

1 **Research Article: Convergence and global epidemiology of *Klebsiella pneumoniae*
2 plasmids harbouring the *iuc3* virulence locus.**

3
4 Marjorie J Gibbon^{1†}, Natacha Couto^{1,2,†}, Keira Cozens¹, Samia Habib¹, Lauren Cowley¹, David
5 Aanensen², Jukka Corander^{3,4,5}, Harry Thorpe³, Marit AK Hetland^{6,7}, Davide Sassera⁸, Cristina
6 Merla⁹, Marta Corbella⁹, Carolina Ferrari⁹, Katy ME Turner¹⁰, Kwanrawee Sirikancha¹¹,
7 Punyawee Dulyayangkul¹⁰, Nour Alhusein¹², Nisanart Charoenlap¹¹, Visanu Thamlikitkul¹³,
8 Matthew B Avison¹⁰, Edward J Feil^{1*}

9
10 ¹The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK;
11 ²Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of
12 Oxford, Oxford, UK;

13 ³Department of Biostatistics, University of Oslo, Oslo, Norway;

14 ⁴Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK;

15 ⁵Department of Mathematics and Statistics, Helsinki Institute of Information Technology,
16 University of Helsinki, Helsinki, Finland;

17 ⁶Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway;

18 ⁷Department of Biological Sciences, Faculty of Mathematics and Natural Sciences,
19 University of Bergen, Bergen, Norway;

20 ⁸Department of Biology and Biotechnology, Università di Pavia, Pavia, Italy;

21 ⁹Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico
22 Policlinico San Matteo, Pavia, Italy;

23 ¹⁰Bristol Veterinary School, University of Bristol, Bristol, UK;

24 ¹¹Chulabhorn Research Institute, Thailand;

25 ¹²Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK;

26 ¹³Mahidol University, Thailand.

27

28

29 *Correspondence: Edward J. Feil, e.feil@bath.ac.uk

30 [†]These authors contributed equally to this work.

31

32 **Keywords:** Plasmids, *Klebsiella pneumoniae*, *iuc*, convergence, virulence, AMR, One-Health

33 **Abstract**

34 **Background**

35 *Klebsiella pneumoniae* (Kp) is an important pathogen of humans and animals, and recent
36 reports of 'convergent' strains that carry both virulence and antimicrobial resistance genes
37 (ARGs) have raised serious public health concern. The plasmid-borne *iuc* locus, encoding the
38 siderophore aerobactin, is a key virulence factor in this species. The variant *iuc3* is associated
39 with porcine and human clinical isolates and is carried by mostly uncharacterised IncF
40 plasmids.

41 **Methods**

42 We used a combination of short-read and long-read sequencing to characterise
43 IncFIB(K)/IncFII *iuc3*-carrying plasmids harboured by 79 Kp isolates and one *K. oxytoca*
44 isolate recovered as part of two large 'One-Health' studies in Italy (SpARK) and Thailand (OH-
45 DART). Adding data from public repositories gave a combined dataset of 517 *iuc3* isolates,
46 and the plasmids were analysed using both clustering and phylogenetic methods.

47 **Findings**

48 We note seven large, convergent, plasmids from Thailand that have emerged through the
49 hybridisation of co-circulating plasmids harbouring *iuc3* and antimicrobial resistance genes
50 (ARGs) encoding extended-spectrum beta-lactamases (ESBLs). We were also able to identify
51 putative parental plasmids which were mostly associated with two neighbouring meat markets,
52 as were the hybrid plasmids. Clustering and global phylogenetic analyses resolved an *iuc3*
53 plasmid sub-group circulating throughout Asia, with occasional examples in Europe and
54 elsewhere. This variant carries multiple ARGs and is commonly harboured by clinical isolates,
55 thus warranting targeted plasmid surveillance.

56 **Interpretation**

57 Our study reveals that plasmid hybridisation leading to the convergence of resistance and
58 virulence traits may be very common, even in non-clinical ('One-Health') settings. Population-
59 scale plasmid genomics makes it possible to identify putative parental plasmids, which will
60 help to identify plasmid types that are most likely to hybridise, and what the selective
61 consequences may be for the plasmid and host. A distinct *iuc3* plasmid sub-variant is
62 associated with clinical isolates in Asia which requires close monitoring.

63

64 **Research In Context** Multiple reports of 'convergent' clones of *Klebsiella pneumoniae* that
65 combine both hypervirulence and multidrug resistance (MDR-hvKp) have been published
66 recently; a PubMed search in November 2023 using the key words 'convergence *Klebsiella*
67 *pneumoniae*' returned 143 papers, 99 of which were published from 2020 onwards. Our study
68 demonstrates that the hybridisation of plasmids carrying AMR and virulence genes is a
69 frequent, ongoing, process in natural populations. The subsequent transfer of plasmids
70 conferring both traits is thus likely to be a key driver behind the spread of convergent strains.
71 Our study also provides an exemplar of how hybrid assemblies can facilitate large-scale global
72 genomic plasmid epidemiology. **Evidence before the study** Although multiple recent reports
73 highlight the emergence and spread of convergent Kp strains, the confluence of resistance
74 and virulence genes within the same plasmid has not been studied at a population level, and
75 putative parental plasmids are rarely identified. Moreover, there have been few high-resolution
76 genomic epidemiology studies on closely related plasmids using both long and short-read data
77 on a global scale. **Added value** We more than double the number of complete sequences
78 available for plasmids harbouring *iuc3* from 58 to 139 and provide evidence on the host
79 lineages most likely to harbour these plasmids (e.g., ST35), and epidemiological source (e.g.,
80 pig, wild animal, human). Our comparative analysis of phylogenetic and clustering approaches
81 will help to inform future plasmid epidemiological studies. **Implications** The hybridisation of
82 plasmids harbouring virulence and resistance genes occurs frequently in natural populations,
83 even within 'One-Health' settings. However, the selective drivers (if any) and evolutionary
84 consequences of this phenomenon are unclear. There is clear utility in generating closed
85 plasmid genomes on a population scale, and targeted plasmid surveillance on a clinical sub-
86 variant of *iuc3* plasmids is warranted.

87 **Introduction**

88 *Klebsiella pneumoniae* (Kp) has been designated a priority pathogen by the WHO and can
89 cause serious disease in both humans and animals¹. Healthcare-associated Kp clones that
90 have acquired resistance to carbapenems (CR-Kp) and/or that have become resistant to
91 multiple other antimicrobials (MDR-Kp), are responsible for a high global public health
92 burden². These resistant clones are largely distinct from hypervirulent lineages of Kp (hvKp)
93 responsible for severe disease in the community, including liver abscesses and pneumonia³⁻
94 ⁶. However, 'convergent' Kp lineages have emerged that combine both resistance and
95 hypervirulence (CR-hvKp or MDR-hvKp),⁷⁻⁹. A single strain can possess both traits if virulence
96 and resistance plasmids co-exist in the same cell, or if hybrid plasmids emerge that carry both
97 virulence and resistance genes^{10,11}. Over two-thirds of reports of phenotypically convergent
98 isolates have been from China or South-East Asia^{5,12-14}, and in particular the Chinese CR-
99 hvKp ST11 clones are highly transmissible^{14,15}. Moreover, strains, and even hybrid plasmids¹⁶⁻
100 ¹⁹, carrying both resistance and virulence traits, have also been reported in Europe, North and
101 South America, and elsewhere²⁰⁻²³.

102 The *iuc* locus is a key virulence factor consisting of five genes (*iucABCD* and *iutA*) and
103 encoding the siderophore aerobactin²⁴. Six distinct *iuc* lineages have been identified;
104 1,2,2a,3,4,5, which can be further subdivided using an Aerobactin Sequence Type (AbST)
105 scheme²⁵. Whereas Kp isolates responsible for severe community-acquired infections
106 typically carry *iuc1* or *iuc2* on KpVP-1 and KpVP-2 plasmids, *iuc3* is carried by a more diverse
107 set of IncFIB_K-IncFII_K [also named IncFIB(K)-IncFII(pKP91)] plasmids. These *iuc3* plasmids
108 are associated with porcine isolates, but also occasionally harboured by clinical isolates²⁶⁻²⁸,
109 pointing to a potential public health risk from animal reservoirs. The global diversity and
110 epidemiology of *iuc3* plasmids, the associated public health risk, and their possible role in
111 disseminating resistance remains unknown. We conducted a global population analysis of
112 plasmids harbouring *iuc3* by combining novel hybrid genome assemblies using strains
113 assembled during two large 'One-Health' surveys^{26,29} with all available public data. We found
114 multiple examples of plasmid hybridisation leading to convergence of AMR and virulence, and
115 the existence of an *iuc3* plasmid sub-variant associated with clinical isolates in Asia. Targeted
116 surveillance of this sub-variant throughout hospitals in Asia is warranted. Our study
117 demonstrates that the 'One-Health' framework is pertinent for monitoring the emergence and
118 spread of virulence, as well as resistance plasmids, and the convergence of both traits.

119 **Methods**

120 **SpARK and OH-DART sampling**

121 Details on the SpARK sample collection from Northern Italy are described in Thorpe et al.,
122 2022²⁶, and the sampling for the OH-DART project in Thailand is described in Supplementary
123 Methods. A key difference between the studies was that the Thai isolates were selected for
124 resistance to 3rd generation cephalosporins (3GC-R) using Chromagar 3GC-R or to
125 carbapenems using Chromagar CPE, and selected colonies were re-streaked on Brilliance
126 Selective Medium (ThermoFisher Scientific) with either cefotaxime (2 µg/mL) or ertapenem
127 0.5 (µg/mL). The Italian isolates were enriched in Luria Bertani (LB) broth with amoxicillin
128 (10 µg/ mL) and grown on SCAI media with ampicillin (10 µg/mL)³⁰.

129

130 **Sequencing**

131 Short-read sequencing of *Klebsiella* isolates from Italy has been previously described²⁶. For
132 long-read sequencing of the SpARK isolates, DNA was extracted using the Wizard DNA kit
133 (Promega). Libraries were prepared using the rapid barcoding kit SQK-RBK004, multiplexing
134 up to 48 isolates per run, and sequenced on a MinION or GridION device with R9.4.1 flow
135 cells (Oxford Nanopore Technologies [ONT], Oxford, UK), using default settings. The OH-
136 DART isolates from Thailand were sequenced externally by MicrobesNG
137 (<https://microbesng.com/>), as described in Supplementary Methods. The German isolate was
138 sequenced as described previously²⁸.

139

140 **Genomic characterization and phylogenetic analysis**

141 Genome assemblies were assigned species and multi-locus sequence types (MLST), and
142 screened for virulence and resistance genes, using Kleborate v2.3.2
143 (<https://github.com/katholt/Kleborate>)¹⁰. The aerobactin locus was extracted from the
144 assemblies and aligned using MAFFT (in Geneious 2022.1.1), after which an approximate
145 maximum-likelihood phylogenetic tree based on a general time reversible (GTR) model was
146 generated using FastTree v2.1.11^{31,32}. A mashtree of all the Kp assemblies from Italy and
147 Thailand was obtained using mashtree v1.2.0³³. See Supplementary Methods for more details.

148

149 **Closed circular plasmids**

150 Hybrid assemblies of Illumina and ONT sequence data were generated using Unicycler
151 v0.4.8³⁴. Assemblies were annotated using Prokka v1.14.6³⁵. We also retrieved plasmid
152 sequences carrying *iuc3* from Kp from previous publications or from GenBank (Supplementary
153 Tables 1, 2). Further details on bioinformatics analysis are provided in Supplementary
154 Methods.

155

156 **Identification of putative parental plasmids using BLASTn**

157 Putative parents of hybrid plasmids assigned as convergent were identified amongst the
158 closed OH-DART circular plasmids using BLASTn (v2.14.0) with default settings. Plasmids
159 with the longest regions of high nucleotide identity (>98%) spanning either the *iuc* locus or
160 resistance gene loci were identified.

161

162 **Short-Read Mapping to Plasmid Sequences**

163 We combined additional short-reads and assemblies (short-read and closed) of Kp carrying
164 *iuc3* (as identified using Kleborate) from the public domain with the fully closed plasmid
165 sequences generated in this study. Snippy v4.6.0 (<https://github.com/tseemann/snippy>) was
166 used to map short-reads to OH-DART_30005-KC1_2. For those *iuc3* plasmids where only
167 assemblies were available (and not reads), we used the Snippy contigs mode to artificially
168 generate reads, and then treated these the same as the short-read data. These were used to
169 generate an approximate maximum-likelihood phylogenetic tree based on a general time
170 reversible (GTR) model using FastTree v2.1.11^{31,32}. The tree was combined with metadata
171 and output from Kleborate v2.3.2 and visualised using Microreact v251³⁶.

172

173 **Statistical analysis**

174 The statistical analysis was carried out in RStudio v2023.03.1 using R v4.3.0.

175 **Results**

176 **The prevalence and provenance of *iuc3* plasmids**

177 We analysed genome data for a total of 517 *iuc3* positive plasmids, and a breakdown of this
178 dataset is given in Supplementary Table 1. Although multiple isolates from *Klebsiella* species
179 other than Kp were sequenced in both the SpARK and OH-DART projects, *iuc3* was
180 exclusively found in Kp, except for a single *K. oxytoca* isolate in the SpARK data. Lineages
181 harbouring *iuc3* represent the full breadth of the Kp phylogeny (Supplementary Figure 1), and
182 the ecological distribution of the *iuc3* isolates in the SpARK and OH-DART datasets is
183 summarised in Supplementary Figure 2. As reported²⁶, *iuc3* is strongly associated with porcine
184 isolates in the SpARK dataset. Although only 4% of all 1705 SpARK Kp isolates were
185 recovered directly from pigs (n=69), these account for 42/49 (85.7%) of all *iuc3* isolates in this
186 study. Four of the other seven *iuc3* isolates were recovered from the pig farm environment,
187 two from dogs and one from the urine of a hospital inpatient.

188 The 591 Kp isolates sequenced in the OH-DART project originated from produce bought from
189 two neighbouring fresh markets (n=205; 34.7%), local chicken, duck, and fish farms (n=272;
190 46%), community carriage (n=70; 11.8%), hospital inpatients (n=24; 4.1%), and watercourses
191 plus other environmental sources (n=20; 3.4%). 77/591 (13%) of the Kp isolates harboured
192 *iuc3*, 70 of which were recovered from the two fresh markets. The 128 *iuc3* isolates present in
193 the combined SpARK and OH-DART data are associated with 47 STs (Supplementary Tables
194 2, 3) representing the breadth of the Kp tree (Supplementary Figure 1).

195

196 We generated long-read data and plasmid assemblies for a sub-sample of the *iuc3* positive
197 isolates in the Italian (n=44, including the single *K. oxytoca* isolate) and Thai collections
198 (n=36), and generated a hybrid assembly for one isolate from a pig in Germany²⁸. 79/81 of
199 these plasmid genomes were circularised (Supplementary Table 2). A further 58 assemblies
200 of plasmids containing *iuc3* were available from public databases, giving a total of 139 plasmid
201 genomes (Supplementary Tables 1, 2). Incomplete assemblies from the SpARK and OH-
202 DART projects and public databases were available for an additional 378 *iuc3* isolates
203 (Supplementary Tables 1, 3). Whilst the provenance of many of the *iuc3* isolates in the public
204 databases is unknown, at least 84/517 (16%) from the whole dataset are associated with
205 human infection. *iuc3* Kp isolates have also been recovered from food products, wastewater³⁷,
206 companion animals²⁶, and wild animals, including wild boar²⁸, invertebrates³⁸, white-lipped
207 deer and yak³⁹, wild birds, sea lions, and rabbit⁴⁰.

208

209 The lineage most commonly associated with *iuc3* is ST35 (41/517 genomes; 7.9%). This is
210 not simply a consequence of ST35 being very common. Analysis of 29,703 curated Kp

211 genomes using Pathogenwatch⁴¹ revealed that ST35 represents only 0.87% of all isolates
212 (n=258) and is ranked 17th in terms of frequency.

213

214 **Characterising the *iuc3* plasmids**

215 We first compared the 80 closed plasmids generated for this study from the Italian and Thai
216 studies. It is important to note that differences between these datasets are difficult to interpret
217 as the Thai isolates were selected for resistance to 3rd generation cephalosporins, whilst the
218 Italian isolates were only selected for amoxicillin resistance. Four representative plasmids from
219 the SpARK data and four from the OH-DART data are shown in Supplementary Figure 3,
220 along with plasmid alignments. All of these 80 *iuc3* plasmids had more than one replicon type,
221 the most common types being IncFIB(K) and IncFII(pKP91) (Supplementary Table 2). These
222 80 *iuc3* plasmids ranged in size from 132,430-bp to 365,580-bp. *iuc3* plasmids from Thailand
223 were larger (mean = 197,626-bp) than the *iuc3* plasmids from Italy (mean = 159,552-bp)
224 (p<0.001 Wilcoxon Rank-Sum Test) (Supplementary Figure 4A). Ten of the 80 Kp plasmids
225 (12.5%) were >200-Kb, all of which were from Thailand.

226 ARGs (identified using ABRicate; Supplementary Methods) were more common in the *iuc3*
227 plasmids from the Thai isolates than those from the Italian isolates (Supplementary Table 2),
228 although, as noted, this can be explained by differences in isolate selection. Ten *iuc3* plasmids
229 contained at least six ARGs, and nine of these were large Thai plasmids (>200Kb). None of
230 the Italian or Thai *iuc3* plasmids carried carbapenemase genes, but 7/36 (19.4%) of the Thai
231 plasmids harboured genes encoding extended-spectrum beta-lactamases (ESBLs): *bla*_{CTX-M-3}
232 (n=1), *bla*_{CTX-M-55} (n=1), *bla*_{CTX-M-27} (n=1), and *bla*_{SHV-12} (n=4) (Supplementary Table 2). These
233 seven plasmids meet the definition of 'convergence' proposed by Lam et al¹⁰ based on a
234 Kleborate virulence score of at least 3 (conferred by the presence of *iuc3*), and resistance
235 score of at least 1 (the presence of an ESBL gene). Although originally intended for whole
236 isolates, this definition is equally applicable for single plasmids. The mean size of the seven
237 convergent Thai plasmids was 251,297-bp (range 180,698 - 365,580 bp), which is significantly
238 larger than the non-convergent Thai *iuc3* plasmids (mean=184,670 bp; range 110,375-
239 287,202 bp) (Wilcoxon Rank-Sum Test, p = 0.00225) (Supplementary Figure 4B). None of the
240 *iuc3* plasmids in the Italian data were classified as convergent, which again can be partly
241 explained by the difference in isolate selection between the studies.

