 2015). In another instance, two years after the 2007 Angora Fire at
56 Lake Tahoe (California, United States), the pH of Angora Creek in the unburned forest was
57 ~6.25, whereas the pH at the site of the wildfire and downstream remained elevated at ~7.0
58 (Oliver et al., 2012). Moreover, algal growth in freshwater systems is stimulated by greater
59 seasonal light availability and increased nutrients as ash is washed into the system (Spencer et
60 al., 2003; Robson et al., 2018), and this can result in dramatic diurnal swings in water pH
61 (Sherson et al., 2015; Kwan and Lehmann, *unpublished data*). Other factors (e.g. baseline water
62 pH, rainfall, flow rate, soil pH, wildfire burn intensity) also influence these dynamic aquatic
63 systems, and altogether these dramatic changes in water pH would undoubtedly challenge the
64 acid-base regulatory capacities of aquatic organisms.

65 Current United States Environmental Protection Agency's Water Quality Criteria deems
66 freshwater pH to be between 6.5 to 9.0 to be suitable for aquatic life. Although the above
67 examples do not exceed these values, there are many aquatic systems with naturally high pH
68 averaging at ~8.0 (e.g. Putah Creek near Davis CA; Roaring Fork River near Glenwood Springs,

69 CO; Snake River near Twin Falls, ID; Mississippi River near Fulton, IL), ~8.5 (e.g. Green River,
70 UT; Lake Mattamuskeet, NC), to ~9.0 (e.g. Upper Klamath River, OR; Truckee River and
71 Pyramid Lake, NV) (U.S. Geological Survey, 2016; Pyramid Lake Paiute Tribe, 2019) that are
72 near to or already exceeding the upper limit of the recommended pH range (U.S. Environmental
73 Protection Agency., 2013). Not only are these systems more susceptible to the alkalinizing
74 impacts of post-wildfire ash-input, but they are also home to a variety of threatened and
75 endangered species and could complicate their conservation management. Some of these
76 organisms include the endangered coho salmon (*Oncorhynchus kisutch*) and threatened steelhead
77 trout (*Oncorhynchus mykiss*) at Scott Creek, CA, the threatened Chinook salmon (*Oncorhynchus*
78 *tshawytscha*) at Putah Creek, CA, the threatened green sturgeon (*Acipenser medirostris*) at
79 Klamath River, OR, and the threatened Lahontan cutthroat trout (*Oncorhynchus clarki henshawi*)
80 at Truckee River and Pyramid Lake, NV). Moreover, anadromous fishes with fixed reproductive
81 timelines such as salmon species and steelhead trout (many of which are threatened or
82 endangered) may be among the most vulnerable as the required ionic, osmotic, and acid-base
83 (IOA-B) regulation to mitigate ash-induced alkalinization could further aggravate the exhausted
84 spawning adults returning from the ocean and/or compromise their eggs and larval offspring by
85 challenging their internal pH and NH₃ regulation (see below). Furthermore, fishes living in low
86 alkalinity conditions (e.g. ~9 µmol/kg at Lake Natasha in OR, United States) (Stoddard, 1987;
87 Eilers et al., 1990; Catalan and Camarero, 1993; Clow et al., 1996) are more vulnerable as ash-
88 induced alkalinization as water pH can be more greatly affected. Finally, while this paper focused
89 primarily on the United States, other areas of around the world such as Canada (Reavie and
90 Smol, 2001) and China (Wang et al., 2003) also have high pH systems that could be influenced
91 by wildfire-ash input.

92 Despite over a century of investigation and many excellent reviews detailing ionic, osmotic,
93 and acid-base regulation (IOA-B) in teleost fish (Claiborne and Heisler, 1984; Cameron, 1989;
94 Claiborne et al., 2002; Evans et al., 2005; Marshall and Grosell, 2006; Tresguerres et al., 2023),
95 only a handful of studies have investigated blood pH and acid-base response to environmental
96 alkalosis (Wilkie and Wood, 1991; Hemming and Hanson, 1992; Wilkie et al., 1993; McGeer
97 and Eddy, 1998; Scott et al., 2005; Mcgeer et al., 2011). When freshwater teleosts are exposed to
98 high pH conditions, there is an immediate increase in blood pH (pH_e) (Wilkie and Wood, 1991;
99 Wilkie et al., 1993). According to the classic Davenport acid-base physiology, fish must quickly
100 compensate for blood alkalosis by simultaneously accumulating H^+ in their blood and expelling
101 HCO_3^- into the water, presumably through their gill ionocytes. Rainbow trout (*Oncorhynchus*
102 *mykiss*) exposed to pH 9.5 water were able to stabilize their pH_e within 8-24 hours of exposure
103 (Wilkie and Wood, 1991), and the few mortalities observed were associated with cannulation
104 procedures rather than the acid-base stress. In contrast, Lahontan cutthroat trout, which resides in
105 pH 9.4 at Pyramid Lake (Nevada, United States), were exposed to pH 10 but were unable to
106 recover their pH_e and >50% died after 72 hours of exposure (Wilkie et al., 1993). In addition, the
107 high pH exposure and subsequent rise in blood pH_e reduce $[\text{H}^+]$ and hinders the process of
108 ammonia excretion as increased proportion of gaseous NH_3 (compared to ionic NH_4^+) in the
109 environment slows the outward diffusion of NH_3 as well as net total ammonia excretion rate,
110 which ultimately results in a rapid rise in blood total ammonia (Wilkie and Wood, 1991, 1996;
111 Wilkie et al., 1993). The alkalosis-induced disruption to ammonia excretion is likely further
112 aggravated by increased ambient temperature typical of aquatic systems after the wildfire
113 denudes the overhead shading vegetation in riparian habitats (Warren et al., 2022), and this trend
114 is observed in the majority of studies (Paul et al., 2022). Warmer temperature would inevitably

115 elevate basal metabolic demands, increases organismal metabolism, promote faster ammonia
116 production, and decrease the energy budget available for mitigating the IOA-B disturbance
117 (Gomez Isaza et al., 2022). As such, post wildfire ash-input poses a significant IOA-B challenge
118 in need of greater research and consideration. To the best of our knowledge, there have been no
119 studies examining teleost IOA-B response to ash-induced environmental alkalosis, nor their
120 concurrent response to warmer conditions.

121 The objective of this study was to quantify how ash input can greatly and rapidly induce an
122 acid-base challenge for aquatic organisms, and the fish's initial physiological response to
123 environmental alkalinization. Our first objective was to identify the amount of ash-input relevant
124 for environmental comparison. We accomplished this by characterizing the water quality
125 parameters of our experimental water and its response to different ash concentration, and
126 determined 0.25% (w/v) as the appropriate ash concentration to use for our study (see below).
127 Our second objective was to determine the biological response to post-wildfire ash-input.
128 Chinook salmon were acclimated to 15 and 20°C to represent temperature downstream or at the
129 site of the burn, respectively. Two weeks later, Chinook salmon response to no ash exposure or
130 after 1, 12, or 24 hours of ash (0.25% w/v) by measuring a suite of blood ionic and acid-base
131 parameters to determine their initial and short-term response to the ash-induced environmental
132 alkalosis.

133

134 **Methods**

135 *Fish Husbandry Condition*

136 This experiment was conducted in April and May 2023 in accordance to the protocol no.
137 23316 in compliance with the Institutional Animal Care and Use Committee (IACUC) at the

138 Center for Aquatic Biology and Aquaculture (CABA) at University of California Davis (UCD).
139 Fall-run Chinook Salmon hatched on December 4th, 2021 at the Feather River Hatchery
140 (Oroville, CA, United States) were transferred to the CABA on January 31st, 2022, and they were
141 reared in a flow-through well-water system at 13-15°C and fed at 4% body mass per day. Fish
142 (fork length: 17.5 ± 0.2 cm, body mass: 61.0 ± 2.2 g) were acclimated to 15°C or 20°C for at
143 least 2 weeks before experimentation, which took place between March to May, 2023. Fish were
144 starved for 24 hours prior to experimentation.

145

146 *Water Quality of Experimental Condition*

147 Experimental water temperature, DO, pH, and salinity were measured daily using YSI 556
148 MPS (Yellow Springs, Ohio, USA). Temperature was also recorded with temperature loggers at
149 15-min intervals (Onset Corporation, Cape Cod, MA, USA). Discrete water samples were taken
150 for alkalinity (HACH digital titrator, HACH; Loveland, CO, USA), and an end point was
151 detected using a pH microelectrode (HI1083B, Hanna Instruments, Woonsocket, RI, United
152 States) and meter (HI8424, Hanna Instruments). Turbidity was measured (HACH 2100Q
153 Handheld Turbidity Meter) following manufacturer instructions. Alkalinity, pH, salinity, and
154 temperature values were used to calculate $p\text{CO}_2$ using CO2SYS (version 1.05; Lewis and
155 Wallace, 1998). In addition, experimental water was collected before ash-dosing and after the
156 exposure duration for elemental analysis. Experimental water was filtered (0.45 μm) and stored
157 in a sterile plastic container, mixed at a 13:1 ratio with 1% nitric acid (Certified ACS Plus),
158 stored at room temperature, then later analyzed by the Interdisciplinary Center for Plasma Mass
159 Spectrometry at the University of California at Davis (ICPMS.UCDavis.edu) using an Agilent
160 8900 ICP-MS Triple Quad instrument (Agilent Technologies, Santa Clara, CA 95051).

161

162 *Water Quality of Field Condition*

163 Spot measurements of several aquatic systems local to Davis (California, United States) were
164 used to determine the relevant experimental treatment (explained below). These include
165 measurements collected from fresh rainwater (collected in plastic buckets and measured in the
166 rain) and mud puddles around CABA, river water at the nearby Putah Creek, and lake water at
167 Lake Berryessa (collected at UC Davis Putah Creek Facility) taken between February to April
168 2023.

169

170 *Assessing Ash Impact on Well and Deionized water*

171 Leachate tests were performed on well and deionized (DI) water to illustrate the relationship
172 of ash and alkalinity. Briefly, sieved ash (pore size = 0.841 mm) were mixed with CABA well
173 water (0, 0.1, 0.25, 0.5, 1, 3%) or DI water (0, 0.25%) and stirred with a magnetic stirrer for 5
174 min. Next, their temperature, DO, pH, salinity, alkalinity, and turbidity were measured as
175 previously described. As a reference, leachate methods detailed in USGS Field sampling guide
176 and (Burton et al., 2016) utilizes a 5% (w/v) mixture (1 g in 20 mL).

