

Epstein–Barr Virus BALF0/1 Subverts the Caveolin and ERAD Pathways to Target B-cell Receptor Complexes for Degradation

Stephanie Pei Tung Yiu¹⁻⁴, Michael Weekes⁵ and Benjamin E. Gewurz^{1-4*}

¹ Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston MA 02115, USA

² Harvard Graduate Program in Virology, Boston, MA 02115

³ Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States of America

⁴ Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA

⁵ Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK

*Benjamin E. Gewurz, Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston MA 02115, USA.

Email: bgewurz@bwh.harvard.edu

Keywords: gamma-herpesvirus, ER-associated degradation (ERAD); caveolae; humoral immunity; antiviral immunity; lytic replication; host-virus response

ABSTRACT

Epstein–Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane B-cell receptor (BCR) complexes, comprised of immunoglobulin and the CD79A and CD79B signaling chains. Here, we used proteomic and biochemical approaches to identify that the EBV early lytic protein BALF0/1 is responsible for EBV lytic cycle BCR degradation. Mechanistically, an immunoglobulin heavy chain cytoplasmic tail KVK motif was required for ubiquitin-mediated BCR degradation, while CD79A and CD79B were dispensable. BALF0/1 subverted caveolin-mediated endocytosis to internalize plasma membrane BCR complexes and to deliver them to the endoplasmic reticulum. BALF0/1 stimulated immunoglobulin heavy chain cytoplasmic tail ubiquitination, which together with the ATPase valosin-containing protein/p97 drove ER-associated degradation of BCR complexes by cytoplasmic proteasomes. BALF0/1 knockout reduced the viral load of secreted EBV particles from B-cells that expressed a monoclonal antibody against EBV glycoprotein 350 and increased viral particle immunoglobulin incorporation. Consistent with downmodulation of plasma membrane BCR, BALF0/1 overexpression reduced viability of a diffuse large B-cell lymphoma cell line dependent upon BCR signaling. Collectively, our results suggest that EBV BALF0/1 downmodulates immunoglobulin upon lytic reactivation to block BCR signaling and support virion release.

SIGNIFICANCE

EBV uses a biphasic lifecycle, in which it switches between a latent state that facilitates immune evasion and a lytic state, where virion are secreted. However, when EBV infects a B-cell that makes antibody against a virion protein, EBV must have a strategy to escape becoming trapped, since maturing virion and antibody each traffic through the secretory pathway. We identified that an EBV-encoded protein expressed, BALF0/1, associates with and targets immunoglobulin complexes for degradation. Intriguingly, BALF0/1 subverts the caveolin-1 and ERAD pathways to route antibody from the plasma membrane to cytoplasmic proteasomes for degradation. We present evidence that this enhances EBV secretion from cells that produce antibody against a viral glycoprotein, which could otherwise trap virus.

1 INTRODUCTION

2 Epstein–Barr virus (EBV) establishes lifelong infection in >95% of adults worldwide, is the
3 major viral trigger for multiple sclerosis and is associated with ~2% of human cancers (1, 2). These
4 include endemic Burkitt lymphoma, Hodgkin lymphoma, post-transplant and HIV-associated
5 lymphomas, T and NK-cell lymphomas, nasopharyngeal and gastric carcinomas (3, 4). EBV uses
6 a biphasic lifecycle to colonize the B-cell compartment, to spread between B and epithelial cells,
7 and to transmit between hosts (5-7). The EBV lytic cycle is triggered by the immediate early genes
8 BZLF1 and BRLF1, which induce expression of 35 early genes important for viral DNA replication
9 and then 40 late genes that include structural proteins important for production of infectious virion.
10 Much remains to be learned about how EBV subverts host innate and adaptive immune barriers
11 in order to establish latency, reactivate within the heart of the adaptive immune system.

12 EBV has evolved multiple mechanisms to interfere with antigen presentation pathways,
13 thereby suppressing cell-mediated immune responses (8-15). However, elevated antibody titers
14 against viral antigens are found in numerous EBV-associated disease states, including with
15 infectious mononucleosis, endemic Burkitt lymphoma, nasopharyngeal carcinoma, classical
16 Hodgkin Lymphoma, and multiple sclerosis (16-18). While Epstein-Barr virion evasion of
17 complement activation has been described (PMID 2844953), viral strategies to protect virion from
18 immunoglobulin, including that produced within the infected cell where viral particles mature, are
19 less well-studied.

20 To gain insights into how EBV remodels host B-cells in support of lytic replication, we used
21 tandem-mass-tag-based MS3 mass spectrometry to perform quantitative temporal proteomic
22 analysis in EBV+ Burkitt lymphoma B cells, prior to and at four time points following lytic
23 reactivation (19). Unexpectedly, this analysis revealed that B-cell receptor (BCR) complexes,
24 comprised of immunoglobulin (Ig) heavy chain, light chain and non-covalently associated
25 CD79A/B (also known as Igα/β) signaling chains, were selectively and highly depleted upon EBV
26 lytic reactivation. In IgM expressing cells, the secretory IgM joining-chain (J-chain) was also
27 depleted, whereas only a small number of host cell proteins exhibited significant downmodulation,
28 suggesting selective post-translational targeting (19). Whereas activated BCR complexes are
29 typically delivered to lysosomes to support presentation of peptide antigens to CD4+ T-cells by
30 major histocompatibility complex (MHC) class II molecules (20), EBV instead routes BCR to
31 cytosolic proteasomes by an unidentified pathway (19). Which EBV gene targets BCR complexes
32 for degradation, and how it targets BCR complexes embedded within B-cell membranes to
33 cytosolic proteasomes has remained unknown. However, acyclovir treatment did not prevent EBV

34 lytic cycle BCR depletion, indicating that viral late lytic genes are not required (19). Here, we used
35 a recently constructed EBV lytic cycle protein-protein interaction map (21) to generate the
36 hypothesis that the EBV early lytic cycle encoded BALF0/1 targets BCR complexes for
37 proteasomal degradation. Focused over-expression and CRISPR studies supported and
38 extended the hypothesis, demonstrating that BALF0/1 subverts caveolar endocytosis and ER-
39 associated degradation pathways to target BCR for degradation.

40

41

42 **RESULTS**

43 **BALF0/1 targets the B-cell receptor for degradation during EBV lytic cycle**

44 To gain insights into how EBV targets the BCR for cytoplasmic proteasome degradation,
45 we interrogated a recently generated EBV protein-protein interaction network map, generated in
46 Burkitt lymphoma cells induced for EBV lytic replication (21). Our proteomic analysis identified
47 high-confidence interactions between the immunoglobulin (Ig) heavy chain and two EBV early
48 lytic proteins, BALF0/1 and BARF1 (Figure 1A). BALF0/1 associated with multiple proteasome
49 components, with multiple proteins involved in microtubule associated protein transport, and with
50 B-cell receptor-associated protein 31 (BCAP31), a chaperone that plays a role in the ER
51 associated degradation (ERAD) pathway (Figure 1A). Of note, two in-frame methionine codons
52 can be used to generate a 220 residue BALF0 or a 189 residue BALF1 protein (22). BALF0/1 is
53 predicted to exhibit structural homology with MCL1 (Figure S1A). Similarly, proteomic analysis
54 highlighted interaction between BARF1 and several ubiquitin-proteasome pathway proteins
55 (Figure 1A)(21). BARF1 exhibits homology with the colony stimulating factor receptor and also
56 has limited amino acid sequence similarity with CD80 (11, 23).

57 To test whether either BALF0/1 or BARF1 can independently deplete BCR components,
58 we conditionally expressed cDNA encoding either of these two EBV early genes in P3HR-1 Burkitt
59 lymphoma cells. Expression of BALF0/1, but not BARF1, depleted both CD79B and IgM heavy
60 chains, suggesting that BALF0/1 can trigger BCR depletion even in the absence of an EBV lytic
61 cycle (Figure 1B). Since we previously found that the EBV lytic cycle routes the BCR to cytosolic
62 proteasomes, we next measured BCR subunit abundances in BALF0/1+ P3HR-1 cells, in the
63 absence or presence of the proteasome inhibitor bortezomib (19). Bortezomib increased IgM
64 heavy chain abundance in BALF0/1 expressing cells (Figure 1C).

65 To build on these results, we next asked whether BALF0/1 was necessary for BCR loss
66 in B-cells triggered for lytic reactivation. For this analysis, we used Cas9+ P3HR-1 cells with a
67 conditional EBV lytic reactivation system, where the EBV immediate early BZLF1 and BRLF1
68 alleles are fused to a mutant estrogen receptor binding domain (24, 25). Addition of 4-
69 hydroxytamoxifen (4-HT) triggers nuclear translocation of the BZLF1 and BRLF1 chimeras,
70 termed ZHT and RHT, respectively, to drive EBV early gene expression. To establish CRISPR-
71 edited cells, single guide RNAs (sgRNAs) were separately expressed to target *BALF0/1* or instead
72 as a control to target the EBV early lytic gene *BXLF1*, which encodes the viral thymidine kinase
73 that is dispensable for EBV replication (26, 27). BALF0/1 or BXLF1 knockout (KO) did not perturb
74 expression of the endogenous immediate early BZLF1 or early BMRF1 genes upon 4-HT addition,

75 indicating fidelity of EBV genomes in CRISPR-edited P3HR-1 cells. Consistent with our over-
76 expression analysis, *BALF0/1*, but not *BXLF1* KO significantly increased IgM and CD79B
77 abundances in lytic P3HR-1 cells (Figure 1D-F and S1B). Furthermore, we validated that IgM
78 heavy chains co-immunoprecipitated with BALF0/1 from whole cell lysates of bortezomib-treated
79 P3HR-1 cells induced for lytic replication (Figure 1G). Collectively, our results suggest that
80 BALF0/1 associates with and destabilizes BCR complexes, beginning in the early phase of EBV
81 lytic replication.

82

83 **BALF0/1 utilizes the caveolae pathway to internalize plasma membrane BCR**

84 We next investigated how cytoplasmic BALF0/1 routes membrane embedded BCR
85 complexes, including the large pool of plasma membrane BCR, to cytoplasmic proteasomes. We
86 hypothesized that BALF0/1 must first trigger BCR endocytosis prior to its degradation, given that
87 we previously observed intracellular IgM heavy chain in bortezomib-treated cells triggered for lytic
88 replication (19). To further characterize this process, we performed confocal microscopy on 4-HT
89 and bortezomib treated P3HR-1 cells expressing control BXLF1 or BALF0/1 sgRNAs. Consistent
90 with our prior observations, internalized IgM puncta were evident in bortezomib-treated lytic
91 BXLF1 KO control cells, but remained largely localized at the plasma membrane in BALF0/1
92 edited cells induced for replication (Figure 2A-B). Moreover, BALF0/1 colocalized with internalized
93 IgM in most bortezomib-treated P3HR-1 cells and in with internalized IgM in rare cells in which
94 IgM was not depleted in the absence of bortezomib treatment (Figure 2C). As BALF0/1 is not
95 known to insert into the plasma membrane, this result suggests that it triggers BCR endocytosis.

96 Caveolar and clathrin mediated endocytosis are the two major pathways that internalize
97 plasma membrane receptors. Clathrin pathway cargo are predominantly recycled or routed to
98 lysosomes for degradation (28), whereas caveolar pathway cargo travel retrograde to the Golgi,
99 ER or to endosomes (29-33). Since our proteomic analysis also identified high confidence
100 BALF0/1 associations with proteins related to calmodulin and microtubule motor activity (Figure
101 1A), we next investigated whether either pathway is required for BALF0/1 downmodulation of
102 BCR complexes. P3HR-1 were treated with chlorpromazine or genistein, which inhibit the clathrin
103 or caveolae endocytosis pathways, respectively, together with 4-HT. Interestingly, genistein but
104 not chlorpromazine impaired plasma membrane IgM down-modulation and BCR degradation in a
105 dose-dependent manner upon EBV lytic reactivation (Figure 3A-C and S2A-B). However, since
106 genistein also reduced EBV lytic cycle protein expression at elevated doses (Figure S2B), we
107 further validated this result by expressing BALF0/1 cDNA in latent P3HR-1 cells, in the absence
108 or presence of genistein. Genistein rescued BCR expression upon BALF0/1 expression without

109 downmodulating BALF0/1 levels ([Figure 3B](#)). Moreover, CRISPR depletion of the key caveolae
110 structural protein caveolin-1 (CAV-1), which is required for caveolin-mediated internalization, also
111 impaired IgM degradation upon EBV lytic reactivation ([Figure 3D](#)). CAV-1 depletion also
112 increased plasma membrane IgM abundance in cells induced for lytic replication ([Figure 3D-E](#)
113 and [S2C](#)). In control cells induced for lytic replication, bortezomib resulted in the accumulation of
114 intracellular IgM that partially overlapped with the endoplasmic reticulum (ER) resident protein
115 calnexin. By contrast, IgM exhibited plasma membrane distribution and had little co-localization
116 with calnexin in CRISPR CAV-1 depleted cells treated with 4-HT and bortezomib ([Figure 3E-F](#)
117 and [S2D](#)). These results suggest that BALF0/1 triggers plasma membrane BCR internalization
118 via the caveolin pathway.

119 Consistent with a major Cav-1 role downstream of BALF0/1, 4-HT lytic reactivation
120 triggered extensive CAV-1 puncta formation in control BXLF1 KO, but to a lesser extent in
121 BALF0/1 KO P3HR-1 ([Figure 3G-H](#)). Interestingly, anti-IgG crosslinking, which triggers EBV lytic
122 reactivation, also induced Cav-1 puncta formation in Akata Burkitt B-cells, both in EBV+ and EBV-
123 subclones (34) ([Figure S2E](#)). However, IgG puncta more frequently co-localized with CAV-1 in
124 EBV+ Akata cells ([Figure S2E](#)). This result suggests that the EBV lytic cycle, rather than IgG
125 cross-linking alone, induces IgG internalization into CAV-1-containing vesicles at the 48 hour
126 timepoint post-Ig crosslinking. Furthermore, CAV-1 puncta more frequently co-localized with
127 residual IgG signals in Ig-crosslinked BXLF1 edited control Akata cells than in BALF0/1 edited
128 Akata cells, even though they were large depleted relative to levels observed in BALF0/1 depleted
129 cells ([Figure 3I-J](#) and [S3](#)). Collectively, these data support a model by which BALF1 subverts the
130 caveolin pathway to endocytose plasma membrane BCR complexes.