242 Of the seven convergent Thai plasmids, six were carried by strains isolated from one of the
243 two fresh markets, and one from an inpatient at the local hospital (Figure 1). All the convergent
244 plasmids were IncFIB(K)/IncFII(pKP91), but the largest plasmid, OH-DART_30005-KC1_2
245 (365,580-bp), also contained an IncFIA(HI1) replicon. The large size of the convergent
246 plasmids is consistent with them having emerged through hybridisation between co-circulating
247 AMR and *iuc3* plasmids. To explore this, we identified putative parental plasmids by

248 interrogating all closed plasmid sequences within the dataset based on multiple criteria; ARG
249 profiles, replicon type profiles, AbST, host ST, and nucleotide identity based on BLASTn (see
250 Methods). The majority of the putative parental plasmids showed a high level of nucleotide
251 identity (>98%) to significant fractions of the convergent plasmids, spanning the *iuc3* and ARG
252 regions. Broadly, putative parental plasmids harbouring *iuc3* were associated with IncFIB(K),
253 whilst parental AMR plasmids typically carried IncFII(pKP91) replicons and convergent
254 plasmids often carry both.

255 A summary of the convergent plasmids and the putative parental plasmids (Events 1-7) is
256 given in Figure 1, and details are provided in Figure 2, Supplementary Figure 5, and
257 Supplementary Table 4. As for the convergent plasmids, the putative parental plasmids were
258 typically carried by isolates recovered from the two neighbouring Thai markets. For example,
259 both putative parental plasmids and the convergent hybrid represented by Event 1 were
260 isolated from the two markets (Figure 2A), and this was also the case for Events 6 and 7
261 (Supplementary Figure 5C, D). In Event 4 (Supplementary Figure 5A), two different AMR
262 plasmids from community carriage were identified as potential donors, one of which was
263 harboured by an *E. coli* isolate that was also sequenced as part of the OH-DART project.

264 Analysis by MOB-typer revealed that all convergent plasmids are predicted to be conjugative,
265 as are all putative parental plasmids, with the exception of the AMR plasmid from *E. coli*
266 (mobilizable) and a small resistance plasmid from a duck farm isolate (non-mobilizable)
267 (Supplementary Table 4). Events 2, 3 and 4 indicate a flow of plasmid material between
268 isolates from the local market, community carriage and clinical isolates recovered from
269 inpatients at the nearby hospital (Figures 1 and 2, Supplementary Figure 5, Supplementary
270 Table 4).

271 There are likely to be many other plasmid hybridisation events in the data that do not meet the
272 definition of convergence as they do not carry an ESBL or carbapenemase gene. One such
273 example is shown in Supplementary Figure 6, where a single ST7513-1LV isolate carries both
274 an *iuc3* plasmid and second resistance plasmid harbouring multiple ARGs including *bla*_{CMY-2}.
275 Although *bla*_{CMY-2} confers resistance to 3rd generation cephalosporins, it is not commonly
276 encountered in clinical settings and is not assigned as an ESBL gene. A second isolate of the
277 ST7513-1LV clone harbours a near-perfect, and very large (287,202 bp), hybrid of these two
278 plasmids, including all ARGs from one parent, the *iuc3* locus from other and all 5 replicon
279 types found in the parental plasmids (Supplementary Figure 6).

280 To further explore the global diversity of *iuc3* plasmids, we combined the 80 *iuc3* complete
281 plasmid sequences from Italy and Thailand, and the single plasmid from Germany²⁸, with an
282 additional 58 from the public domain. Two of the 58 public *iuc3* plasmid sequences are
283 convergent: pKPC-063001 (359,625 bp; accession: MZ156798.1) harboured by a clinical
284 ST11 isolate from China and contains a *bla*_{KPC-2} gene⁴², and pKPT877-hybrid (293,653 bp;

285 accession: CP084242.1) which has a *bla*_{OXA-181} carbapenemase gene and was harboured by
286 a clinical ST43 isolate from China⁴³. We carried out a gene content analysis of all 139 closed
287 plasmid genomes using Roary (Supplementary Methods). The total number of genes was
288 1877, of which 26 ‘backbone genes’ were present in at least 136/139 (>97.5%) of the plasmids
289 (Supplementary Figure 7). We note a high frequency of insertion sequences among the 139
290 plasmids (Supplementary Table 5). The most common IS family is IS3, of which there are 562
291 copies, and other common families are IS110 (n=297), IS481 (n=257) and IS6 (n=180). The
292 majority of the IS6 family are likely to be IS26 which are known to play a key role in the transfer
293 and insertion of resistance gene clusters.

294

295 **Clustering and phylogenetic analysis**

296 We used mge-cluster to compare the 139 *iuc3* plasmids in the context of nearly 3000 *iuc3*
297 negative plasmids from the SpARK and OH-DART data sets (Supplementary Figure 8). Half
298 (70/139) of the *iuc3* plasmids correspond to two neighbouring clusters (#9; n=35 and #25;
299 n=35), with the others mostly corresponding to a looser ‘cluster of clusters’ (#s 23, 27, 28), or
300 not assigned to a cluster (#-1, n=23). The *iuc3* locus itself does not appear to be highly mobile,
301 as only a small number of *iuc3* plasmids are dispersed among major clusters. Exceptions
302 include three convergent plasmids (OH-DART_30005-KC1_2, OH-DART_30764-KN1_2, and
303 OH-DART_30624-KN1_2) that correspond to the large cluster #49, but this is likely to be the
304 result of plasmid hybridisation rather than mobility of the *iuc3* locus (Figures 2A,B,
305 Supplementary Figure 5C; Events 1, 2 and 6). From the public data, plasmid SWHEFF_62,
306 which was isolated from wastewater in Hong Kong³⁷, belongs to the large cluster #38, and
307 KP_NORM_BLD_2015_115359_unnamed_1, a clinical isolate from Norway, belongs to
308 cluster #60.

309 Of the 35 *iuc3* plasmids assigned to cluster #9, eight are from the Thai dataset, with the
310 remaining 27 from the public domain. All are of Asian origin, being sampled from China (n=25),
311 Thailand (n=8), Hong Kong (n=1) and Vietnam (n=1). Cluster #9 contains 4 convergent
312 plasmids, two from the Thai study, and two from the public data. 16/39 (45.7%) of the cluster
313 #9 *iuc3* plasmids are from humans, with seven known to be from clinical isolates. Although
314 none of the *iuc3* plasmids from the Italian study cluster in this group two *iuc3*-negative
315 plasmids from this study do, both of which were harboured by clinical isolates:
316 SPARK_356_C1_2 (which also harbours a *bla*_{CTX-M-15} gene), and SPARK_551_C1_4²⁶. In
317 contrast to cluster #9, the 35 *iuc3* plasmids in cluster #25 are from diverse geographical
318 sources (Thailand, n=12; Italy, n=10; Norway, n=6; China, n=3; Laos, n=3; USA, n=1), and
319 9/35 (25.7%) are associated with humans, mostly from clinical isolates. The *iuc3* plasmid from
320 the *K. oxytoca* isolate clusters in this group and is not diverged from the Kp plasmids, indicating
321 recent inter-species transfer.

322 To check the robustness of the clusters, we mapped the 139 plasmid genomes to the
323 reference plasmid, and built a tree based on SNPs (Supplementary Methods; Supplementary
324 Figure 9). There are only minor inconsistencies between clusters and the resulting phylogeny.
325 Clusters #25 and #9 are clearly resolved on the tree (assigned Groups 2 and 3 respectively).
326 Group 3 (cluster #9) plasmids are the most similar to each other and contain more ARGs than
327 other plasmids (Supplementary Figure 10A). The overlapping clusters #23, #27 and #28, and
328 those not assigned to a cluster (-1), form a more diverse third group (assigned Group 1),
329 represented by multiple replicon types (Supplementary Figure 10B). This tree is also
330 consistent with a simplified AbST scheme (Supplementary Methods), with Group 3
331 corresponding to AbST 23, Group 2 to AbST 25 and Group 1 to AbSTs 43 and 86
332 (Supplementary Figures 10C, 11A,B, Supplementary Table 6).

333 Differences in gene content between the three groups are shown Supplementary Figure 12,
334 and genes that are enriched within Group 3, which are associated with clinical Asian isolates,
335 are given in Supplementary Table 7. These include genes associated with Type-4 secretion
336 system (T4SS) (*trbC*), gene regulation (e.g. *cspA*, *repA*), Type 1 R-M system,
337 metalloproteases (*sprT*), IS1 and IS3 family transposases, a complete *fec* operon associated
338 with iron uptake, a histidine degradation pathway (*hut*), and an *ars* operon encoding resistance
339 to arsenic. This latter operon includes a transcriptional repressor, *arsR*, that has a global
340 regulatory role beyond the *ars* operon⁴⁴.

341 Finally, we mapped short reads from all 517 *iuc3* isolates (including those for which plasmid
342 assemblies are not available) to the reference plasmid OH-DART_30005-KC1_2 (the largest
343 *iuc3* plasmid in the data) and built a SNP-based tree (Figure 3a). The tree and metadata are
344 available to inspect in a Microreact project at <https://microreact.org/project/gibbonetal-517-iuc3>. The three main plasmid groups are also evident on this tree, and the AbST data also
345 remains consistent. For example, almost all Group 3 plasmids are in the simplified AbST23
346 group except for four likely artefactual exceptions (Supplementary Note). A breakdown of each
347 group by geographical and ecological source is given in Supplementary Table 8, and this
348 further supports the view that the Group 3 plasmids are associated with Asian isolates, as
349 140/158 (88.6%) of the plasmids in this group are from Asian origin (Supplementary Table 8;
350 Figure 3b). There are only 11 plasmids of European origin clustering in Group 3, and ten of
351 these are associated with humans, and at least eight of them from clinical isolates
352 (Supplementary Figure 13). The earliest example of a Group 3 plasmid isolated in Europe was
353 in 2012 in the UK; these plasmids have therefore been occasionally imported into Europe from
354 Asia for at least 10 years.

356 Overall, 66% of the Group 3 plasmids were associated with human isolates (104/158), and
357 only 5% with animal isolates (8/158). In contrast Group 1 is associated with animal isolates
358 from Europe (9% human, 65% animal, 66%; Europe, 26% Asia). Group 2 is not strongly

359 associated with either continent or source (35% human, 40% animal; 51% Europe, 43% Asia).
360 The bulk of the *iuc3* Thai plasmids from the OH-DART study were isolated from markets and
361 were assigned as 'foodstuffs'. These are scattered across the three groups (Supplementary
362 Figure 14).
363 Finally, we checked the distribution of STs across the larger global tree of 517 isolates
364 (Supplementary Figure 15A). As noted earlier, 41 of the plasmids were harboured by ST35
365 Kp hosts (or single locus variants), more than any other ST. The *iuc3* plasmids carried by
366 ST35 isolates represent all three groups and are recovered from both clinical and animal
367 isolates from both Europe and Asia. We compared the tree of just the 41 ST35 plasmids with
368 the corresponding chromosomal tree in order to examine the degree of co-diversification
369 between host and plasmid (Supplementary Figure 1B,C). This revealed a sub-lineage of 16
370 closely related *iuc3* ST35 isolates, 15 from Thailand and one from China, all of which harbour
371 Group 3 plasmids. Thus, an Asian sub-variant of ST35 acquired a Group 3 *iuc3* plasmid and
372 this has been stably maintained in this lineage and disseminated throughout Asia. There are
373 no consistencies between the plasmid and chromosomal trees when only plasmids outside of
374 Group 3 are considered.

375 **Discussion**

376 The rapid and highly reticulate evolution of plasmids poses serious challenges for clustering,
377 typing or phylogenetic reconstruction⁴⁵. By focusing on a set of plasmids selected from our
378 sequence data simply on the basis of the presence of a single virulence locus, *iuc3*, we have
379 surreptitiously struck upon a 'Goldilocks' level of diversity, whereby there is enough variation
380 to identify robust groups, but not so much that the phylogenetic signal is mostly conflicting.
381 The consistency between clustering and phylogenetic analysis bodes well for future studies
382 on plasmid epidemiology, and the resolved clusters are mostly consistent with other plasmid
383 features, and in particular AbST which indicates stable co-diversification between the plasmid
384 and the *iuc3* locus. The plasmid clusters we defined are therefore both evolutionary
385 meaningful and epidemiologically useful. The oldest plasmid in our data was associated with
386 a Danish isolate sampled in 1952, meaning that the association between *iuc3* and these
387 plasmids is over 70 years old.

388 Analysis of plasmid diversity enabled us to confidently delineate a distinct *iuc3* plasmid sub-
389 variant (Group 3/Cluster 9) that is associated with clinical isolates circulating throughout Asia.
390 It is unclear to what extent the association between Group 3 plasmids and clinical isolates is
391 driven by the presence of the *iuc3* locus itself, or other genes specifically associated with this
392 plasmid group. Group 3 plasmids are associated with the *iuc3* sub-variant AbST23, which is
393 not notably diverged from other *iuc3* AbST types making it less likely that it enhances virulence
394 compared to other sub-variants. In addition to multiple ARGs (including in 2 cases
395 carbapenemase genes), these plasmids also contain global regulators, and operons for iron
396 uptake and arsenic resistance. The presence of two Italian *iuc3*-negative plasmids from clinical
397 isolates that also cluster with this group further points to a role for other genes on the plasmid.
398 The ability to generate a meaningful plasmid tree sheds light on other aspects of the data. For
399 example, the *iuc3* plasmids from the Thai markets (2 Km apart) represent the full global
400 diversity of these plasmids. This remarkable observation suggests that *iuc3* plasmids have
401 been circulating in this region for a long time, presumably in pigs or other animals. Although
402 *iuc3* is found in a broad range of STs representing the breadth of the Kp phylogeny, indicating
403 frequent plasmid transfer, we do note an association between *iuc3* and ST35 isolates that
404 cannot be explained by simple clonal spread. The diversity of *iuc3* plasmids within ST35
405 strains, and the fact that *iuc3* carrying ST35 isolates are found globally and from diverse
406 sources, indicates multiple plasmid acquisitions within this lineage. However, we also note a
407 sub-lineage of Asian ST35 isolates that has acquired - and become associated - with Group
408 3 *iuc3* plasmids. From the relatively low level of diversity of this sub-variant (both of the
409 chromosome and of the plasmid) this association probably arose recently, and we note that
410 the oldest example in the data is from 2015.

412 Of the 36 fully sequenced *iuc3* plasmids in the Thai study, 7 contained an ESBL gene and so
413 met the definition of 'convergent'. Six of these plasmids were harboured by isolates recovered
414 from the market and emerged through hybridisation with AMR plasmids also mostly recovered
415 from the markets. All seven hybrid plasmids are predicted to be conjugative, thus can act as
416 vehicles for the simultaneous transmission of both virulence and resistance traits. Whilst
417 convergence through plasmid hybridisation is a well-known phenomenon for Kp³⁹ to our
418 knowledge this is the first time that multiple events have been described outside of a clinical
419 setting, and the first time that population-scale data have been used to identify putative
420 parental plasmids.

421 Frequent plasmid hybridisation also challenges our view of what constitutes 'transmission'.
422 There were two isolates from hospital patients in the Thai data harbouring *iuc3* plasmids, from
423 a total of only 20 Kp hospital isolates sampled in the OH-DART study. Potential links between
424 the patient and market isolates based on *iuc3* plasmids are apparent that would have missed
425 on using standard genomic epidemiology. For example, in event 2, the *iuc3* plasmid OH-
426 DART_108038-KN1_2 which was isolated from the faecal flora of a hospital inpatient, makes
427 up almost exactly half of the convergent plasmid OH-DART_30764-KN1_2 isolated from duck
428 meat from the market. It is not possible from this to infer direct transmission between the
429 hospital and the market, and if there is an epidemiological link, it is likely that there are
430 unsampled intermediate links in the chain. Nevertheless, this example demonstrates how
431 deep sampling of a defined population, the generation of closed assembled genomes (i.e.
432 long-read data), and careful bespoke analysis can reveal more cryptic and indirect
433 epidemiological connections involving plasmids.

434 We posit that such plasmid hybridisation events happen very frequently in natural populations,
435 although the fitness consequences of any given event for both the plasmid and the host, and
436 the commensurate public health threat remain unclear. Further questions persist, concerning
437 the underlying mechanisms, and how to predict the likelihood that any given pair of plasmids
438 might hybridise in natural populations. The identification of putative parental plasmids will shed
439 light on this, and in particular the role of insertion sequences, as these are known to be a key
440 driver of dynamics in plasmid genomes. A recent report describing a convergent pLVPK-like
441 plasmid (*bla*_{NDM-1} plus *iuc/rmpA*) carried by an ST11 isolate points to mediation via multiple
442 copies of IS26-like elements⁴⁶, and this plasmid has been found to be transmitting from
443 hospitals to the aqueous environment⁴⁷. Structural rearrangements in plasmids mediated by
444 IS26-like elements have also recently been noted in *Salmonella enterica* Serovar
445 Typhimurium⁴⁸, and these elements are known to play an important role in the dissemination
446 of key ARGs, including *tet(X)* which encodes resistance to tigecycline⁴⁹.

447

448 In conclusion, here we use a combination of sequencing and interrogation of public databases
449 to conduct a comprehensive analysis of the diversity and distribution of Kp plasmids
450 harbouring the virulence locus *iuc3*. The use of data from 'One-Health' settings provides
451 important context, and we argue that the emergence of virulence, as well as AMR, needs to
452 be considered within this framework. The study provides an example for the utility of closed
453 assemblies for studying the evolutionary and epidemiological dynamics of plasmids on global
454 scales.

