

1 **A limited concentration range of diaphorin, a polyketide
2 produced by a bacterial symbiont of the Asian citrus psyllid,
3 promotes the *in vitro* gene expression with bacterial ribosomes**

4

5 **(Running title: Diaphorin promotes bacterial gene expression *in vitro*)**

6

7 (Observations: 1,200 words with a maximum of 2 figures and 25 references)

8

9 Rena Takasu¹, Takashi Izu¹, and Atsushi Nakabachi^{1,2*}

10

11 ¹Department of Applied Chemistry and Life Science, Toyohashi University of
12 Technology, Toyohashi, Aichi, Japan

13 ²Research Center for Agrotechnology and Biotechnology, Toyohashi University of
14 Technology, Toyohashi, Aichi, Japan

15

16

17 *Corresponding author

18 E-mail: nakabachi.atsushi.ro@tut.jp (AN)

19 ORCID: 0000-0003-0281-1723

20 **Abstract (<250 words)**

21 Diaphorin is a polyketide produced by “*Candidatus Proftella armatura*”
22 (*Gammaproteobacteria: Burkholderiales*), an obligate symbiont of a devastating
23 agricultural pest, the Asian citrus psyllid *Diaphorina citri* (Hemiptera: Psyllidae).
24 Physiological concentrations of diaphorin, which *D. citri* contains at levels as high as 2–
25 20 mM, are inhibitory to various eukaryotes and *Bacillus subtilis* (*Firmicutes: Bacilli*)
26 but promote the growth and metabolic activity of *Escherichia coli*
27 (*Gammaproteobacteria: Enterobacteriales*). Our previous study demonstrated that
28 five-millimolar diaphorin, which exhibits significant inhibitory and promoting effects
29 on cultured *B. subtilis* and *E. coli*, respectively, inhibits *in vitro* gene expression
30 utilizing purified *B. subtilis* and *E. coli* ribosomes. This suggested that the adverse
31 effects of diaphorin on *B. subtilis* are partly due to its influence on gene expression.
32 However, the result appeared inconsistent with the positive effects on *E. coli*. Moreover,
33 the diaphorin concentration in bacterial cells, where genes are expressed *in vivo*, may be
34 lower than in culture media. Therefore, the present study analyzed the effects of 50 and
35 500 µM of diaphorin on bacterial gene expression using the same analytical method.
36 The result revealed that this concentration range of diaphorin, in contrast to
37 five-millimolar diaphorin, promotes the *in vitro* translation with the *B. subtilis* and *E.*
38 *coli* ribosomes, suggesting that the positive effects of diaphorin on *E. coli* are due to its
39 direct effects on translation. This study demonstrated for the first time that a
40 pederin-type compound promotes gene expression, establishing a basis for utilizing its
41 potential in pest management and industrial applications.

42

43 **Importance (<150 words)**

44 This study revealed that a limited concentration range of diaphorin, a secondary
45 metabolite produced by a bacterial symbiont of an agricultural pest, promotes cell-free
46 gene expression utilizing substrates and proteins purified from bacteria. The unique

47 property of diaphorin, which is inhibitory to various eukaryotes and *Bacillus subtilis* but
48 promotes the growth and metabolic activity of *Escherichia coli*, may affect the
49 microbial flora of the pest insect, potentially influencing the transmission of devastating
50 plant pathogens. Moreover, the activity may be exploited to improve the efficacy of
51 industrial production by *E. coli*, which is often used to produce various important
52 materials, including pharmaceuticals, enzymes, amino acids, and biofuels. This study
53 elucidated a part of the mechanism by which the unique activity of diaphorin is
54 expressed, constructing a foundation for applying the unique property to pest
55 management and industrial use.

56 Microbes utilize secondary metabolites to mediate interactions with neighboring
57 organisms. Such molecules exhibit diverse biological activities, some of which facilitate
58 symbiotic relationships between the microbes and their animal hosts (1, 2).