131

132 **BALF0/1 uses the ER-associated degradation pathway to route BCR to proteasomes**

133 We next hypothesized that BILF1 routes internalized BCR complexes to the ER in order
134 use ER-associated degradation (ERAD) (35-37) to reach cytoplasmic proteasomes, in a manner
135 reminiscent of the cholera toxin cell entry pathway (38). In support, our proteomic analysis
136 identified high confidence BALF0/1 interactions with B-cell receptor-associated protein 31
137 (BCAP31, also called BAP31), an ER resident protein with roles in quality control, including in
138 ERAD (39-43) and with multiple 26S proteosome subunits ([Figure 1A](#)). To test this hypothesis,
139 we first performed confocal microscopy on latent vs reactivated P3HR-1, in the absence or
140 presence of bortezomib to stabilize BCR in reactivated cells. Whereas IgM and the ER-resident
141 protein calnexin did not significantly colocalize in latent cells, likely because BCR rapidly transits

142 through the ER on route to the plasma membrane, 4-HT treatment caused near total loss of IgM
143 ([Figure 4A](#), top right panel). Interestingly, in bortezomib-treated cells, 4-HT instead triggered IgM
144 internalization, large regions of which co-localized with the ER-resident chaperone calnexin
145 ([Figure 4A-C](#)). Similar calnexin/IgG colocalization was observed in bortezomib treated EBV+
146 Akata cells triggered for lytic reactivation by IgG-crosslinking ([Figure S4A-C](#)). We note that not all
147 4-HT or anti-IgG treated cells reactivate EBV, and that not all BCR aggregates were captured in
148 a 2-dimensional slice, potentially resulting in an under-estimate of the extent of EBV lytic cycle
149 induced Ig/calnexin colocalization. Our results suggest that BALF0/1 routes internalized BCR to
150 the ER, and that proteasome inhibition causes a BCR population to be retained within the ER.

151 To further examine ERAD roles in BALF0/1-mediated BCR down-regulation, we depleted
152 Hrd1 (HMG-CoA reductase degradation protein 1), an ER-resident E3 ubiquitin ligase that forms
153 an ER-membrane spanning channel important for ERAD (44-46) or of BALF1/0 associated
154 BCAP31. HRD1 KO diminished the extent of IgM and CD79A loss observed in P3HR-1 induced
155 for lytic reactivation, despite having no appreciable effects on immediate early BZLF1 or early
156 gene BMRF1 expression ([Figure 4D](#)). Similarly, the small molecule ERAD inhibitor eeyarestatin I
157 (47), which blocks AAA ATPase p97/VCP mediated cytoplasmic shuttling of ERAD cargo (48),
158 significantly impaired BCR degradation in a dose-dependent manner, albeit with a degree of EBV
159 lytic cycle gene repression. By contrast, the lysosomal degradation inhibitors leupeptin, E64 or
160 bafilomycin failed to rescue EBV lytic cycle BCR degradation ([Figure S5A](#)). Furthermore, we
161 observed calnexin-colocalized BCR aggregates in a significant number of P3HR-1 Hrd1 KO cells
162 induced for lytic replication, which accumulated to a similar degree as in bortezomib-treated cells
163 ([Figure 4E-F](#) and [S5B-D](#)). Despite its association with BALF0/1, BCAP31 KO did not noticeably
164 impair EBV lytic cycle depletion of IgM and CD79A, suggesting that it is not required for BALF0/1
165 targeting of BCR in Burkitt cells, much of which resides at the plasma membrane ([Figure S5E](#)).

166 To further examine ubiquitin proteasome pathway roles in EBV lytic cycle BCR depletion,
167 we tested whether BALF0/1 expression was sufficient to induce polyubiquitination of Ig heavy
168 chain complexes. BALF0/1 or control BXLF1 cDNAs were expressed in human embryonic kidney
169 (HEK) 293 cells, together with an EGFP-tagged IgM heavy chain construct. High molecular weight
170 poly-ubiquitin conjugates were evident upon immunoblotting of immunopurified EGFP-IgM
171 complexes from BALF0/1, but not BXLF1 expressing cells ([Figure 4G](#)). Furthermore, small
172 molecule TAK-243 (49) inhibition of the E1 ubiquitin activating enzyme (UAE) ligase, which is the
173 first enzyme in most host cell ubiquitin cascades, also significantly blocked BCR degradation in
174 lytic-induced P3HR-1 cells ([Figure 4H](#)). These data suggest that BALF0/1 subverts the ERAD

175 pathway to route internalized and polyubiquitinated BCR complexes to cytoplasmic proteasomes
176 ([Figure 4I](#)).

177

178 **BALF0/1 BCR internalization and degradation requires the Ig heavy chain cytoplasmic tail**

179 Since BALF0/1 is a cytoplasmic protein, we next characterized how it recognizes BCR
180 complexes. Notably, CD79A and CD79B contain 61- and 48-amino acid cytoplasmic tails,
181 respectively, whereas Ig heavy chains have as few as 3 cytoplasmic tail residues. We therefore
182 hypothesized that BALF0/1 recognizes CD79A and/or CD79B cytoplasmic tails. To test this, we
183 expressed sgRNA against CD79A or CD79B in P3HR-1 cells and then measured IgM abundance
184 upon lytic reactivation. Despite substantial CD79A or CD79B depletion, EBV lytic induction readily
185 targeted IgM for degradation ([Figure 5A-B](#)). However, as BALF0/1 may redundantly use either
186 CD79A or CD79B to target BCR, we next depleted both CD79A and CD79B in P3HR-1. Upon
187 lytic reactivation, EBV targeted IgM for degradation ([Figure 5C-D](#)). Similar results were observed
188 by confocal microscopy, where IgM signals were nearly completely abolished in CD79A/B double
189 KO cells induced for lytic induction. Bortezomib treatment resulted in colocalization between IgM
190 and calnexin in 4-HT treated control and CD79A/CD79B double KO cells ([Figure 6E-I](#) and [S6A-B](#)). Thus,
191 CD79 signaling chains are dispensable for BALF0/1-mediated degradation of
192 membrane-bound immunoglobulin, much of which resides at the plasma membrane in latently
193 infected Burkitt cells.

194 We therefore hypothesized that the Ig heavy chain cytoplasmic tail must be critical for
195 BALF0/1-mediated BCR degradation. Notably, the IgM and IgG heavy chains contain only 3- and
196 28 residue cytoplasmic tails, respectively, including a conserved KVK motif ([Figure 5J](#)). To test
197 whether the IgM cytoplasmic tail was necessary for BALF0/1 targeting, we transiently expressed
198 either wildtype (WT) or C-terminal tail deletion mutant (Δ KVK) IgM in 293T cells, together with
199 either BALF0/1 or BXLF1 cDNA. Immunoblot analysis showed a clear reduction of WT, but not
200 Δ KVK IgM in cells co-expressing BALF0/1, but not in cells expressing control BXLF1 cDNA
201 ([Figure 5K](#)). Interestingly, the IgA and IgE cytoplasmic tails do not contain a KVK motif, and IgA
202 levels were not diminished by co-expression with BALF0/1 ([Figure 5L](#)).

203

204 **BALF0/1 supports virion release from cells expressing an anti-gp350 antibody**

205 Tegumented EBV capsids acquire their lipid envelope by budding into the Golgi or Golgi-
206 derived secretory pathway vesicles ([50](#)). Therefore, maturing EBV virion travel through the same
207 secretory pathway compartments as immunoglobulin, and in the absence of degradation,

208 membrane-bound immunoglobulin is incorporated into the virion envelope. We therefore
209 hypothesized that BALF0/1 may have evolved to target the immunoglobulin, in order to cope with
210 the situation where EBV infects a B-cell with BCR reactive to EBV glycoproteins, which could
211 prevent virion release via tethering particles to the plasma membrane or could induce clumping.

212 To test this possibility, we stably expressed a membrane-bound IgG isoform of the murine
213 monoclonal antibody 72A1, which reacts with EBV gp350, in EBV+ Akata cells (51). We used a
214 humanized 72A1 heavy chain, in which the murine constant region was replaced by human the
215 human Fc residues (51). We established BXLF1 vs BALF0/1 edited 72A1+ Akata cells and
216 triggered them for EBV lytic reactivation by Ig cross-linking. We then measured relative EBV
217 intracellular and extracellular genome copy number at 24 hours post-stimulation, an early
218 timepoint prior to the onset of cell death, which could otherwise non-specifically release virion. As
219 expected, FACS analysis demonstrated significantly lower levels of plasma membrane 72A1 in
220 BXLF1 KO than in BALF0/1 KO cells, as detected by antibody reactive with murine light and heavy
221 chain (Figure 6A). Interestingly, at 24 hours post Ig-crosslinking, we observed increased
222 intracellular and decreased extracellular EBV genome copy number in BALF0/1 KO cells, relative
223 to levels in BXLF1 KO controls (Figure 6B-C). Similarly, BALF0/1 KO resulted in a 3-fold decrease
224 in infectious virions released from Akata cells relative to BXLF1 KO control cell levels, as
225 measured by co-culture of the Ig-crosslinked Akata supernatants with Daudi target cells (the
226 green Daudi assay (52)) (Figure 6D). It is worth noting that BALF0/1 KO did not affect late gene
227 gp350 expression, suggesting an intact lytic cycle (Figure S7A) or cell viability (Figure S7B),
228 indicating that differences in extracellular viral load were not based on differences in live cell
229 number. These data suggest that BALF0/1 facilitates virion release from infected cells that
230 express Ig reactive with a viral glycoprotein.

231 To further test the hypothesis that BALF0/1 prevents incorporation of Ig into virion, we
232 induced Akata cells expressing control BXLF1 versus BALF0/1 targeting sgRNA into lytic
233 replication by Ig-crosslinking for 24h. We then immunopurified virus particles from cell
234 supernatants via pulldown with an antibody specific for the EBV glycoprotein gp42. Immunoblot
235 analysis of purified EBV revealed incorporation of human IgG into virus particles produced in
236 BALF0/1 edited Akata, but to a lesser extent in BXLF-1 edited Akata (Figure 6E). Thus, an
237 important BALF0/1 role may be to downmodulate incorporation of Ig into virus particles, which if
238 specific for an EBV glycoprotein could induce clumping of secreted virus particles.
239

240 **BALF0/1 impairs survival of non-Hodgkin lymphoma dependent on BCR signaling**

241 Several subtypes of non-Hodgkin lymphoma, including activated B-cell-like (ABC) and
242 germinal center B-cell (GCB) subtypes of diffuse large B-cell lymphoma (DLBCL), mantle cell
243 lymphoma and Burkitt lymphoma subtypes depend on constitutive BCR signaling for survival (53-
244 58). We therefore hypothesized that BALF0/1 expression would be sufficient to trigger cell death
245 of BCR-dependent B-cells. To test this hypothesis, we inducibly expressed BALF0/1 in HBL-1
246 diffuse large B-cell lymphoma cells, which are dependent on BCR signaling for survival (59). As
247 a control, we expressed BALF0/1 in P3HR-1, which we did not find to be dependent on BCR
248 components in a CRISPR screen (60). While BCR abundance was similarly reduced by BALF0/1
249 expression in P3HR-1 and in HBL-1 (Figure S7C-F), BALF0/1 significantly reduced HBL-1 but not
250 P3HR-1 live cell number (Figure 6F). These results suggest that BALF0/1 expression likely
251 impairs BCR signaling when expressed in lytic B-cells and raise the possibility that cell permeable
252 BALF0/1 could be developed as a novel therapeutic strategy to target B-cell lymphoma dependent
253 on BCR signaling.

254

255

256 **DISCUSSION**

257 As a B-cell tropic herpesvirus, EBV must cope with large quantities of immunoglobulin as
258 it replicates within and egresses from host B-cells. Here, we identified that the EBV early lytic
259 protein BALF0/1 targets the BCR complex for degradation. Rather than routing membrane bound
260 BCR to lysosomes, BALF0/1 instead subverts the caveolin-dependent endocytosis and ERAD
261 pathways to target BCR for ubiquitin-dependent proteasomal degradation ([Figure 7](#)). To our
262 knowledge, BALF0/1 represents the first example of a viral protein that targets BCR complexes
263 for degradation, and is the first viral protein identified to sequentially utilize the caveolar and ERAD
264 pathways.

265 We hypothesize that EBV evolved this strategy in order to facilitate release of virion from
266 cells that express BCR reactive to an EBV virion component, which would otherwise impair virion
267 assembly and/or release, for instance by tethering or causing clumping of egressing virus. In this
268 manner, BALF0/1 may act analogously with human immunodeficiency virus (HIV) Nef and Vpu,
269 which downmodulate CD4. This is necessary to support HIV release from CD4+ T-cells, since
270 HIV utilizes CD4 as a major entry receptor, but must avoid being tethered by it as it egresses from
271 CD4+ T cells ([61-63](#)). It would also be similar to viral evasion of the host restriction factor tetherin,
272 which tethers viral particles to host cell plasma membrane to impair their release ([64](#)).