455

456 **Acknowledgements**

457 We are grateful to Silvia Argimón for help and advice and to Guido Werner and Sébastien
458 Breurec for the provision of unpublished data on the isolates from Germany and the French
459 West Indies. We are also grateful to I-Ting Tu, Ellen Cardwell and Lily Feil for technical
460 assistance.

461

462 **Funding**

463 The OH-DART project was funded by grant MR/S004769/1 to M.B.A. from the Antimicrobial
464 Resistance Cross Council Initiative supported by the seven United Kingdom research councils
465 and the National Institute for Health Research. The SpARK project was funded by a grant
466 awarded to E.J.F under the 2016 Joint Programming Initiative on Antimicrobial Resistance call
467 'Transmission dynamics' (medical research council (MRC) reference no. MR/R00241X/1) and
468 by the French Government's Investissement d'Avenir program Laboratoire d'Excellence
469 'Integrative Biology of Emerging Infectious Diseases' (no. ANR-10-LABX-62-IBEID). SH was
470 sponsored by a Schlumberger Foundation Faculty for the Future Fellowship.

471

472 **Data Availability**

473 Data generated by this project are deposited under Project numbers PRJEB66363 and
474 PRJEB66356. The tree of 571 *iuc3* plasmids, and associated metadata, is available to explore
475 at <https://microreact.org/project/gibbonetal-517-iuc3>.

476 **References**

477 1 Tacconelli E, Carrara E, Savoldi A, *et al.* Discovery, research, and development of new
478 antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet*
479 *Infect Dis* 2018; **18**: 318–27.

480 2 Rello J, Kalwaje Eshwara V, Lagunes L, *et al.* A global priority list of the TOp TEn
481 resistant Microorganisms (TOTEM) study at intensive care: a prioritization exercise
482 based on multi-criteria decision analysis. *Eur J Clin Microbiol Infect Dis* 2019; **38**: 319–
483 23.

484 3 Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. *Clin Microbiol Rev* 2019; **32**.
485 DOI:10.1128/CMR.00001-19.

486 4 Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. *Nat Rev*
487 *Microbiol* 2020; **18**: 344–59.

488 5 Wyres KL, Nguyen TNT, Lam MMC, *et al.* Genomic surveillance for hypervirulence and
489 multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia.
490 *Genome Med* 2020; **12**: 11.

491 6 David S, Cohen V, Reuter S, *et al.* Integrated chromosomal and plasmid sequence
492 analyses reveal diverse modes of carbapenemase gene spread among Klebsiella
493 pneumoniae. *Proc Natl Acad Sci U S A* 2020; **117**: 25043–54.

494 7 Marr CM, Russo TA. Hypervirulent Klebsiella pneumoniae: a new public health threat.
495 *Expert Rev Anti Infect Ther* 2019; **17**: 71–3.

496 8 Chen L, Kreiswirth BN. Convergence of carbapenem-resistance and hypervirulence in
497 Klebsiella pneumoniae. *Lancet Infect. Dis.* 2018; **18**: 2–3.

498 9 Xia P, Yi M, Yuan Y, *et al.* Coexistence of Multidrug Resistance and Virulence in a
499 Single Conjugative Plasmid from a Hypervirulent Klebsiella pneumoniae Isolate of
500 Sequence Type 25. *mSphere* 2022; **7**: e0047722.

501 10 Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic
502 surveillance framework and genotyping tool for Klebsiella pneumoniae and its related
503 species complex. *Nat Commun* 2021; **12**: 4188.

504 11 Yang X, Dong N, Chan EW-C, Zhang R, Chen S. Carbapenem Resistance-Encoding
505 and Virulence-Encoding Conjugative Plasmids in Klebsiella pneumoniae. *Trends*

506 506 *Microbiol* 2021; **29**: 65–83.

507 507 12 Zhang Y, Jin L, Ouyang P, *et al.* Evolution of hypervirulence in carbapenem-resistant
508 Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. *J
509 Antimicrob Chemother* 2020; **75**: 327–36.

510 510 13 Pei N, Li Y, Liu C, *et al.* Large-Scale Genomic Epidemiology of Klebsiella pneumoniae
511 Identified Clone Divergence with Hypervirulent Plus Antimicrobial-Resistant
512 Characteristics Causing Within-Ward Strain Transmissions. *Microbiol Spectr* 2022; **10**:
513 e0269821.

514 514 14 Gu D, Dong N, Zheng Z, *et al.* A fatal outbreak of ST11 carbapenem-resistant
515 hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological
516 study. *Lancet Infect Dis* 2018; **18**: 37–46.

517 517 15 Zhou K, Xue C-X, Xu T, *et al.* A point mutation in recC associated with subclonal
518 replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China. *Nat
519 Commun* 2023; **14**: 2464.

520 520 16 Li R, Cheng J, Dong H, *et al.* Emergence of a novel conjugative hybrid virulence
521 multidrug-resistant plasmid in extensively drug-resistant Klebsiella pneumoniae ST15.
522 *Int J Antimicrob Agents* 2020; **55**: 105952.

523 523 17 Xie M, Dong N, Chen K, *et al.* A hybrid plasmid formed by recombination of a virulence
524 plasmid and a resistance plasmid in Klebsiella pneumoniae. *J Glob Antimicrob Resist*
525 2020; **23**: 466–70.

526 526 18 Lam MMC, Wyres KL, Wick RR, *et al.* Convergence of virulence and MDR in a single
527 plasmid vector in MDR Klebsiella pneumoniae ST15. *J Antimicrob Chemother* 2019; **74**:
528 1218–22.

529 529 19 Turton J, Davies F, Turton J, Perry C, Payne Z, Pike R. Hybrid Resistance and
530 Virulence Plasmids in ‘High-Risk’ Clones of Klebsiella pneumoniae, Including Those
531 Carrying blaNDM-5. *Microorganisms* 2019; **7**. DOI:10.3390/microorganisms7090326.

532 532 20 Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant
533 and hypervirulent Klebsiella pneumoniae high-risk clones. *Pathog Glob Health* 2023;
534 **117**: 328–41.

535 535 21 Shankar C, Vasudevan K, Jacob JJ, *et al.* Hybrid Plasmids Encoding Antimicrobial
536 Resistance and Virulence Traits Among Hypervirulent Klebsiella pneumoniae ST2096 in

537 15 India. *Front Cell Infect Microbiol* 2022; **12**: 875116.

538 22 Ahmed MAE-GE-S, Yang Y, Yang Y, *et al.* Emergence of Hypervirulent Carbapenem-
539 Resistant *Klebsiella pneumoniae* Coharboring a blaNDM-1-Carrying Virulent Plasmid
540 and a blaKPC-2-Carrying Plasmid in an Egyptian Hospital. *mSphere* 2021; **6**.
541 DOI:10.1128/mSphere.00088-21.

542 23 Starkova P, Lazareva I, Avdeeva A, *et al.* Emergence of Hybrid Resistance and
543 Virulence Plasmids Harboring New Delhi Metallo- β -Lactamase in *Klebsiella pneumoniae*
544 in Russia. *Antibiotics (Basel)* 2021; **10**. DOI:10.3390/antibiotics10060691.

545 24 Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA. Aerobactin, but not
546 yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent
547 (hypermucoviscous) *Klebsiella pneumoniae* *ex vivo* and *in vivo*. *Infect Immun* 2015; **83**:
548 3325–33.

549 25 Lam MMC, Wyres KL, Judd LM, *et al.* Tracking key virulence loci encoding aerobactin
550 and salmochelin siderophore synthesis in *Klebsiella pneumoniae*. *Genome Med* 2018;
551 **10**: 77.

552 26 Thorpe HA, Booton R, Kallonen T, *et al.* A large-scale genomic snapshot of *Klebsiella*
553 spp. isolates in Northern Italy reveals limited transmission between clinical and non-
554 clinical settings. *Nat Microbiol* 2022; **7**: 2054–67.

555 27 Kaspersen H, Franklin-Alming FV, Hetland MAK, *et al.* Highly conserved composite
556 transposon harbouring aerobactin iuc3 in *Klebsiella pneumoniae* from pigs. *Microb*
557 *Genom* 2023; **9**. DOI:10.1099/mgen.0.000960.

558 28 Klaper K, Hammerl JA, Rau J, Pfeifer Y, Werner G. Genome-Based Analysis of
559 *Klebsiella* spp. Isolates from Animals and Food Products in Germany, 2013–2017.
560 *Pathogens* 2021; **10**: 573.

561 29 Booton RD, Meeyai A, Alhusein N, *et al.* One Health drivers of antibacterial resistance:
562 Quantifying the relative impacts of human, animal and environmental use and
563 transmission. *One Health* 2021; **12**: 100220.

564 30 Van Kregten E, Westerdaal NA, Willers JM. New, simple medium for selective recovery
565 of *Klebsiella pneumoniae* and *Klebsiella oxytoca* from human feces. *J Clin Microbiol*
566 1984; **20**: 936–41.

567 31 Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with

568 profiles instead of a distance matrix. *Mol Biol Evol* 2009; **26**: 1641–50.

569 32 Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for
570 large alignments. *PLoS One* 2010; **5**: e9490.

571 33 Katz LS, Griswold T, Morrison SS, *et al.* MashTree: a rapid comparison of whole genome
572 sequence files. *J Open Source Softw* 2019; **4**. DOI:10.21105/joss.01762.

573 34 Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome
574 assemblies from short and long sequencing reads. *PLoS Comput Biol* 2017; **13**:
575 e1005595.

576 35 Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014; **30**:
577 2068–9.

578 36 Argimón S, Abudahab K, Goater RJE, *et al.* Microreact: visualizing and sharing data for
579 genomic epidemiology and phylogeography. *Microb Genom* 2016; **2**: e000093.

580 37 Che Y, Xu X, Yang Y, *et al.* High-resolution genomic surveillance elucidates a
581 multilayered hierarchical transfer of resistance between WWTP- and human/animal-
582 associated bacteria. *Microbiome* 2022; **10**: 16.

583 38 Yang QE, Tansawai U, Andrey DO, *et al.* Environmental dissemination of mcr-1 positive
584 Enterobacteriaceae by Chrysomya spp. (common blowfly): An increasing public health
585 risk. *Environ Int* 2019; **122**: 281–90.

586 39 Wang X, Zhao J, Ji F, *et al.* Multiple-Replicon Resistance Plasmids of Klebsiella
587 Mediate Extensive Dissemination of Antimicrobial Genes. *Front Microbiol* 2021; **12**:
588 754931.

589 40 Wu F, Ying Y, Yin M, *et al.* Molecular Characterization of a Multidrug-Resistant
590 Klebsiella pneumoniae Strain R46 Isolated from a Rabbit. *Int J Genomics Proteomics*
591 2019; **2019**: 5459190.

592 41 Argimón S, David S, Underwood A, *et al.* Rapid Genomic Characterization and Global
593 Surveillance of Klebsiella Using Pathogenwatch. *Clin Infect Dis* 2021; **73**: S325–35.

594 42 Zeng L, Zhang J, Hu K, *et al.* Microbial Characteristics and Genomic Analysis of an
595 ST11 Carbapenem-Resistant Klebsiella pneumoniae Strain Carrying bla KPC-2
596 Conjugative Drug-Resistant Plasmid. *Front Public Health* 2021; **9**: 809753.

597 43 Liu C, Dong N, Zeng Y, *et al.* Co-transfer of last-line antibiotic resistance and virulence

598 operons by an IncFIBk-FII-X3-ColKP3 hybrid plasmid in *Klebsiella pneumoniae*. *J*
599 *Antimicrob Chemother* 2022; **77**: 1856–61.

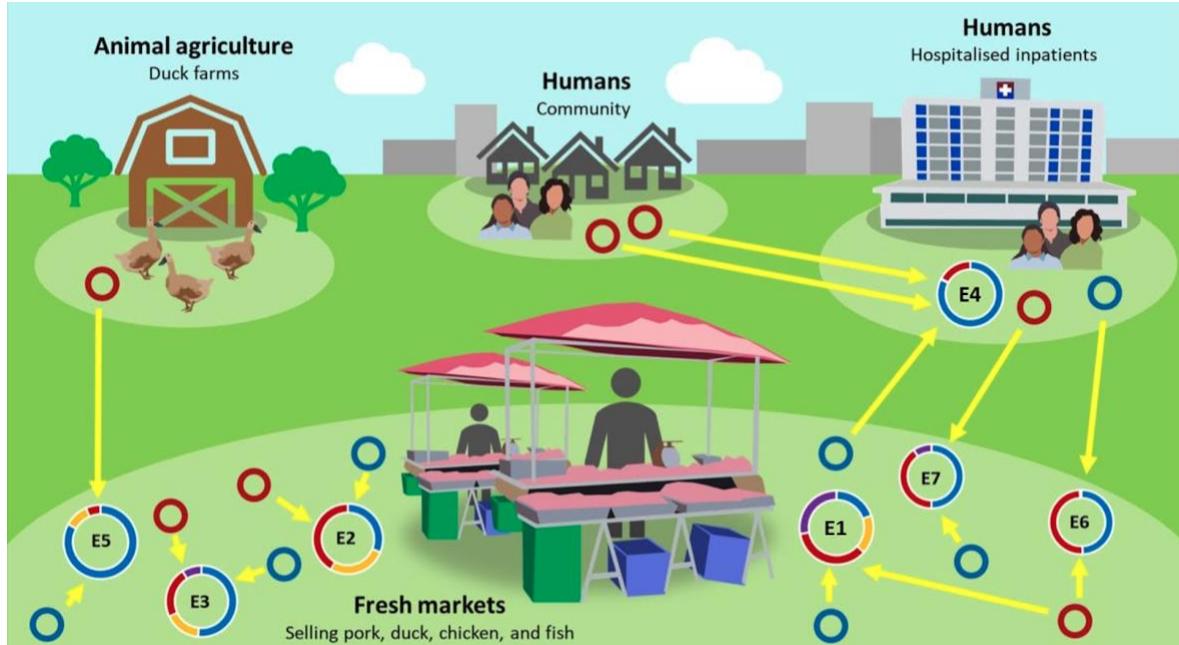
600 44 Rawle R, Saley TC, Kang Y-S, *et al.* Introducing the ArsR-Regulated Arsenic Stimulon.
601 *Front Microbiol* 2021; **12**: 630562.

602 45 Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-sequence-based
603 plasmid typing and its utility to prediction of host range and epidemiological surveillance.
604 *Microb Genom* 2020; **6**. DOI:10.1099/mgen.0.000435.

605 46 Tian C, Shi Y, Ren L, *et al.* Emergence of IS26-mediated pLVPK-like virulence and
606 NDM-1 conjugative fusion plasmid in hypervirulent carbapenem-resistant *Klebsiella*
607 *pneumoniae*. *Infect Genet Evol* 2023; **113**: 105471.

608 47 Zou H, Zhou Z, Berglund B, *et al.* Persistent transmission of carbapenem-resistant,
609 hypervirulent *Klebsiella pneumoniae* between a hospital and urban aquatic
610 environments. *Water Res* 2023; **242**: 120263.

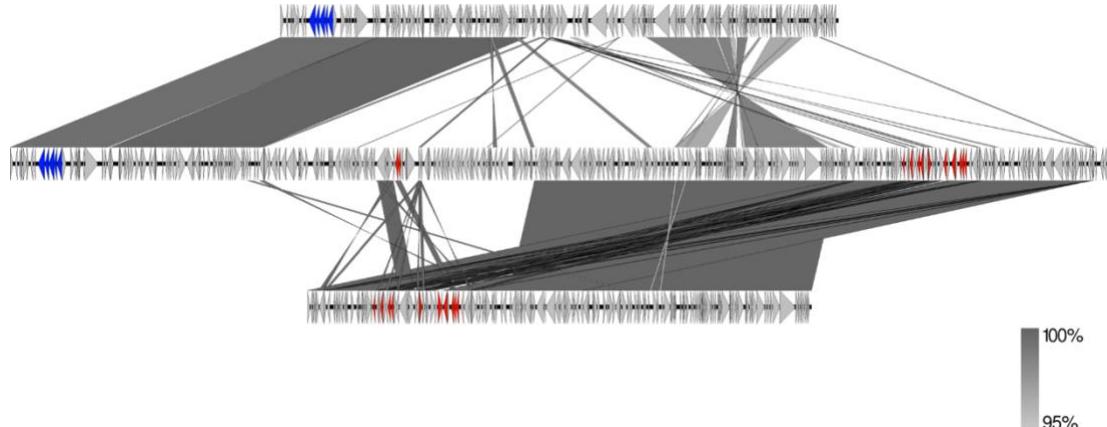
611 48 Li Y, Zhang P, Du P, *et al.* Insertion sequences mediate clinical ST34 monophasic
612 *Salmonella enterica* serovar *Typhimurium* plasmid polymorphism. *Microbiol Res* 2023;
613 **272**: 127387.

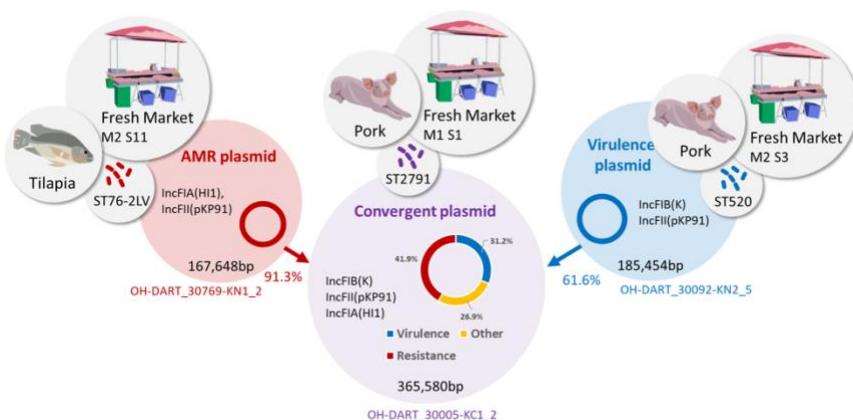

614 49 Li Y, Wang Q, Peng K, *et al.* Distribution and genomic characterization of tigecycline-
615 resistant tet(X4)-positive *Escherichia coli* of swine farm origin. *Microb Genom* 2021; **7**.
616 DOI:10.1099/mgen.0.000667.

