

1 **Interferon Regulatory Factor 6 Determines Intestinal Epithelial Cell Development and Immunity**

2

3 Austin P. Wright¹, Sydney Harris, Shelby Madden, Bryan Ramirez Reyes, Ethan Mulamula, Alexis Gibson,
4 Isabella Rauch, David A. Constant, and Timothy J. Nice^{1#}

5

6

7 ¹Department of Molecular Microbiology and Immunology, Oregon Health and Science University,
8 Portland, OR 97239, USA

9

10 **#Correspondence to:** nice@ohsu.edu (T.J.N.)

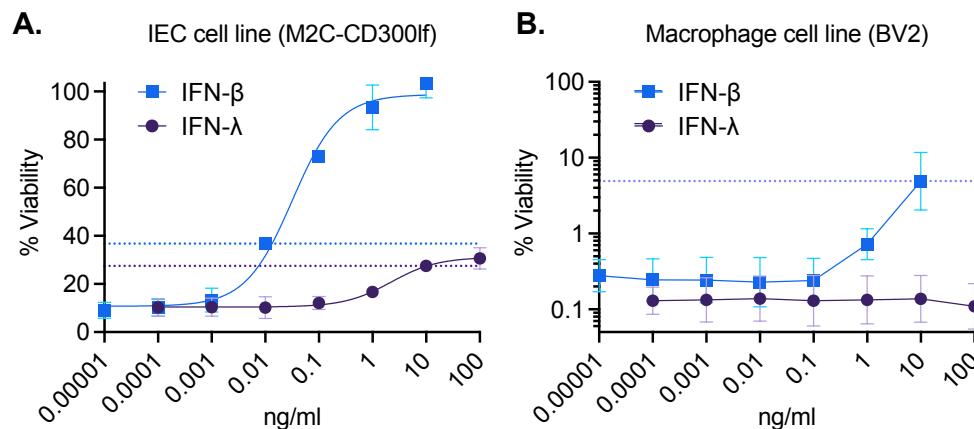
11 **Abstract**

12 Intestinal epithelial cell (IEC) responses to interferon (IFN) favor antiviral defense with minimal
13 cytotoxicity, but IEC-specific factors that regulate these responses remain poorly understood. Interferon
14 regulatory factors (IRFs) are a family of nine related transcription factors, and IRF6 is preferentially
15 expressed by epithelial cells, but its roles in IEC immunity are unknown. In this study, CRISPR screens found
16 that *Irf6* deficiency enhanced IFN-stimulated antiviral responses in transformed mouse IECs but not
17 macrophages. Furthermore, KO of *Irf6* in IEC organoids resulted in profound changes to homeostasis and
18 immunity gene expression. *Irf6* KO organoids grew more slowly, and single-cell RNA sequencing indicated
19 reduced expression of genes in epithelial differentiation and immunity pathways. IFN-stimulated gene
20 expression was also significantly different in *Irf6* KO organoids, with increased expression of stress and
21 apoptosis-associated genes. Functionally, the transcriptional changes in *Irf6* KO organoids were associated
22 with increased cytotoxicity upon IFN treatment or inflammasome activation. These data indicate a
23 previously unappreciated role for IRF6 in IEC biology, including regulation of epithelial development and
24 moderation of innate immune responses to minimize cytotoxicity and maintain barrier function.