273 The observation that BALF1 targets BCR raises the question of how frequently EBV may
274 infect B-cells reactive to viral glycoproteins. Germline encoded antibodies reactive to public viral
275 epitopes, including multiple reactive with EBV gp350, were recently described ([65](#)). While EBV
276 may encounter such B-cells at low frequency at the outset of primary infection, antibodies against
277 virion structural proteins including gp350 and viral capsid antigen (VCA) are readily detected in
278 EBV-infected individuals, suggesting the expansion of a pool of B-cells reactive with EBV antigens.
279 In fact, anti-VCA antibodies are amongst the earliest detected upon primary EBV infection and
280 are used to establish the diagnosis of mononucleosis. Anti-gp350 and VCA antibodies can also
281 be abundant patients with EBV-associated cancers ([66-71](#)). As acute EBV infection progresses
282 over the course of many months, it may be increasingly common for EBV to encounter a target
283 B-cell with BCR reactive to viral components. For instance, we note that as many as 20% of
284 tonsillar T-cells can be reactive with EBV encoded peptides in hosts with infectious
285 mononucleosis ([72](#)), suggesting that high rates of EBV-reactive B-cells may be likely also be
286 present. Furthermore, BCR reactive to EBV virion components may facilitate viral adhesion to
287 and/or entry, potentially serving as novel co-receptors. Therefore, it may not be uncommon that
288 EBV establishes latency in B-cells with BCR reactive to virion components.

289 B-cells invest considerable resources in immunoglobulin production. Another potential
290 advantage of EBV lytic cycle degradation of high abundance BCR is that it may provide amino
291 acid building blocks to support viral replication. It is less likely that EBV targets the BCR to prevent
292 engulfment of viral antigens and their presentation to CD4+ T-cells, since EBV also reduces levels
293 of MHC Class II in lytic cells (73). Notably, BALF0/1 is not known to be incorporated into the viral
294 particle as a tegument protein (74). Therefore, in contrast to the major tegument protein BNRF1,
295 which targets the SMC5/6 complex both in newly-infected and lytic cells (27), EBV instead evolved
296 a mechanism to selectively deplete BCR upon lytic reactivation, but not in newly infected cells
297 establishing latency.

298 It will be of interest to determine whether other γ -herpesviruses, including the Kaposi's
299 Sarcoma Associated Herpesvirus or murine herpesvirus 68, likewise evolved to target BCR for
300 degradation. In support, multiple family members encode BALF0/1 homologs (75). However,
301 since KSHV frequently superinfects EBV+ cells (76), it is plausible that KSHV relies upon EBV
302 BALF0/1 to downregulate BCR, perhaps enabling the KSHV-encoded homolog to have evolved
303 distinct functions.

304 BCR are internalized via clathrin-mediated endocytosis upon antigen binding (77-79),
305 which delivers engulfed antigens to the lysosome for MHC Class II loading. EBV BALF1/0 instead
306 triggers BCR internalization through a caveolar pathway reminiscent of the cholera toxin entry
307 pathway (38). The principal structural component of caveolae, caveolin-1, is regulated by Src
308 family kinase phosphorylation (80-85). Interestingly, our recent proteomic analysis identified that
309 BALF0/1 associates with the serine/threonine protein phosphatase 2A (PP2A) regulatory subunit
310 PP2R1A and also with the protein phosphatase 6 (PP6) catalytic subunit PPP6C (21). Since
311 PP2A dephosphorylates Src kinases (86), and since the phosphatase inhibitor okadaic acid
312 stimulates caveolae mobilization (87-90), we speculate that BALF0/1 may subvert host
313 phosphatase as well as ubiquitin pathways to trigger BCR internalization.

314 While we did not obtain evidence that BAP31 is critical for BALF0/1 mediated BCR
315 degradation, we speculate that it may nonetheless play an important role in particular contexts.
316 For instance, it is plausible that another factor is redundant with BAP31 in Burkitt B-cells, but
317 perhaps this redundancy does not exist in memory B-cells undergoing plasma cell differentiation,
318 a key physiological site of EBV lytic reactivation for which in vitro models do not currently exist.
319 BAP31 not only associates with BALF0/1, but it also co-purifies with B-cell receptors (43).
320 Furthermore, multiple viral-encoded proteins that target host proteins for degradation also
321 associate with Bap31, including Kaposi's Sarcoma associated herpesvirus K3 and K5 (43, 91).

322 How does BALF0/1 trigger degradation of BCR complexes upon retrograde transport to
323 the ER? Our data indicate that BALF0/1 stimulate ubiquitination of the IgM heavy chain
324 cytoplasmic tail, and this is necessary for BCR degradation, since the E1 Ub ligase inhibitor TAK-
325 243 rescued BCR abundance in the EBV lytic cycle. Since BALF0/1 is not known to have ubiquitin
326 ligase activity and does not have homology to known ubiquitin ligases, our data suggest that it
327 instead recruits an E3 ligase to slate immunoglobulins for ERAD. Thus, BALF0/1 may act as an
328 adaptor or glue that juxtaposes BCR complexes with a host ubiquitin ligase to target BCR for
329 degradation.

330 Why might BALF0/1 protein level targeting of BCR complexes be necessary in cells that
331 also express the EBV alkaline nuclease BGLF5, which exerts host shutoff function beginning in
332 the early lytic period (15)? First, immunoglobulin mRNA is highly abundant in B-cells, and a subset
333 of BCR-encoding transcripts likely evades host shut-off. Second, even if host shutoff removes a
334 large amount of BCR encoding transcripts, there is likely to be a large amount of assembling BCR
335 complexes in the ER and secretory pathway and certainly also at the plasma membrane. Thus,
336 BALF0/1 and BGLF5 may act synergistically to deplete BCR from cells undergoing lytic replication.

337 Multiple human lymphomas are dependent on BCR signaling for survival, including MCD
338 DLBCL, chronic lymphomatous leukemia and subtypes of mantle cell and Burkitt lymphoma (53-
339 58). Consequently, the BCR pathway Bruton's tyrosine kinase serves as a major B-cell lymphoma
340 therapeutic target, including by the small molecule inhibitor ibrutinib (92). BCR pathway kinase
341 protein inositol phosphate 3 kinase delta (PI3K delta) inhibitors have also exhibited potent anti-
342 lymphoma activity, though are limited by side-effects. Since knockdown of multiple BCR
343 components is toxic to lymphomas dependent on BCR signaling (53, 54), our results suggest that
344 BALF1 could potentially be leveraged in novel therapeutic approaches. For instance, chimeras
345 between cell penetrating peptides, such as HIV TAT or antennapedia (93), with a potentially
346 miniaturized version of BALF1 could potentially be delivered to lymphomas. Similarly, it might be
347 possible to deploy cell-permeable BALF1 as an alternative to anti-CD20 monoclonal antibodies
348 such as rituximab to limit autoantibody production.

349 In summary, we used a recently constructed EBV lytic cycle protein-protein interaction
350 map to identify that the EBV early lytic protein BALF0/1 targets the BCR complex for degradation.
351 BALF1 subverts the caveolin-1 pathway to internalize BCR complexes, which are trafficked in a
352 retrograde manner to the ER, where they undergo proteasomal degradation via the ERAD
353 pathway in a p97/VCP and ubiquitin dependent manner. The IgM cytoplasmic tail KVK motif,

354 present also in the IgG cytoplasmic tail, was necessary for BCR degradation. BCR degradation
355 facilitates virion release from B-cells encoding BCR reactive to a viral glycoprotein.

356

357

358 **METHODS AND MATERIALS**

359 **Cell Lines**

360 HEK293T were cultured in DMEM supplemented with 10% FBS and 1% Pen/Strep. P3HR-1-
361 ZHT/RHT-Cas9+, EBV+ Akata-Cas9+, Raji-Cas9+, Daudi-Cas9+ and HBL1-Cas9+ cells were
362 cultured in RPMI-1640 supplemented with 10% v/v FBS and 1% Pen/Strep. Cas9+ cells were
363 maintained in 5 µg/ml blasticidin. EBV+-Akata-Cas9+ and P3HR-1-Z/R-HT-Cas9+ cells were also
364 maintained with 25 µg/ml G418 and 25 µg/ml G418 and 25 µg/ml hygromycin, respectively. All
365 cells were incubated at 37°C with 5% CO₂ and were routinely confirmed to be mycoplasma-
366 negative. Cell lines were authenticated by STIR profiling. Where inducible cDNA expression was
367 used, cDNA were cloned into the pLIX-402 vector, which uses a Tet-ON TRE promoter to drive
368 cDNA expression with a C-terminal HA Tag. Stable cell lines were generated by lentiviral
369 transduction and antibiotic selection with puromycin. Cell lines were then maintained with 0.5
370 µg/ml puromycin.

371

372 **Chemicals and compounds**

373 Unless otherwise specified, P3HR-1 ZHT/RHT or Akata cells lytic induction was triggered by
374 addition of 400 nM 4-hydroxy tamoxifen (4-HT) (Sigma #68392-35-8) for 24 h or by 15 µg/ml α-
375 human IgG (Agilent #A042301-2) for 48 h, respectively. 5 µg/ml doxycycline were used to induce
376 BALF0/1 and BARF1 cDNA expression for 24 hours. Proteasome inhibitor bortezomib (5 nM,
377 Sigma #5043140001), neddylation activating enzyme inhibitor MLN4924 (10 µM, Sigma #
378 5054770001), ERAD inhibitor eeyarestatin I (5-40 µM, Sigma #E1286), clathrin-mediated
379 endocytosis inhibitor chlorpromazine (10-20 µM, Sigma # C8138), caveolae-mediated
380 endocytosis inhibitor genistein (20-200 µM, Sigma # G6649), autophagy inhibitor bafilomycin A1
381 (10 µM, Sigma # 19-148), lysosomal protease inhibitors leupeptin (6.7 µM, Sigma #E18), E64 (10
382 µM, Sigma # E3132) or the E1 ubiquitin activating enzyme inhibitor TAK-243 (0.5, 1 and 2 µM,
383 Selleckchem #S8341) were used where indicated. All inhibitors were added simultaneously with
384 the lytic or cDNA stimulus.

385

386 **cDNA Expression Vectors**

387 Unless otherwise specified, all cDNA were cloned into expression vectors by Gateway
388 recombination. Briefly, 150ng of the donor vector containing the EBV cDNA and the destination
389 vector were co-incubated with 1X LR Clonase Enzyme Mix (Invitrogen #11789-020) overnight at
390 room temperature. The reaction mixture was then transformed into 50µl of Stbl3 *E. coli*, spread
391 on LB plates with ampicillin. Entry vectors containing BALF1/0 and BXLF1 cDNA were gifts from

392 Eric Johannsen. Entry vectors with IGHM and IGHA cDNA were obtained from DNASU (IGHM #
393 HsCD00514313; IGHA # HsCD00512453 respectively). IGHM and IGHA were then cloned into
394 the pDEST-CMV-N-EGFP, respectively (a gift from Robin Ketteler (Addgene plasmid # 122842 ;
395 <http://n2t.net/addgene:122842>; RRID:Addgene_122842) (94). BALF1/0 and BXLF1 were cloned
396 into PHAGE-3XFLAG-HA plasmid, respectively. To generate the IgM heavy chain cytoplasmic tail
397 KV Δ KVK deletion mutant (IGHM Δ KVK), pENTR223-IGHM was used as a template for site-directed
398 mutagenesis, using New England Biolab site directed mutagenesis kit (#E0554S) and the primers
399 Forward 5' GTCACCTTGTCTAGGTGAAATGCCAACTTC3' and Reverse 5'
400 GAAAGTTGGCATTTCACCTAGAACAAAGGTGAC 3'.
401

402 **Human-murine chimera 72A1 expression**

403 cDNA for the anti-gp350 monoclonal antibody 72A1 heavy and light chains were gifts from Elliott
404 Kieff and Fred Wang (51). To construct a partially humanized 72A1 vector, the murine 72A1 heavy
405 chain variable region and light-chain variable region were previously cloned upstream of the
406 human IgG1 constant region (together with a murine Ig tail sequence for membrane anchoring)
407 and human Ig(κ) constant region of pEIG to create pCIRN-H1 and pEIG-L2, respectively. The
408 murine-human chimeric heavy and light chain sequences were then cloned into pGenDONR by
409 GenScript, with a P2A sequence added between the heavy and light chain sequences to create
410 the pGenDONR-IgG H1-P2A- Ig(λ) L2 (tail) entry vector. Gateway LR cloning was used to shuttle
411 this 72A1 cDNA into the TRC313 destination vector (Broad Institute) to create the TRC313-IgG
412 H1-P2A- Ig(λ) L2 lentiviral expression vector. EBV+ Akata cells with stable 72A1 IgG H1-P2A-
413 Ig(λ) L2 expression was generated by lentiviral transduction, hygromycin (50 µg/ml) selected for
414 2 weeks and then maintained with 25 µg/ml hygromycin. Detection of the murine-human chimera
415 72A1 detection was performed using goat anti-mouse IgG (H+L) cross-adsorbed secondary
416 antibody Alexa Fluor™ 488 tagged (Invitrogen #A-11001).
417

418 **CRISPR analysis**

419 CRISPR/Cas9 editing was performed as described (95). Briefly, sgRNAs were cloned into
420 pLentiGuide-puro (a gift from Feng Zhang, Addgene plasmid #52963;
421 <http://n2t.net/addgene:52963>; RRID:Addgene_52963)(96), pLenti-spBsmBI-sgRNA-Hgro (a gift
422 from Rene Maehr (Addgene plasmid #62205; <http://n2t.net/addgene:62205>;
423 RRID:Addgene_62205) (97) or LentiGuide-zeo (a gift from Rizwan Haq, Addgene plasmid
424 #160091; <http://n2t.net/addgene:160091>; RRID:Addgene_160091)(98) and sequenced verified.
425 Lentiviral transduction was performed as described previously (19). In brief, 293T cells were co-

426 transfected with 500ng lentiviral sgRNA expression vector, 400ng psPAX2 (a gift from Didier
427 Trono, Addgene plasmid #12260; <http://n2t.net/addgene:12260>; RRID:Addgene_12260) and
428 150ng VSV-G plasmids for packaging. Media was changed to RPMI at 24 hours post transfection
429 293T supernatants containing lentivirus were collected at 48 and 72 hours post-transfection,
430 passed through a 0.45μm filter and transduced into P3HR-1-Z/R-HT-Cas9+, Akata-EBV-Cas9+
431 or HBL1-Cas9+ cells. Transduced cells were selected for 1 week with 0.5 μg/ml puromycin or 2
432 weeks with 25 μg/ml hygromycin or 100 μg/ml zeocin. CRISPR KOs were verified by western blot
433 analysis. sgRNA against genes used in this study are as follows:

434 ***BXLF1*** (5' – TTGTAGTCCCTGAACCGATG – 3'); ***BALF0/1*** (5' – CGGTCGAGGCGTGGGTCGC
435 – 3'; 5' – CATGTTCAGGGCCATGTACG – 3'); ***CAV-1*** (5' – GTATTTCGTCACAGTGAAGG – 3';
436 5' – CGTTGAGGTGTTAGGGTCG – 3'); ***Hrd1*** (5' - TGAAGAGTGCAACAAAGCGG - 3'; 5' –
437 CTTGACTCACAAAGTCCACA – 3'); ***BCAP31*** (5' – GAACCTCCAGAACAAATCCCG – 3'; 5' –
438 CTTCATGTGGAAGTGCTCCA – 3').