617 50 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
618 data. *Bioinformatics* 2014; **30**: 2114–20.

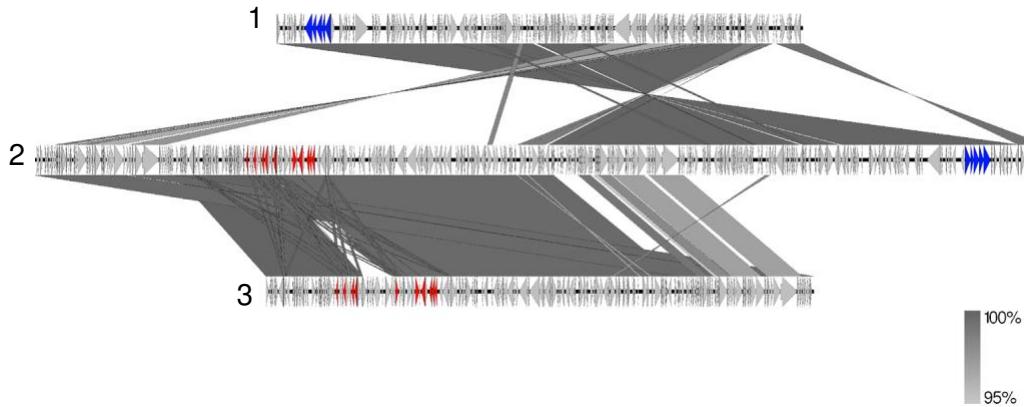
619 51 Bankevich A, Nurk S, Antipov D, *et al.* SPAdes: a new genome assembly algorithm and
620 its applications to single-cell sequencing. *J Comput Biol* 2012; **19**: 455–77.

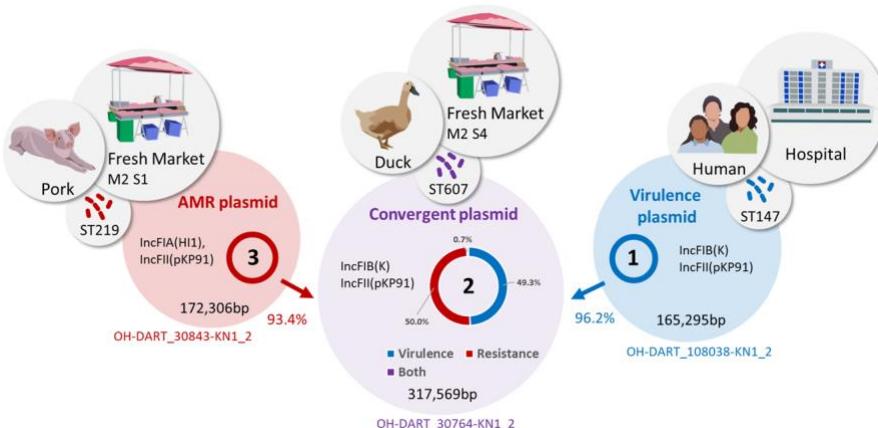
621 52 Srijan A, Margulieux KR, Ruekit S, *et al.* Genomic Characterization of Nonclonal mcr-1-
622 Positive Multidrug-Resistant *Klebsiella pneumoniae* from Clinical Samples in Thailand.
623 *Microb Drug Resist* 2018; **24**: 403–10.


624 **Main Figures**

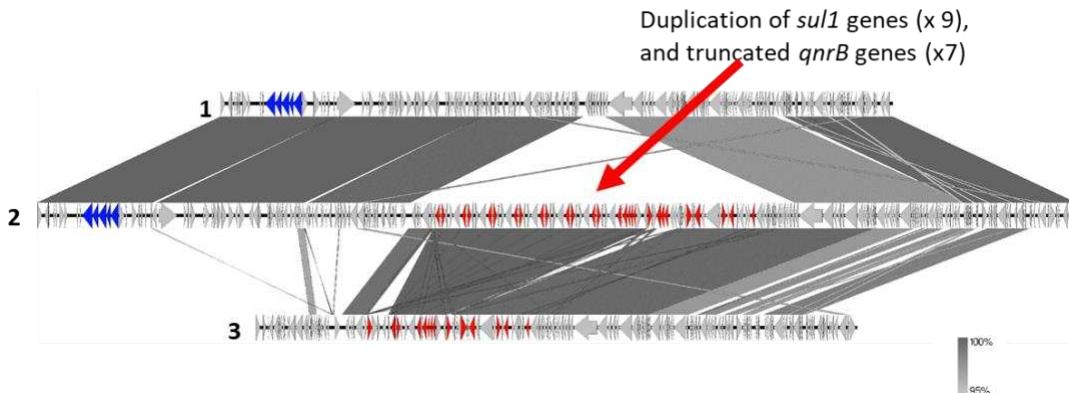

625

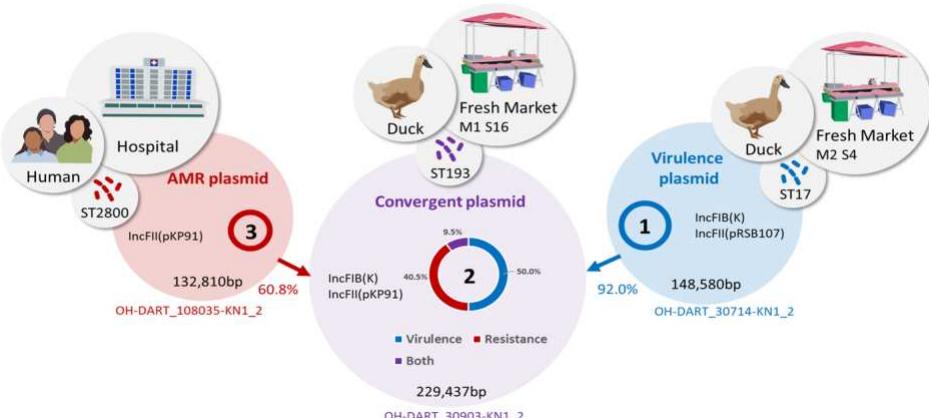
626 **Figure 1.** Summary of the seven plasmid convergence events, showing the provenance of
627 the hybrid plasmids and of the putative parental *iuc3* and AMR plasmids.


628


629

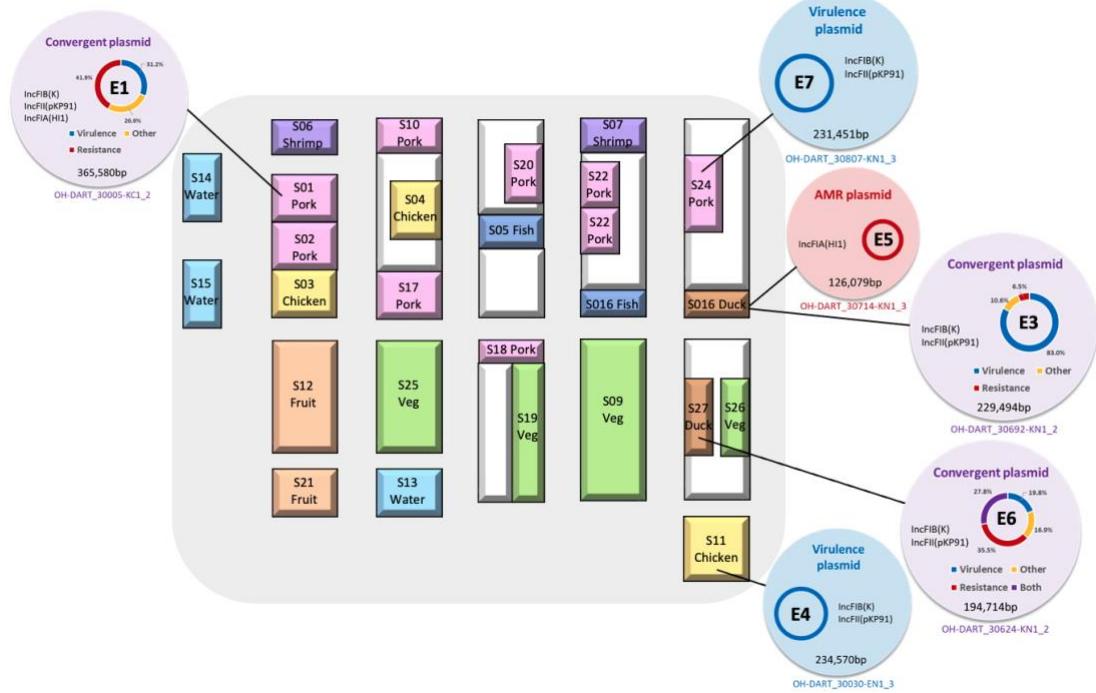
630 **Figure 2A (Event 1).** The convergent plasmid OH-DART_30005-KC1_2 (middle) is the
631 largest fully sequenced *iuc3* plasmid in the dataset (365580-bp) and was used as a
632 reference for mapping and SNP calling. A circular representation of this plasmid showing
633 other genome features is provided in Supplementary Figure 2A. This plasmid has replicon
634 types IncFIB(K), IncFII(pKP91), and IncFIA(HI1), and was isolated from an ST2791 isolate
635 recovered from pork meat. 31.2% of this plasmid showed high level of nucleotide identity
636 (>98%) to 61.5% of the *iuc3* plasmid OH-DART_30092-KN2_5 (ST520; IncFIB(K),
637 IncFII(pKP91)) which was recovered from pork meat (top). 41.9% of the large convergent
638 plasmid showed >98% sequence identity to 91.3% of the AMR plasmid OH-DART_30769-
639 KN1_2 (bottom) (ST76-2LV; IncFIA(HI1), IncFII(pKP91)). The ARG profile of the AMR
640 plasmid OH-DART_30769-KN1_2 is *aac(3)-IId*⁺; *aadA17*^{*}; *strA.v1*; *strA.v1*⁺; *strB.v1*; *strB.v1*
641 *qnrS1*; *erm(42)*^{*}; *InuF.v1*; *sul2*; *tet(A).v2*; *bla_{SHV-12}*. The convergent plasmid also harbours the
642 same ARG profile, but with the addition of an *erm* gene. We note that 26.9% of the
643 convergent plasmid does not correspond to either of the putative parental plasmids, thus
644 material from at least one other plasmid has contributed to this large genome.


645

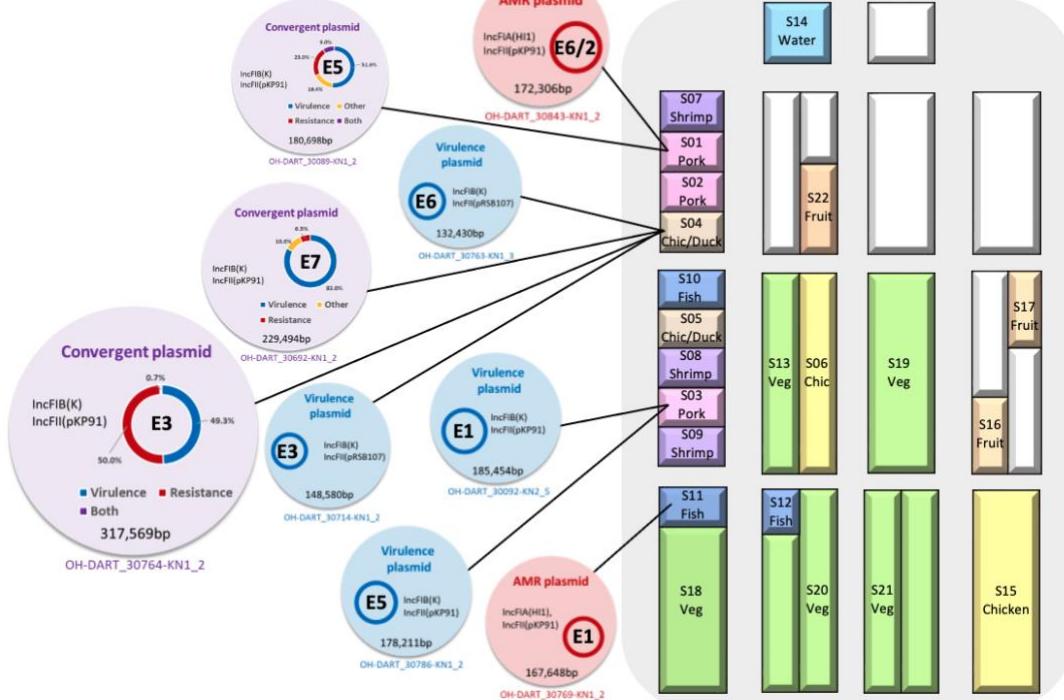

646

647 **Figure 2B (Event 2).** This example illustrates the hybridisation of an AMR plasmid from the
648 market (OH-DART_30843-KN1_2; ST219) with an *iuc3* plasmid from the faecal flora of a
649 hospital inpatient (OH-DART_108038-KN_2). The clinical isolate harbouring the *iuc3* plasmid
650 corresponds to the high-risk clone ST147 (Rodrigues et al 2022 DOI:
651 10.1099/mgen.0.000737), although this isolate does not contain significant ARGs. The
652 convergent hybrid plasmid, OH-DART_30764-KN1_2 (ST607), which was isolated from duck
653 meat from the fresh market, is an almost perfect hybrid of these two plasmids. 93.4% of
654 plasmid OH-DART_30843-KN1_2 and 96.1% of plasmid OH-DART_108038-KN_2 each
655 share >99% nucleotide identity with 50% of OH-DART_30764-KN1_2 plasmid. OH-
656 DART_30843-KN1_2 and the convergent plasmid OH-DART_30764-KN1_2 share an
657 identical ARG profile: *aac(3)-IId⁺*; *aadA17^{*}*; *strA.v1⁺*; *strB.v1*; *qnrS1*; *InuF.v1*; *floR.v2^{*}*; *sul2*;
658 *tet(A).v2*; *bla_{SHV-12}*. The arrows refer to plasmid hybridisation, and do not denote transmission
659 pathways.

660

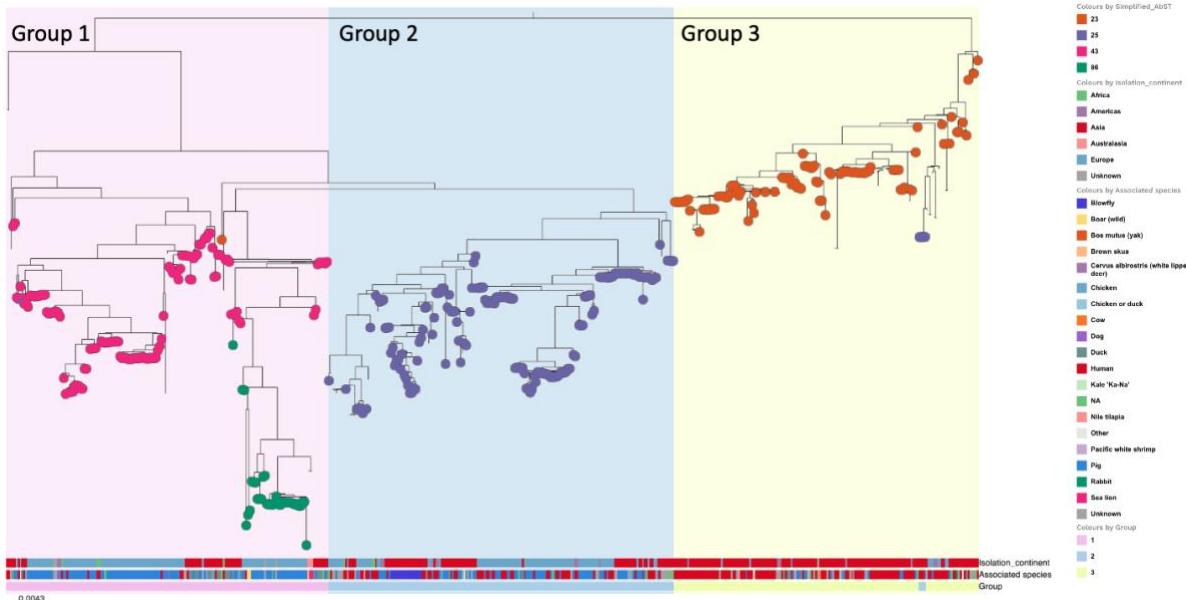

661

662

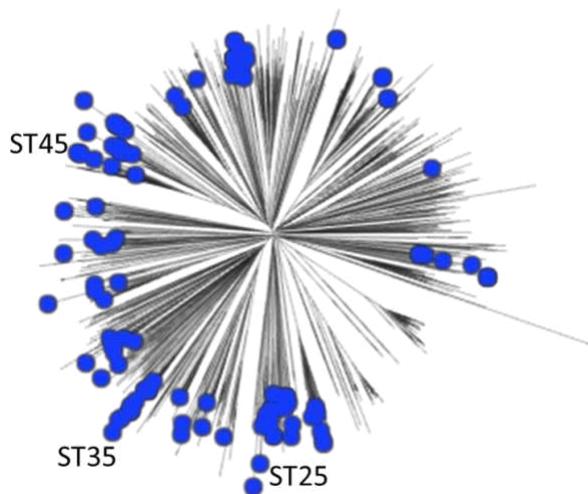

663 **Figure 2C (Event 3).** In this case the putative parental AMR plasmid originates from a stool
664 sample from a hospital inpatient whilst the convergent and putative parental *iuc3* plasmids
665 were carried by isolates from the markets. 59.5% of the convergent plasmid OH-
666 DART_30903-KN1_2 (ST193) shares >98% nucleotide identity with 91.9% of the *iuc3*
667 plasmid OH-DART_30714-KN1_2 (ST17). 50% of plasmid OH-DART_30903-KN1_2 shares
668 >98% identity with 60.7% of plasmid OH-DART_108035-KN1_2 (ST2800), and these latter
669 two plasmids share identical ARG profiles: *aac(6')*-*lb-cr.v2*; *aadA16*; *aph3-la.v1*; *qnrS1*;
670 *mphA*; *floR.v1*; *arr-3*; *sul1*; *tet(A).v2*; *dfrA27*; *bla_{TEM-1D.v1}*; *bla_{CTX-M-3}*; *qnrB20**-10%. However,
671 curiously, the *sul1* and truncated *qnrB20* genes have been duplicated in the convergent
672 plasmid, resulting in 9 tandem copies of the former, and 7 tandem copies of the latter. The
673 arrows refer to plasmid hybridisation, and do not denote transmission pathways.