59 Diaphorin is a polyketide produced by “*Candidatus Profftella armatura*”
60 (*Gammaproteobacteria: Burkholderiales*), an intracellular symbiont harbored alongside
61 the primary symbiont “*Candidatus Carsonella ruddii*” (*Gammaproteobacteria:*
62 *Oceanospirillales*) (3, 4) in the bacteriome organ (5–7) of the Asian citrus psyllid
63 *Diaphorina citri* (Hemiptera: Psyllidae) (8–11). *D. citri* is a serious agricultural pest that
64 transmits “*Candidatus Liberibacter*” spp. (*Alphaproteobacteria: Rhizobiales*), the
65 pathogens of the most destructive and incurable citrus disease, huanglongbing (12, 13).
66 Conserved presence of *Profftella* and its diaphorin-synthesizing gene clusters in
67 *Diaphorina* spp. underline the physiological and ecological significance of diaphorin for
68 the host psyllids (14, 15). Diaphorin, which *D. citri* contains at a concentration as high
69 as 2–20 mM in the body (16), exerts inhibitory effects on various eukaryotes (8, 17, 18)
70 and *Bacillus subtilis* (*Firmicutes: Bacilli*) (19) but promotes the growth and metabolic
71 activity of *Escherichia coli* (*Gammaproteobacteria: Enterobacteriales*) (19), implying
72 that this secondary metabolite serves as a defensive agent of the holobiont
73 (host-symbiont assemblage) against eukaryotes and some bacterial lineages but is
74 beneficial for other bacteria (8, 17, 19). Besides “*Ca. Liberibacter*” spp. and the
75 bacteriome-associated mutualists, *D. citri* may harbor various secondary symbionts of a
76 facultative nature, including *Wolbachia* (*Alphaproteobacteria: Rickettsiales*) and
77 *Arsenophonus* (*Gammaproteobacteria: Enterobacteriales*) (14). Recent studies are
78 revealing that interactions among these bacterial populations are important for psyllid
79 biology and host plant pathology (10, 14, 20–22). In this context, the unique property of
80 diaphorin may affect the microbiota of *D. citri*, potentially influencing the transmission
81 of “*Ca. Liberibacter*” spp. Moreover, this unique activity of diaphorin may be exploited
82 to improve the efficacy of industrial production by *E. coli*, which is frequently used to

83 produce various important materials, including pharmaceuticals, enzymes, amino acids,
84 and biofuels (19).

85 Diaphorin belongs to the family of pederin-type compounds (8, 19), which
86 exhibit toxicity and antitumor activity by suppressing eukaryotic protein synthesis
87 through binding to the E-site of the 60S subunit of eukaryotic ribosomes (23). However,
88 little is known about the effects of these compounds on bacterial gene expression (24).
89 To explore the possibility that diaphorin exerts its distinct activity on bacteria by
90 directly targeting bacterial gene expression, our previous study analyzed the effects of
91 diaphorin on the *in vitro* gene expression using ribosomes isolated from *B. subtilis* and
92 *E. coli*, quantifying production of the super folder green fluorescent protein (sfGFP)
93 (25). Five-millimolar diaphorin was used for the analysis because this concentration
94 exhibited significant inhibitory and promoting effects on *B. subtilis* and *E. coli*,
95 respectively, in culture experiments (19). The result showed that five-millimolar
96 diaphorin inhibits gene expression involving ribosomes from both *B. subtilis* and *E. coli*,
97 suggesting that the adverse effects of diaphorin on *B. subtilis* are attributed to, at least
98 partly, its inhibitory effects on gene expression (25). On the other hand, the result did
99 not explain the promoting effects of diaphorin on *E. coli*. Moreover, the concentration
100 of diaphorin in the intracellular environment, where the inherent gene expression
101 machinery works, may be lower than in the culture medium. Therefore, in the present
102 study, we analyzed the effect of 50 and 500 μ M of diaphorin on bacterial gene
103 expression using the same assay system.