439

440 **Immunoblot analysis**

441 Immunoblot analyses were performed as described previously (27). In brief, whole cell lysates
442 were separated by SDS-PAGE, transferred onto nitrocellulose membranes, blocked with 5% non-
443 fat dry milk in TBST buffer for 1 h and incubated with primary antibodies (1:1000) at 4°C overnight.
444 Blots were washed 3 times in TBST and incubated with secondary antibodies for 1 h at room
445 temperature. Blots were then washed 3 times in TBST solution, incubated with ECL
446 chemiluminescence solution (Thermo Fisher #34578) and images were captured by Licor Fc
447 platform. Antibodies used for immunoblot analysis in this study were: anti-Human IgM goat
448 polyclonal antibody (Southern Biotech #2020-01), anti-Human IgG goat polyclonal antibody
449 (Southern Biotech #2040-01), anti-HA-Tag (C29F4) rabbit mAb (Cell Signaling #3724), anti-
450 GAPDH (D16H11) XP® rabbit mAb (Cell Signaling #5174), anti-CD79A rabbit polyclonal antibody
451 (Proteintech #22349-1-AP), anti-CD79B (D7V2F) rabbit mAb (Cell Signaling #96024), anti-EBV
452 BALF0/1 rabbit mAb (generated by Genscript for this study), anti-EBV ZEBRA Mouse mAb (BZ1)
453 (Santa Cruz# sc-53904), anti-EBV Ea-D mouse mAb (1108-1) (Santa Cruz #sc-69679), anti-EBV
454 p18 goat polyclonal antibody (Invitrogen #PA1-73003), anti-calnexin rabbit mAb (Cell Signaling
455 #2433), anti-HRD1/SYVN1 rabbit polyclonal antibody (Proteintech #13473-1-AP), anti-BAP31
456 rabbit polyclonal antibody (Proteintech #11200-1-AP), anti-caveolin 1 mouse mAb (7C8) (Thermo
457 Fisher #MA3-600), anti-GFP tag rabbit polyclonal antibody (Proteintech #50430-2-AP), goat anti-
458 rabbit IgG, HRP-linked antibody (Cell Signaling #7074), goat anti-mouse IgG, HRP-linked

459 antibody (Cell Signaling #7076) and bovine anti-goat IgG (H+L) HRP-linked antibody (Jackson
460 ImmunoResearch Laboratory #805-035-180).

461

462 **Analysis of Ig heavy chain expression**

463 For analysis of transient IgM and IgA heavy chain expression, expression vectors encoding for
464 IgM heavy chain (IGHM), IgM heavy chain KVK deletion mutant (IGHM Δ KVK) or IgA heavy chain
465 (IGHA) cDNAs were transiently transfected into 293T cells, together with either BALF1/0 and
466 BXLF1 cDNA, using Lipofectamine 3000, according to manufacturer's instructions. Cells were
467 harvested 24 h post-transfection and were washed twice with PBS. Cells was pelleted and lysed
468 in cold lysis buffer (1% v/v NP40, 150mM Tris, 300mM NaCl in dH₂O) supplemented with 1X
469 cOmpleteTM EDTA-free protease inhibitor cocktail (Roche # 11873580001), 1mM Na₃VO₄ and
470 1mM NaF for 1 h at 4°C with rotation. Lysates were precleared by pelleting insoluble debris and
471 then incubated with 4X SDS loading buffer for 10 mins at 95°C.

472

473 **Analysis of human IgG in EBV virion**

474 Supernatant containing EBV virion were collected from uninduced or lytic-induced (72 h) Akata-
475 EBV-Cas9+ cells that express sgBXLF1 or sgBALF0/1. They were passed through a 0.45 μ m
476 filter and precleared with 2 μ g/ml anti-rabbit isotype IgG antibody (Cell Signaling #2729) with
477 protein A/G magnetic beads (Pierce, Thermo) for 1 h at 4°C with rotation. EBV virion
478 immunoprecipitation was performed by incubating the precleared supernatant with 2 μ g/ml anti-
479 EBV BZLF2 (gp42) rabbit polyclonal antibody (Thermo Fisher # PA5-117635) for 4 hr at 4°C with
480 rotation. Protein A/G magnetic beads were then added to the immunocomplex and were co-
481 incubated at 4°C overnight with rotation. Beads were washed with lysis buffer four times and were
482 eluted using 1X SDS loading buffer incubated for 10 mins at 95°C. Immunoblot analysis was
483 performed and human IgG was detected by Goat Anti-Human IgM-UNLB (Southern Biotech
484 #2020-01) antibody.

485

486 **Flow cytometry analysis**

487 Cells were washed once with ice cold PBS supplemented with 2% volume by volume (v/v) fetal
488 bovine serum (FBS). Cells were then incubated with the corresponding antibody at 1:500 in 2%
489 FBS v/v, PBS for 30 mins at 4°C. Cells were pelleted, washed twice and resuspended in 2% FBS
490 v/v PBS. Antibodies used for flow cytometry analysis performed in this study were: FITC-
491 conjugated anti-human IgM (Southern Biotech #2020-02), goat anti-human IgG-UNLB (Southern
492 Biotech #2040-01), Cy5-conjugated anti-EBV gp350 (clone 72A1) and donkey anti-goat IgG (H+L)

493 Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ Plus 647 (Invitrogen #A32849). For
494 murine-human chimera 72A1 detection, goat anti-mouse IgG (H+L) cross-adsorbed secondary
495 antibody Alexa Fluor™ 488 tagged (Invitrogen #A-11001) was used. For 7-AAD assays (Thermo
496 Fisher, Cat#A1310), cells were harvested and washed twice with 1x PBS, supplemented with 2%
497 FBS. Cells were incubated with a 1 µg/ml 7-AAD solution in 1x PBS / 2% FBS for five minutes at
498 room temperature, protected from light. Cells were then analyzed via FACS on a BD FACSCalibur
499 instrument and analyzed by FlowJo V10.

500

501 **Immunofluorescence analysis**

502 Burkitt lymphoma cells dried on glass slides were fixed with 4% paraformaldehyde/PBS solution
503 for 10 min, permeabilized with 0.5% Triton X-100/PBS for 5 min and blocked with 1% BSA/PBS
504 for 1 h at room temperature. Cells were then incubated with a cocktail of primary antibodies (1:100
505 dilution) against CAV-1, IgM, IgG, calnexin, CD79A, CD79B, HA or EGFP in blocking solution for
506 1 h at 37°C. Antibodies used for immunofluorescence staining were the same as those for
507 immunoblot analysis. Cells were then washed twice with PBS and incubated with a cocktail of
508 secondary antibodies at 1:1000 in PBS for 1 h at 37°C in the dark. Finally, cells were washed
509 twice with PBS and were stained with DAPI and mounted overnight with ProLong™ Gold Antifade.
510 Image acquisition and analysis was performed with a Zeiss LSM 800 instrument and with Zeiss
511 Zen Lite (Blue) software, respectively. Arivis Vision4D from ZEISS ZEN lite (blue edition) was
512 used for 3D reconstruction in [Figure S2C](#). Image J was used to score the % of colocalization of
513 IgM-calnexin, IgG-calnexin, IgM-BALF0/1-HA, IgM-CAV-1 and IgG-CAV-1 using the ImageJ
514 “Comdet” plugin.

515

516 **Immunoprecipitation and co-immunoprecipitation analysis**

517 For poly-Ubiquitylation analysis, 293T cells in 100mm cell culture dishes were co-transfected
518 with 6000 ng each of plasmids expressing EGFP-IGHM and BALF1/0 or BXLF1 by Lipofectamine
519 3000 (Thermo #L3000001), according to manufacturer's instructions. 5 nM bortezomib was added
520 to the cells 6 h post-transfection. After 24 h, cells were trypsinized, harvested and washed twice
521 with ice cold PBS. Pelleted cells were then lysed in ice cold lysis buffer (1% v/v NP40, 150 mM
522 Tris, 300 mM NaCl in dH2O) supplemented with 1X cOmplete™ EDTA-free protease inhibitor
523 cocktail (Sigma), 1 mM Na3VO4, 1 mM NaF, 1 mM PMSF, 4 mM 1, 10 o-phenanthroline, 2 mM
524 sodium pyrophosphate and 1 mM EDTA for 1 h at 4°C with rotation. Lysed cells were pelleted
525 and precleared with 2 µg/ml anti-rabbit isotype IgG antibody (Cell Signaling #2729) with protein
526 A/G magnetic beads (Pierce, Thermo) for 1 h at 4°C with rotation. Precleared lysate was then

527 incubated with 2 µg/ml anti-GFP antibody (Proteintech #50430-2-AP) for 1 hr at 4°C with rotation.
528 Protein A/G magnetic beads were then added to the immunocomplex and were co-incubated at
529 4°C overnight with rotation. Beads were washed with lysis buffer four times and were eluted using
530 1X SDS loading buffer incubated for 10 mins at 95°C.

531 Where applicable, cDNA expression was induced by the addition of 5 µg/ml doxycycline. 100
532 million P3HR-1 cells were harvested and was lysed in ice cold lysis buffer (1% v/v NP40, 150mM
533 Tris, 300mM NaCl in dH₂O) supplemented with 1X cOmplete™ EDTA-free protease inhibitor
534 cocktail (Roche # 11873580001), 1mM Na₃VO₄ and 1mM NaF for 1 h at 4°C with rotation.
535 Lysates were pelleted and supernatants were incubated with anti-HA tag magnetic beads (Pierce,
536 Thermo) at 4°C overnight. Beads were washed with lysis buffer four times and were eluted using
537 1X SDS loading buffer incubated for 10 mins at 95°C.

538

539 **EBV genome copy number quantification**

540 For intracellular EBV DNA extraction, total DNA from 1x10⁶ cells was extracted using the Blood
541 & Cell Culture DNA Mini Kit (Qiagen). Extracted DNA was diluted to 10 ng/µl and subjected to
542 qPCR analysis, targeting the EBV BALF5 gene. For extracellular viral DNA extraction,
543 supernatants from cells induced for lytic replication were collected and incubated with 25 mg/ml
544 of DNase for 15 mins at 50°C, to degrade non-encapsidated DNA. Viral DNA was extracted by
545 the Blood & Cell Culture DNA Mini Kit (Qiagen) and samples were subjected to qPCR analysis,
546 targeting the BALF5 gene. For intra and extracellular DNA analysis, serial dilutions of the pHAGE-
547 BALF5 plasmid, beginning at 25 ng/µl, were used to generate a standard curve. Viral DNA copy
548 number was then calculated by substituting sample Cq values into the regression equation
549 dictated by the standard curve. qPCR primer sequences used for DNA copy number quantification
550 are as follows: BALF5_forward 5' GAG CGA TCT TGG CAA TCT CT 3', BALF5_Reverse 5' TGG
551 TCA TGG ATC TGC TAA ACC 3'.

552

553 **Green Daudi assay**

554 The green Daudi assay was performed as previously described (52, 99). In brief, EBV lytic
555 replication was induced by anti-human IgG (15 µg/ml) crosslinking for 24 h in Akata producer cells
556 that carry bacterial artificial chromosome EBV encoding a GFP transgene (100). Supernatant was
557 collected and passed through a 0.45 µm filter. Daudi cells at 75,000 cells/ml were co-incubated
558 with supernatant from EBV+ Akata producer cells. At 24 h post infection, culture media was
559 exchanged to fresh RPMI, supplemented with 10% FBS. Cells were treated with 20 ng/ml

560 tetradecanoyle phorbol acetate (TPA) and 3mM NaB for another 48 h. The percentage of GFP+
561 Daudi cells was then determined by flow cytometry.

562

563 **Quantification and statistical analysis**

564 Unless otherwise indicated, all bar graphs and line graphs represent the arithmetic mean of three
565 independent experiments ($n = 3$), with error bars denoting SEM. Significance between the control
566 and experimental groups, or indicated pairs of groups, was assessed using the unpaired Student's
567 t-test in the GraphPad Prism 7 software. P values correlate with symbols as follows, unless
568 otherwise indicated: ns = not significant, $p > 0.05$; * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$; **** $p \leq$
569 0.0001. Pathway analysis was performed and visualized by using DAVID. Cytoscape version
570 3.8.1 was used to construct protein-protein interaction networks.

571

572 **Schematic Models**

573 Biorender was used to create all schematic models.

574

575 **ACKNOWLEDGEMENTS**

576 This work was supported by NIH RO1s AI164709, CA228700, U01CA275301 and R21 AI170751.
577 We thank Dr. Domenico Tortorella for helpful discussions. M.P.W. is supported by the Medical
578 Research Council (MR/W025647/1), Addenbrooke's Charitable Trust, the Wellcome Trust
579 Institutional Strategic Support Fund (204845/Z/16/Z) and the Cambridge Biomedical Research
580 Centre, UK.