25 **Introduction**

26 The interferon (IFN) family of cytokines are a first line of defense against viral pathogens.
27 Activation of IFN receptors initiates a signaling pathway resulting in transcription of IFN-stimulated genes
28 (ISGs), which include many direct-acting antiviral effectors (Schneider et al., 2014; Schoggins, 2019). There
29 are three types of IFN, which are defined by their use of distinct membrane-bound receptors (Sadler &
30 Williams, 2008). The transcriptional profiles (ISGs) induced by each IFN type overlap substantially, but
31 there are cell type-specific differences in antiviral protection. Type I IFN can act on nearly every nucleated
32 cell in the body, but type III IFN (IFN-λ) primarily acts on epithelial cells of barrier tissues, and intestinal
33 epithelial cells (IECs) preferentially respond to IFN-λ (Baldridge et al., 2017; Mahlakov et al., 2015;
34 Mordstein et al., 2010; Nice et al., 2015; Pott et al., 2011; Sommereyns et al., 2008; Van Winkle et al.,
35 2022). For example, interferon lambda receptor KO (*Ifnlr1*^{-/-}) mice fail to control intestinal replication of
36 murine norovirus (MNV) (Nice et al., 2015), and homeostatic antiviral responses in the intestinal
37 epithelium are absent in *Ifnlr1*^{-/-} mice (Van Winkle et al., 2022). Thus, understanding the factors that
38 regulate IFN-λ responsiveness of IECs is of particular importance to intestinal health.

39 Type I and III IFN receptors can utilize the same canonical signaling pathway (Sadler & Williams,
40 2008). Receptor-associated Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) phosphorylate signal
41 transducer and activator of transcription 1 (STAT1) and STAT2. Interferon regulatory factor 9 (IRF9) joins
42 with STAT1 and STAT2 to form IFN-stimulated gene factor 3 (ISGF3), which translocates to the nucleus
43 and binds IFN-sensitive response element (ISRE) motifs in ISG promoters (Sadler & Williams, 2008). One
44 major difference between type I and III IFNs is the strength of signaling, with type III IFN resulting in a
45 more moderate but sustained level of gene expression (Forero et al., 2019; Mendoza et al., 2017;
46 Pervolaraki et al., 2018). Thus, a modest response stimulated by type III IFN in epithelial cells benefits
47 tissue homeostasis by maintaining antiviral protection with minimal epithelial cytotoxicity (Van Winkle et
48 al., 2020). However, IEC-specific factors that regulate the IFN response remain poorly understood.


49 IEC-specific regulators of the interferon response may include relatives of canonical signaling
50 factors, such as members of the JAK, STAT, and IRF families. There are nine IRF proteins that share a
51 conserved N-terminal DNA binding domain (DBD) that interacts with a conserved GAAA consensus DNA
52 sequence that is part of the ISRE motif (Negishi et al., 2018; Taniguchi et al., 2001). The C-terminal regions
53 are more divergent, and include regulatory motifs. IRFs 3-9 encode an IRF-association domain (IAD) and
54 an autoinhibitory region that facilitate dimeric interaction and inhibition of dimerization, respectively.
55 Despite the discovery of IRFs as regulators of IFN, and their homology in the DBD, some IRFs have been
56 shown to regulate development of specific cell types. For example, IRF4 and IRF8 regulate leukocyte
57 development (Gabriele & Ozato, 2007; Mancino & Natoli, 2016; Tsujimura et al., 2002; H. Wang et al.,
58 2008), and IRF6 regulates keratinocyte development (Ingraham et al., 2006; Kousa et al., 2017; Kwa et al.,
59 2015). IRF6 is expressed by all epithelial lineages, but developmental and immunological roles in the
60 intestine were unknown.