104 Cell-free translation of sfGFP with diaphorin at final concentrations of 50 and
105 500 μ M demonstrated that this concentration range of diaphorin promotes the *in vitro*
106 gene expression involving ribosomes of both *E. coli* and *B. subtilis* (Fig. 1). Namely,
107 the relative activity of gene expression using the *E. coli* ribosome treated with 50 μ M
108 diaphorin was 1.079 ± 0.012 (mean \pm standard error, $n = 48$), which was moderately
109 (7.9%) but significantly ($p < 0.001$, Steel test) higher than that of the control ($1.000 \pm$

110 0.008, $n = 96$, [Fig. 1A](#)). Furthermore, the relative gene expression activity using the *E.*
111 *coli* ribosome treated with 500 μM diaphorin was 1.089 ± 0.017 ($n = 48$), which was
112 again moderately (8.9%) but significantly ($p < 0.001$, Steel test) higher than that of the
113 control ([Fig. 1A](#)). These results imply that the positive effects of diaphorin on the
114 growth and metabolic activity of *E. coli* (19) can be attributed to its direct effects on the
115 core gene expression machinery. When cultured in media containing five-millimolar
116 diaphorin (19), *E. coli* may be able to keep the intracellular diaphorin concentration
117 within this range, positively affecting their vital activities. Regarding *B. subtilis*,
118 although the relative gene expression activity using the *B. subtilis* ribosome along with
119 50 μM diaphorin (0.992 ± 0.023 , $n = 48$) was not significantly different ($p > 0.05$, Steel
120 test, [Fig. 1B](#)) from the control (1.000 ± 0.011 , $n = 96$), the gene expression using the *B.*
121 *subtilis* ribosome with 500 μM diaphorin (1.084 ± 0.034 , $n = 48$) was moderately
122 (8.4%) but significantly ($p < 0.001$, Steel test) higher than the control ([Fig. 1B](#)). This
123 result appears inconsistent with previously observed adverse effects of the same
124 concentration of diaphorin on the cultured *B. subtilis* (19). However, transmission
125 electron microscopy showed that diaphorin also damages the *B. subtilis* cell envelope
126 (19), which may negate the positive effects of the appropriate concentration of
127 diaphorin on the gene expression machinery of *B. subtilis*.

128 This study elucidated a part of the mechanism by which the unique activity of
129 diaphorin is expressed, constructing a foundation for applying the unique property of
130 diaphorin to pest management and industrial use. Moreover, this study demonstrated for
131 the first time that a pederin-type compound promotes the gene expression of organisms.
132

133 **Materials and methods**

134 **Preparation of diaphorin**

135 Diaphorin was extracted and purified as described previously (8, 17, 19, 25). Adult *D.*
136 *citri* were ground in methanol, and the extracts were purified using an LC10

137 high-performance liquid chromatography system (Shimadzu) with an Inertsil ODS-3
138 C18 reverse-phase preparative column (GL Science).

139

140 **Preparation of the *Bacillus subtilis* ribosome**

141 The *B. subtilis* ribosomes were purified as described previously (25). *B. subtilis* cells
142 were passed through a French press cell (Ohtake) at approximately 110 MPa (16,000
143 psi), and ribosomes were captured using HiTrap Butyl FF columns (Cytiva). The eluent
144 was ultracentrifuged (100,000 $\times g$, 4°C, 16 h) using Optima L-100 XP Ultracentrifuge
145 (Beckman Coulter) to sediment ribosomes.

146

147 **Quantification of cell-free synthesis of sfGFP**

148 The *in vitro* gene expression activities involving ribosomes of *E. coli* and *B. subtilis*
149 were evaluated utilizing a PUREfrex 2.0 kit (GeneFrontier) as previously described (25).
150 Reaction solutions of translation were separated by SDS-polyacrylamide gel
151 electrophoresis. After renaturation, the fluorescence of sfGFP was elicited at 488 nm,
152 passed through a 520 nm band pass filter, and recorded using a Typhoon 9400 image
153 analyzer (GE Healthcare). The fluorescence intensity of sfGFP was quantified using the
154 ImageQuant TL software (version 8.1, GE Healthcare).

155

156 **Statistical analysis**

157 All statistical analyses were conducted using R version 4.1.3. Multiple comparisons
158 were conducted using the Kruskal-Wallis test followed by the Steel test.