581

582 **Author Contributions:** S.P.T.Y. performed and analyzed the experiments and bioinformatic
583 analysis. S.P.T.Y., M.P.W. and B.E.G. supervised the study. S.P.T.Y. and B.E.G. wrote the
584 manuscript.

585

586 **Competing Interest Statement:** The authors declare no competing interests.

587

588 **REFERENCES**

- 589 1. Parkin DM (2006) The global health burden of infection-associated cancers in the year
590 2002. *Int J Cancer* 118(12):3030-3044.
- 591 2. Zur Hausen H & de Villiers EM (2015) Reprint of: cancer "causation" by infections--
592 individual contributions and synergistic networks. *Semin Oncol* 42(2):207-222.
- 593 3. Shannon-Lowe C, Rickinson AB, & Bell AI (2017) Epstein-Barr virus-associated
594 lymphomas. *Philos Trans R Soc Lond B Biol Sci* 372(1732).
- 595 4. Farrell PJ (2019) Epstein-Barr Virus and Cancer. *Annu Rev Pathol* 14:29-53.

596 5. Rosemarie Q & Sugden B (2020) Epstein-Barr Virus: How Its Lytic Phase Contributes to
597 Oncogenesis. *Microorganisms* 8(11).

598 6. Murata T, *et al.* (2021) Molecular Basis of Epstein-Barr Virus Latency Establishment and
599 Lytic Reactivation. *Viruses* 13(12).

600 7. Munz C (2019) Latency and lytic replication in Epstein-Barr virus-associated oncogenesis.
601 *Nat Rev Microbiol* 17(11):691-700.

602 8. Zeidler R, *et al.* (1997) Downregulation of TAP1 in B lymphocytes by cellular and Epstein-
603 Barr virus-encoded interleukin-10. *Blood* 90(6):2390-2397.

604 9. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, & Masucci MG (1997) Inhibition of
605 ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the
606 Epstein-Barr virus nuclear antigen 1. *Proc Natl Acad Sci U S A* 94(23):12616-12621.

607 10. Hislop AD, *et al.* (2007) A CD8+ T cell immune evasion protein specific to Epstein-Barr
608 virus and its close relatives in Old World primates. *J Exp Med* 204(8):1863-1873.

609 11. Strockbine LD, *et al.* (1998) The Epstein-Barr virus BARF1 gene encodes a novel, soluble
610 colony-stimulating factor-1 receptor. *J Virol* 72(5):4015-4021.

611 12. Ressing ME, *et al.* (2003) Interference with T cell receptor-HLA-DR interactions by
612 Epstein-Barr virus gp42 results in reduced T helper cell recognition. *Proc Natl Acad Sci U*
613 *S A* 100(20):11583-11588.

614 13. Zuo J, *et al.* (2009) The Epstein-Barr virus G-protein-coupled receptor contributes to
615 immune evasion by targeting MHC class I molecules for degradation. *PLoS Pathog*
616 5(1):e1000255.

617 14. Rowe M, *et al.* (2007) Host shutoff during productive Epstein-Barr virus infection is
618 mediated by BGLF5 and may contribute to immune evasion. *Proc Natl Acad Sci U S A*
619 104(9):3366-3371.

620 15. Casco A & Johannsen E (2023) EBV Reactivation from Latency Is a Degrading
621 Experience for the Host. *Viruses* 15(3).

622 16. Bhaduri-McIntosh S, *et al.* (2007) Serum IgA antibodies to Epstein-Barr virus (EBV) early
623 lytic antigens are present in primary EBV infection. *J Infect Dis* 195(4):483-492.

624 17. Argirion I, *et al.* (2023) Comparative analysis of the humoral immune response to the EBV
625 proteome across EBV-related malignancies. *Cancer Epidemiol Biomarkers Prev*.

626 18. Bjornevik K, *et al.* (2022) Longitudinal analysis reveals high prevalence of Epstein-Barr
627 virus associated with multiple sclerosis. *Science* 375(6578):296-301.

628 19. Ersing I, *et al.* (2017) A Temporal Proteomic Map of Epstein-Barr Virus Lytic Replication
629 in B Cells. *Cell Rep* 19(7):1479-1493.

630 20. Swain SL, McKinstry KK, & Strutt TM (2012) Expanding roles for CD4(+) T cells in
631 immunity to viruses. *Nat Rev Immunol* 12(2):136-148.

632 21. Yiu SPT, *et al.* (2023) An Epstein-Barr virus protein interaction map reveals NLRP3
633 inflammasome evasion via MAVS UFMylation. *Mol Cell*.

634 22. Bellows DS, Howell M, Pearson C, Hazlewood SA, & Hardwick JM (2002) Epstein-Barr
635 virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. *J*
636 *Virol* 76(5):2469-2479.

637 23. Lo AK, Dawson CW, Lung HL, Wong KL, & Young LS (2020) The Therapeutic Potential
638 of Targeting BARF1 in EBV-Associated Malignancies. *Cancers (Basel)* 12(7).

639 24. Calderwood MA, Holthaus AM, & Johannsen E (2008) The Epstein-Barr virus LF2 protein
640 inhibits viral replication. *J Virol* 82(17):8509-8519.

641 25. Chiu YF, Sugden AU, & Sugden B (2013) Epstein-Barr viral productive amplification
642 reprograms nuclear architecture, DNA replication, and histone deposition. *Cell Host*
643 *Microbe* 14(6):607-618.

644 26. Meng Q, *et al.* (2010) The Epstein-Barr virus (EBV)-encoded protein kinase, EBV-PK, but
645 not the thymidine kinase (EBV-TK), is required for ganciclovir and acyclovir inhibition of
646 lytic viral production. *J Virol* 84(9):4534-4542.

647 27. Yiu SPT, Guo R, Zerbe C, Weekes MP, & Gewurz BE (2022) Epstein-Barr virus BNRF1
648 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication
649 compartments. *Cell Rep* 38(10):110411.

650 28. Donaldson JG, Porat-Shliom N, & Cohen LA (2009) Clathrin-independent endocytosis: a
651 unique platform for cell signaling and PM remodeling. *Cell Signal* 21(1):1-6.

652 29. Pelkmans L, Burli T, Zerial M, & Helenius A (2004) Caveolin-stabilized membrane
653 domains as multifunctional transport and sorting devices in endocytic membrane traffic.
654 *Cell* 118(6):767-780.

655 30. Parton RG & Simons K (2007) The multiple faces of caveolae. *Nat Rev Mol Cell Biol*
656 8(3):185-194.

657 31. Pelkmans L, Kartenbeck J, & Helenius A (2001) Caveolar endocytosis of simian virus 40
658 reveals a new two-step vesicular-transport pathway to the ER. *Nat Cell Biol* 3(5):473-483.

659 32. Norkin LC & Kuksin D (2005) The caveolae-mediated sv40 entry pathway bypasses the
660 golgi complex en route to the endoplasmic reticulum. *Virol J* 2:38.

661 33. Kiss AL & Botos E (2009) Endocytosis via caveolae: alternative pathway with distinct
662 cellular compartments to avoid lysosomal degradation? *J Cell Mol Med* 13(7):1228-1237.

663 34. Komano J, Sugiura M, & Takada K (1998) Epstein-Barr virus contributes to the malignant
664 phenotype and to apoptosis resistance in Burkitt's lymphoma cell line Akata. *J Virol*
665 72(11):9150-9156.

666 35. Vembar SS & Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated
667 degradation. *Nat Rev Mol Cell Biol* 9(12):944-957.

668 36. Ruggiano A, Foresti O, & Carvalho P (2014) Quality control: ER-associated degradation:
669 protein quality control and beyond. *J Cell Biol* 204(6):869-879.

670 37. Smith MH, Ploegh HL, & Weissman JS (2011) Road to ruin: targeting proteins for
671 degradation in the endoplasmic reticulum. *Science* 334(6059):1086-1090.

672 38. Wernick NL, Chinnappen DJ, Cho JA, & Lencer WI (2010) Cholera toxin: an intracellular
673 journey into the cytosol by way of the endoplasmic reticulum. *Toxins (Basel)* 2(3):310-325.

674 39. Wang B, *et al.* (2008) BAP31 interacts with Sec61 translocons and promotes
675 retrotranslocation of CFTRDeltaF508 via the derlin-1 complex. *Cell* 133(6):1080-1092.

676 40. Annaert WG, Becker B, Kistner U, Reth M, & Jahn R (1997) Export of cellubrevin from the
677 endoplasmic reticulum is controlled by BAP31. *J Cell Biol* 139(6):1397-1410.

678 41. Geiger R, *et al.* (2011) BAP31 and BiP are essential for dislocation of SV40 from the
679 endoplasmic reticulum to the cytosol. *Nat Cell Biol* 13(11):1305-1314.

680 42. Paquet ME, Cohen-Doyle M, Shore GC, & Williams DB (2004) Bap29/31 influences the
681 intracellular traffic of MHC class I molecules. *J Immunol* 172(12):7548-7555.

682 43. Quistgaard EM (2021) BAP31: Physiological functions and roles in disease. *Biochimie*
683 186:105-129.

684 44. Stein A, Ruggiano A, Carvalho P, & Rapoport TA (2014) Key steps in ERAD of luminal ER
685 proteins reconstituted with purified components. *Cell* 158(6):1375-1388.

686 45. Schoebel S, *et al.* (2017) Cryo-EM structure of the protein-conducting ERAD channel Hrd1
687 in complex with Hrd3. *Nature* 548(7667):352-355.

688 46. Wu X & Rapoport TA (2018) Mechanistic insights into ER-associated protein degradation.
689 *Curr Opin Cell Biol* 53:22-28.

690 47. Fiebiger E, *et al.* (2004) Dissection of the dislocation pathway for type I membrane proteins
691 with a new small molecule inhibitor, eeyarestatin. *Mol Biol Cell* 15(4):1635-1646.

692 48. Wang Q, Li L, & Ye Y (2008) Inhibition of p97-dependent protein degradation by
693 Eeyarestatin I. *J Biol Chem* 283(12):7445-7454.

694 49. Hyer ML, *et al.* (2018) A small-molecule inhibitor of the ubiquitin activating enzyme for
695 cancer treatment. *Nat Med* 24(2):186-193.

696 50. Nanbo A (2020) Epstein-Barr Virus Exploits the Secretory Pathway to Release Virions.
697 *Microorganisms* 8(5).

698 51. Herrman M, Muhe J, Quink C, & Wang F (2016) Epstein-Barr Virus gp350 Can
699 Functionally Replace the Rhesus Lymphocryptovirus Major Membrane Glycoprotein and
700 Does Not Restrict Infection of Rhesus Macaques. *J Virol* 90(3):1222-1230.

701 52. Altmann M & Hammerschmidt W (2005) Epstein-Barr virus provides a new paradigm: a
702 requirement for the immediate inhibition of apoptosis. *PLoS Biol* 3(12):e404.

703 53. Davis RE, et al. (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell
704 lymphoma. *Nature* 463(7277):88-92.

705 54. Havranek O, et al. (2017) Tonic B-cell receptor signaling in diffuse large B-cell lymphoma.
706 *Blood* 130(8):995-1006.

707 55. Saba NS, et al. (2016) Pathogenic role of B-cell receptor signaling and canonical NF-
708 kappaB activation in mantle cell lymphoma. *Blood* 128(1):82-92.

709 56. Myklebust JH, et al. (2017) Distinct patterns of B-cell receptor signaling in non-Hodgkin
710 lymphomas identified by single-cell profiling. *Blood* 129(6):759-770.

711 57. He X, et al. (2018) Continuous signaling of CD79b and CD19 is required for the fitness of
712 Burkitt lymphoma B cells. *EMBO J* 37(11).

713 58. Dempster JM, et al. (2021) Chronos: a cell population dynamics model of CRISPR
714 experiments that improves inference of gene fitness effects. *Genome Biol* 22(1):343.

715 59. Young RM, et al. (2015) Survival of human lymphoma cells requires B-cell receptor
716 engagement by self-antigens. *Proc Natl Acad Sci U S A* 112(44):13447-13454.

717 60. Ma Y, et al. (2017) CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell
718 Host Dependency Factors. *Cell Host Microbe* 21(5):580-591 e587.

719 61. Piguet V, et al. (1999) Nef-induced CD4 degradation: a diacidic-based motif in Nef
720 functions as a lysosomal targeting signal through the binding of beta-COP in endosomes.
721 *Cell* 97(1):63-73.

722 62. Pereira EA & daSilva LL (2016) HIV-1 Nef: Taking Control of Protein Trafficking. *Traffic*
723 17(9):976-996.

724 63. Schubert U, et al. (1998) CD4 glycoprotein degradation induced by human
725 immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the
726 ubiquitin-conjugating pathway. *J Virol* 72(3):2280-2288.

727 64. Perez-Caballero D, et al. (2009) Tetherin inhibits HIV-1 release by directly tethering virions
728 to cells. *Cell* 139(3):499-511.

729 65. Shrock EL, et al. (2023) Germline-encoded amino acid-binding motifs drive
730 immunodominant public antibody responses. *Science* 380(6640):eadc9498.

731 66. Smith NA, et al. (2019) Differences in the Epstein-Barr Virus gp350 IgA Antibody
732 Response Are Associated With Increased Risk for Coinfection With a Second Strain of
733 Epstein-Barr Virus. *J Infect Dis* 219(6):955-963.

734 67. Jayasooriya S, et al. (2015) Early virological and immunological events in asymptomatic
735 Epstein-Barr virus infection in African children. *PLoS Pathog* 11(3):e1004746.

736 68. Henle G & Henle W (1976) Epstein-Barr virus-specific IgA serum antibodies as an
737 outstanding feature of nasopharyngeal carcinoma. *Int J Cancer* 17(1):1-7.

738 69. Huang Y, et al. (2017) Serum EBV EA-IgA and VCA-IgA antibodies can be used for risk
739 group stratification and prognostic prediction in extranodal NK/T cell lymphoma: 24-year
740 experience at a single institution. *Ann Hematol* 96(8):1331-1342.