177

178 *Experimental Condition*

179 The ash used in this experiment were derived from a combination of oak trees burnt in a
180 furnace and local control burning of pomegranate, oak, and redwood trees. An experimental
181 exposure of 0.25 % ash was achieved by mixing 250 g of ash into the 100 L tank. Each tank was
182 stocked at a density of 6-8 fish per tank. To minimize disturbance, ash was mixed with water in
183 an external bucket, then transferred into the experimental chambers using aquarium submersible

184 pumps. CABA well water inflow was halted during the experimental ash exposure. Air bubbling
185 and a second submersible pump within the experimental tanks assisted with water mixing. Ash
186 addition increased the pH of 15 and 20°C treatment water from 8.13 and 8.06 to 9.27 and 9.17,
187 respectively (Table 1). Temperature remained relatively consistent throughout exposure, though
188 the 15°C treatment warmed slightly over time due to the warmer air temperature (Table 1). Ash
189 input increased pH, alkalinity, and salinity, but decreased $p\text{CO}_2$ (Table 1). Sample size at each
190 ash exposure timepoint are as followed: 0 hour (15°C: n=9; 20°C: n=10), 1 hour (15°C: n=9;
191 20°C: n=5), 12 hours (15°C: n=9; 20°C: n=11), 24 hours (15°C: n=12; 20°C: n=14).

192

193 **Table 1:** Water quality of experimental tanks at pre- and post-ash exposure held at 15 or 20°C.

194 Values are mean \pm SEM.

	15°C		20°C	
	Pre-Ash Exposure	Post-Ash Exposure	Pre-Ash Exposure	Post-Ash Exposure
pH	8.13 \pm 0.01	9.27 \pm 0.09	8.06 \pm 0.01	9.17 \pm 0.09
DO (mg/L)	9.98 \pm 0.15	9.89 \pm 0.10	8.76 \pm 0.15	8.00 \pm 0.13
Temperature (°C)	15.6 \pm 0.1	16.5 \pm 0.3	20.0 \pm 0.2	19.9 \pm 0.1
Alkalinity (μmol/kg)	3,954 \pm 157	4,694 \pm 342	3,787 \pm 245	4,732 \pm 394
$p\text{CO}_2$ (μatm)	1,378 \pm 65	84 \pm 22	1,680 \pm 114	95 \pm 29
Salinity (ppt)	0.44 \pm 0.002	0.54 \pm 0.015	0.45 \pm 0.001	0.54 \pm 0.009

195

196 *Blood Sampling and Analysis*

197 We sampled blood without the use of cannulation via a gill irrigation technique described in
198 past studies (Harter et al., 2021; Kwan and Tresguerres, 2022; Davison et al., 2023). After ash
199 exposure reached the designated timepoint, fish were anesthetized in their treatment tank by
200 pouring a benzocaine stock solution through an extended tube that is out of view of the fish to
201 minimize disturbance to achieve a concentration of 75 mg/L benzocaine in the tank. After loss of

202 equilibrium (~3 min), fish were moved to a surgery table where their gills were irrigated with
203 aerated treatment water with maintenance anesthetic (benzocaine, 30 mg/L). Blood was drawn
204 from a caudal vessel using a heparinized syringe (21 gage needle; 100 IU lithium heparin),
205 placed on ice, then processed within 5 minutes of sampling. All sampling took place between the
206 hours of 8:00 and 13:00.

207 Whole blood pH (pH_e) was first measured with a micro pH electrode (HI1083B, Hanna
208 Instruments), then a subset (65 μ L; 1-3 sample per fish) was analyzed using the ABL90 Flex
209 Plus (Radiometer, Copenhagen, Denmark) to measure blood pCO_2 and the concentration of Na^+ ,
210 K^+ , Cl^- , Ca^{2+} , glucose and lactate. The remainder of the samples were spun for 2 min on a
211 tabletop centrifuge, and the separated red blood cell (RBC) and plasma fractions were flash
212 frozen with liquid N_2 for later intracellular pH (pH_i), total ammonia and CO_2 measurements.
213 RBC pH_i was measured using the freeze-thaw technique (Zeidler and Kim, 1977). Following
214 best practices (Baker et al., 2009), pH_i was measured with a pH microelectrode (HI1083B,
215 Hanna Instruments) within 2-weeks of the conclusion of the experiment to limit pH change.
216 pCO_2 values were temperature corrected using the following equation (Siggaard-Andersen,
217 1974).

$$218 \quad pCO_2(T) = pCO_2(37) * 10^{[0.021*(T-37)]}$$

219 Next, blood pH_e and pCO_2 values were used to calculate $[HCO_3^-]$ using the Henderson-
220 Hasselbalch equation. The solubility coefficient of CO_2 (0.0578 mmol l^{-1} Torr $^{-1}$), ionic strength
221 (0.15 M), and pK_1 (6.20) were based upon (Boutilier et al., 1984). Plasma total ammonia
222 ($[T_{Amm}]$ i.e. $[NH_3 + NH_4^+]$) was determined spectrophotometrically in 25 μ L aliquots of flash
223 frozen plasma by enzymatic ammonia assay (Sigma-Aldrich, USA, Catalog number: AA0100).
224 $[T_{Amm}]$ was calculated from the delta absorbance at 340 nm wavelength before and after the

225 addition of the enzyme L-glutamate dehydrogenase. Absorbance was measured in Greiner UV-
226 star® 96-well plates using a microplate reader (Infinite® M200 PRO, Tecan, Switzerland).
227 Finally, $p\text{NH}_3$ and $[\text{NH}_4^+]$ were calculated with the Henderson-Hasselbalch equation using the
228 solubility coefficients and pK_{Amm} values from Cameron and Heisler (1983).

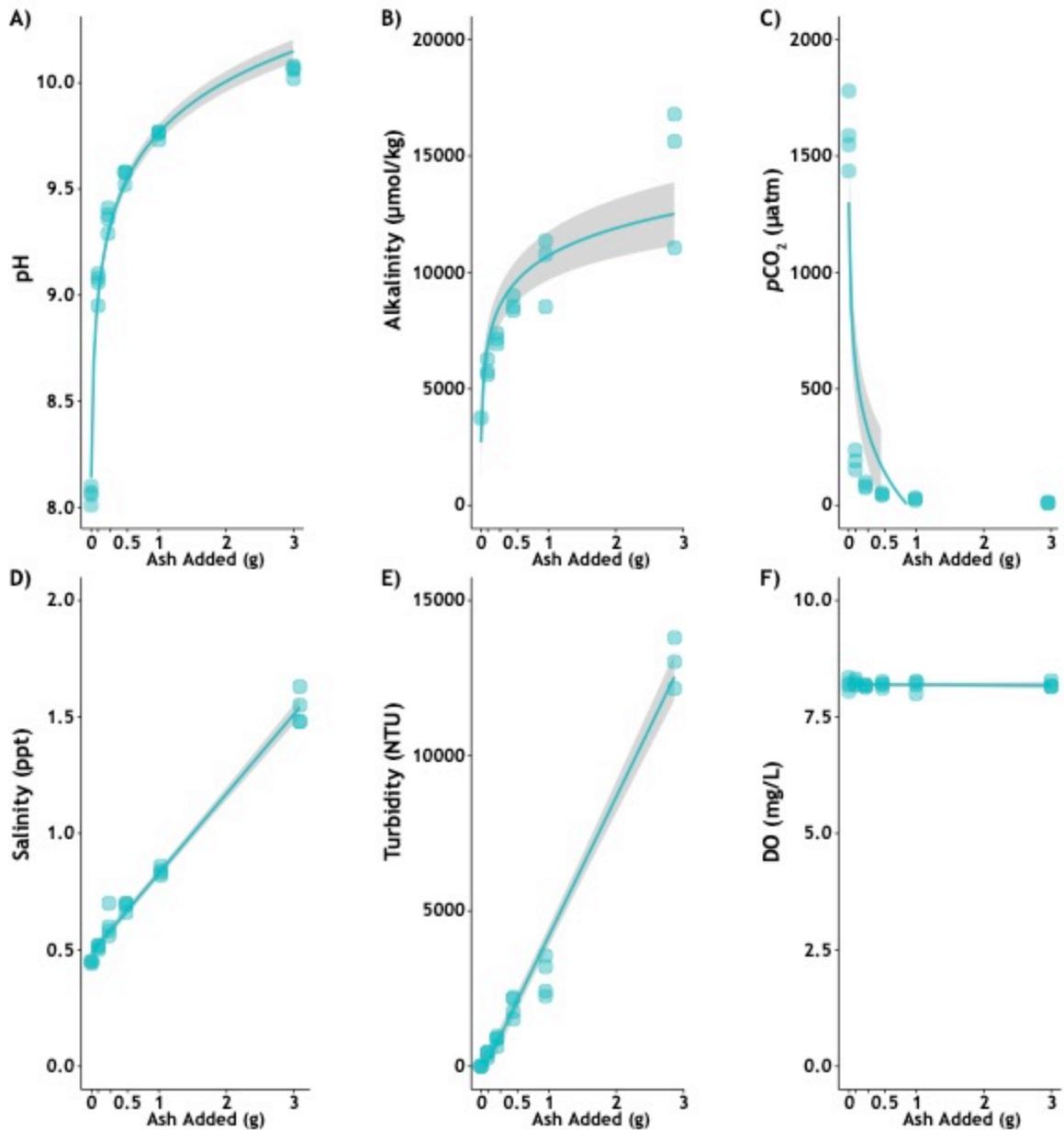
229

230 *Statistical Analysis*

231 Statistical analyses were performed using *R* (version 4.0.3) (R Development Core Team,
232 2013). Water quality parameters were analyzed with two-tailed Student's t-test, one-way
233 Analysis of Variance (ANOVA), and linear regressions with water source and ash input as
234 covarying factors. Blood and plasma variables were analyzed with Analysis of Covariance
235 (ANCOVA), with temperature and duration of ash exposure as factors. Normality and
236 homogeneity of residuals were assessed through visual inspection of QQ plots and residual
237 boxplots, respectively. An alpha level of 0.05 was used for significance in all statistical
238 tests. Unless noted otherwise, results are reported as mean \pm SEM.