159

160 **Acknowledgments**

161 This work was supported by the Japan Society for the Promotion of Science
162 (<https://www.jsps.go.jp>) KAKENHI (grant number 20H02998) to A.N. The funder had
163 no role in study design, data collection and analysis, decision to publish, or manuscript
164 preparation.

165 **References**

- 166 1. Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of
167 heritable bacterial symbionts. *Annu Rev Genet* 42:165–190.
- 168 2. Salem H, Kaltenpoth M. 2022. Beetle-Bacterial Symbioses: Endless Forms Most
169 Functional. *Annu Rev Entomol* 67:201–219.
- 170 3. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori
171 M. 2006. The 160-kilobase genome of the bacterial endosymbiont *Carsonella*.
172 *Science* 314:267.
- 173 4. Nakabachi A, Moran NA. 2022. Extreme polyploidy of *Carsonella*, an
174 organelle-like bacterium with a drastically reduced genome. *Microbiol Spectr*
175 10:e0035022.
- 176 5. Nakabachi A, Koshikawa S, Miura T, Miyagishima S. 2010. Genome size of
177 *Pachypsylla venusta* (Hemiptera: Psyllidae) and the ploidy of its bacteriocyte, the
178 symbiotic host cell that harbors intracellular mutualistic bacteria with the
179 smallest cellular genome. *Bull Entomol Res* 100:27–33.
- 180 6. Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, Moran NA.
181 2014. Parallel histories of horizontal gene transfer facilitated extreme reduction
182 of endosymbiont genomes in sap-feeding insects. *Mol Biol Evol* 31:857–871.
- 183 7. Nakabachi A, Suzuki T. 2023. Ultrastructure of the bacteriome and bacterial
184 symbionts in the Asian citrus psyllid, *Diaphorina citri*. *Microbiol Spectr* 0.
- 185 8. Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A, Gurgui M, Oldham NJ,
186 Van Echten-Deckert G, Okamura K, Yamamoto K, Inoue H, Ohkuma M,
187 Hongoh Y, Miyagishima S, Hattori M, Piel J, Fukatsu T. 2013. Defensive
188 bacteriome symbiont with a drastically reduced genome. *Curr Biol* 23:1478–
189 1484.
- 190 9. Dan H, Ikeda N, Fujikami M, Nakabachi A. 2017. Behavior of bacteriome
191 symbionts during transovarial transmission and development of the Asian citrus
192 psyllid. *PLoS One* 12:e0189779.
- 193 10. Nakabachi A, Nikoh N, Oshima K, Inoue H, Ohkuma M, Hongoh Y,
194 Miyagishima S, Hattori M, Fukatsu T. 2013. Horizontal gene acquisition of
195 *Liberibacter* plant pathogens from a bacteriome-confined endosymbiont of their
196 psyllid vector. *PLoS One* 8:e82612.

197 11. Nakabachi A. 2015. Horizontal gene transfers in insects. *Curr Opin Insect Sci*
198 7:24–29.

199 12. Killiny N. 2022. Made for each other: Vector-pathogen interfaces in the
200 Huanglongbing pathosystem. *Phytopathology* 112:26–43.

201 13. Hosseinzadeh S, Heck M. 2023. Variations on a theme: factors regulating
202 interaction between *Diaphorina citri* and “*Candidatus Liberibacter asiaticus*”
203 vector and pathogen of citrus huanglongbing. *Curr Opin Insect Sci* 56:101025.

204 14. Nakabachi A, Malenovský I, Gjonov I, Hirose Y. 2020. 16S rRNA sequencing
205 detected *Proftella*, *Liberibacter*, *Wolbachia*, and *Diplorickettsia* from relatives
206 of the Asian citrus psyllid. *Microb Ecol* 80:410–422.

207 15. Nakabachi A, Piel J, Malenovský I, Hirose Y. 2020. Comparative genomics
208 underlines multiple roles of *Proftella*, an obligate symbiont of psyllids:
209 Providing toxins, vitamins, and carotenoids. *Genome Biol Evol* 12:1975–1987.