741 70. Zhu QY, et al. (2020) Association between Antibody Responses to Epstein-Barr Virus
742 Glycoproteins, Neutralization of Infectivity, and the Risk of Nasopharyngeal Carcinoma.
743 *mSphere* 5(6).

744 71. Xu J, et al. (1998) The Epstein-Barr virus (EBV) major envelope glycoprotein gp350/220-
745 specific antibody reactivities in the sera of patients with different EBV-associated diseases.
746 *Int J Cancer* 79(5):481-486.

747 72. Hislop AD, et al. (2005) Tonsillar homing of Epstein-Barr virus-specific CD8+ T cells and
748 the virus-host balance. *J Clin Invest* 115(9):2546-2555.

749 73. Ressing ME, *et al.* (2008) Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell
750 immunity via concerted actions of multiple gene products. *Semin Cancer Biol* 18(6):397-
751 408.

752 74. Johannsen E, *et al.* (2004) Proteins of purified Epstein-Barr virus. *Proc Natl Acad Sci U S*
753 A 101(46):16286-16291.

754 75. Shao Z, Borde C, Quignon F, Escargueil A, & Marechal V (2019) Epstein-Barr Virus
755 BALF0 and BALF1 Modulate Autophagy. *Viruses* 11(12).

756 76. Boni M, Rieble L, & Munz C (2022) Co-Infection of the Epstein-Barr Virus and the Kaposi
757 Sarcoma-Associated Herpesvirus. *Viruses* 14(12).

758 77. Caballero A, *et al.* (2006) Functional and structural requirements for the internalization of
759 distinct BCR-ligand complexes. *Eur J Immunol* 36(12):3131-3145.

760 78. Stoddart A, *et al.* (2002) Lipid rafts unite signaling cascades with clathrin to regulate BCR
761 internalization. *Immunity* 17(4):451-462.

762 79. Natkanski E, *et al.* (2013) B cells use mechanical energy to discriminate antigen affinities.
763 *Science* 340(6140):1587-1590.

764 80. Galbiati F, *et al.* (1999) The dually acylated NH2-terminal domain of gi1alpha is sufficient
765 to target a green fluorescent protein reporter to caveolin-enriched plasma membrane
766 domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated g-
767 protein alpha subunits in vivo. *J Biol Chem* 274(9):5843-5850.

768 81. Li S, Seitz R, & Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases.
769 The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. *J Biol Chem*
770 271(7):3863-3868.

771 82. Lee H, *et al.* (2001) Palmitoylation of caveolin-1 at a single site (Cys-156) controls its
772 coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked,
773 transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1
774 (TYR-14). *J Biol Chem* 276(37):35150-35158.

775 83. Pelkmans L, Puntener D, & Helenius A (2002) Local actin polymerization and dynamin
776 recruitment in SV40-induced internalization of caveolae. *Science* 296(5567):535-539.

777 84. Lee H, *et al.* (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-
778 1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling
779 cassette. *Mol Endocrinol* 14(11):1750-1775.

780 85. Tiruppathi C, Song W, Bergenfeldt M, Sass P, & Malik AB (1997) Gp60 activation mediates
781 albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. *J Biol*
782 *Chem* 272(41):25968-25975.

783 86. Cohen PT (2002) Protein phosphatase 1--targeted in many directions. *J Cell Sci* 115(Pt
784 2):241-256.

785 87. Kiss AL, Botos E, Turi A, & Mullner N (2004) Ocadaic acid treatment causes tyrosine
786 phosphorylation of caveolin-2 and induces internalization of caveolae in rat peritoneal
787 macrophages. *Micron* 35(8):707-715.

788 88. Puri V, *et al.* (2001) Clathrin-dependent and -independent internalization of plasma
789 membrane sphingolipids initiates two Golgi targeting pathways. *J Cell Biol* 154(3):535-547.

790 89. Botos E, *et al.* (2007) Regulatory role of kinases and phosphatases on the internalisation
791 of caveolae in HepG2 cells. *Micron* 38(3):313-320.

792 90. Parton RG, Joggerst B, & Simons K (1994) Regulated internalization of caveolae. *J Cell*
793 *Biol* 127(5):1199-1215.

794 91. Bartee E, *et al.* (2010) Membrane-Associated RING-CH proteins associate with Bap31
795 and target CD81 and CD44 to lysosomes. *PLoS One* 5(12):e15132.

796 92. Young RM, Phelan JD, Wilson WH, & Staudt LM (2019) Pathogenic B-cell receptor
797 signaling in lymphoid malignancies: New insights to improve treatment. *Immunol Rev*
798 291(1):190-213.

799 93. Dupont E, Prochiantz A, & Joliot A (2015) Penetratin Story: An Overview. *Methods Mol
800 Biol* 1324:29-37.

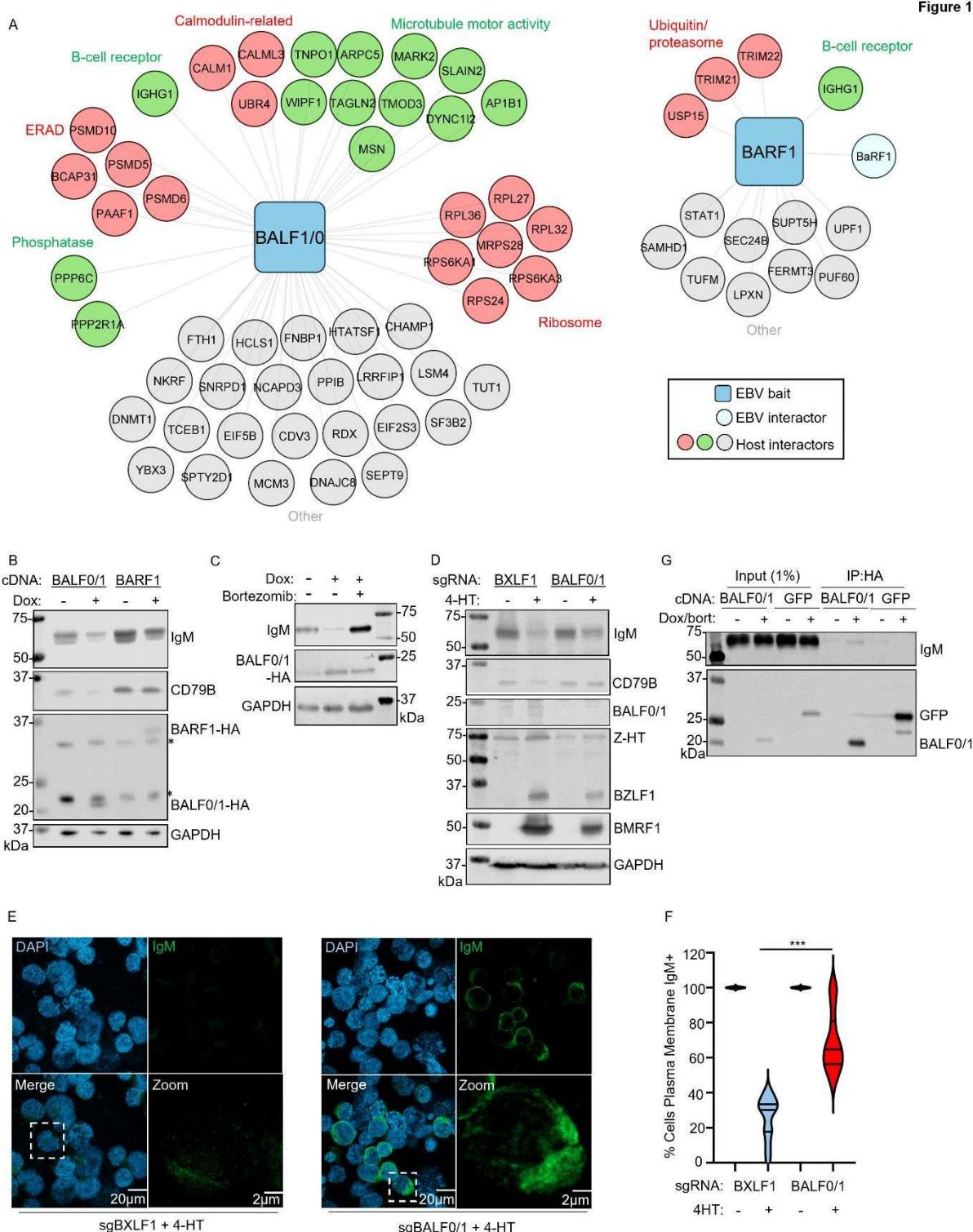
801 94. Agrotis A, Pengo N, Burden JJ, & Ketteler R (2019) Redundancy of human ATG4 protease
802 isoforms in autophagy and LC3/GABARAP processing revealed in cells. *Autophagy*
803 15(6):976-997.

804 95. Guo R, *et al.* (2020) MYC Controls the Epstein-Barr Virus Lytic Switch. *Mol Cell* 78(4):653-
805 669 e658.

806 96. Sanjana NE, Shalem O, & Zhang F (2014) Improved vectors and genome-wide libraries
807 for CRISPR screening. *Nat Methods* 11(8):783-784.

808 97. Pham H, Kearns NA, & Maehr R (2016) Transcriptional Regulation with CRISPR/Cas9
809 Effectors in Mammalian Cells. *Methods Mol Biol* 1358:43-57.

810 98. Gstalder C, *et al.* (2020) Inactivation of Fbxw7 Impairs dsRNA Sensing and Confers
811 Resistance to PD-1 Blockade. *Cancer Discov* 10(9):1296-1311.


812 99. Pich D, *et al.* (2019) First Days in the Life of Naive Human B Lymphocytes Infected with
813 Epstein-Barr Virus. *mBio* 10(5).

814 100. Kanda T, Yajima M, Ahsan N, Tanaka M, & Takada K (2004) Production of high-titer
815 Epstein-Barr virus recombinants derived from Akata cells by using a bacterial artificial
816 chromosome system. *J Virol* 78(13):7004-7015.

817

818

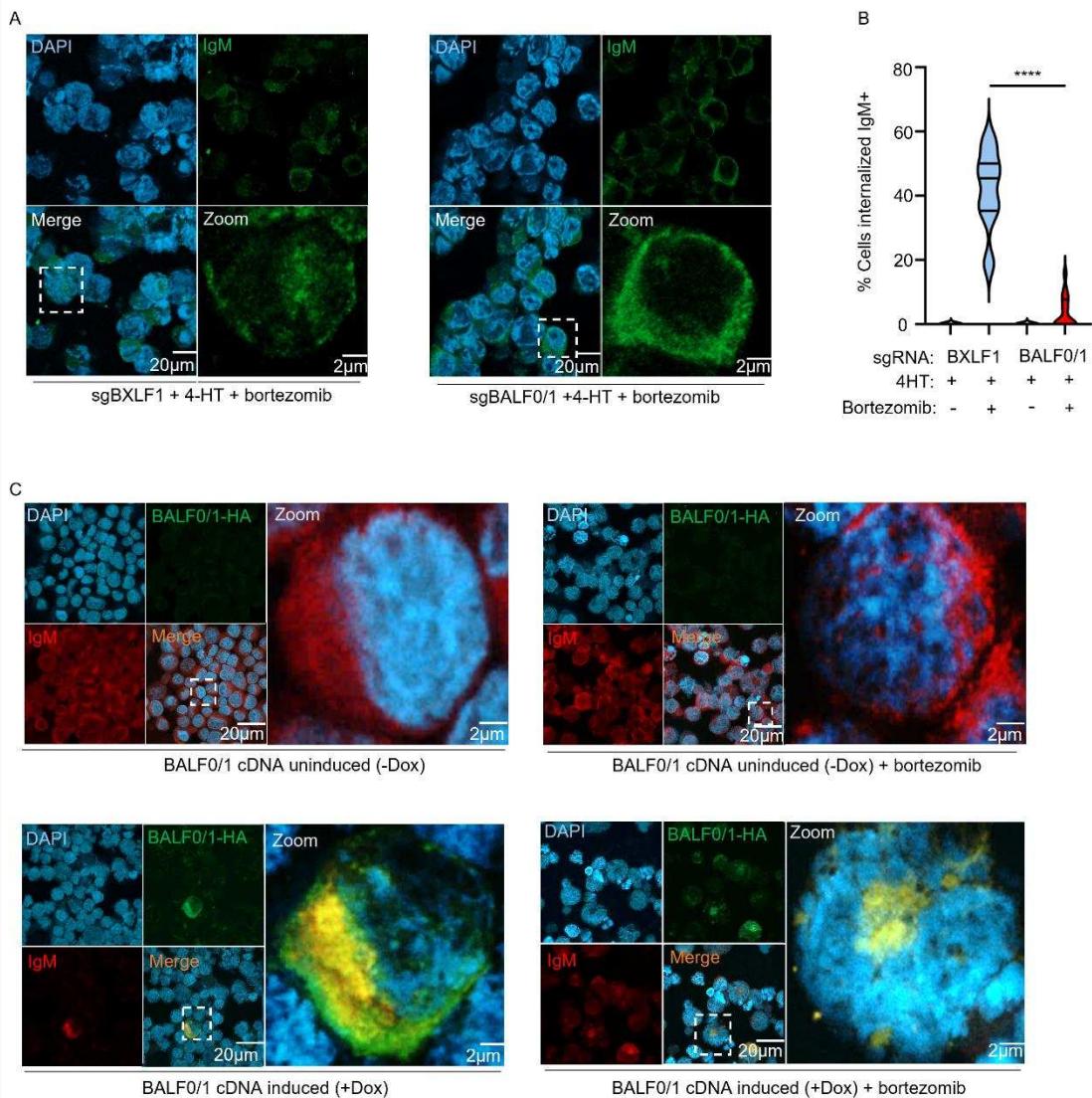
Figure 1

822 **Figure 1. EBV early lytic protein BALF0/1 targets the B-cell receptor complex for**
823 **degradation**

824 (A) EBV B-cell lytic cycle BALF0/1 (left) and BARF1 (right) protein-protein interaction network,
825 adapted from (21). DAVID was used to identify enriched pathways among BALF0/1 interactors.