239

240 **Results**


241 *Part 1: Water Quality Impact from Ash Input*

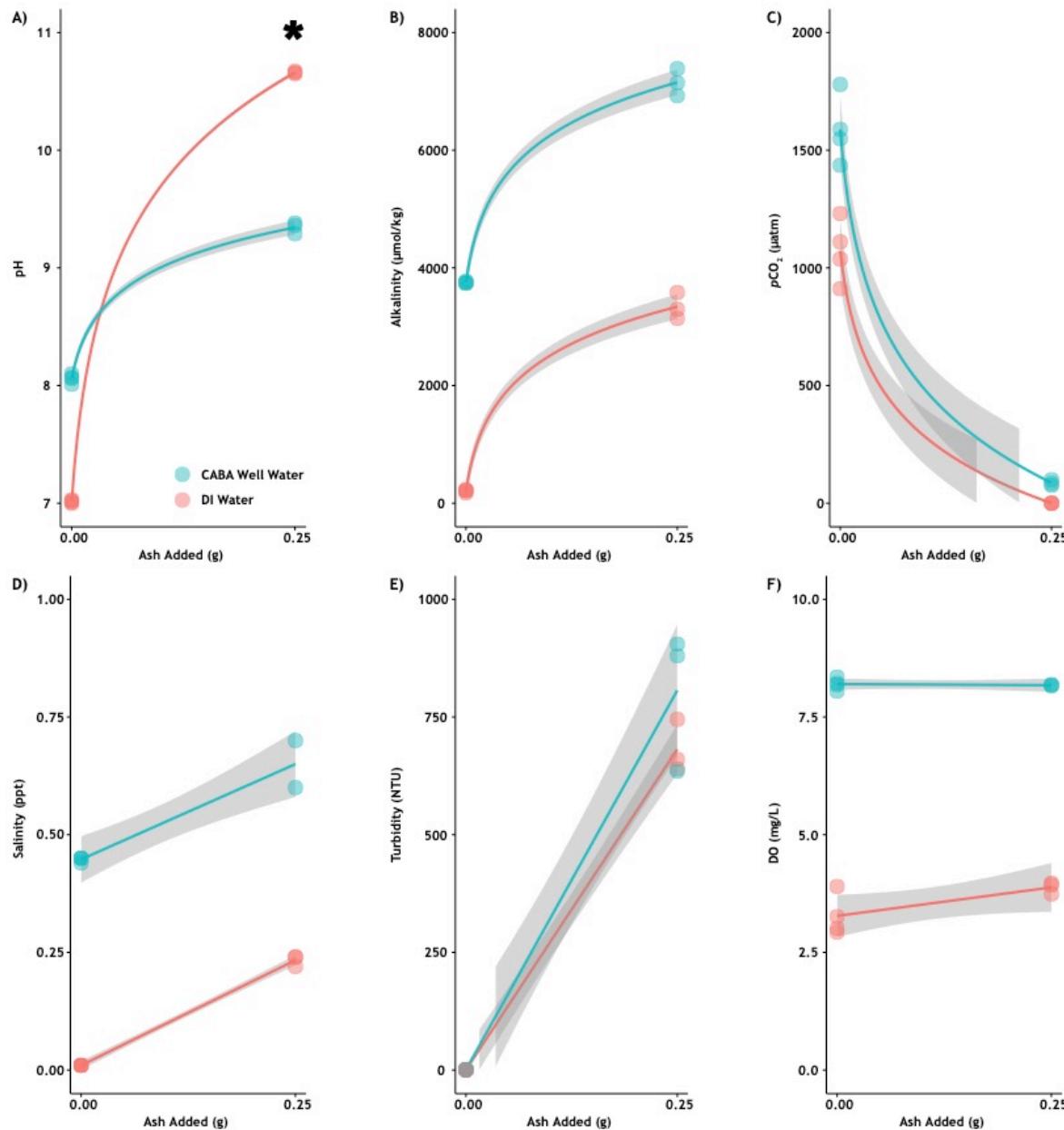
242 Water quality parameters were measured in stagnant and fresh rain and mud puddles, DI
243 water, CABA well water, Putah Creek, and Lake Berryessa (Supplemental Figure 1). Fresh
244 rainwater (pH ~6.2, alkalinity ~40 $\mu\text{mol/kg}$) is more acidic and less buffered than adjacent mud
245 puddles (pH ~7.3, alkalinity ~300 $\mu\text{mol/kg}$), which reflects the slightly alkaline soil reported
246 around Davis, CA (Walkinshaw et al., 2022). DI water (pH ~7.0, alkalinity ~40 $\mu\text{mol/kg}$) is

247 neutral in pH, but has a similar level of alkalinity as rainwater. In contrast, natural overland
248 water bodies such as Putah Creek and Lake Berryessa have pH ~8.3 and alkalinity ~1,800
249 $\mu\text{mol/kg}$, and these elevated values are likely attributed to mineral absorption from soil and rock
250 erosion over time. Well water has similar pH (~8.1) to that of overland water, but its alkalinity
251 (~3,700 $\mu\text{mol/kg}$) is more than double that of Putah Creek and Lake Berryessa. This is likely
252 because the well water has had the most time to interact with minerals as it permeated through
253 the groundwater system, but $p\text{CO}_2$ levels is elevated because it has not yet equilibrated with the
254 atmosphere giving rise to a similar pH overall. Likewise, freshwater alkalinity, turbidity, and
255 salinity also correlated with time spent interacting in the watershed, though turbidity of DI, Lake
256 Berryessa, and CABA well water were likely low due to removal by filtration systems at UCD.

257 The relationship between ash input across concentration was examined by mixing CABA
258 well water with 0, 0.1, 0.25, 0.5, 1, and 3% (w/v) locally burned ash. Ash input induces a
259 logarithmic increase in water pH and alkalinity, and a logarithmic decrease in $p\text{CO}_2$ (Figure 1A-
260 C). In contrast, ash input linearly increased salinity and turbidity (Figure 1D, E), and did not
261 affect DO (Figure 1F). The magnitude of pH change induced by ash input was dependent on the
262 starting alkalinity of the water. To demonstrate this, DI and well water response to an ash input
263 of 0.25% (w/v) were compared. DI water increased pH much more (~7.0 to ~10.5) than the more
264 buffered well water (~8.1 to ~9.2) during ash exposure (Figure 2A). In contrast, the rate of ash-
265 induced changes in alkalinity, $p\text{CO}_2$, salinity, and turbidity were relatively similar (Figure 2B-E).
266 Finally, ash input did not impact DO (Figure 2F).

267
268

269


270

271 **Figure 1:** CABA well water and ash dosing curve. The impact of adding 0.1, 0.25, 0.5, 1, and
272 3% ash (w/v) on CABA well water A) pH, B) alkalinity, C) $p\text{CO}_2$, D) salinity, E) turbidity, and
273 F) dissolved oxygen levels. Shaded area denotes 95% confidence interval.

274

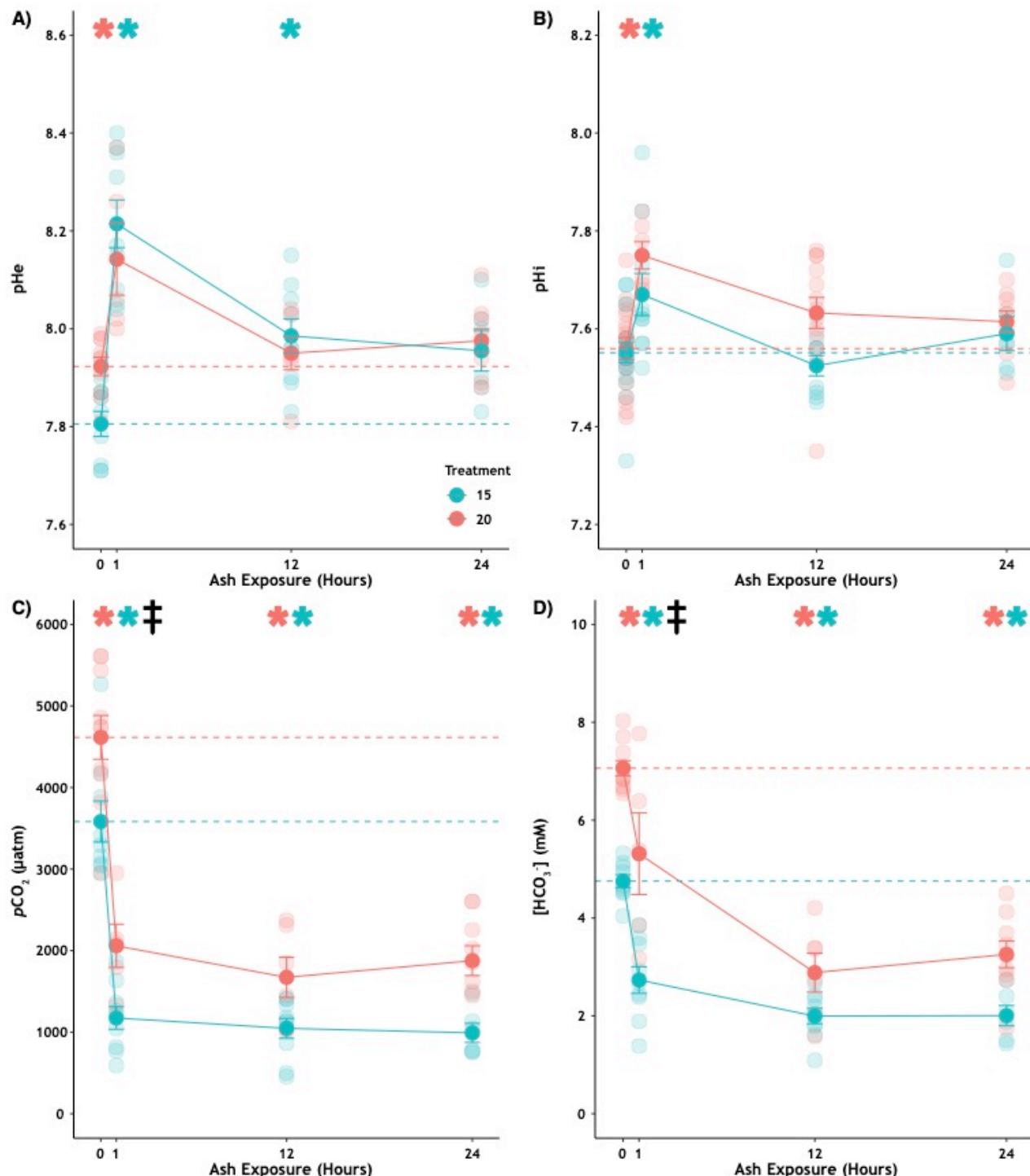
275

276

277
278
279
280
281
282

Figure 2: Influence of salinity on ash-induced water chemistry change. Comparison of DI and CABA well water with and without 0.25% (w/v) ash input on A) pH, B) alkalinity, C) $p\text{CO}_2$, D) salinity, E) turbidity, and F) dissolved oxygen levels. Shaded area denotes 95% confidence interval.

283 ICP-MS analysis identified 25 of 31 elements within detectable range (Supplemental
284 Figure 2-4). None of the 25 elements was affected by temperature, nor were there significant
285 decline in concentration after ash input. Ash input significantly increased the concentration of 13
286 elements: Al, B, Ba, Cr, K, Li, Mo, Mn, Ni, P, Sb, Se, and Sn (Supplemental Figure 2-4).