210 16. Nakabachi A, Fujikami M. 2019. Concentration and distribution of diaphorin,
211 and expression of diaphorin synthesis genes during Asian citrus psyllid
212 development. *J Insect Physiol* 118:103931.

213 17. Yamada T, Hamada M, Floreancig P, Nakabachi A. 2019. Diaphorin, a
214 polyketide synthesized by an intracellular symbiont of the Asian citrus psyllid, is
215 potentially harmful for biological control agents. *PLoS One* 14:e0216319.

216 18. Nakabachi A, Okamura K. 2019. Diaphorin, a polyketide produced by a bacterial
217 symbiont of the Asian citrus psyllid, kills various human cancer cells. *PLoS One*
218 14.

219 19. Tanabe N, Takasu R, Hirose Y, Kamei Y, Kondo M, Nakabachi A. 2022.
220 Diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus
221 psyllid, inhibits the growth and cell division of *Bacillus subtilis* but promotes the
222 growth and metabolic activity of *Escherichia coli*. *Microbiol Spectr*
223 10:e0175722.

224 20. Nakabachi A, Inoue H, Hirose Y. 2022. Microbiome analyses of 12 psyllid
225 species of the family Psyllidae identified various bacteria including *Fukatsuia*
226 and *Serratia symbiotica*, known as secondary symbionts of aphids. *BMC*
227 *Microbiol* 22:15.

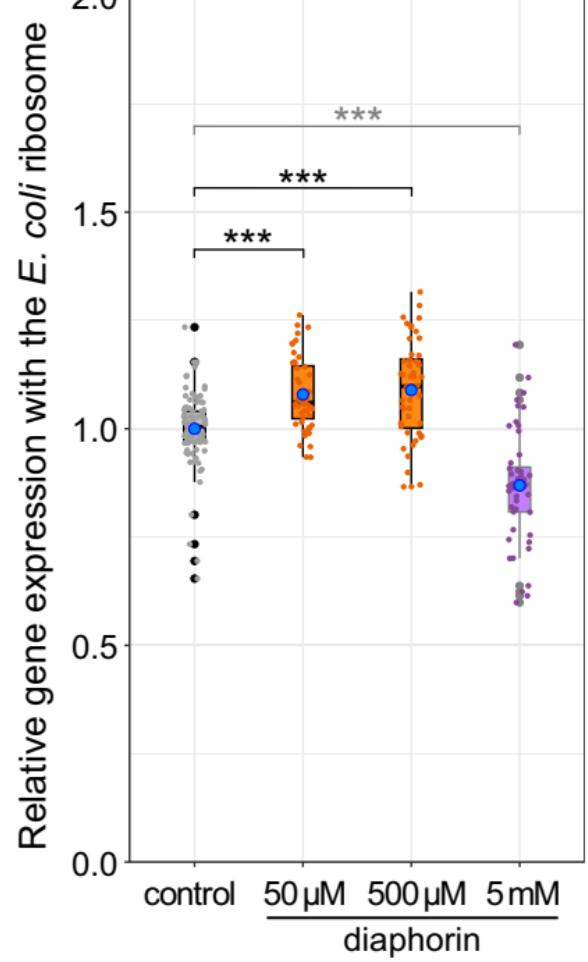
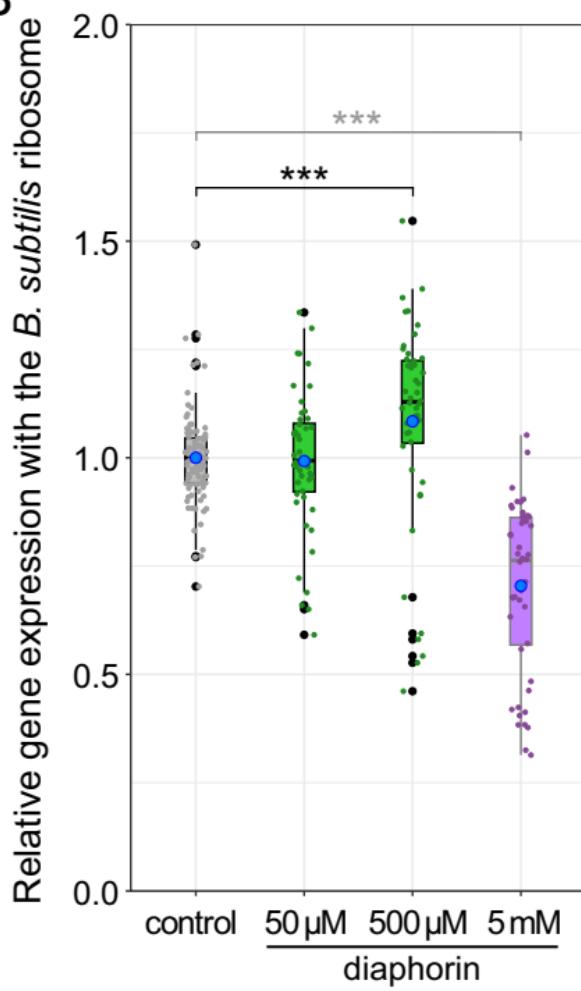
228 21. Nakabachi A, Inoue H, Hirose Y. 2022. High-resolution microbiome analyses of
229 nine psyllid species of the family Triozidae identified previously unrecognized