Market 1

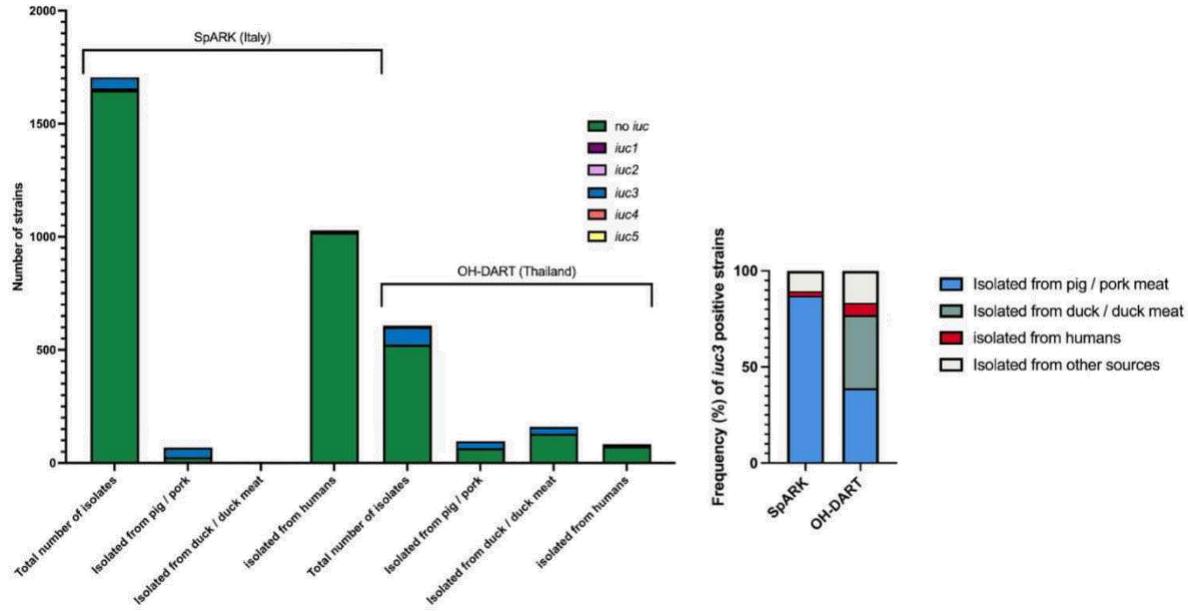
674


Market 2

675

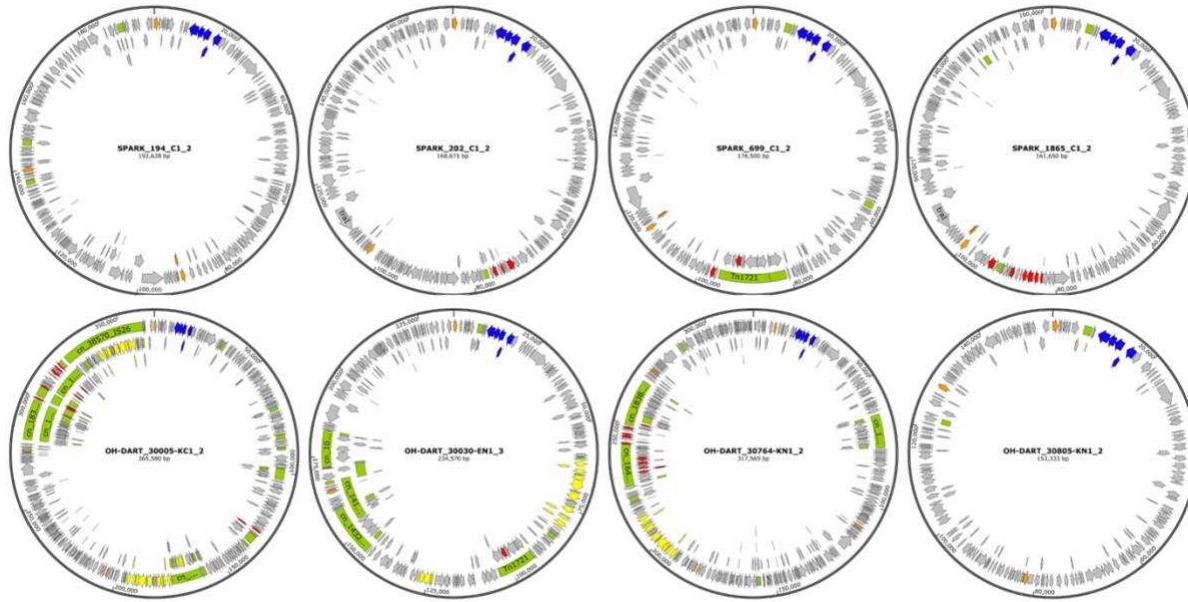

676 **Figure 2D.** Locations of the sources of convergent plasmids and the putative parental
677 plasmids on the two Thai markets. The Event ('E') numbers are shown within each plasmid.
678 Red represents the contribution from the AMR plasmid, blue from the *iuc3* plasmid. OH-
679 DART_30843-KN_2 is the putative AMR parental plasmid in Events 2 and 6. Events 4-7 are
680 shown in Supplementary Figure 5.

681 A

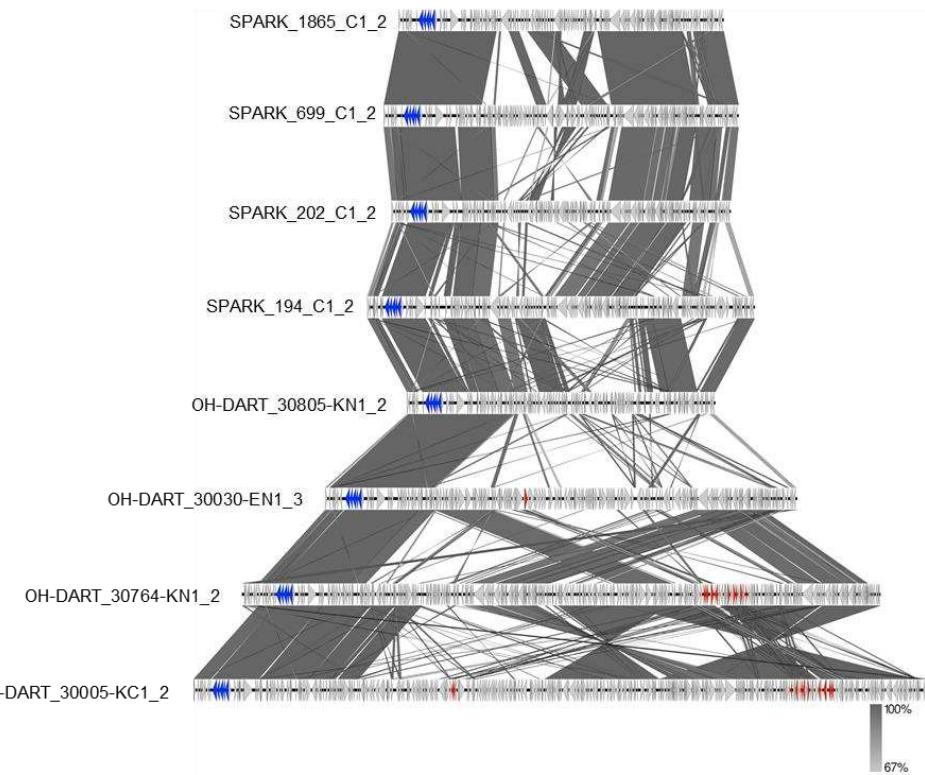


692 **Figure 3.** Phylogeographical analysis of 517 *iuc3* plasmids. **A.** SNP tree of 517 genomes
693 coloured by simplified AbST, showing continent of isolation and associated species. **B.** The
694 geographical distribution of the three groups of *iuc3* plasmids. Group 3 plasmids (yellow) are
695 predominant in China, the Philippines and Southeast Asia. Four AbST25 plasmids
696 pMR0617aac, GCF_002752955.1, 480738_p and OH-DART_30092-KN2 are assigned as
697 Group 2 due to their position on the tree of 139 plasmids (Supplementary Figures 9, 10c).

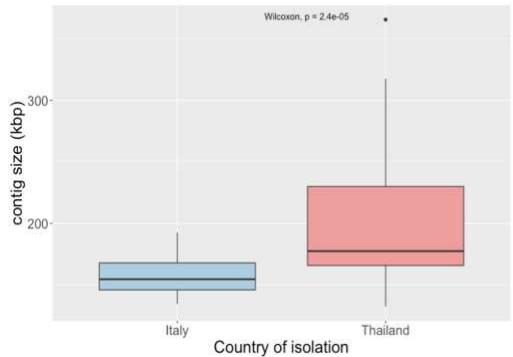
698 **Supplementary Figures**


699
700 **Supplementary Figure 1.** Mashtree of 2296 Kp isolates from Italy and Thailand. The blue
701 nodes indicate the presence of *iuc3*. The three STs most commonly associated with *iuc3* are
702 indicated.

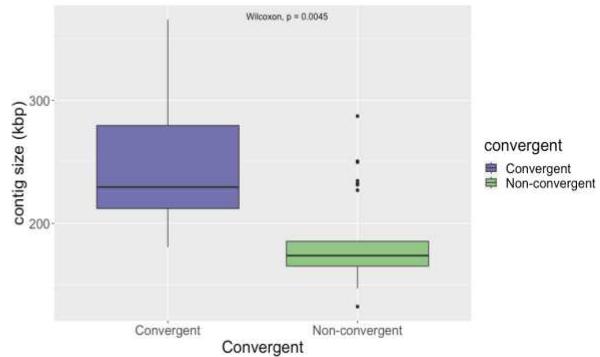
703
704
705


Supplementary Figure 2. Sources and prevalence of *iuc3*-positive isolates in the Italian (SpARK, n=45) and Thai (OH_DART, n=36) datasets.

706 A

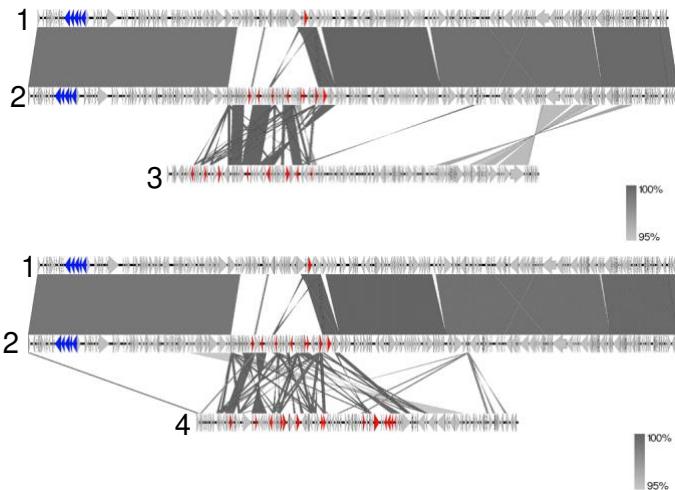

707

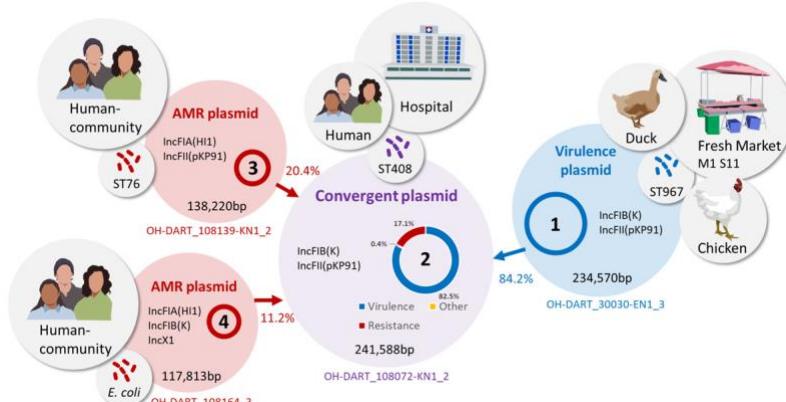
708 B



709 **Supplementary Figure 3.** Representative *iuc3*-carrying plasmids from Thailand and Italy. **A.** Circular sequence maps showing the *iuc3* locus (blue), ARGs (red), *rep* gene (orange), heavy-metal resistance (yellow) and IS/Tn (green). **B.** Alignment of the same plasmids, showing *iuc3* locus (blue) and ARGs (red).

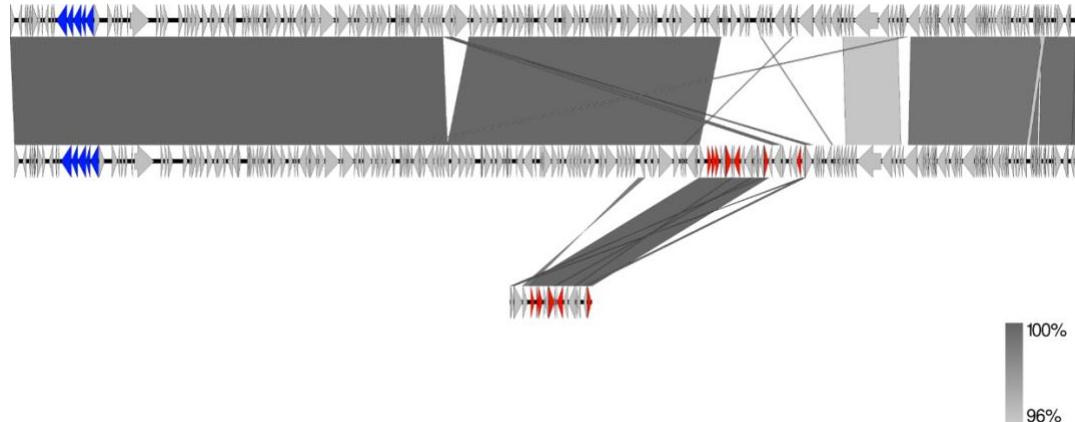
A

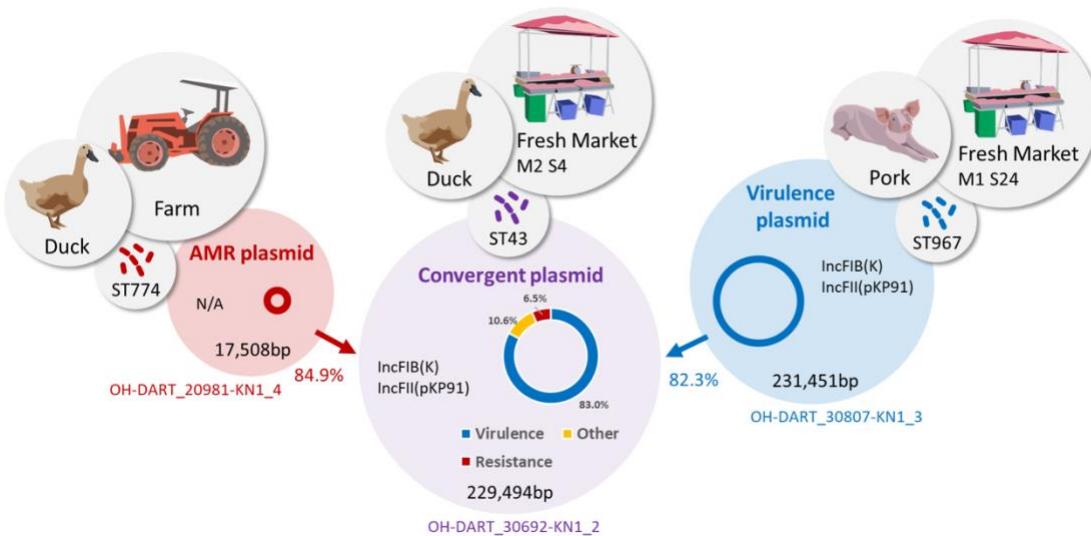

B


713
714
715
716
717

Supplementary Figure 4. Size comparisons of *iuc3* plasmids **A.** from Italy (N= 44, blue) and Thailand (N= 36, red) and **B.** Thai convergent plasmids (N=7, purple) and Thai non-convergent plasmids (N=29, green). Both comparisons show significant difference by a Wilcoxon Rank-Sum Test (P<0.001).