287

288 *Part 2: Blood Response to Ash Exposure in 15 and 20°C acclimated Fish*

289 Because the majority of past wildfire studies responded with an increase of ~1 pH units
290 (Paul et al., 2022), we selected the concentration of 0.25% (w/v) was selected as our
291 experimental condition. This value would induce a pH increase from ~8.0 to ~9.2, which is
292 slightly higher than the EPA recommended upper limit of ~9.0 (U.S. Environmental Protection
293 Agency., 2013) yet demonstrated to be within tolerable range by the related rainbow trout
294 (Wilkie and Wood, 1991). Chinook salmon yearlings acclimated to 15 or 20°C were exposed to
295 0, 1, 12, or 24 hours of 0.25% (w/v) ash exposure. In total, we observed 20% (6 of 30) and
296 33.3% (10 of 30) mortalities in the 15°C and 20°C treatment, respectively, all of which occurred
297 between 1 to 12 hours of ash exposure.

298 Prior to ash exposure, the pH_e of salmon reared at 15°C (7.81 ± 0.02) were slightly but
299 not significantly lower than those reared at 20°C (7.92 ± 0.02) in fishes ($p = 0.2148$; Figure 3A).
300 In contrast, RBC pH_i (15°C: 7.55 ± 0.02 , 20°C: 7.56 ± 0.02) were extremely similar ($p = 1.0000$;
301 Figure 3B). Salmon reared at 20°C had significantly higher $p\text{CO}_2$ ($4615 \pm 269 \text{ }\mu\text{atm}$; $p = 0.0089$)
302 than 15°C acclimated fish ($3583 \pm 251 \text{ }\mu\text{atm}$; Figure 3C). Warmer temperature also significantly
303 elevated baseline plasma $[\text{HCO}_3^-]$ ($p < 0.0001$) (15°C: $4.75 \pm 0.13 \text{ mM}$; 20°C: $7.06 \pm 0.16 \text{ mM}$;
304 Figure 3D).

305

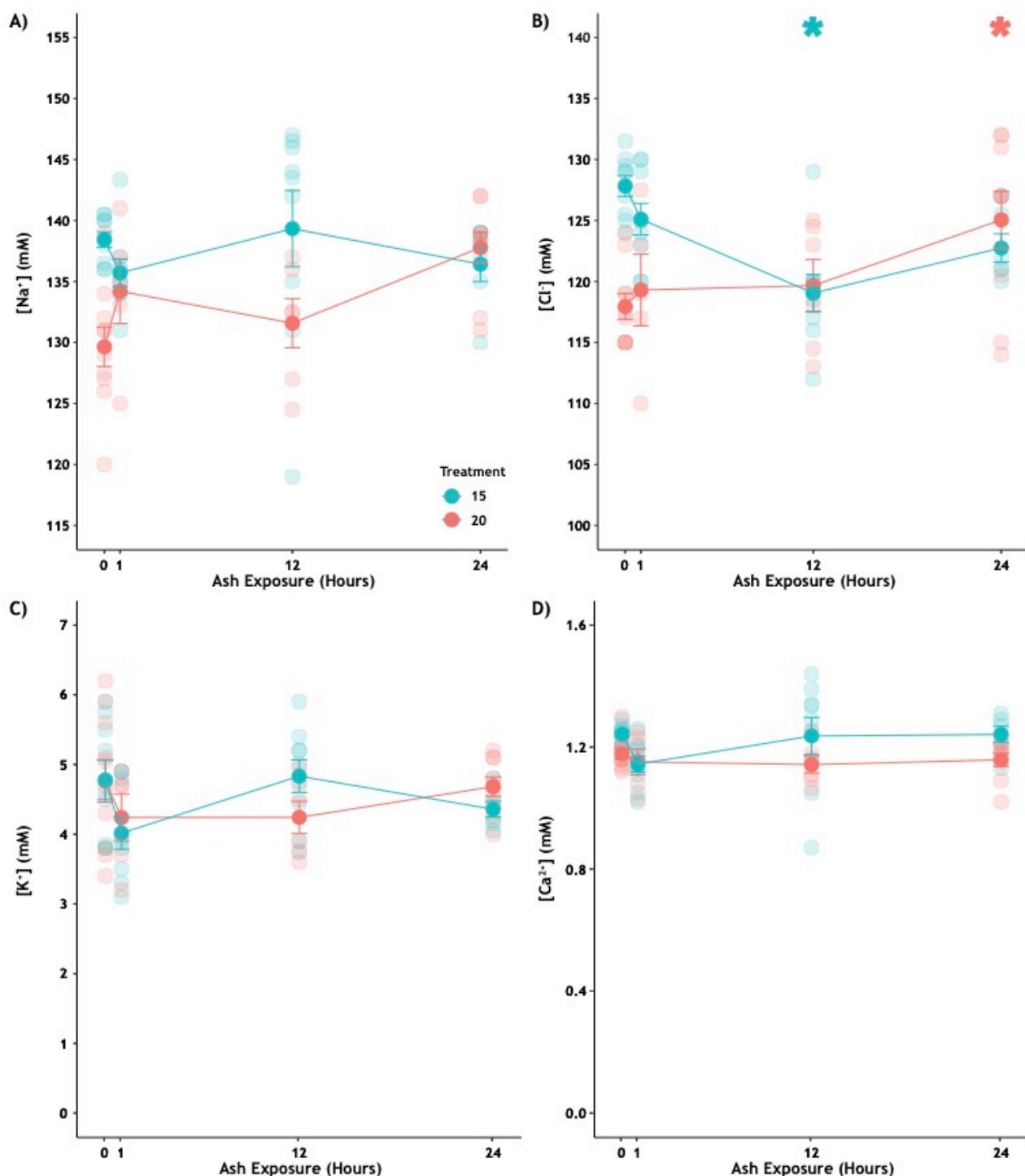
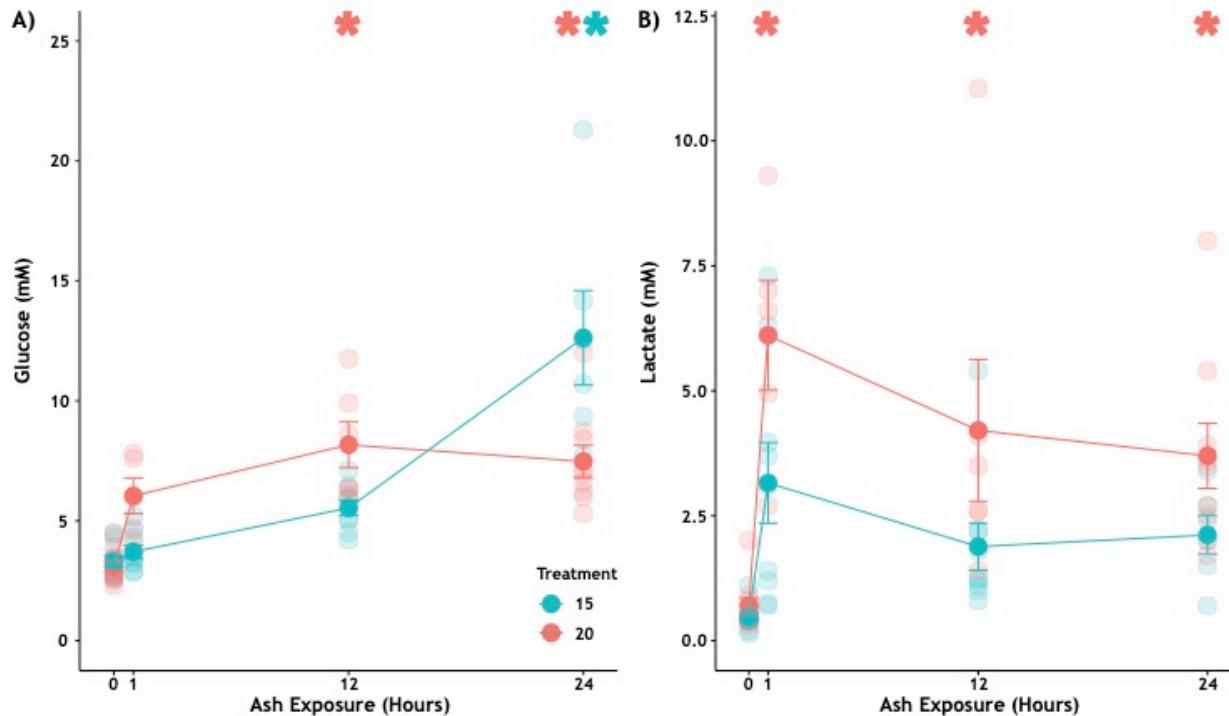

306
307
308
309
310
311
312

Figure 3: Blood acid-base response to ash-induced pH ~9.2 exposure at 15 and 20°C. Salmon blood A) pHe, B) pH, C) pCO_2 and D) $[HCO_3^-]$ over the 0, 1, 12, and 24 hours of ash exposure. Values are mean \pm SEM. Asterisk (teal = 15°C, salmon = 20°C) indicates significance ($\alpha = 0.05$) from respective control (0 hour exposure), which is represented as a dotted line. Black diesis (double dagger) indicates significance between the 15 and 20°C 0-hour controls.

313 Ash input rapidly increased water pH from ~8.1 to ~9.2 and simultaneously decreased
314 $p\text{CO}_2$ from 1,400 – 1,700 to ~100 μatm (Table 1), challenging the salmon with acute
315 environmental alkalosis. This study shows that 1 hour was not enough time for the salmon to
316 mitigate the acid-base disturbance: both salmon pH_e (15°C: $p < 0.0001$, 20°C: $p = 0.0051$) and
317 pH_i (15°C: $p = 0.0386$, 20°C: $p = 0.0057$) were significantly elevated compared to their
318 respective baselines (Figure 3A, B). However, salmon acclimated to 20°C returned to baseline
319 pH_e levels after 12 hours (12 hours: $p = 0.9995$), whereas salmon acclimated to 15°C needed 24
320 hours to no longer be significantly different from baseline (24 hours, $p = 0.1214$). Salmon RBC
321 pH_i also significantly rose (15°C: $p = 0.0386$, 20°C: $p = 0.0057$), but both treatments had fully
322 recovered by 12 hours of exposure. In contrast, blood $p\text{CO}_2$ (15°C and 20°C: $p < 0.0001$) and
323 $[\text{HCO}_3^-]$ (15°C: $p < 0.0001$, 20°C: $p = 0.0050$) significantly decreased after 1 hour of ash
324 exposure (Figure 3C, D), and they remained low or further declined with prolonged exposure.