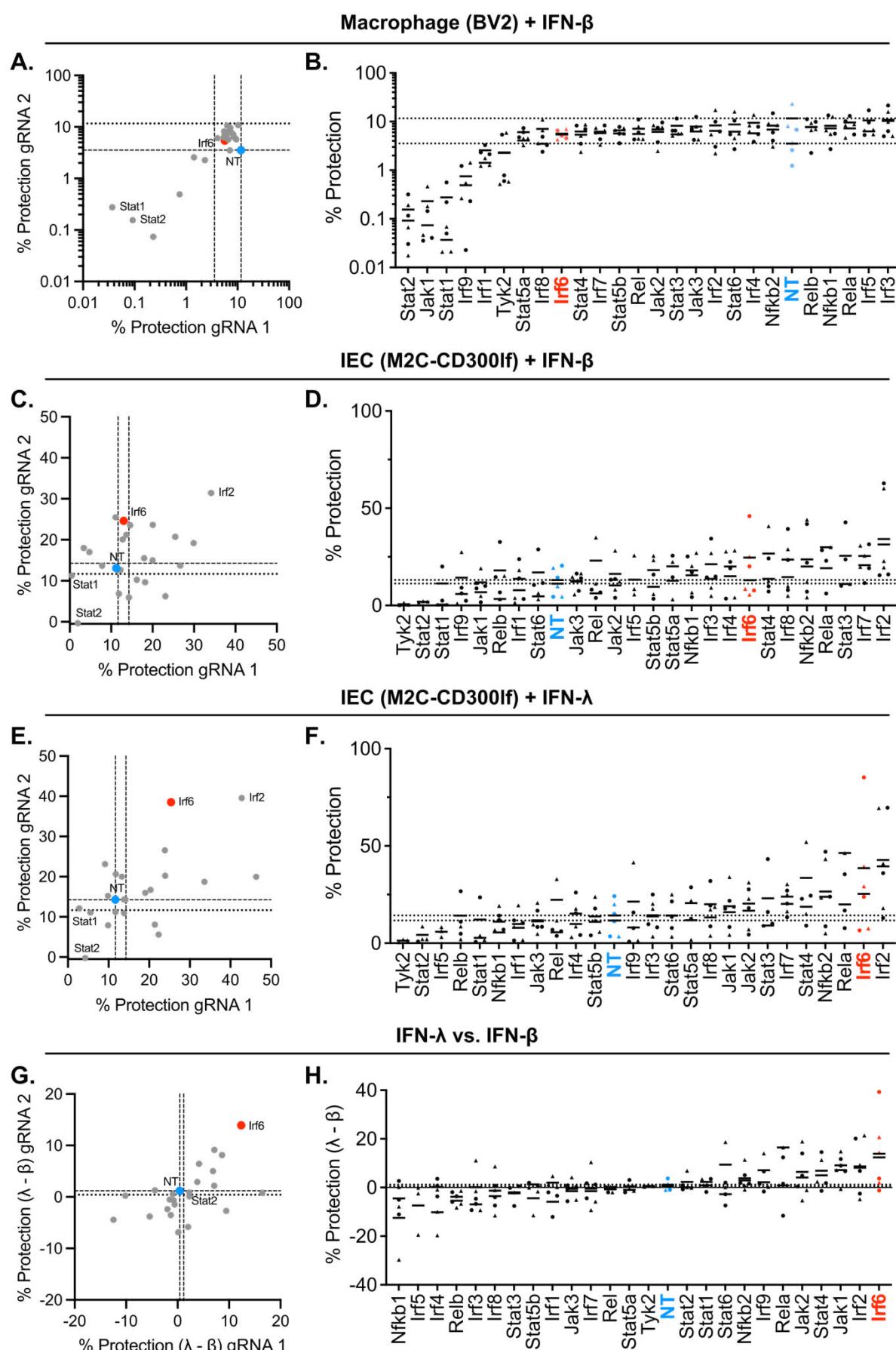
61 To identify the presence of IEC-specific factors that regulate the antiviral IFN response, we
62 designed a CRISPR screen that targeted canonical IFN signaling factors and homologous family members.
63 We found that *Irf6* KO enhanced IFN-stimulated antiviral immunity of IEC cell lines but not macrophages.
64 RNAseq analysis of *Irf6* KO IEC cell lines revealed substantial baseline changes in growth and development
65 pathway genes, and dysregulated ISG expression that correlated with antiviral protection. We found that
66 *Irf6* was highly expressed in primary IEC organoids and intestinal tissues. *Irf6* KO in primary IEC organoids
67 reduced growth and developmental gene expression, with enhanced production of particular ISGs and
68 increased IFN-stimulated cytotoxicity. These data suggest a previously unappreciated role for IRF6 in IEC
69 development and immunity.