718

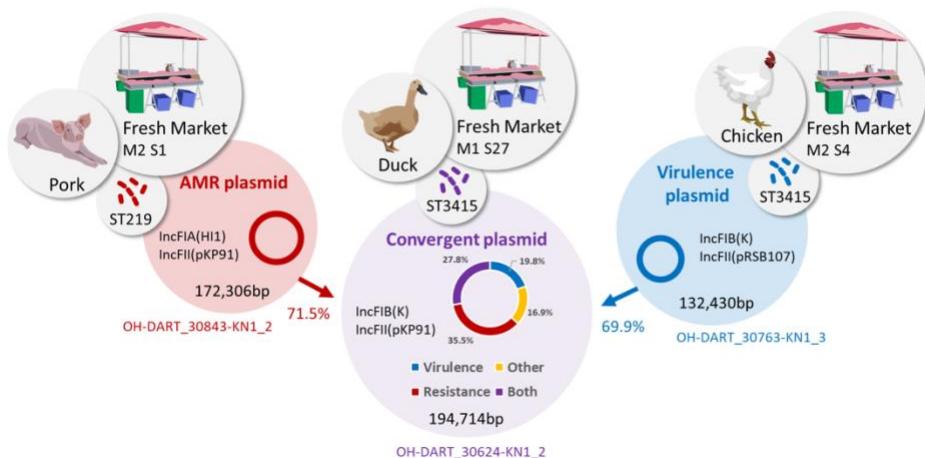

719


720

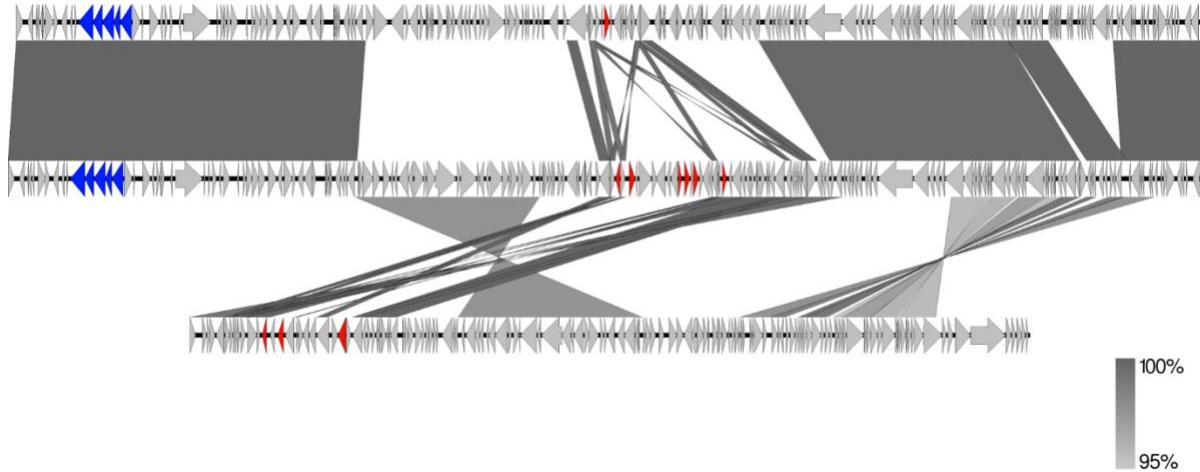
721 **Supplementary Figure 5A (Event 4).** A 241,588-bp convergent *iuc3* plasmid (OH-
722 DART_108072-KN1_2; ST408) was carried by an isolate recovered from the faecal flora of
723 an inpatient at Ban Leng hospital. This plasmid has the following ARG profile: *aadA2*, *strAB*,
724 *qnrS1*, *sul2*, *tet(A)*, *dfrA12*, *bla_{LAP-2}*, *bla_{CTX-M-27}*. 82.5% of this plasmid showed high homology
725 (>98% identity) to an *iuc3* plasmid (OH-DART_30030-EN1_3; ST35) isolated from one of the
726 fresh markets, which does not contain any ARGs. The ARG profile of plasmid OH-
727 DART_108139-KN1_2; (ST76), from a community carriage isolate, shows some overlaps
728 with that of the convergent plasmid: *aac(3)-IId^A*, *qnrS1*, *mphA*, *floR.v1**, *sul2*, *tet(A).v1*;
729 *dfrA14.v2**; *bla_{LAP-2}*; *bla_{SHV-12}**, and 20.4% of this plasmid showed >98% identity to 11.4% of
730 the convergent plasmid. The *bla_{CTX-M-27}* ESBL gene in the convergent plasmid may have
731 been derived from a parent similar to the *IncFIA(HI1)*, *IncFIB(K)*, *IncX1* plasmid (OH-
732 DART_108164-EN1_3), which was harboured by an *E. coli* strain also recovered from local
733 community carriage. This plasmid contains a *bla_{CTX-M-14}* gene which is >99% identical to the
734 *bla_{CTX-M-27}* gene on the *E. coli* plasmid. 5.4% of the convergent OH-DART_108072-KN1_2
735 plasmid shows >98% nucleotide identity to 11.1% plasmid OH-DART_108164-EN1_3. This
736 event points to the potential flow of plasmid material between the fresh market, community
737 carriage, hospital carriage, as well as highlighting the possibility of the transfer of ARGs
738 between *K. pneumoniae* and *E. coli* plasmids.

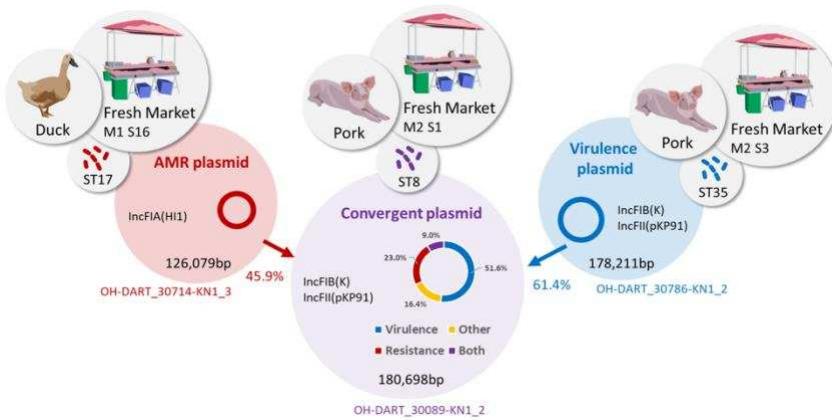
739

740

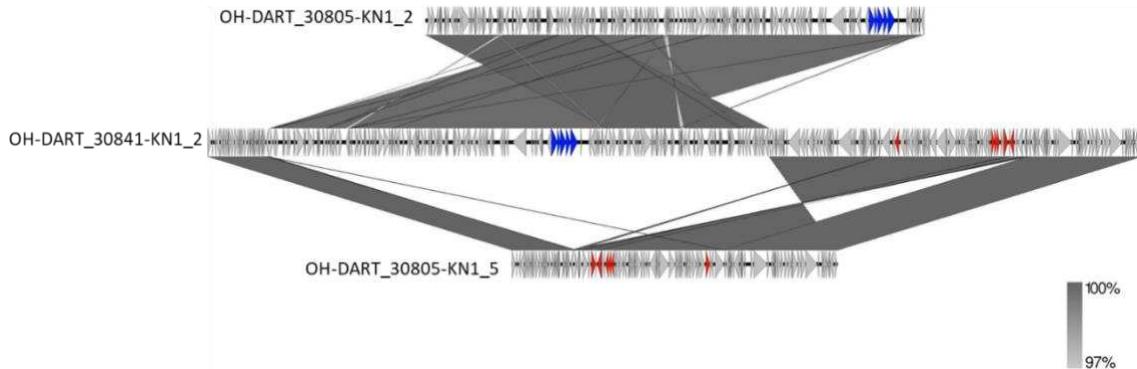


741 **Supplementary Figure 5B (Event 5).** The convergent plasmid OH-DART_30692-KN1_2
742 was carried by an ST43 isolate (middle). This plasmid was recovered from duck meat and is
743 highly similar to the *iuc3* plasmid OH-DART_30807-KN1_3 isolated from pork meat (top).
744 83% of plasmid OH-DART_30692-KN1_2 shares >98% sequence identity with 82% of
745 plasmid OH-DART_30807-KN1_3. The convergent plasmid OH-DART_30692-KN1_2 has
746 incorporated 85% (>98% sequence identity) of the small (17508-bp) non-mobilizable plasmid
747 OH-DART_20981-KN1_4 (bottom). This plasmid does not contain any rep genes and has
748 the ARG profile *strA.v1⁺*; *strB.v1*; *floR.v1*; *sul2*; *tet(A).v2*; *bla_{SHV-12}*. The convergent plasmid
749 shares the same ARG profile, except with an additional *mphA* gene. The example provides a
750 link between duck meat on the market, and samples from the neighbouring duck farm.

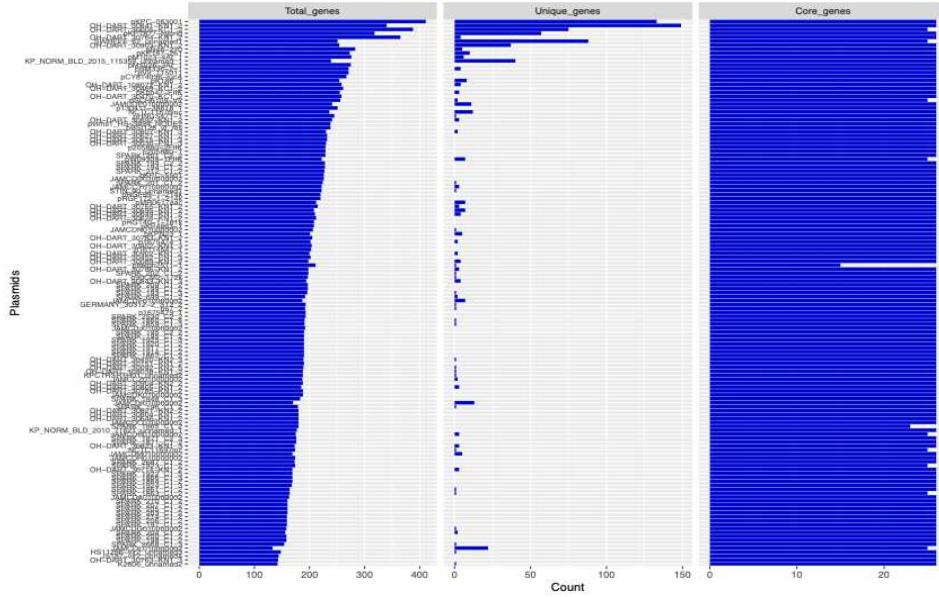

751


752

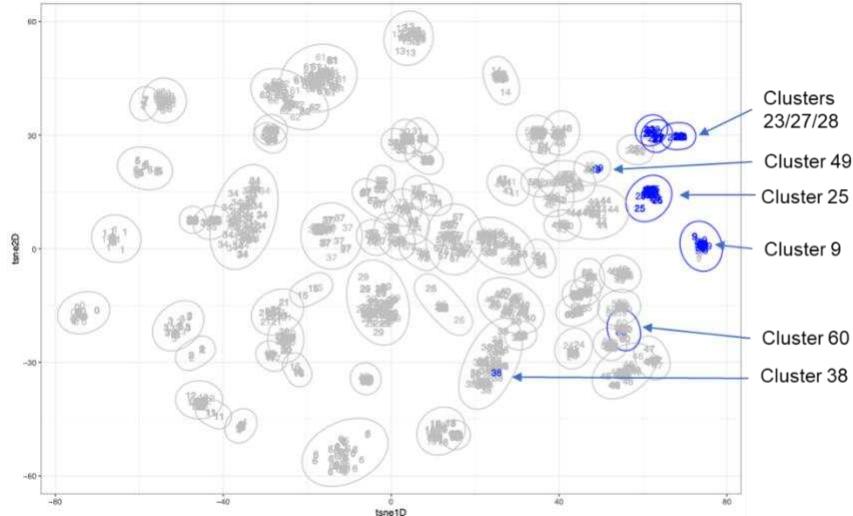
753 **Supplementary Figure 5C (Event 6).** The convergent plasmid (OH-DART_30624-KN1_2) (middle) and both putative parental plasmids originate from the markets. 47.5% of the 754 convergent plasmid shows a high level of nucleotide identity (>98%) to 69.9% putative *iuc3* 755 plasmid parent OH-DART_30763-KN1_3 (top), and these two plasmids were found in the 756 same clone (ST3415). The putative AMR parental plasmid OH-DART_30843-KN1_2 757 (ST219) (bottom) shares an identical ARG profile with the convergent plasmid: *aac(3)-IId*⁺; 758 *aadA17*^{*}; *strA.v1*⁺; *strB.v1*; *qnrS1*; *InuF.v1*; *floR.v2*^{*}; *sul2*; *tet(A).v2*; *blaSHV-12*. 71.5% of this 759 plasmid shows a high nucleotide identity (98%) with 47.5% of the convergent plasmid. This 760 plasmid was also identified as the putative AMR parental plasmid in Event 2. This example is 761 noteworthy as a high percentage of the convergent plasmid (27.8%) shows a high level of 762 nucleotide identity to both putative parents, reflecting the fact that the parents themselves 763 share similar blocks of sequences. 764

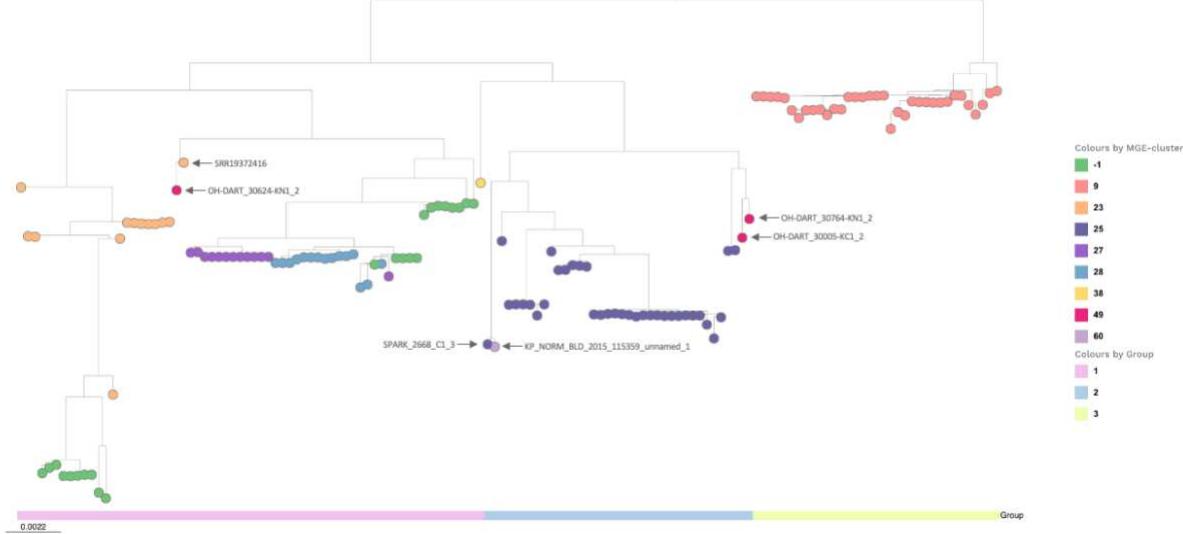


765

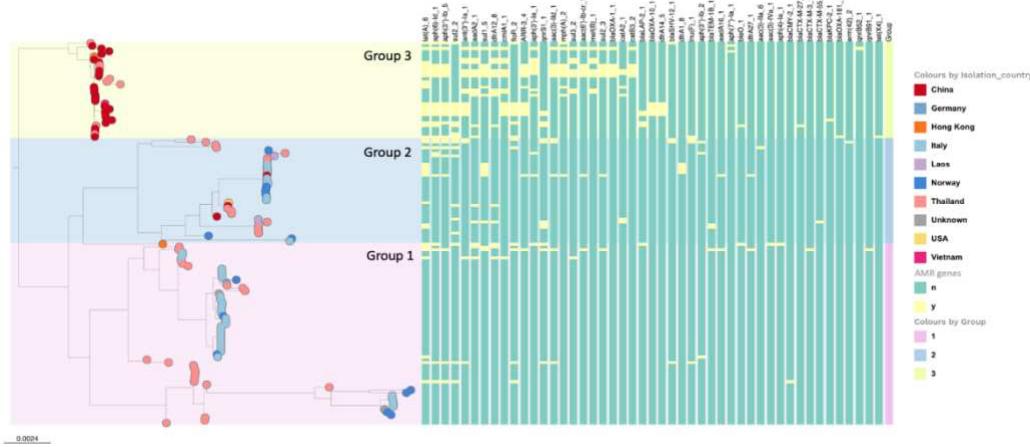


766 **Supplementary Figure 5D (Event 7).** The convergence plasmid OH-DART_30089-KN1_2
767 (ST78) (middle) and both putative parents were isolated from the markets. There is a
768 typically strong match between the convergence plasmid and the putative *iuc3* parent OH-
769 DART_30786-KN1_2; 60.6% of the convergence plasmid showed >98% nucleotide identity
770 with 61.4% of this plasmid. However, in this case we were not able to identify a closely
771 matching AMR parental plasmid. The ARG profile of the convergence plasmid is *aadA2*⁺
772 *qnrS1*; *catII.2*^{*}; *sul1*; *dfrA12*; *bla*_{CTX-M-55}. There are only 24 examples of Kp isolates
773 harbouring *bla*_{CTX-M-55} in the OH-DART dataset (32 including other *Klebsiella* species).
774 However, *bla*_{CTX-M-55} is very common among *E. coli* isolates. The closest match we could find
775 among the fully closed assemblies was plasmid OH-DART_30714-KN1_3 (ST17); 45.9% of
776 this plasmid shares high nucleotide identity (>95%) with 32% of the convergent plasmid;
777 however, the ARG profile is different and in particular this plasmid carries *bla*_{CTX-M-63} rather
778 the *bla*_{CTX-M-55}. The ARG profile of OH-DART_30714-KN1_3 is: *qnrS1*; *tet(A).v1*⁺; *bla*_{LAP-2};
779 *bla*_{CTX-M-63}.

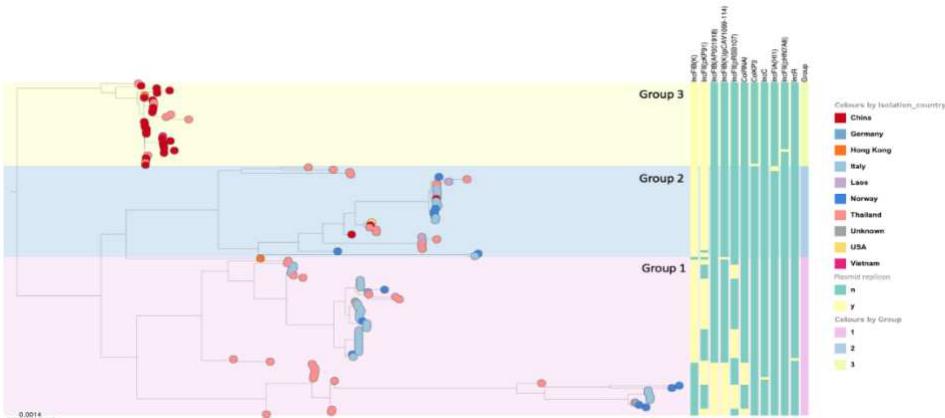

780


781 **Supplementary Figure 6.** Alignment of three plasmids from Kp ST7513-1LV. The *iuc3* locus
782 is in blue, and ARGs are in red. The top (*iuc3*) and bottom (AMR) plasmids were harboured
783 by the same ST7513-1LV isolate (OH-DART_30805-KN1). Plasmid OH-DART_30805-
784 KN1_2 has four replicon types: ColRNAI, IncFIB(AP001918), IncFIB(K)(pCAV1099-114),
785 IncFII(pKP91), whilst plasmid OH-DART_30805-KN1_5 has only one (IncC). These have
786 hybridised to form the middle large plasmid that was harboured by a different ST7513-1LV
787 isolate (OH-DART_30841-KN1_2) and which contains all 5 replicon types (ColRNAI, IncC,
788 IncFIB(AP001918), IncFIB(K)(pCAV1099-114), IncFII(pKP91)) and an identical ARG profile
789 to OH-DART_30805-KN1_5 (*strAB*, *floR.v2**, *sul2*, *tet(A).v2*, *bla_{CMY-2.v2}*). Both isolates were
790 sampled from the neighbouring Thai markets.