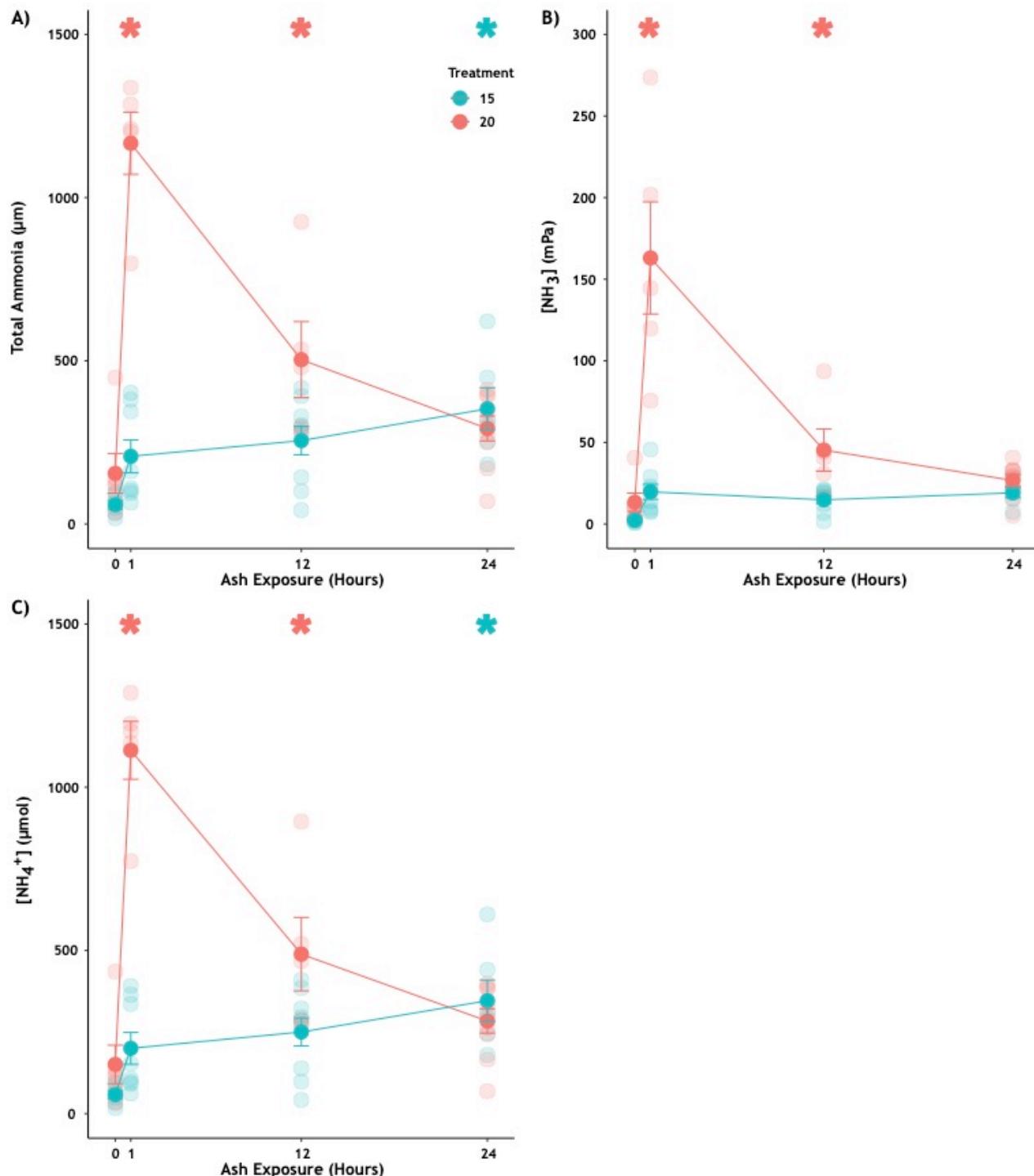
325 Plasma $[\text{Na}^+]$, $[\text{K}^+]$, and $[\text{Ca}^{2+}]$ were not significantly affected by ash exposure (Figure
326 4A, C-D). In contrast, plasma $[\text{Cl}^-]$ was differentially affected by ash exposure (Figure 4B): $[\text{Cl}^-]$
327 was significantly lower than baseline after 12 hours of exposure in 15°C salmon ($p = 0.0041$),
328 and significantly higher than baseline after 24 hours of exposure in 20°C salmon ($p = 0.0300$).
329 Plasma glucose was significantly increased with ash exposure in 15°C fish after 24 hours of
330 exposure ($p < 0.0001$) and in 20°C salmons after both 12 hours ($p = 0.0001$) and 24 hours of
331 exposure ($p = 0.0002$; Figure 5A). In general, plasma lactate in both temperature treatments
332 spiked at 1 hour (15°C: $p = 0.0565$, 20°C: $p < 0.0001$) and decreased over the next 12 (15°C: $p =$
333 0.7302, 20°C: $p = 0.1098$) and 24 hours (15°C: $p = 0.6876$, 20°C: $p = 0.0167$), but only those of
334 20°C salmon was statistically significant (Figure 5B).


335

336

337 **Figure 4:** Plasma ion response to ash-induced pH ~9.2 exposure at 15 and 20°C. Salmon plasma
338 A) [Na⁺], B) [Cl⁻], C) [K⁺] and D) [Ca²⁺] over the 0, 1, 12, and 24 hours of ash exposure. Values
339 are mean \pm SEM. Asterisk (teal = 15°C, salmon = 20°C) indicates significance ($\alpha = 0.05$) from
340 respective control (0 hour exposure).

341


342
343 **Figure 5:** Plasma glucose, lactate, and ammonia response to ash-induced pH ~9.2 exposure at 15
344 and 20°C. Salmon plasma A) glucose and B) lactate over the 0, 1, 12, and 24 hours of ash
345 exposure. Values are mean \pm SEM. Asterisk (teal = 15°C, salmon = 20°C) indicates significance
346 ($\alpha = 0.05$) from respective control (0 hour exposure).

347

348 Plasma total ammonia generally increased with ash exposure (Figure 6A), but the two
349 temperature treatments exhibited different response patterns: plasma total ammonia in 15°C
350 salmon gradually increased until it was significantly higher at 24 hours of exposure ($p = 0.0340$),
351 whereas 20°C salmon experienced a 7.5-fold increase after 1 hour of exposure ($p < 0.0001$),
352 remained significantly ~3-fold elevated at 12 hours of exposure ($p = 0.0105$), and finally tapered
353 down to non-significant levels at 24 hours of exposure (Figure 6A). Plasma $[\text{NH}_4^+]$ followed a
354 similar pattern: $[\text{NH}_4^+]$ in 15°C salmon was significantly elevated after 24 hours of ash exposure
355 ($p = 0.030$), whereas $[\text{NH}_4^+]$ in 20°C salmon was significantly elevated after 1 ($p < 0.0001$) and
356 12 hours of exposure ($p < 0.0001$), but returning back to control levels by 24 hours ($p = 0.6836$;
357 Figure 6B). Finally, $[\text{NH}_3]$ in 20°C salmon was significantly elevated at 1 ($p < 0.0001$) and 12

358 hours ($p < 0.0001$), but returned to control levels by 24 hours of exposure (Figure 6C). In
359 contrast, $[\text{NH}_3]$ in 15°C salmon was not significantly elevated relative to control levels
360 regardless of ash exposure duration (Figure 6C).

361

362

363 **Figure 6:** Plasma total ammonia, $[\text{NH}_3]$, and $[\text{NH}_4^+]$ response to ash-induced pH ~9.2 exposure
364 at 15 and 20°C. Salmon plasma A) total ammonia, B) $[\text{NH}_3]$, and C) $[\text{NH}_4^+]$ over the 0, 1, 12,
365 and 24 hours of ash exposure. Values are mean \pm SEM. Asterisk (teal = 15°C, salmon = 20°C)
366 indicates significance ($\alpha = 0.05$) from respective control (0 hour exposure).
367

368 **Discussion**

369 In agreement with the classic Davenport acid-base physiology and Wilkie & Wood (1991),
370 exposure to pH ~9.3 initially induced an elevation in blood pH_e and pH_i , and a simultaneous
371 reduction in plasma $p\text{CO}_2$ and $[\text{HCO}_3^-]$. Most salmon were able to recover their pH_e and pH_i for
372 the ash-induced environmental alkalinization after 12-24 hours of exposure, which matches the
373 response time of the rainbow trout (Wilkie and Wood, 1991). One potential mechanism for pH
374 recovery is through the coordinated effort of apical anion exchanger (AE), cytoplasmic carbonic
375 anhydrase, and basolateral Na^+/H^+ Exchanger (NHE1) and electrochemically driven by
376 basolateral vacuolar-type H^+ -ATPase similar to base-secreting gill ionocytes in elasmobranchs
377 (Tresguerres et al., 2005; Roa et al., 2014) or basolateral NKA as in teleost intestinal epithelium
378 (Grosell and Genz, 2006). In concept, the increased ions leached from the ash should ease IOA-B
379 recovery. Yet not all of the salmon were successful in this endeavor: we observed a 20% and
380 33.3% mortality rate in Chinook salmon reared at 15°C and 20°C, respectively. The timing of the
381 mortality occurred between 1 and 12 hours of exposure, and the greater mortality at the warmer
382 temperature cannot be explained by worse acid-base disturbance (in fact it was less disturbed in
383 the warmer fish). Instead, the greater mortality may correlate better with the rapid and substantial
384 increase in plasma total ammonia. Although not directly comparable due to differences in
385 experimental parameter and species, mortality appeared to be greater when water alkalization
386 was induced with ash input rather than NaOH (Wilkie and Wood, 1991) or using naturally
387 occurring alkaline lake water (Wilkie et al., 1994); Wilkie and Wood (1991) reported one

388 rainbow trout perished during 72 hours of exposure to pH 9.5, and in a subsequent experiment
389 reported in the same study no rainbow trout mortality during a 5-week exposure to pH 9.5.
390 Despite this, Wilkie and Wood (1991) concluded that high pH exposure does “render the fish
391 more susceptible to other stresses” as they observed recovery from surgical procedures (e.g.
392 cannulation) was more successful when kept at a lower pH (8.15).

393 Salmon in the 15°C treatment appeared to have experienced greater alkalosis, and this may
394 explain why salmon reared at 20°C appear to have recovered their pH_e more quickly and
395 completely than those reared at 15°C. One possibility is that salmon reared at 20°C are
396 generating CO_2 at a faster rate and therefore potentially have access to more H^+ to recover pH_e
397 more quickly (providing they can excrete the HCO_3^- generated by CO_2 hydration). Interestingly,
398 past results showed rainbow trout reared at 15°C (the colder temperature we used) and
399 challenged with environmental alkalinization (pH 9.5) also could not return to their baseline pH_e
400 of ~7.83, and instead stabilized their pH_e at 7.97 (Wilkie and Wood, 1991). These results suggest
401 that although warmer temperature may increase mortality, their higher metabolic rate (and by
402 extension basal pCO_2) could facilitate pH recovery by promoting H^+ synthesis.