826 (B) Immunoblot analysis of whole cell lysates (WCL) from latent P3HR-1 Burkitt cells induced for
827 expression of BALF0/1 or BARF1 cDNAs by 5 μ g/ml doxycycline (Dox) for 24 h, as indicated. *
828 indicates background band.

829 (C) Immunoblot analysis of WCL from P3HR-1 cells expressing BALF0/1 cDNA, induced by 5
830 μ g/ml doxycycline (Dox) in the presence or absence of 5 nM of the proteasome inhibitor
831 bortezomib for 24 h, as indicated.


832 (D) Immunoblot analysis of WCL from Cas9+ P3HR-1 ZHT/RHT cells expressing the indicated
833 sgRNA, induced into lytic replication by 400 nM 4-HT for 24 h.

834 (E) Immunofluorescence analysis of IgM in Cas9+ P3HR-1 ZHT/RHT cells expressing the
835 indicated BXLF1 or BALF0/1 targeting sgRNA. Cells were 4-HT induced for lytic replication for 24
836 h. See also Fig. S1B.

837 (F) Mean \pm standard error of the mean (SEM) percentage of cells with detectable IgM signal as
838 in panel E and [Figure S1](#)B of P3HR-1 cells expressing the indicated BXLF1 or BALF0/1 sgRNA,
839 4-HT induced as indicated, using data from 15 randomly selected panels of 300 cells from n=3
840 replicates, analyzed using the ImageJ ComDet plugin.

841 (G) Immunoblot analysis of 1% input and anti-HA immunopurified from P3HR-1 stably expressing
842 BALF0/1-HA or GFP-HA, treated with 5 μ g/ml doxycycline and 5 nM bortezomib (bort) for 24 h,
843 as indicated.

844 Statistical analysis was performed with Student's t-test unless otherwise specified. ***p < 0.001.
845 White bars indicate scale. See also [Figure S1](#). Blots are representative of at least n=2 replicates
846

Figure 2

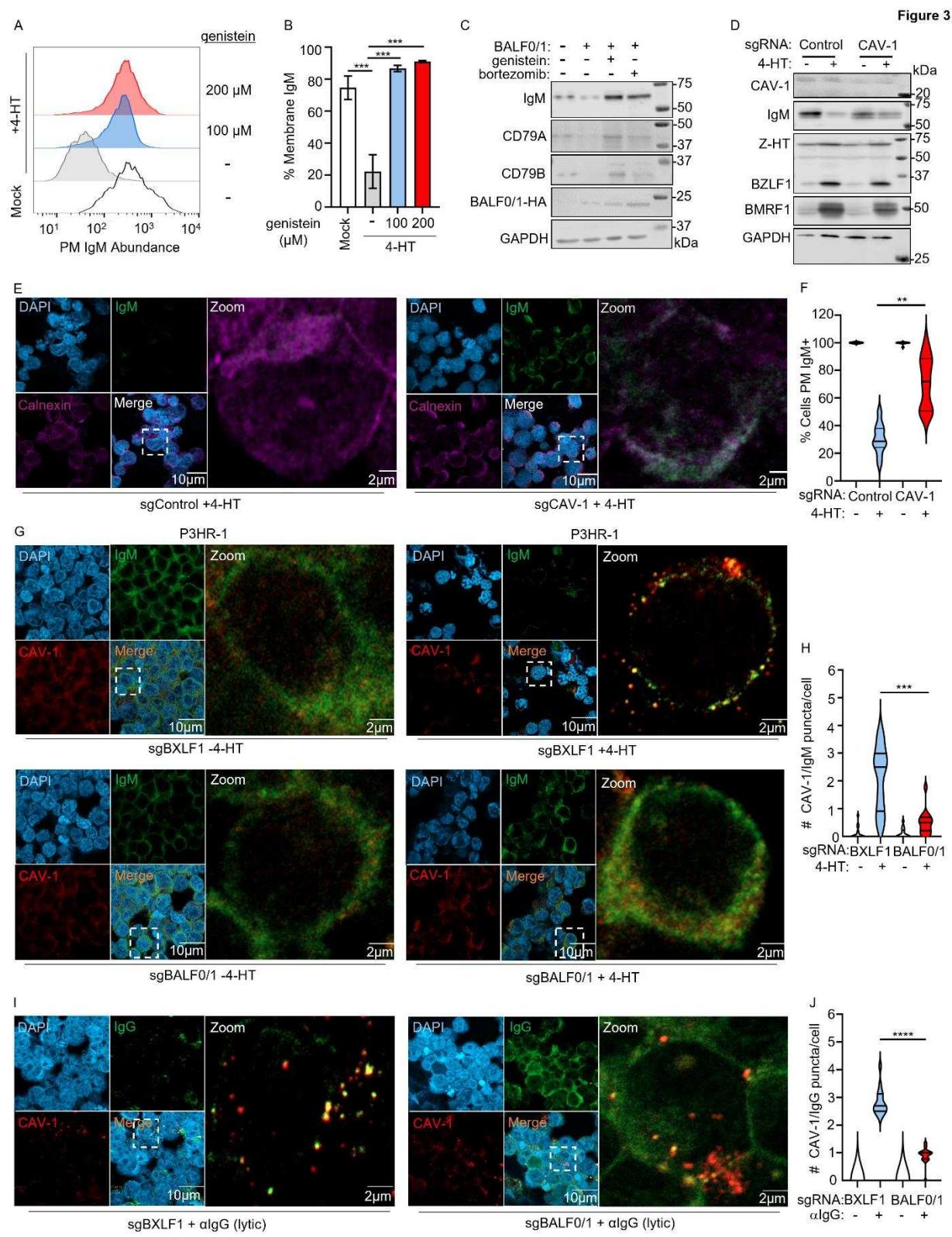
847

848

849

850 **Figure 2. BALF0/1 triggers endocytosis of the BCR complex**

851 (A) Immunofluorescence analysis of IgM subcellular distribution in Cas9+ P3HR-1 cells
852 expressing the indicated BXLF1 or BALF0/1 targeting sgRNA. Cells were 4-HT induced for lytic
853 replication and treated with bortezomib for 24 h. Magnification of the white boxed areas are shown
854 in the bottom right of each panel.


855 (B) Mean \pm SEM percentage of cells with internalized IgM as in panel A and [Figure 1E](#) of P3HR-
856 1 cells expressing the indicated BXLF1 or BALF0/1 sgRNA, 4-HT induced in the presence of
857 bortezomib, as indicated, using data from 15 randomly selected panels of 300 cells from n=3
858 replicates, analyzed using the ImageJ ComDet plugin.

859 (C) Immunofluorescence analysis of IgM and BALF0/1 colocalization, as determined by staining
860 for IgM (red) and for HA-tagged BALF0/1 (green) in P3HR-1 cells, mock-induced or induced for
861 BALF0/1-HA expression by doxycycline addition in the absence or presence of bortezomib for 24
862 h. Yellow indicates area of overlap in the merged images. Magnified images of the white boxed
863 areas are shown to the right of each panel.

864 Statistical analysis was performed with Student's t-test unless otherwise specified. ****p < 0.0001.

865 White bars indicate scale.

866

870 **Figure 3. BALF0/1 triggers BCR endocytosis via the caveolae pathway**

871 (A) FACS analysis of plasma membrane (PM) IgM levels in P3HR-1 cells induced for lytic
872 replication by 4HT, in the absence or presence of the indicated concentration of genistein for 24h,
873 as indicated.

874 (B) Mean \pm SEM of PM IgM abundances from n=3 independent replicates, as in panel A.

875 (C) Immunoblot analysis of WCL from P3HR-1 cells induced for BALF0/1 expression by 5 μ g/ml
876 doxycycline in the absence or presence of 5 nM bortezomib or 100 μ M genistein for 24 h, as
877 indicated.

878 (D) Immunoblot analysis of WCL from P3HR-1 cells expressing control or caveolin-1 (CAV-1)
879 targeting sgRNA and 4-HT induced into lytic replication.

880 (E) Immunofluorescence analysis of IgM expression in P3HR-1 cells expressing control or CAV-
881 1 targeting sgRNA, induced for lytic replication by 4-HT treatment for 24 h. For comparison, ER-
882 resident calnexin is shown.

883 (F) Mean \pm SEM percentage of cells with PM IgM expression as in panel E and [Figure S2C](#) of
884 P3HR-1 cells expressing the indicated control or CAV-1 sgRNA, 4-HT induced, as indicated, using
885 data from 12 randomly selected panels of 240 cells from n=3 replicates, analyzed using the
886 ImageJ ComDet plugin.

887 (G) Immunofluorescence analysis of IgG and CAV-1 subcellular localization in Cas9+ P3HR1
888 ZHT/RHT cells expressing BXLF1 or BALF0/1 sgRNA, as indicated. Cells were induced into lytic
889 cycle by 4HT crosslinking for 16h, as indicated.

890 (H) Mean \pm SEM number of cells with co-localized IgM and CAV-1 puncta as in panel G of P3HR-
891 1 cells expressing the indicated BXLF1 or BALF0/1 sgRNA, uninduced or 4-HT induced, as
892 indicated, using data from 20 randomly selected panels of 400 cells from n=3 replicates, analyzed
893 using the ImageJ ComDet plugin.

894 (I) Immunofluorescence analysis of CAV-1 and IgG subcellular distributions in EBV+ Cas9+ Akata
895 expressing BXLF1 or BALF0/1 targeting sgRNA and induced for lytic replication by α -IgG
896 crosslinking for 48 h.

897 (J) Mean \pm SEM number of cells with co-localized IgG and CAV-1 signals as in panel I and [Figure](#)
898 [S3](#) of EBV+ Cas9+ Akata cells expressing the indicated BXLF1 or BALF0/1 sgRNA, α -IgG

899 crosslinked, as indicated, using data from 20 randomly selected panels of 400 cells from n=3
900 replicates, analyzed using the ImageJ ComDet plugin.

901 Statistical analysis was performed with Student's t-test unless otherwise specified. ****p < 0.0001.
902 ***p < 0.001. **p < 0.01. White bars indicate scale. See also [Figure S2-3](#). Blots are representative
903 of at least n=2 replicates.

904

Figure 4

907 **Figure 4. BALF1/0 subverts the ER-associated degradation pathway to route BCR to**
908 **cytosolic proteasomes**

909 (A) Immunofluorescence analysis of IgM and calnexin subcellular distribution in Cas9+ P3HR-1
910 cells expressing control sgRNA and 4-HT induced for lytic replication for 24 h, in the absence or
911 presence of bortezomib.

912 (B) Line scanning of fluorescence intensity for calnexin (magenta) and IgM (green) in the
913 annotated the white rectangle shown in panel A.

914 (C) Mean \pm SEM percentage of cells with overlapping calnexin and IgM signals as in panel A of
915 P3HR-1 cells expressing the indicated control sgRNA, 4-HT induced in the absence or presence
916 of bortezomib as indicated, using data from 12 randomly selected panels of 240 cells from n=3
917 replicates, analyzed using the ImageJ ComDet plugin.

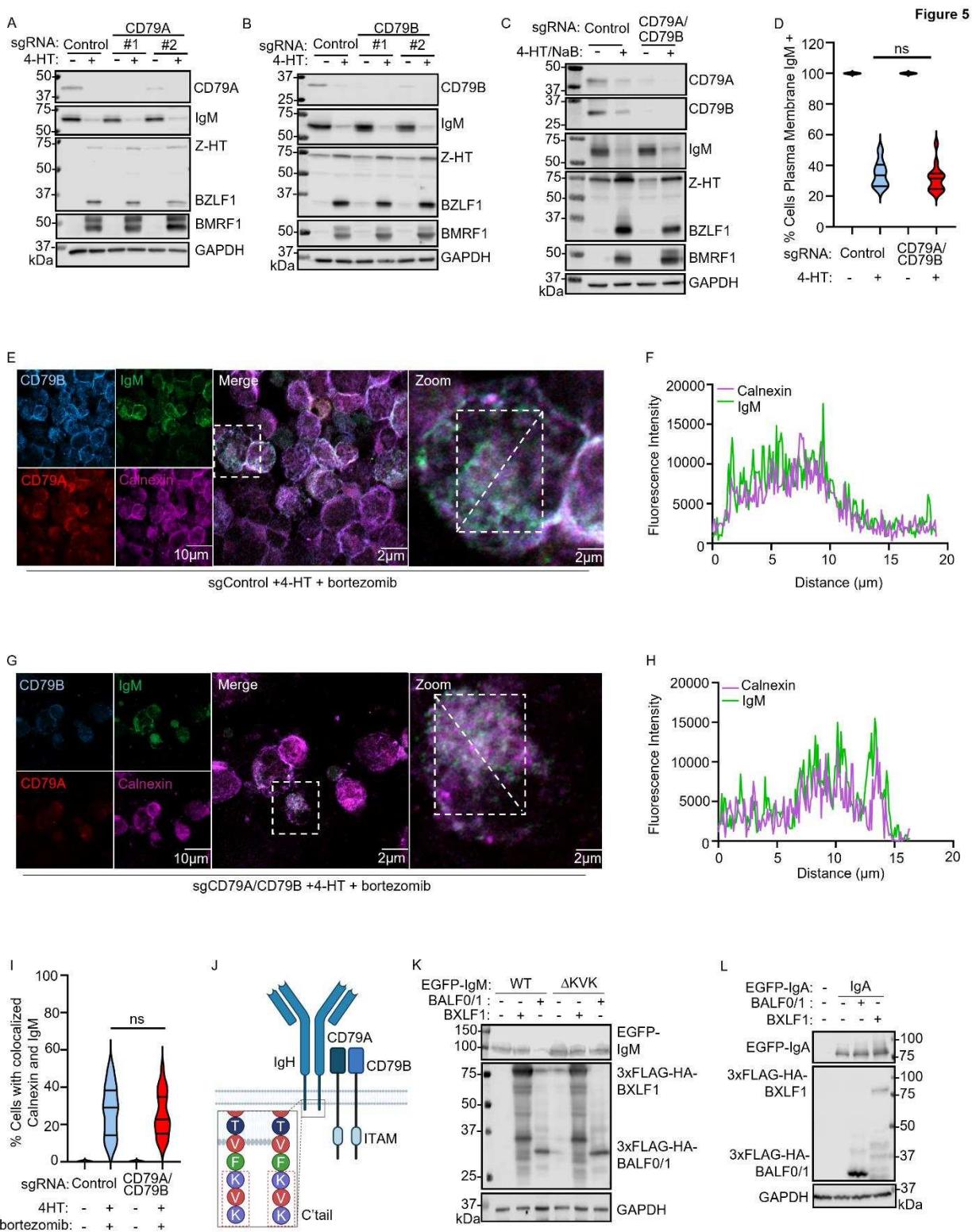
918 (D) Immunoblot analysis of WCL from Cas9+ P3HR-1 cells expressing the indicated HRD1-
919 targeting sgRNA, 4-HT induced into lytic cycle for 24 h. Representative of n=2 replicates.