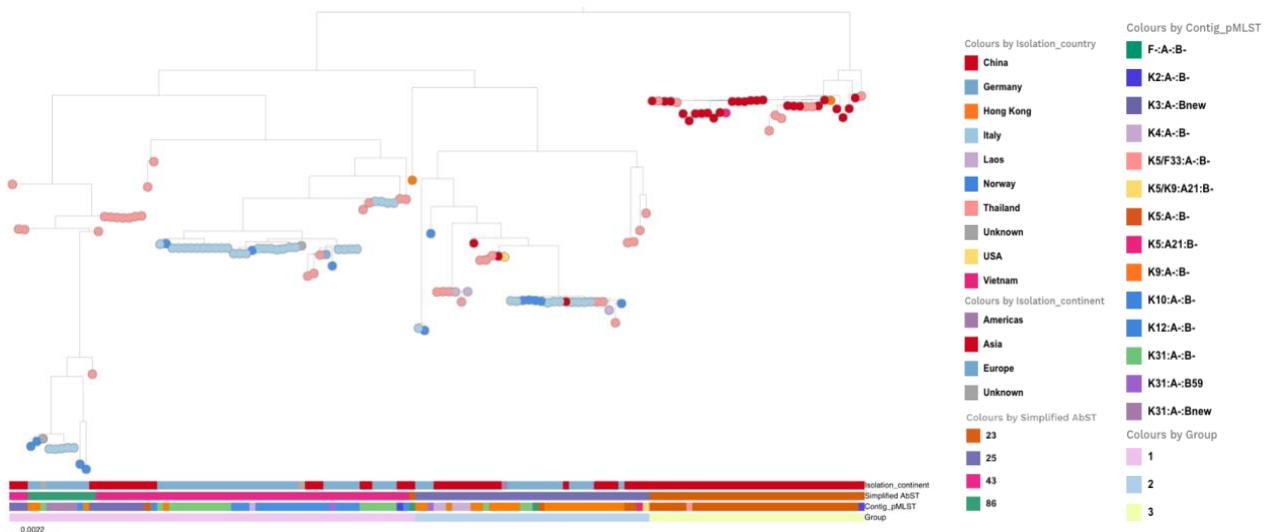
791 **Supplementary Figure 7.** Number of total, unique and core genes identified by Roary in
792 each of the 139 *iuc3*-carrying plasmids for which fully closed sequences are available.



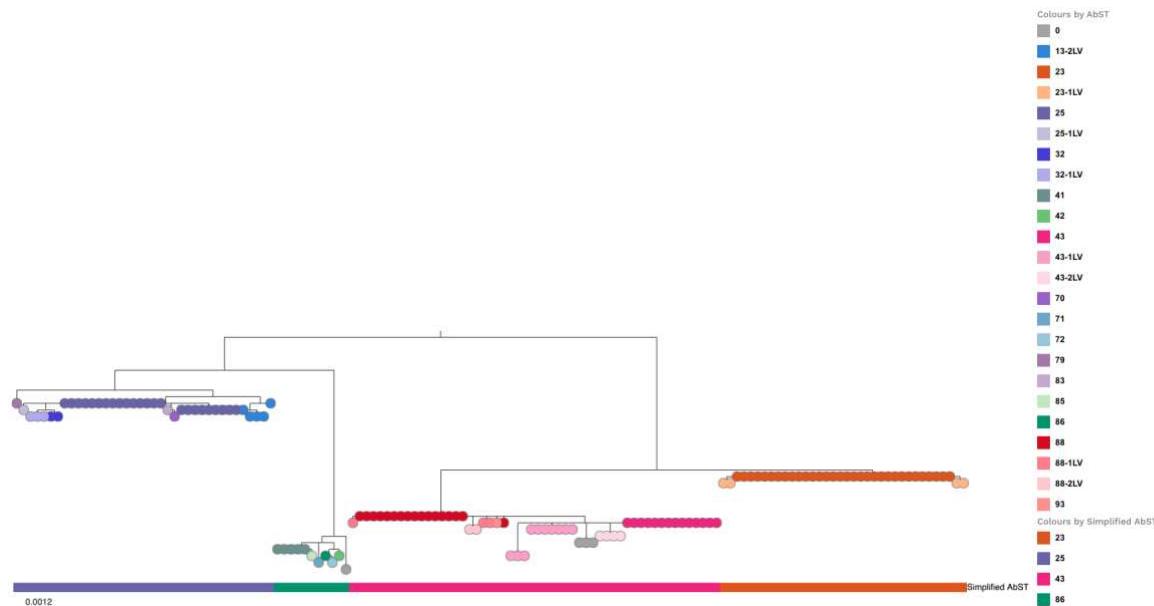
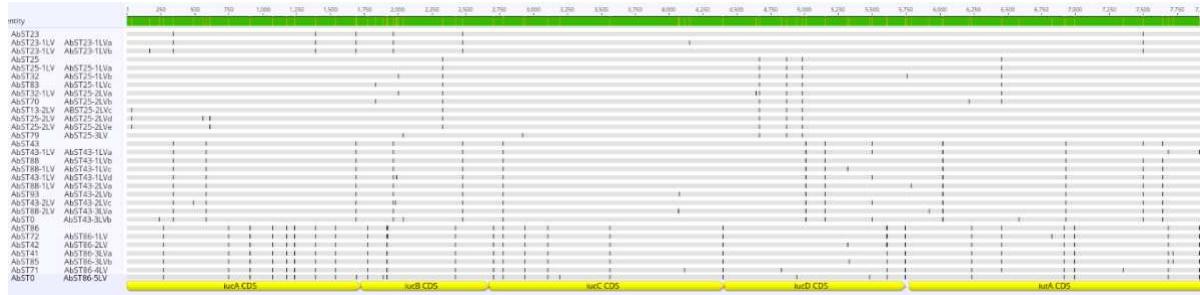
793 **Supplementary Figure 8.** Clustering of 139 plasmids carrying *iuc3* with 2874 plasmids from
794 Thailand and Italy based on the mge-cluster analyses. Blue numbers and clusters represent
795 plasmids carrying *iuc3*.



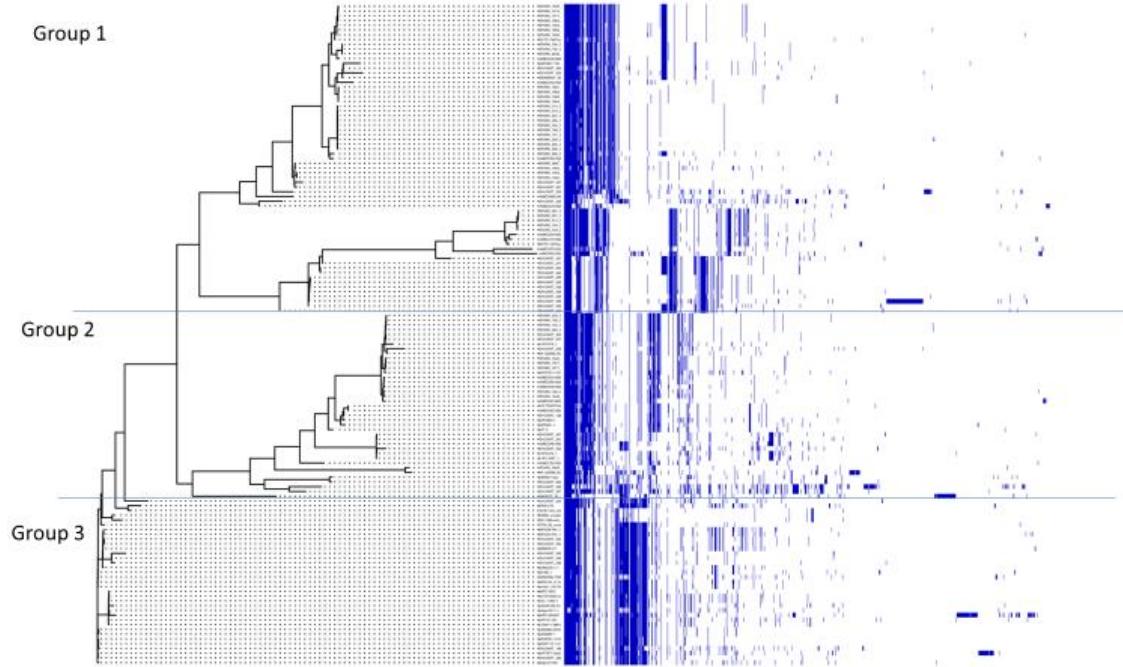
796 **Supplementary Figure 9.** SNP tree of 139 *iuc3* plasmid sequences. The colours of the
797 nodes correspond to the cluster assignment by mge-cluster (Supplementary Figure 8).
798 Clusters #9 and #25 are strongly supported by the tree and are assigned as Group 3 and
799 Group 2 respectively. Group 1 represents a mixture of clusters. The clusters defined by mge-
800 cluster are broadly consistent with a SNP-based tree constructed using complete plasmid
801 genomes, with the following exceptions. Three convergent plasmids correspond to cluster
802 #49, whilst on the tree OH-DART_30624-KN1_2 is placed in group 1, OH-DART_30005-
803 KC1_2 and OH-DART_30764-KN1_2 are placed in group 2. OH-DART_30624-KN1_2 is
804 positioned closely on the tree to the Norwegian porcine plasmid SRR19372416, which
805 corresponds to cluster #23. KP_NORM_BLD_2015_115359_unnamed_1 (cluster #60) is
806 positioned very closely on the tree to SPARK_2668_C1_3 (cluster #25). Of the nine
807 convergent plasmids in total (including two from the public data), four correspond to Group 3
808 (cluster #9), whilst the other five are scattered across the tree.


809 A

810
811 B

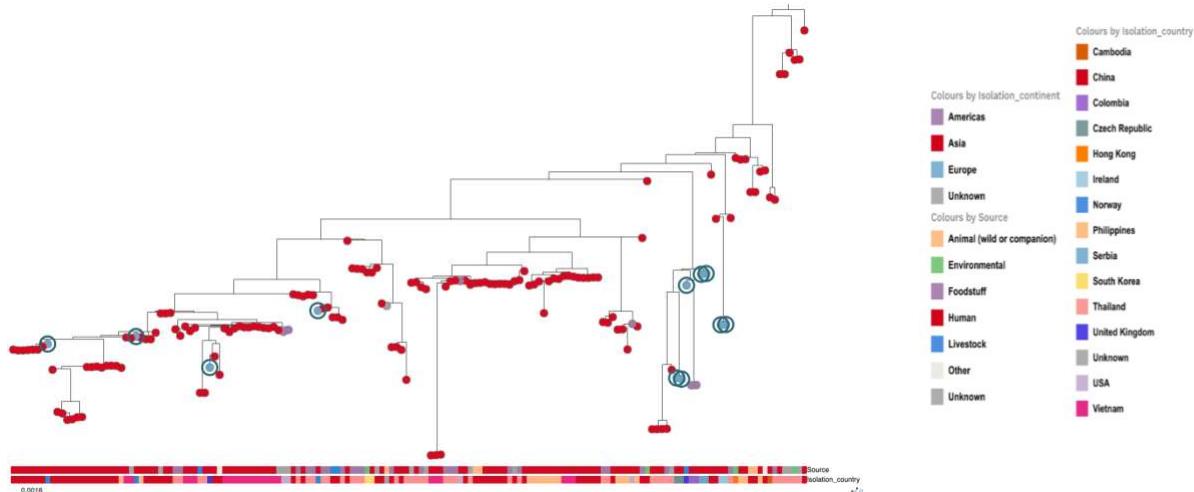



812
813 C

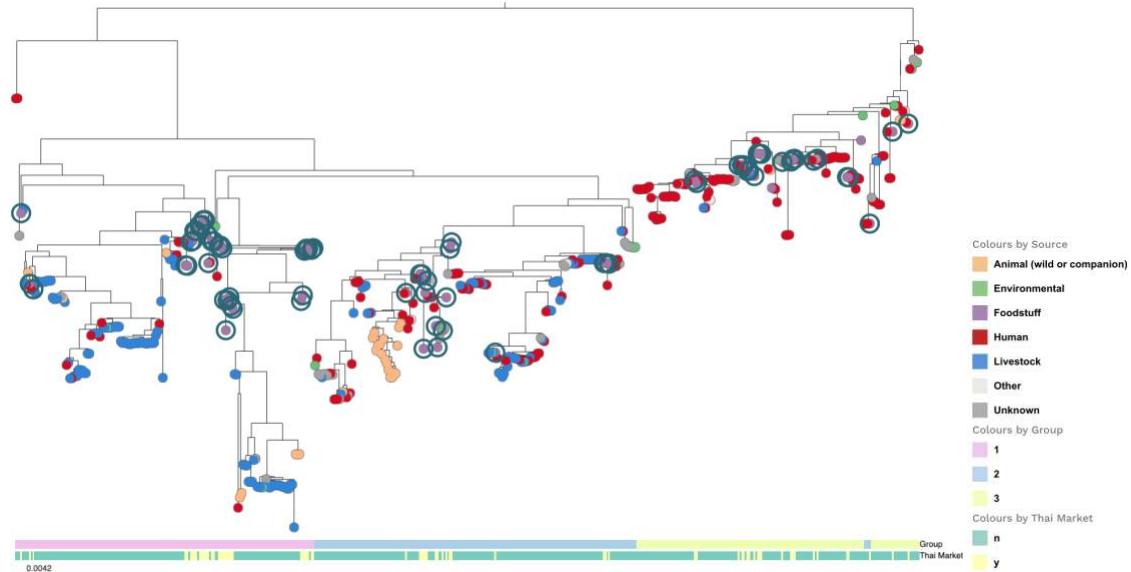


814 **Supplementary Figure 10.** SNP tree of 139 *iuc3* plasmids showing (A) ARGs (Resfinder),
815 (B) replicon types and (C) geography, pMLST and simplified AbST.

816 A

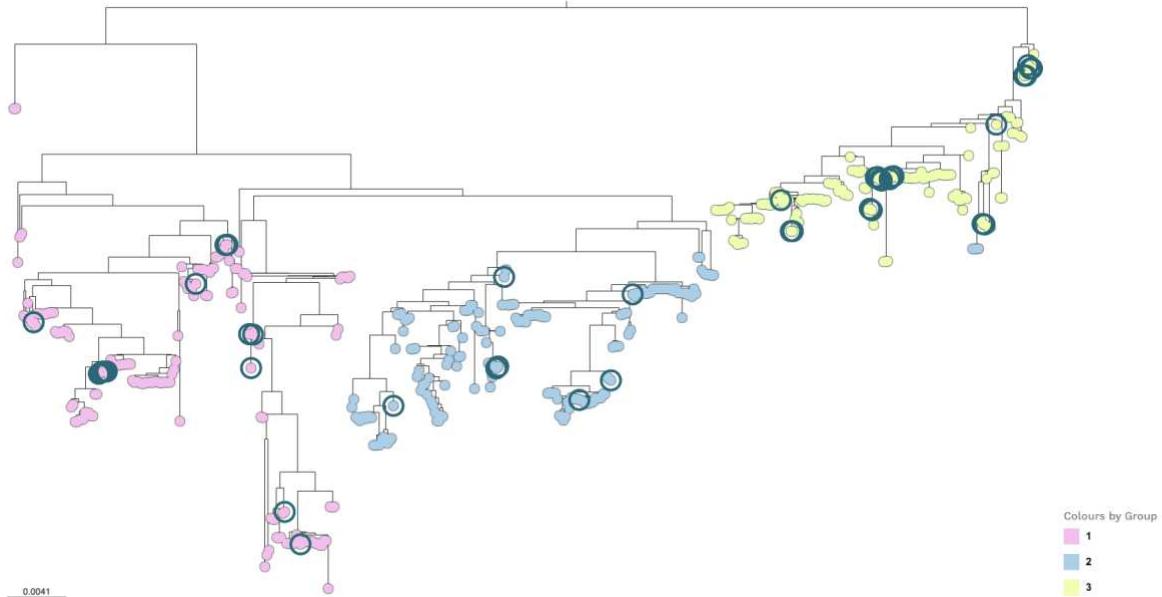


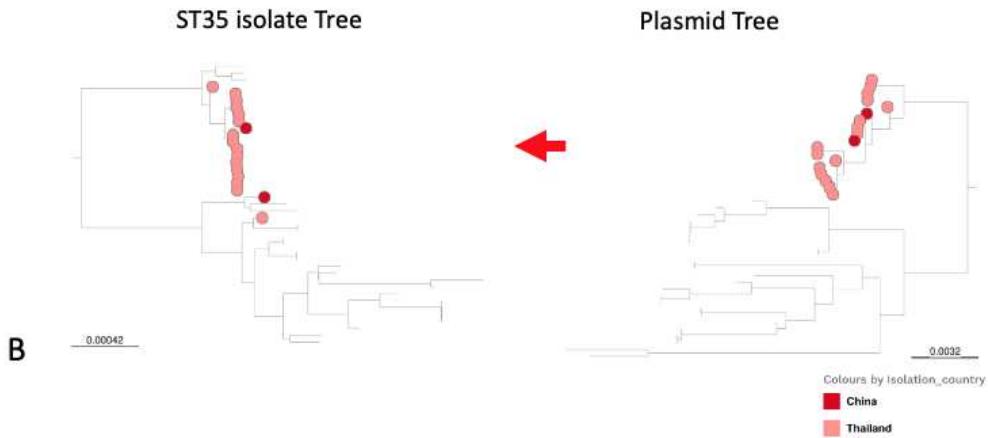
821 **Supplementary Figure 11. A.** Alignment of the *iuc3* locus in the 30 unique AbST types. Sequences are labelled on the left with the AbST assigned by Kleborate followed by the AbST assigned in this study (where different). The genes in the *iuc* locus are shown below the alignment. **B.** Phylogenetic tree based on the variation in the *iuc3* locus within 139 complete *iuc3* plasmid sequences. The colours on the nodes indicate the AbST assignments by Kleborate. These resolve into four distinct groups, assigned the name of the predominant AbST within the group, AbSTs 23, 25, 43 and 86, as indicated by the bar.