403 Recovery from environmental alkalosis requires the excretion of plasma HCO_3^- and
404 retention of H^+ to return blood pH to nominal levels. Past studies typically find fishes exposed to
405 environmental alkalinization between 10°C to 15°C have decreased $[\text{Na}^+]$ and $[\text{Cl}^-]$ as well as
406 elevated $[\text{K}^+]$ by 8 hours of exposure, with these effects persisting up to 72 hours of exposure
407 (Wilkie and Wood, 1991; Hemming and Hanson, 1992; Wilkie et al., 1993; Scott et al., 2005). In
408 contrast, the present study finds Chinook salmon plasma ion responses to be relatively muted,
409 with only $[\text{Cl}^-]$ exhibiting a divergent response: salmon reared at 15°C had significantly less $[\text{Cl}^-]$
410 by 12 hours of ash exposure, whereas salmon reared at 20°C had significantly greater $[\text{Cl}^-]$ by 24

411 hours of ash exposure. Differences in experimental design may explain the muted ionic
412 responses: ash-input increases the ions available for IOA-B regulation (e.g. ~8,000-fold increase
413 in environmental K^+ levels; Supplemental Figure Elemental 3), and warmer acclimation
414 temperature (and by extension greater metabolic rate) leads to higher basal pCO_2 level and
415 greater metabolic H^+ generation. Future studies should continue to explore the interactions
416 between acid-base regulation in an environment with greater ion availability.

417 Acclimation temperature appears to have influenced plasma total ammonia, $[NH_3]$, and
418 $[NH_4^+]$ levels throughout ash exposure. Chinook salmon in the 15°C treatment experienced a
419 gradual accumulation of ammonia, with levels that were not significantly different until 24-hours
420 of exposure. This gradual rise over 24 hours was similar to previous alkaline water exposure
421 studies at somewhat higher water pH levels (e.g. Wilkie and Wood, 1991; Wilkie et al., 1994;
422 McGeer and Eddy, 1998). In contrast, Chinook salmon in the 20°C treatment experienced a ~7.5-
423 fold spike at 1 hour of exposure to ~1200 μM total ammonia, which remained highly elevated at
424 12 hours, and returned to baseline levels after 24 hours of exposure. This may be linked to the
425 higher observed mortality in the 20°C salmon as the inability to regulate ammonia during high
426 pH exposure has been attributed to fish mortality in past studies (Wilkie et al., 1993; Wilkie and
427 Wood, 1996). Interestingly, the peak level reached here (1200 μM in just 1 hour) was
428 substantially higher and reached far faster than in those previous studies (250-600 μM) in which
429 the water pH levels used were somewhat higher than in the present ash-exposure study (pH 9.4-
430 10.5; Wilkie and Wood, 1991; Wilkie et al, 1994; McGeer and Eddy, 1998). As such, while
431 higher temperature may assist in pH recovery (see above), it also may lead to a greater ammonia
432 challenge during high pH exposure. It additionally suggests that ash may cause such
433 physiological impacts in a way that cannot be explained by high water pH alone. This may relate

434 to the complex mixture of metals and organic compounds also released into freshwater from ash,
435 but the precise mechanisms and causative agents are beyond the scope of the present study
436 (although see below).

437 To rapidly address the acute acid-base challenge, salmon appeared to have released glucose
438 from glycogen stores and upregulated anaerobic respiration. However, the strategy appears to be
439 temperature specific: salmon in the 20°C treatment have a lower aerobic scope than their 15°C
440 counterparts (Zillig et al., 2023), so they may have 1) hastened their release of glucose from
441 glycogen stores and 2) upregulated metabolic proton production (as evident by plasma lactate
442 build-up (Robergs et al., 2004) to aid in rapid recovery of pH_e. In contrast, salmon in the 15°C
443 treatment did not significantly upregulate their glucose until 24 hours of exposure, and lactate
444 levels were consistently about half those in fish at the warmer temperature. Future studies are
445 needed to determine whether the metabolic protons were upregulated to assist with pH_e
446 recovery. Moreover, respirometry studies are necessary to determine whether the salmon's
447 temperature-dependent aerobic capacity influence their pH_e recovery, and whether the slowing
448 of ventilation rates could have accumulated greater CO₂ in an effort to acidify their blood as our
449 current methods using artificial gill ventilation necessary to collect blood samples for
450 physiologically-relevant IOA-B values could have masked potential blood pCO₂ impact.

451 In the wild, fishes (especially those trapped in lakes and reservoirs) would likely experience
452 ash exposure at longer duration than those in the present study. Despite surviving the initial
453 environmental alkalinization, the potential impacts of trace metal accumulation and their putative
454 inhibition of IOA-B regulation could have long-lasting impacts on the fish (reviewed in Wood et
455 al., 2012a, b). For instance, Cr exposure has been shown to induce oxidative stress and
456 negatively impact DNA integrity in the gill and kidney of the European eel (*Anguilla anguilla L.*)

457 (Ahmad et al., 2006). In addition, weeks to month-long exposure to Cu have been shown to
458 induce apoptosis of gill ionocytes and overall lower gill NKA activity (Li et al., 1998; Lorin-
459 Nebel et al., 2013), whereas weeks-long exposure to Li has been shown to decrease fat stores,
460 but did not affect gill NKA activity (Tkatcheva et al., 2007). Even if the concentration for each
461 element is sublethal, the additive effect along with other stressors could accumulate to induce
462 greater impacts or even mortality. Moreover, the elemental signatures and their concentrations
463 should greatly vary depending on factors including (but not limited to) wildfire intensity,
464 vegetation, soil type, anthropogenic input (e.g. fire retardants, buildings, vehicles) – and thus
465 warrant species- and region-specific examination. Behavioral response such as boldness and
466 shoaling have also been shown to be affected by wildfire-ash exposure (Gonino et al., 2019), and
467 downstream food web impacts and ecological dynamics (Spencer et al., 2003) should also be
468 investigated.

469

470 *Environmental Relevance and Potential Management Strategies*

471 Over the past decades, numerous studies have examined fish responses to high-CO₂ low-pH
472 conditions in the context of ocean acidification and aquaculture (Ellis et al., 2016; Tresguerres
473 and Hamilton, 2017). Perhaps due to a lack of recognized environmental relevance, responses of
474 aquatic organisms to low-CO₂ high-pH conditions remain relatively unexplored, leaving an
475 abundance of exciting research questions that need answering. Would the absence of plasma
476 accessible carbonic anhydrase (which could reduce the magnitude of blood pH_e increase) in fish
477 such as sturgeon be more tolerant of environmental alkalosis? This could potentially explain
478 their survival in the Klamath River, which naturally reaches pH ~10 during the summer (U.S.
479 Geological Survey, 2016). Moreover, what are some conservation management solutions that

480 could reduce the impacts of post-wildfire ash-input in areas inhabited by endangered fishes and
481 other aquatic organisms? Undoubtedly, further comparative physiology and conservation biology
482 research is necessary as wildfires become increasingly common due to global climate change.

483 The present study uses high alkalinity well water, which would dampen ash-induced pH
484 alkalinization as well as provides more counterions for IOA-B regulation. Therefore, our results
485 may be a conservative estimate of water quality and fish responses to ash input. Many natural
486 systems, especially those found at mid- to high-elevation and sourced with snowmelt, have very
487 low alkalinity levels (Stoddard, 1987; Eilers et al., 1990; Catalan and Camarero, 1993; Clow et
488 al., 1996) and are experiencing more rapid warming than lower elevation aquatic systems (Zhi et
489 al., 2020). Thus, these systems are potentially more susceptible to post-wildfire ash-induced pH
490 changes, which could be detrimental to fishes that are endemic to remote mid- to high-elevation
491 stream habitats like the Paiute Cutthroat Trout (*Oncorhynchus clarkia seleniris*), the California
492 state fish golden trout (*Oncorhynchus aguabonita*), and various salmon runs returning from the
493 ocean. Moreover, and as mentioned earlier in this study, organisms living in systems with
494 naturally high pH levels (e.g. green sturgeon in Klamath River, Lahontan cutthroat trout in
495 Pyramid Lake) and migratory species with rigid reproductive strategies (e.g. salmon) are also
496 more susceptible to the alkalinization-linked impacts of post-wildfire ash-input. Besides baseline
497 water pH and alkalinity, there are many other variables that could influence post-wildfire pH
498 responses including wildfire intensity (Santín et al., 2015; Sánchez-García et al., 2023),
499 including soil pH and composition (Marcotte et al., 2022), amount of rainfall or snowmelt
500 (Rhoades et al., 2011), watershed size and slope (Neary et al., 2003), and algal biomass (Hohner
501 et al., 2019). Taken together, the impacts of wildfire on aquatic watersheds will likely be system-
502 specific, and subsequent organismal response species-specific.

Vulnerable habitats can be identified with greater pH and alkalinity monitoring effort. Monitoring stations equipped and maintained with calibrated pH probes would provide valuable information on pre-wildfire baseline and natural pH variation, which would in turn help determine whether further management action is necessary following a wildfire. For instance, the release of dam water could help dilute the ash-induced alkalization, as well as to mitigate potential co-stressors such as high temperature, low oxygen, and the accumulation of heavy metals. Moreover, the opportunistic capture and removal of migratory species (e.g. returning adults, fertilized redds) from areas of concerns to rear in another area or aquacultures could be another method to safeguard the population. These two strategies are already employed for other scenarios, and with greater monitoring could be applied to help mitigate exposure to excessive ash-input. In principle, ash could be neutralized to prevent the system from reaching lethal pH levels to protect endangered and endemic species. However, many of these strategies may only be employable in the aquaculture setting and/or require additional investigation before they can be safely deployed. For instance, the addition of H^+ through an acidifying agent (e.g. HCl, $CaSO_4$, CH_3COOH) should lower water pH levels; however, past experiments with freshwater aquaculture ponds have revealed direct acidification is too expensive or temporary to be of practical use (Pote et al., 1990; Tucker and D’Abramo, 2008). One current best practice to reduce high pH in freshwater aquaculture includes the addition of cracked corn or soybean meal, of which their decay would generate CO_2 through microbial activity (Pote et al., 1990; Tucker and D’Abramo, 2008). However, the decay of organic matter would also deplete O_2 – which could be mitigated in aquaculture settings with air bubblers but is not feasible for the natural environment. Another technique proposed for freshwater aquaculture is to acidify high pH water by adding aluminum sulfate ($Al_2(SO_4)_3$), which not only produces H^+ but also coalesces algae

526 and suspended particles (Tucker and D’Abramo, 2008; Hohner et al., 2019). However, whether
527 aluminum sulfate could neutralize and/or reduce suspended ash in natural riverine systems is not
528 known. Moreover, aluminum is toxic to organisms (especially in freshwater habitats) and can
529 inhibit both active ion-uptake and accelerate passive ion-losses (reviewed in Wilson, 2012). As
530 such, the use of aluminum sulfate must be critically examined and its downstream impacts and
531 interaction with other chemicals present in the natural environment must be robustly explored
532 before being considered as a management tool. Altogether, there is a great need to further
533 investigate aquatic organismal responses to post-wildfire, and to synthesize and develop relevant
534 management strategies to help them survive in an increasingly wildfire-prone climate.