70 **Results**

71
72 **Protection against virus-triggered death by IFN treatments in macrophage and epithelial cell lines**

73 To study genetics of IFN-stimulated antiviral protection, we used BV2 and M2C-CD300lf cell lines
74 that represent myeloid-lineage and intestinal epithelial-lineage, respectively. First, we directly compared
75 the efficacy of type I and III IFNs in these cells by performing dose-response titrations using recombinant
76 murine IFN- β and IFN- λ (Fig. 1). Both BV2 and M2C cells were treated with IFN for 24 hours before being
77 challenged with a lytic strain of murine norovirus (MNV) (Robinson et al., 2019; Van Winkle et al., 2018).
78 The BV2 cells were infected at an MOI=10 resulting in <1% viability, and the M2C cells were infected at
79 an MOI=50 resulting in ~9% viability. IFN- β treatment protected MNV-infected M2C from death,
80 reaching ~100% viability at 10 ng/mL (Fig. 1A, squares). IFN- λ treatment also protected MNV-infected
81 M2C from death, but with a lower maximum survival rate of ~30% (Fig. 1A, circles). The BV2
82 macrophages had a survival rate of ~10% when treated with 10ng/ml IFN- β , but showed no increase in
83 survival when pretreated with any dose of IFN- λ , as expected (Fig. 1B). To compare differences in
84 responsiveness between IFN type and cell type in the subsequent CRISPR screen, we selected doses that
85 moderately increased viability following MNV infection: 1) 10ng/ml IFN- λ -treated M2C IECs, 2) 0.01
86 ng/ml IFN- β -treated M2C IECs, and 3) 10ng/ml IFN- β -treated BV2 macrophages (Fig. 1, dashed lines).

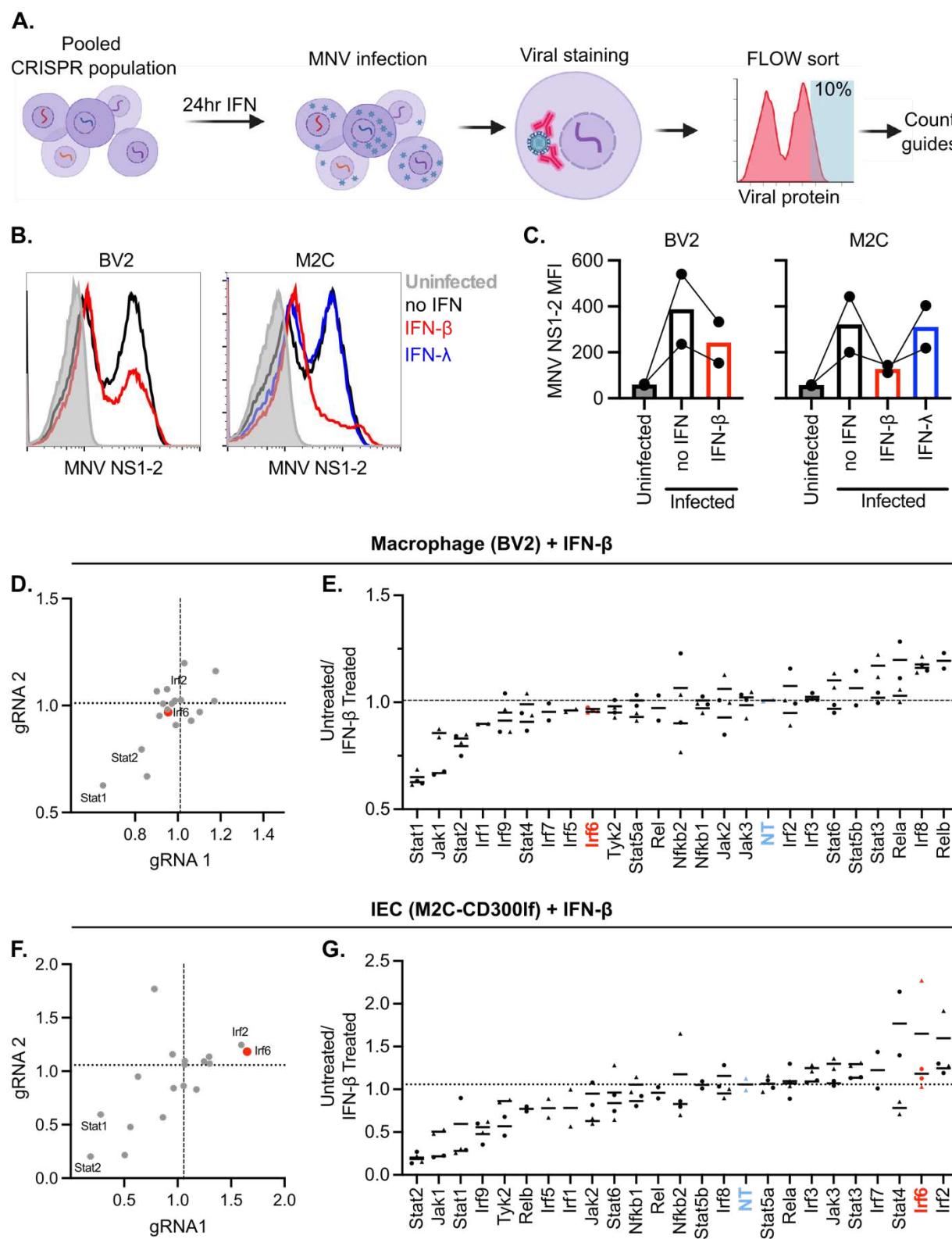
87
88 **Figure 1. Protection against norovirus-triggered death by IFN treatments in macrophage and epithelial cell lines.** Dose-
89 response curves with IFN- β and IFN- λ pre-treatment of A) M2C-CD300lf epithelial cells and B) BV2 macrophage cells. ATPglo
90 viability for each dose was normalized as a percent of uninfected, untreated cells. Dashed lines indicate doses selected for use
91 in subsequent screens. Data is represented as mean and standard deviation of two (M2C) or three (BV2) replicates.