230 but major bacterial populations, including *Liberibacter* and *Wolbachia* of
231 supergroup O. *Microbes Environ* 37:ME22078.

232 22. Maruyama J, Inoue H, Hirose Y, Nakabachi A. 2023. 16S rRNA gene
233 sequencing of six psyllid species of the family Carsidaridae identified various
234 bacteria including *Symbiopectobacterium*. *Microbes Environ* 38:ME23045.

235 23. Wan S, Wu F, Rech JC, Green ME, Balachandran R, Horne WS, Day BW,
236 Floreancig PE. 2011. Total synthesis and biological evaluation of pederin,
237 psymberin, and highly potent analogs. *J Am Chem Soc* 133:16668–16679.

238 24. Dmitriev SE, Vladimirov DO, Lashkevich KA. 2020. A quick guide to
239 small-molecule inhibitors of eukaryotic protein synthesis. *Biochem* 85:1389–
240 1421.



241 25. Takasu R, Yasuda Y, Izu T, Nakabachi A. 2023. Diaphorin, a polyketide
242 produced by a bacterial endosymbiont of the Asian citrus psyllid, adversely
243 affects the *in vitro* gene expression with ribosomes from *Escherichia coli* and
244 *Bacillus subtilis*. *PLoS One* 18:e0294360.

245
246

247 **Figure legends**

248 **Figure 1. Cell-free gene expression with bacterial ribosomes is promoted by a**
249 **limited concentration range of diaphorin.** (A) Relative gene expression with the *E.*
250 *coli* ribosome. The signal intensity of synthesized sfGFP in each sample is normalized
251 to the mean signal intensity of control samples. Jitter plots of all data points (control, n
252 = 96; others, n = 48) and box plots (gray, control; orange, 50 μ m and 500 μ m diaphorin)
253 showing their distributions (median, quartiles, minimum, and maximum) are indicated.
254 Blue dots represent the mean. Asterisks indicate a statistically significant difference
255 (***, p < 0.001, Steel test). For reference, previously published data of 5 mM-diaphorin
256 treatment (19) are shown in purple dots (n = 48) with a box plot. (B) Relative gene
257 expression with the *B. subtilis* ribosome. The signal intensity of synthesized sfGFP in
258 each sample is normalized to the mean signal intensity of control samples. Jitter plots of
259 all data points (control, n = 96; others, n = 48) and box plots (gray, control; green, 50
260 μ m and 500 μ m diaphorin) showing their distributions (median, quartiles, minimum,
261 and maximum) are indicated. Blue dots represent the mean. Asterisks indicate a
262 statistically significant difference (***, p < 0.001, Steel test). Previously published data
263 of 5 mM-diaphorin treatment (19) are shown in purple dots (n = 48) and a box plot.

264

A**B**