535

536 **Acknowledgement**

537 The authors thank Dennis Cocherell (UC Davis) and Linda Deanovic (UC Davis) for
538 coordinating and supplying the ash used in this experiment, and we are grateful to Levi Lewis
539 (UC Davis) for supplying elemental analysis reagents. Elemental analysis was performed at the
540 UC Davis Interdisciplinary Center for Plasma Mass Spectrometry, a Campus Research Core
541 Facility, using an Agilent 8900 ICP-MS Triple Quad purchased with funding from the UC Davis
542 Research Core Facilities Program’s Campus Research Core Facility Enhancement Funding
543 Program managed by the UC Davis Office of Research. Plasma total ammonia analyses were
544 performed at the University of Exeter funded by a BBSRC grant (BB/W018039/1) to RWW. We
545 also thank Brendan Lehman from NOAA Southwest Fisheries Science Center in Santa Cruz for
546 providing manuscript feedback and environmental context to our post-wildfire ash input
547 scenario. GTK was funded by the Delta Stewardship Council Delta Science Program under Grant
548 No. (21045), and NAF was funded by University of California, Davis Agricultural Experiment

549 Station (grant #2098-H). The contents of this material do not necessarily reflect the views and
550 policies of the Delta Stewardship Council, nor does mention of trade names or commercial
551 products constitute endorsement or recommendation for use.

552

553 **Competing Interests**

554 No competing interests declared.

555

556 **Data Availability**

557 The data that support the findings of this study are openly available in Dryad (DOI: TBD).

558

559

560

561

562 **References**

563 Adams R, Simmons D (1999) Ecological effects of fire fighting foams and retardants: A
564 summary. *Aust For* 62:307–314. doi: 10.1080/00049158.1999.10674797

565 Ahmad I, Maria VL, Oliveira M, et al (2006) Oxidative stress and genotoxic effects in gill and
566 kidney of *Anguilla anguilla* L. exposed to chromium with or without pre-exposure to β -
567 naphthoflavone. *Mutat Res - Genet Toxicol Environ Mutagen* 608:16–28. doi:
568 10.1016/j.mrgentox.2006.04.020

569 Baker DW, May C, Brauner CJ (2009) A validation of intracellular pH measurements in fish
570 exposed to hypercarbia: The effect of duration of tissue storage and efficacy of the
571 metabolic inhibitor tissue homogenate method. *J Fish Biol* 75:268–275. doi:

572 10.1111/j.1095-8649.2009.02261.x

573 Bayley SE, Schindler DW (1991) The role of fire in determining stream water chemistry in

574 northern coniferous forests. In: Ecosystem Experiments. pp 141–165

575 Beganyi SR, Batzer DP (2011) Wildfire induced changes in aquatic invertebrate communities

576 and mercury bioaccumulation in the Okefenokee Swamp. *Hydrobiologia* 669:237–247. doi:

577 10.1007/s10750-011-0694-4

578 Boutilier RG, Heming TA, Iwama GK (1984) Appendix: Physicochemical Parameters for use in

579 Fish Respiratory Physiology**The authors were supported by N.S.E.R.C. (Canada). In:

580 Hoar WS, Randall DJ (eds) *Fish Physiology*. Academic Press, pp 403–430

581 Burton CA, Hoefen TM, Plumlee GS, et al (2016) Trace Elements in Stormflow, Ash, and

582 Burned Soil following the 2009 Station Fire in Southern California. *PLoS One* 11:1–26.

583 doi: 10.1371/journal.pone.0153372

584 Cameron JN, Heisler N (1983) Studies of Ammonia in the Rainbow Trout Physico-Chemical

585 Parameters, Acid-Base Behaviour and Respiratory Clearance. *J Exp Biol* 105:107–125. doi:

586 10.1242/jeb.105.1.107

587 Cameron JN (1989) Acid-Base Homeostasis: Past and Present Perspectives. *Physiol Zool*

588 62:845–865.

589 Catalan J, Camarero L (1993) Seasonal changes in alkalinity and pH in two Pyrenean lakes of

590 very different water residence time. *SIL Proceedings, 1922-2010* 25:749–753. doi:

591 10.1080/03680770.1992.11900240

592 Claiborne JB, Heisler N (1984) Acid-Base Regulation and Ion Transfers in the Carp (*Cyprinus*

593 *Carpio*) During and After Exposure to Environmental Hypercapnia. *J Exp Biol* 108:25 LP –

594 43.

595 Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid-base regulation in fishes: cellular
596 and molecular mechanisms. *J Exp Zool* 293:302–319. doi: 10.1002/jez.10125

597 Clow DW, Mast MA, Campbell DH (1996) Controls on surface water chemistry in the upper
598 Merced River basin, Yosemite National Park, California. *Hydrol Process* 10:727–746. doi:
599 10.1002/(sici)1099-1085(199605)10:5<727::aid-hyp316>3.0.co;2-d

600 Costa MR, Calvão AR, Aranha J (2014) Linking wildfire effects on soil and water chemistry of
601 the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery.
602 *Appl Geochemistry* 44:93–102. doi: 10.1016/j.apgeochem.2013.09.009

603 Davison WG, Cooper CA, Sloman KA, Wilson RW (2023) A method for measuring meaningful
604 physiological variables in fish blood without surgical cannulation. *Sci Rep* 13:1–12. doi:
605 10.1038/s41598-023-28061-w

606 Eilers JM, Sullivan TJ, Hurley KC (1990) The most dilute lake in the world? *Hydrobiologia*
607 199:1–6. doi: 10.1007/BF00007827

608 Ellis RP, Urbina MA, Wilson RW (2016) Lessons from two high CO₂ worlds - future oceans
609 and intensive aquaculture. *Glob Chang Biol* 2100:1–8. doi: 10.1111/gcb.13515

610 Emelko MB, Stone M, Silins U, et al (2016) Sediment-phosphorus dynamics can shift aquatic
611 ecology and cause downstream legacy effects after wildfire in large river systems. *Glob*
612 *Chang Biol* 22:1168–1184. doi: 10.1111/gcb.13073

613 Evans DH, Piermarini PM, Choe KP (2005) The Multifunctional Fish Gill: Dominant Site of Gas
614 Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste.
615 *Physiol Rev* 85:97–177. doi: 10.1152/physrev.00050.2003

616 Giménez A, Pastor E, Zárate L, et al (2004) Long-term forest fire retardants: A review of quality,
617 effectiveness, application and environmental considerations. *Int J Wildl Fire* 13:1–15. doi:

618 10.1071/WF03001

619 Gomez Isaza DF, Cramp RL, Franklin CE (2022) Fire and rain: A systematic review of the
620 impacts of wildfire and associated runoff on aquatic fauna. *Glob Chang Biol* 28:2578–2595.
621 doi: 10.1111/gcb.16088

622 Gonino G, Branco P, Benedito E, et al (2019) Short-term effects of wildfire ash exposure on
623 behaviour and hepatosomatic condition of a potamodromous cyprinid fish, the Iberian
624 barbel *Luciobarbus bocagei* (Steindachner, 1864). *Sci Total Environ* 665:226–234. doi:
625 10.1016/j.scitotenv.2019.02.108

626 Grosell M, Genz J (2006) Ouabain-sensitive bicarbonate secretion and acid absorption by the
627 marine teleost fish intestine play a role in osmoregulation. *Am J Physiol Integr Comp
628 Physiol* 291:R1145–R1156. doi: 10.1152/ajpregu.00818.2005

629 Harter TS, Clifford AM, Tresguerres M (2021) Adrenergically induced translocation of red
630 blood cell β -adrenergic sodium-proton exchangers has ecological relevance for hypoxic and
631 hypercapnic white seabass. *Am J Physiol Integr Comp Physiol* 1–19. doi:
632 10.1152/ajpregu.00175.2021

633 Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern
634 marine carbonates. *Geochim Cosmochim Acta* 56:537–543. doi: 10.1016/0016-
635 7037(92)90151-8

636 Hohner AK, Rhoades CC, Wilkerson P, Rosario-Ortiz FL (2019) Wildfires Alter Forest
637 Watersheds and Threaten Drinking Water Quality. *Acc Chem Res* 52:1234–1244. doi:
638 10.1021/acs.accounts.8b00670

639 Huang Y, Wu S, Kaplan JO (2015) Sensitivity of global wildfire occurrences to various factors
640 in the context of global change. *Atmos Environ* 121:86–92. doi:

641 10.1016/j.atmosenv.2015.06.002

642 Kwan GT, Tresguerres M (2022) Elucidating the acid-base mechanisms underlying otolith
643 overgrowth in fish exposed to ocean acidification. *Sci Total Environ* 823:153690. doi:
644 10.1016/j.scitotenv.2022.153690

645 Lewis E, Wallace DWR (1998) CO2SYS dos program developed for CO2 system calculations.

646 Li J, Quabius ES, Wendelaar Bonga SE, et al (1998) Effects of water-borne copper on branchial
647 chloride cells and Na⁺/K⁺-ATPase activities in Mozambique tilapia (*Oreochromis*
648 *mossambicus*). *Aquat Toxicol* 43:1–11. doi: 10.1016/S0166-445X(98)00047-2

649 Lorin-Nebel C, Felten V, Blondeau-Bidet E, et al (2013) Individual and combined effects of
650 copper and parasitism on osmoregulation in the European eel *Anguilla anguilla*. *Aquat
651 Toxicol* 130–131:41–50. doi: 10.1016/j.aquatox.2012.11.018

652 Marcotte AL, Limpens J, Stoof CR, Stoorvogel JJ (2022) Can ash from smoldering fires increase
653 peatland soil pH? *Int J Wildl Fire* 31:607–620. doi: 10.1071/WF21150

654 Marshall WS, Grosell M (2006) Ion Transport, Osmoregulation, and Acid-Base Balance. In:
655 Evans DH, Claiborne JB (eds) *The Physiology of Fishes*, 3rd edn. CRC Press, Boca Raton,
656 pp 177–230

657 Mcgeer JC, Wright PA, Wood CM, et al (2011) Transactions of the American Fisheries Society
658 Notes : Nitrogen Excretion in Four Species of Fish from an Alkaline Lake. 8487:37–41. doi:
659 10.1577/1548-8659(1994)123<0824

660 McGeer JC, Eddy FB (1998) Ionic regulation and nitrogenous excretion in rainbow trout
661 exposed to buffered and unbuffered freshwater of pH 10.5. *Physiol Zool* 71:179–190. doi:
662 10.1086/515895

663 Muñiz González AB, Campos I, Re A, et al (2023) Effects of wildfire ashes on aquatic

664 invertebrates: First molecular approach on *Chironomus riparius* larvae. *Sci Total Environ*
665 858:159899. doi: 10.1016/j.scitotenv.2022.159899

666 Neary DG, Gottfried GJ, Ffolliott PF (2003) Post-Wildfire Watershed Flood Responses. Second
667 Int Fire Ecol Fire Manag Congr Orlando, Florida, 16-20 Novemb 2003, Pap 1B7 1–8.