828 **Supplementary Figure 12.** Gene content differences between the 139 *iuc3* plasmids broken
829 down by group. Genes are shown as blue bars in order of frequency. The tree on the left is
830 based on SNPs.

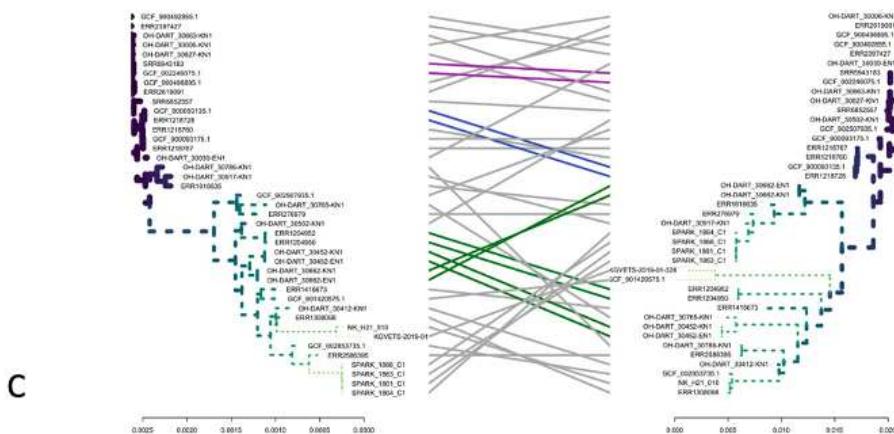
831

832


833 **Supplementary Figure 13.** Group 3 subtree of the SNP-based tree of 517 plasmids. The
834 nodes are coloured according to continent of origin, with European plasmids (blue)
835 highlighted with a circle. The top bar gives the source and the bottom bar gives the country
836 of origin. Ten of the eleven European plasmids were associated with humans, at least eight
837 of them were from clinical isolates.


838
839
840
841

Supplementary Figure 14. Tree of 517 *iuc3* plasmids coloured by source. Plasmids derived from the two Thai markets ('Foodstuffs') are indicated by circles at the bottom bar and are scattered across the tree. The top bar indicates the plasmid group.


842

843
844
845

B

846

847

Supplementary Figure 15. Analysis of ST35 isolates and plasmids **A.** The tree of 517 *iuc3* plasmids with those harboured by ST35 isolates highlighted. The node colours indicate

850 Groups. **B.** A comparison of the tree of all 41 ST35 isolates harbouring an *iuc3* plasmid, and
851 the tree of the plasmids in these isolates. The group 3 plasmids are highlighted on the
852 plasmid tree, the colour of the node indicates country of origin. The corresponding isolates
853 are highlighted on the isolates tree. The group 3 plasmids are found in a distinct sub lineage
854 of ST35, with two exceptions. There is little consistency between the two trees when the
855 other plasmids are considered. **C.** A tanglegram of the two trees, lines connect isolates and
856 their corresponding plasmids.

857 **Supplementary Tables**

858 **Supplementary Table 1.** Data summary of 139 long-read *iuc3* plasmid sequences, 81
859 generated in this project and 58 from public databases which were used for initial analysis,
860 and subsequently combined with 378 further short-read sequences from *iuc3* isolates.
861

Plasmid sequences	Number	Further details
<i>iuc3</i> plasmid sequences generated in this project from Italy (n=44), Thailand (n=36) and Germany (n=1)	81	Supplementary Table 2
<i>iuc3</i> plasmid sequences from public databases	58	Supplementary Table 2
<i>Total</i>	139	
Short read assemblies of <i>iuc3</i> isolates from this project and public databases, and additional <i>iuc3</i> plasmid sequences from public databases	378	Supplementary Table 3
<i>Total</i>	517	

862

863

864 **Supplementary Tables 2, 3 and 4** are provided as separate files.

865 **Supplementary Table 4.** Frequency of IS families in 139 *iuc3* plasmids based on
866 annotations provided by Prokka.
867

	No. of sequences
IS3 family	562
IS110 family	297
IS481 family	257
IS6 family	180
ISNCY family	131
IS1 family	110
IS200/IS605 family	97
ISL3 family	78
IS5 family	73
IS21 family	54
IS66 family	36
IS256 family	30
ISKra4 family	16
IS1595 family	15
IS150 family	12
IS1380 family	6
IS91 family	6
IS4 family	4
IS630 family	3
IS1182 family	2
IS30 family	1

868

869 **Supplementary Table 5.** SNP distances between the four simplified AbST groupings of *iuc3*
870 in the 139 *iuc3*-positive assemblies (Supplementary Table 1). Multiple AbST variants have
871 been simplified into each grouping (Supplementary Methods and Supplementary Figure 11).
872

	AbST 23	AbST 25	AbST 43	AbST 86
AbST 23	0 - 2	11 - 14	8 - 13	33 - 37
AbST 25	11 - 14	0 - 6	17 - 23	30 - 37
AbST 43	8 - 13	17 - 23	0 - 8	35 - 46
AbST 86	33 - 37	30 - 37	35 - 46	0 - 9

873

874 **Supplementary Table 6.** Genes associated with the 139 *iuc3* plasmids assigned to Group 3
875 (n=35). The Prokka annotation / Roary assignment is shown in the first column. All genes
876 assigned as hypothetical by Prokka were checked using BLASTX and the best hits are given
877 in the 3rd column.
878

Gene	Annotations	BLASTX	#Group 3 Plasmids	# other plasmids
group_832	hypothetical protein	type-F conjugative transfer system pilin assembly protein TrbC (T4SS)	35	2
group_184	IS3 family transposase ISLad1		34	0
group_562	hypothetical protein		34	0
group_814	hypothetical protein	restriction endonuclease subunit S	34	0
group_815	hypothetical protein	YecA chaperone involved in Sec-dependent protein translocation	34	0
group_555	hypothetical protein	replication regulatory protein RepA [Klebsiella pneumoniae]	34	2
clsB	Cardiolipin synthase B		34	2
group_50	hypothetical protein	IS1 transposase [Klebsiella pneumoniae]	34	3
group_554	hypothetical protein	DUF262 domain-containing protein [Enterobacteriaceae]	34	3
group_813	hypothetical protein	TPA: type I restriction-modification system subunit M [K. pneumoniae]	34	3
group_816	hypothetical protein	SprT family zinc-dependent metalloprotease [Enterobacteriaceae]	34	3
group_817	hypothetical protein	DUF262 domain-containing protein [Klebsiella pneumoniae]	34	3
group_315	hypothetical protein	cold shock domain-containing protein [Enterobacteriaceae]	33	0
group_661	hypothetical protein	hypothetical	33	2
group_54	hypothetical protein	IS1 transposase [Klebsiella pneumoniae]	33	3
group_1158	hypothetical protein	helix-turn-helix domain-containing protein	32	0
group_1159	hypothetical protein	IS3 family transposase	32	0
group_1160	hypothetical protein	transposase	32	0
group_1161	ISNCY family transposase ISBcen27		32	0
group_1155	hypothetical protein	cytosine permease	32	1
hutU	Imidazolonepropionase (histidine degradation)		32	1
group_1162	hypothetical protein	hypothetical	32	1
group_1163	hypothetical protein	DUF2254 domain-containing protein [Enterobacteriaceae]	32	1
group_1166	hypothetical protein	As(III)-sensing metalloregulatory transcriptional repressor ArsR	32	1
arsD	Arsenical resistance operon trans-acting repressor ArsD		32	1
arsA	Arsenical pump-driving ATPase		32	1
arsC	Arsenate reductase		32	1
hutU	Urocanate hydratase (histidine degradation)		32	1
group_674	hypothetical protein	N-formylglutamate deformylase [Klebsiella pneumoniae]	32	1
group_675	ISNCY family transposase ISLad2		32	1
group_676	Glycine betaine transporter		32	1
glnQ	Glutamine transport ATP-binding protein GlnQ		32	1
yeC5_1	L-cystine transport system permease protein YecS		32	1
yeC5_2	L-cystine transport system permease protein YecS		32	1
glnH	Glutamine-binding periplasmic protein		32	1
gcvA	Glycine cleavage system transcriptional activator		32	1
group_942	Creatinase		32	1
group_453	hypothetical protein	hypothetical	32	2
fecA	Fe(3) dicitrate transport protein FecA		32	2
group_456	hypothetical protein	ISEc8 transposase [Klebsiella pneumoniae]	32	2
ytfF	Inner membrane protein YtfF		32	2
arsB	Arsenical pump membrane protein		32	2
fecI	putative RNA polymerase sigma factor FecI		32	2
fecR	Protein FecR		32	2
fecB	Fe(3) dicitrate-binding periplasmic protein		32	2
fecC	Fe(3) dicitrate transport system permease protein FecC		32	2
fecD	Fe(3) dicitrate transport system permease protein FecD		32	2
fecE	Fe(3) dicitrate transport ATP-binding protein FecE		32	2
group_949	hypothetical protein	hypothetical	32	2

879
880

881 **Supplementary Table 7.** The geographical and ecological distribution of the 517 plasmids
882 according to Group. The closely related Thai plasmids pMR0617aac, GCF_002752955.1
883 and 480738_p1 (from faecal flora from hospitalised patients) and OH-DART_30092-KN2
884 (from pork meat) were assigned as Group 1 based on the tree of 139 plasmids and the
885 AbST data, rather than Group 3 as indicated by the tree of 517 plasmids (see text).
886

		Group 1	Group 2	Group 3
Source	Animal	111 (64.9 %)	76 (40.4 %)	8 (5 %)
	Environment	4 (2.3 %)	8 (4.3 %)	4 (2.5 %)
	Foodstuff	33 (19.3 %)	17 (9.0 %)	23 (14.6 %)
	Human	16 (9.4 %)	66 (35 %)	104 (65.8 %)
	Other / Unknown	7 (4.1 %)	21 (11.2 %)	19 (12.0 %)
Continent	Africa	4 (2.3 %)	3 (1.6 %)	0
	Americas	2 (1.2 %)	8 (4.3 %)	6 (3.8 %)
	Asia	45 (26.3 %)	81 (43.1 %)	140 (88.6 %)
	Australasia	3 (1.8 %)	0	0
	Europe	113 (66.1 %)	96 (51.1 %)	11 (7.0 %)
	Unknown	4 (2.3 %)	0	1 (0.6 %)
	Total	171	188	158

887

888 **Supplementary Methods**

889 **OH-DART sampling:** All sampling was carried out in a defined semi-urban region, Bang
890 Len, in Nakhon Pathom province, central Thailand. Over 7,000 samples from hospital
891 patients, community carriage, agriculture, farms, food (markets), soil and water were taken
892 from October 2019 to March 2021. Samples were initially screened using Chromagar 3GC-R
893 or Chromagar CPE, and selected colonies were re-streaked on Brilliance Selective Medium
894 (ThermoFisher Scientific) with either cefotaxime 2 µg/ml or ertapenem 0.5 µg/ml. A total of
895 607 Kp isolates were recovered from selective media (either with third generation
896 cephalosporin or carbapenem) and selected for Illumina sequencing. 591 high quality Kp
897 genomes were generated. It was not possible to sample from pig farms due to an outbreak
898 of African Swine Fever in the region.

899

900 **Sequencing of isolates from Thailand:** A single colony of each isolate was picked from a
901 fresh SCAI plate containing ampicillin (10 µg/ml) into LB broth (Miller) with ampicillin (10
902 µg/ml) and incubated at 37°C overnight with shaking. For short read sequencing, DNA was
903 extracted using a Monarch genomic DNA purification kit (New England Biolabs) and
904 quantified with the Qubit 4.0 system (Thermo Fisher) or with an in-house method at
905 MicrobesNG (<https://microbesng.com/>). Isolates were sequenced using Illumina sequencers
906 (HiSeq/NovaSeq) using a 250-bp paired-end protocol. Short-reads were trimmed using
907 Trimmomatic v0.30¹ and the trimmed reads were used to generate *de novo* assemblies
908 using SPAdes v3.7². Long read sequences were generated from DNA extracted with an in-
909 house method at MicrobesNG, using a GridION (Oxford Nanopore Technologies, Oxford,
910 UK).

911

912 **Bioinformatic analysis of plasmids:** Mash distances and trees were generated using
913 mashtree v1.2.0³. To generate a SNP-based plasmid tree, we first used Snippy v4.6.0
914 (<https://github.com/tseemann/snippy>) using with the assembled plasmid files as input, and
915 the largest closed *iuc3* plasmid in the data (OH-DART_30005-KC1_2) as reference.
916 Phylogenetic analysis was carried out using FastTree v.2.1.11 on the whole genome SNP
917 alignment file^{4,5}. Roary was used to identify the core and accessory genes of the 139
918 plasmids⁶. The plasmids were analysed using Kleborate v2.3.2, ABRicate v.1.0.1 with the
919 resfinder (version 2023-Oct-31) and plasmidfinder (version 2021-Mar-27) databases and
920 pMLST (<https://bitbucket.org/genomicepidemiology/pmlst/src/master/>). Mob-typer (from
921 MOB-suite v3.1.5) was used to predict plasmid mobility⁷. The trees were combined with
922 metadata and output from Kleborate, ABRicate and pMLST and visualised using Microreact
923 v233⁸. Closed plasmids from the entire SpARK and OH-DART collections were analysed as
924 implemented in MGE-cluster using default parameters⁹.

925

926 **Simplified AbST scheme**

927 The aerobactin locus has five genes, each of which can occur as one of several alleles.
928 Some of the combinations of alleles have been designated AbSTs, and variants of these are
929 referred to as AbSTX-1LV, etc¹⁰.

930 We used Kleborate to call the alleles and assign AbSTs to the 139 *iuc3*-positive plasmid
931 assemblies (Supplementary Table 2), revealing 30 unique AbST types. An alignment and
932 SNP-based phylogenetic tree of the locus extracted from the assemblies (Supplementary
933 Figure 11) revealed that they cluster into four groups, which we have named for the
934 predominant AbST within the group. We refer to these as simplified AbSTs.

935

936 **Supplementary Note**

937 **AbST25 plasmids in group 3**

938 In the SNP tree of 517 *iuc3* isolates (Figure 3A), 4 plasmids with simplified AbST25 appear
939 on a branch within Group 3, whereby all other plasmids in this group correspond to simplified
940 AbST23. Two of these plasmids (pMR0617aac and OH-DART_30092-KN2) are also present
941 in the tree of 139 plasmids, where they are positioned within Group 2 (Supplementary Figure
942 10c). The most likely explanation therefore is that the position of these four plasmids on the
943 tree in Figure 3 is artefactual. These plasmids are closely related and positioned on the end
944 of a relatively long branch. Three of them were harboured by clinical ST45 isolates from
945 Thailand (pMR0617aac;¹¹ GCF_002752955.1 and 480738_p1), with the third from an ST520
946 isolate from pork meat from the OH-DART study (OH-DART_30092-KN2). The similarity of
947 these three plasmids thus acts as further evidence for plasmid movement between
948 foodborne and clinical isolates in Thailand. The SWHEFF_62 plasmid, which clusters
949 atypically by MGE-cluster, corresponds to AbST23 but does not cluster with group 3. This is
950 consistent with the transfer of the *iuc3* locus into a distinct plasmid group.

951

952 1 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
953 data. *Bioinformatics* 2014; **30**: 2114–20.

954 2 Bankevich A, Nurk S, Antipov D, *et al.* SPAdes: a new genome assembly algorithm and
955 its applications to single-cell sequencing. *J Comput Biol* 2012; **19**: 455–77.

956 3 Katz LS, Griswold T, Morrison SS, *et al.* MashTree: a rapid comparison of whole genome
957 sequence files. *J Open Source Softw* 2019; **4**. DOI:10.21105/joss.01762.

958 4 Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with
959 profiles instead of a distance matrix. *Mol Biol Evol* 2009; **26**: 1641–50.

960 5 Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for
961 large alignments. *PLoS One* 2010; **5**: e9490.

962 6 Page AJ, Cummins CA, Hunt M, *et al.* Roary: rapid large-scale prokaryote pan genome
963 analysis. *Bioinformatics* 2015; **31**: 3691–3.

964 7 Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and
965 typing of plasmids from draft assemblies. *Microb Genom* 2018; **4**.
966 DOI:10.1099/mgen.0.000206.

967 8 Argimón S, Abudahab K, Goater RJE, *et al.* Microreact: visualizing and sharing data for

968 genomic epidemiology and phylogeography. *Microb Genom* 2016; **2**: e000093.

969 9 Arredondo-Alonso S, Gladstone RA, Pöntinen AK, *et al.* Mge-cluster: a reference-free
970 approach for typing bacterial plasmids. *NAR Genom Bioinform* 2023; **5**: lqad066.

971 10 Lam MMC, Wyres KL, Judd LM, *et al.* Tracking key virulence loci encoding aerobactin
972 and salmochelin siderophore synthesis in *Klebsiella pneumoniae*. *Genome Med* 2018;
973 **10**: 77.

974 11 Srijan A, Margulieux KR, Ruekit S, *et al.* Genomic Characterization of Nonclonal mcr-1-
975 Positive Multidrug-Resistant *Klebsiella pneumoniae* from Clinical Samples in Thailand.
976 *Microb Drug Resist* 2018; **24**: 403–10.