920 (E) Immunofluorescence analysis of IgM and calnexin subcellular distribution in Cas9+ P3HR-1
921 cells expressing control or HRD1 sgRNA, as indicated and 4-HT induced for lytic replication for
922 24 h. See also Fig. S5D.

923 (F) Mean \pm SEM percentage of cells with overlapping calnexin and IgM signals as in panel E and
924 [Figure S5](#)B-D of P3HR-1 cells expressing the indicated control or HRD1 sgRNA, uninduced or 4-
925 HT induced in the absence or presence of bortezomib as indicated, using data from 15 randomly
926 selected panels of 300 cells from n=3 replicates, analyzed using the ImageJ ComDet plugin.

927 (G) Immunoblot analysis of 1% input and anti-EGFP immunopurified complexes from 293T cells
928 transiently expressing EGFP-IgM heavy chain chimera together with BALF0/1 or BXLF1 and
929 blotted for poly-ubiquitin chains, for EGFP or for HA, as indicated.

930 (H) Immunoblot analysis of WCL from P3HR-1 cells 4-HT induced into lytic cycle for 24 h, in the
931 absence or presence of increasing doses of the ubiquitin E1 enzyme inhibitor TAK-243 (1 and 2
932 μ M).


933 (I) Schematic model of immunoglobulin (Ig) dislocation via the ERAD pathway, where the Ig heavy
934 chain is ubiquitinated and dislocated from the ER to the cytosol in a HRD1 and p97/VCP
935 dependent manner, where it is degraded by proteasomes.

936 Statistical analysis was performed with Student's t-test unless otherwise specified. ****p < 0.0001.

937 White bars indicate scale. See also [Figure S4-5](#). Blots are representative of at least n=2

938 independent experiments.

939

943 **Figure 5. BALF0/1 mediated BCR degradation requires the Ig heavy chain cytoplasmic tail**

944 (A) Immunoblot analysis of WCL from Cas9+ P3HR-1 cells expressing the indicated CD79A

945 targeting sgRNA, 4-HT induced into lytic cycle for 24 h.

946 (B) Immunoblot analysis of WCL from Cas9+ P3HR-1 cells expressing the indicated CD79B

947 sgRNA, 4-HT induced into lytic cycle for 24 h.

948 (C) Immunoblot analysis of WCL from Cas9+ P3HR-1 cells expressing the indicated CD79A and

949 CD79B sgRNA, 4-HT induced into lytic cycle for 24 h.

950 (D) Mean \pm SEM percentage of cells with PM IgM signals as in [Figure S6](#) of P3HR-1 cells

951 expressing the indicated control or dual CD79A/CD79B sgRNA, uninduced or 4-HT induced, as

952 indicated, using data from 12 randomly selected panels of 240 cells from n=3 replicates, analyzed

953 using the ImageJ ComDet plugin.

954 (E) Immunofluorescence analysis of CD79A, CD79B, IgM and calnexin in P3HR-1 cells

955 expressing control sgRNA and 4-HT induced for lytic replication in the presence of bortezomib for

956 24h.

957 (F) Fluorescence intensity line scanning for calnexin (magenta) and IgM (green) signals from the

958 white rectangle region (E).

959 (G) Immunofluorescence analysis of IgM, calnexin, CD79A and CD79B in Cas9+ P3HR-1 cells

960 expressing CD79A and CD79B sgRNA. Cells were 4-HT induced for lytic replication and treated

961 with bortezomib for 24 h.

962 (H) Fluorescence intensity line scanning for calnexin (magenta) and IgM (green) signals from the

963 white rectangle region in (G).

964 (I) Mean \pm SEM percentage of cells with overlapping calnexin and IgM signals as in panel E, G

965 and [Figure S6](#) of P3HR-1 cells expressing the indicated control or dual CD79A/CD79B sgRNA,

966 uninduced or 4-HT induced in the absence or presence of bortezomib as indicated, using data

967 from 12 randomly selected panels of 240 cells from n=3 replicates, analyzed using the ImageJ

968 ComDet plugin.

969 (J) Schematic model of the BCR complex immunoglobulin heavy (IgH) chain, light chain and the

970 CD79A and CD79B signaling chains. The C' IgM cytoplasmic tail residues are shown.

971 (K) Immunoblot analysis of WCL from 293T cells transiently expressing wildtype (WT) or
972 cytoplasmic tail deleted (Δ KVK) EGFP-tagged IgM heavy chain alone or together with either
973 BXLF1 or BALF0/1.

974 (L) Immunoblot analysis of WCL from 293T transiently expressing the IgA heavy chain, alone or
975 together with BALF0/1 or BXLF1.

976 Statistical analysis was performed with Student's t-test unless otherwise specified. ns p > 0.05.
977 White bars indicate scale. See also [Figure S6](#). Blots are representative of at least n=2 replicates.

978

979

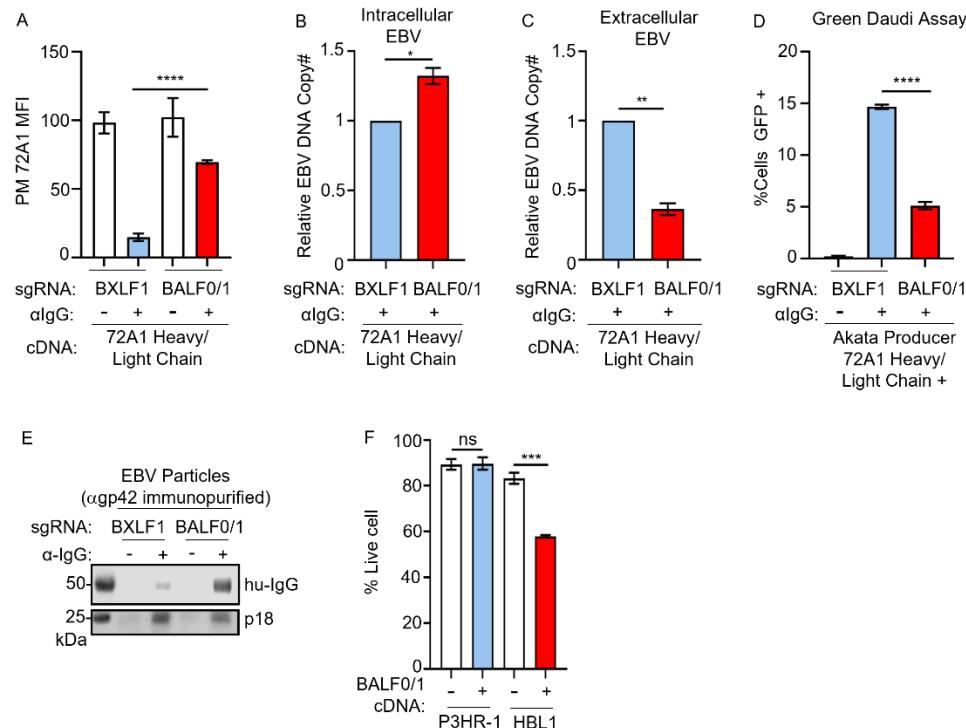
980

981

982

983

984


985

986

987

988

Figure 6

989

990 **Figure 6. BALF0/1 supports virion release from cells expressing anti-EBV gp350 antibody**

991 (A) Mean \pm SEM of PM 72A1 antibody abundance from n=3 replicates of Cas9+ Akata cells
992 expressing the indicated sgRNA and stably expressing partially humanized, membrane bound
993 anti-gp350 monoclonal antibody 72A1. The human-murine chimera 72A1 was detected by Alexa
994 FluorTM 488 tagged goat anti-mouse IgG secondary antibody. See also [Figure S7A](#).

995 (B) qRT-PCR analysis of EBV intracellular genome copy number from EBV+ Cas9+ Akata cells
996 with stable membrane-bound 72A1 antibody expression together with BXLF1 or BALF0/1 sgRNA,
997 induced into lytic replication by BCR crosslinking for 24 h.

998 (C) qRT-PCR analysis of EBV extracellular genome copy number from EBV+ Cas9+ Akata cells
999 with stable membrane-bound 72A1 antibody expression together with BXLF1 or BALF0/1 sgRNA,
1000 induced into lytic replication by BCR crosslinking for 24 h.

1001 (D) Mean \pm SEM from n=3 replicates of green Daudi assay analysis of infectious EBV titers from
1002 EBV+ Cas9+ Akata cells with stable membrane-bound 72A1 expression together with BXLF1 or
1003 BALF0/1 sgRNA, induced into lytic cycle by α -IgG crosslinking for 24 h.

1004 (E) Immunoblot analysis of lysates of EBV virion immunopurified from supernatants of Cas9+
1005 EBV+ Akata that stably expressed 72A1 together with BXLF1 or BALF0/1 sgRNAs, induced for
1006 lytic replication by α -IgG cross-linking. Shown are blots for human IgG (hu-IgG).

1007 (F) Mean \pm SEM percentages from n=3 replicates of live P3HR1 or HBL1 cells mock induced or
1008 induced for BALF0/1 for 24 h, as determined by trypan blue exclusion assay.

1009 Statistical analysis was performed with Student's t-test unless otherwise specified. ****p < 0.0001.

1010 **p < 0.01. *p < 0.05. See also [Figure S7](#).

1011

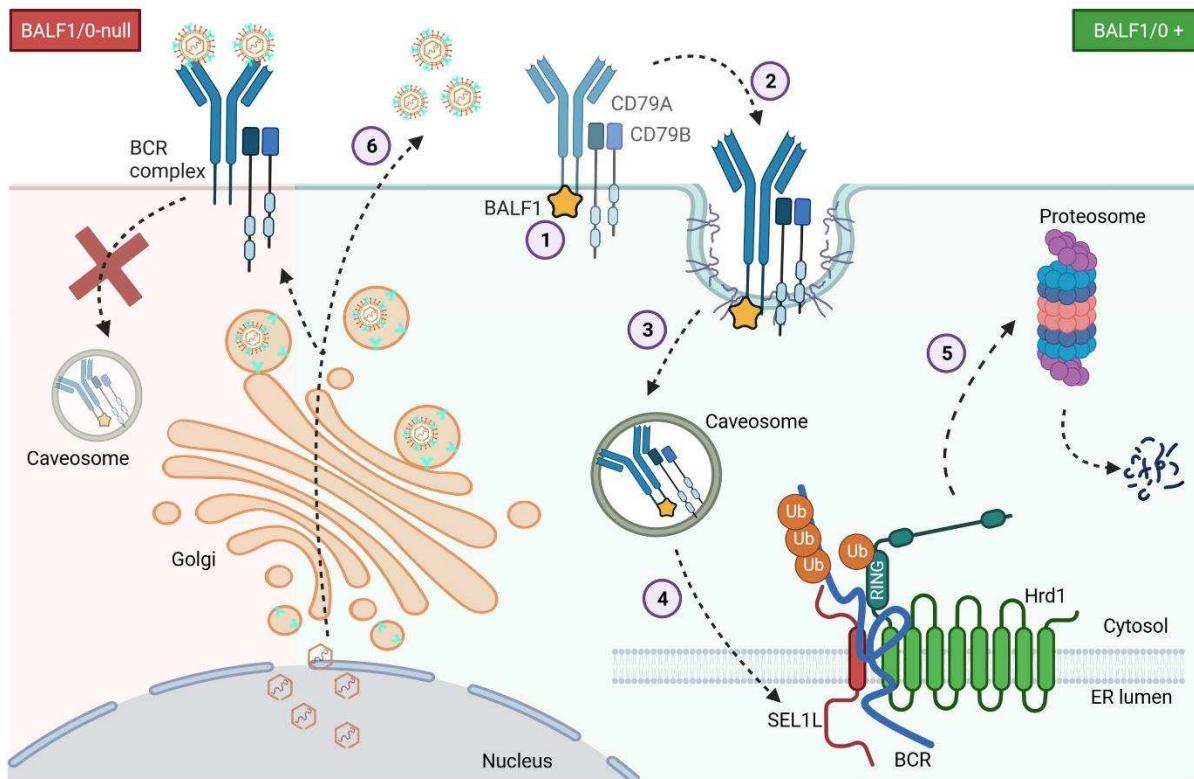
1012

1013

1014

1015

1016


1017

1018

1019

1020

Figure 7

1021

Figure 7. Schematic Model of BALF0/1 mediated BCR degradation

1022 Schematic model of BALF0/1-mediated BCR degradation. BALF0/1 recognizes the IgM heavy
1023 chain cytoplasmic tail and induces caveolin-1-dependent BCR endocytosis, delivering BCR to
1024 caveosomes. BCR are then retrograde trafficked to the ER, ubiquitinated and dislocated to the
1025 cytosol, where they are degraded by proteasomes. In the absence of BALF0/1, EBV release from
1026 B-cells with BCR reactive with virion glycoproteins is impeded.
1027