668 Nunes B, Silva V, Campos I, et al (2017) Off-site impacts of wildfires on aquatic systems —
669 Biomarker responses of the mosquitofish *Gambusia holbrooki*. *Sci Total Environ* 581–
670 582:305–313. doi: 10.1016/j.scitotenv.2016.12.129

671 Oliver AA, Reuter JE, Heyvaert AC, Dahlgren RA (2012) Water quality response to the Angora
672 Fire, Lake Tahoe, California. *Biogeochemistry* 111:361–376. doi: 10.1007/s10533-011-
673 9657-0

674 Paul MJ, LeDuc SD, Lassiter MG, et al (2022) Wildfire Induces Changes in Receiving Waters:
675 A Review With Considerations for Water Quality Management. *Water Resour Res.* doi:
676 10.1029/2021WR030699

677 Pausas JG, Keeley JE (2019) Wildfires as an ecosystem service. *Front Ecol Environ* 17:289–295.
678 doi: 10.1002/fee.2044

679 Pausas JG, Keeley JE (2021) Wildfires and global change. *Front Ecol Environ* 19:387–395. doi:
680 10.1002/fee.2359

681 Pote JW, Cathcart TP, Deliman PN (1990) Control of high pH in aquacultural ponds. *Aquac Eng*
682 9:175–186. doi: 10.1016/0144-8609(90)90004-J

683 Pyramid Lake Paiute Tribe (2019) 2019 Pyramid Lake Paiute Tribe Nonpoint Source
684 Assessment Report.

685 R Development Core Team (2013) R: A language and environment for statistical computing. R
686 foundation for statistical computing.

687 Raoelison OD, Valenca R, Lee A, et al (2023) Wildfire impacts on surface water quality

688 parameters: Cause of data variability and reporting needs. Environ Pollut 317:120713. doi:
689 10.1016/j.envpol.2022.120713

690 Reavie E, Smol J (2001) Diatom-environmental relationships in 64 alkaline southeastern Ontario

691 (Canada) lakes: A diatom-based model for water quality reconstructions. J Paleolimnol
692 25:25–42. doi: 10.1023/A:1008123613298

693 Rhoades CC, Entwistle D, Butler D (2011) The influence of wildfire extent and severity on

694 streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado. Int
695 J Wildl Fire 20:430–442. doi: 10.1071/WF09086

696 Roa JN, Munévar CL, Tresguerres M (2014) Feeding induces translocation of vacuolar proton

697 ATPase and pendrin to the membrane of leopard shark (*Triakis semifasciata*)

698 mitochondrion-rich gill cells. Comp Biochem Physiol -Part A Mol Integr Physiol 174:29–

699 37. doi: 10.1016/j.cbpa.2014.04.003

700 Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic

701 acidosis. Am J Physiol - Regul Integr Comp Physiol 287:502–516. doi:
702 10.1152/ajpregu.00114.2004

703 Robson BJ, Chester ET, Matthews TG, Johnston K (2018) Post-wildfire recovery of invertebrate

704 diversity in drought-affected headwater streams. Aquat Sci 80:1–15. doi: 10.1007/s00027-

705 018-0570-7

706 Sánchez-García C, Santín C, Neris J, et al (2023) Chemical characteristics of wildfire ash across

707 the globe and their environmental and socio-economic implications. Environ Int 108:065.

708 doi: 10.1016/j.envint.2023.108065

709 Santín C, Doerr SH, Otero XL, Chafer CJ (2015) Quantity, composition and water contamination

710 potential of ash produced under different wildfire severities. *Environ Res* 142:297–308. doi:
711 10.1016/j.envres.2015.06.041

712 Scott DM, Lucas MC, Wilson RW (2005) The effect of high pH on ion balance, nitrogen
713 excretion and behaviour in freshwater fish from an eutrophic lake: A laboratory and field
714 study. *Aquat Toxicol* 73:31–43. doi: 10.1016/j.aquatox.2004.12.013

715 Sherson LR, Van Horn DJ, Gomez-Velez JD, et al (2015) Nutrient dynamics in an alpine
716 headwater stream: Use of continuous water quality sensors to examine responses to wildfire
717 and precipitation events. *Hydrol Process* 29:3193–3207. doi: 10.1002/hyp.10426

718 Siggaard-Andersen O (1974) The acid-base status of the blood, 4th editio. Copenhagen:
719 Munksgaard

720 Son JH, Kim S, Carlson KH (2015) Effects of wildfire on river water quality and riverbed
721 sediment phosphorus. *Water Air Soil Pollut.* doi: 10.1007/s11270-014-2269-2

722 Spencer CN, Gabel KO, Hauer FR (2003) Wildfire effects on stream food webs and nutrient
723 dynamics in Glacier National Park, USA. *For Ecol Manage* 178:141–153. doi:
724 10.1016/S0378-1127(03)00058-6

725 Stoddard JL (1987) Alkalinity dynamics in an unacidified alpine lake, Sierra Nevada, California.
726 *Limnol Oceanogr* 32:825–839. doi: 10.4319/lo.1987.32.4.0825

727 Syphard AD, Radeloff VC, Keeley JE, et al (2007) Human influence on California fire regimes.
728 *Ecol Appl* 17:1388–1402. doi: 10.1890/06-1128.1

729 Tkatcheva V, Holopainen IJ, Hyvärinen H, Kukkonen JVK (2007) The responses of rainbow
730 trout gills to high lithium and potassium concentrations in water. *Ecotoxicol Environ Saf*
731 68:419–425. doi: 10.1016/j.ecoenv.2007.03.008

732 Tresguerres M, Katoh F, Fenton H, et al (2005) Regulation of branchial V-H+-ATPase, Na+/K+-

733 ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish
734 (*Squalus acanthias*). *J Exp Biol* 208:345–354.

735 Tresguerres M, Hamilton TJ (2017) Acid-base physiology, neurobiology and behaviour in
736 relation to CO₂ -induced ocean acidification. *J Exp Biol* 220:2136–2148. doi:
737 10.1242/jeb.144113

738 Tresguerres M, Kwan GT, Weinrauch A (2023) Evolving views of ionic, osmotic and acid–base
739 regulation in aquatic animals. *J Exp Biol.* doi: 10.1242/jeb.245747

740 Tucker CS, D’Abramo LR (2008) Managing high pH in freshwater ponds. Stoneville: Southern
741 Regional Aquacultural Center

742 U.S. Environmental Protection Agency. (2013) National recommended water quality criteria.
743 <http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm>.

744 U.S. Geological Survey (2016) National Water Information System data available on the World
745 Wide Web (USGS Water Data for the Nation). <https://waterdata.usgs.gov/nwis>.

746 Walkinshaw M, O’Geen AT, Beaudette DE (2022) Soil Properties. In: Calif. Soil Resour. Lab.
747 casoilresource.lawr.ucdavis.edu/soil-properties/.

748 Wang YS, Gonzalez RJ, Patrick ML, et al (2003) Unusual physiology of scale-less carp,
749 *Gymnocypris przewalskii*, in Lake Qinghai: A high altitude alkaline saline lake. *Comp
750 Biochem Physiol - A Mol Integr Physiol* 134:409–421. doi: 10.1016/S1095-6433(02)00317-
751 3

752 Warren DR, Roon DA, Swartz AG, Bladon KD (2022) Loss of riparian forests from wildfire led
753 to increased stream temperatures in summer, yet salmonid fish persisted. *Ecosphere* 13:1–8.
754 doi: 10.1002/ecs2.4233

755 Wells JB, Little EE, Calfee RD (2004) Behavioral response of young rainbow trout

756 (Oncorhynchus mykiss) to forest fire-retardant chemicals in the laboratory. Environ Toxicol
757 Chem 23:621–625. doi: 10.1897/02-635

758 Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring
759 increase Western U.S. forest wildfire activity. Science (80-) 313:940–943. doi:
760 10.1126/science.1128834

761 Wilkie MP, Wood CM (1991) Nitrogenous Waste Excretion, Acid-Base Regulation, and
762 ionoregulation in Rainbow Trout (*Oncorhynchus mykiss*) Exposed to Extremely Alkaline
763 Water . Physiol Zool 64:1069–1086. doi: 10.1086/physzool.64.4.30157957

764 Wilkie MP, Wright PA, Iwama GK, Wood CM (1993) The physiological responses of the
765 Lahontan cutthroat trout (*Oncorhynchus clarki henshawi*), a resident of highly alkaline
766 Pyramid Lake (pH 9.4), to challenge at pH 10 . J Exp Biol 175:173–194. doi:
767 10.1242/jeb.175.1.173

768 Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. Comp
769 Biochem Physiol - B Biochem Mol Biol 113:665–673. doi: 10.1016/0305-0491(95)02092-6

770 Wilson RW (2012) Aluminum. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish Physiology:
771 Homeostasis and Toxicology of Non-Essential Metals, 31B edn. Academic Press, pp 67–
772 124

773 Wood CM, Farrell AP, Brauner CJ (eds) (2012a) Fish Physiology: Homeostasis and Toxicology
774 of Essential Metals, 31A edn. Academic Press Inc. (London) Ltd.

775 Wood CM, Farrell AP, Brauner CJ (eds) (2012b) Fish Physiology: Homeostasis and Toxicology
776 of Non-Essential Metals, 31B edn. Academic Press Inc. (London) Ltd.

777 Zeidler R, Kim HD (1977) Preferential hemolysis of postnatal calf red cells induced by internal
778 alkalinization. J Gen Physiol 70:385–401. doi: 10.1085/jgp.70.3.385

779 Zhi W, Williams KH, Carroll RWH, et al (2020) Significant stream chemistry response to
780 temperature variations in a high-elevation mountain watershed. *Commun Earth Environ*
781 1:1–10. doi: 10.1038/s43247-020-00039-w

782 Zillig KW, FitzGerald AM, Lusardi RA, et al (2023) Intraspecific variation among Chinook
783 Salmon populations indicates physiological adaptation to local environmental conditions.
784 *Conserv Physiol* 11:1–23. doi: 10.1093/conphys/coad044

785