92
93 **CRISPR screens for IEC-specific regulators of the IFN response**

94 To determine requirement of candidate genes for IFN-stimulated protection, we knocked out
95 genes within JAK, STAT, NF- κ B and IRF families using CRISPR lentivirus transduction (two gRNAs/gene,
96 **Table S1**). For each IFN treatment and cell type, we saw that gRNA targeting of canonical signaling
97 factors resulted in lower protection provided by IFN treatments, validating our screening approach (Fig.
98 2). In particular, IFN- β treatment of BV2 cells with gRNA targeting *Stat1*, *Stat2*, *Irf9*, and *Jak1* resulted
99 nearly no protection (0.01-1%), whereas treatment of non-targeting controls resulted in 3-11%
100 protection (Fig. 2A-B). gRNA targeting *Irf1* and *Tyk2* may have a more modest effect on IFN-stimulated
101 protection of BV2 cells, resulting in an intermediate amount of protection (1-3%) following IFN- β
102 treatment (Fig. 2A-B). None of the CRISPR targeted BV2 cell lines showed increased IFN- β -stimulated
103 protection relative to controls.

104 Similar to BV2 cells, M2C-CD300If cells with gRNA targeting *Stat1* and *Stat2* were among the
105 least protected cells following IFN- β treatment (**Fig. 2C-D**). Likewise, IFN- λ treatment of M2C-CD300If
106 cells with gRNA targeting of *Stat1* and *Stat2* resulted in reduced protection relative to non-targeting
107 controls (**Fig. 2E-F**). However, unlike the BV2 cells, there were several genes where gRNA targeting
108 increased the IFN-stimulated protection of M2C-CD300If cells, including *Irf2* and *Irf6*. Targeting of *Irf2*
109 resulted in increased protection of M2C-CD300If cells pretreated with either IFN- β or IFN- λ (**Fig. 2C-F**),
110 indicating that *Irf2* may inhibit IFN signaling in these epithelial cells. This is consistent with previously
111 described inhibitory activity of *Irf2* (Harada et al., 1989). Targeting of *Irf6* resulted in increased
112 protection of M2C-CD300If cells pretreated with IFN- λ (**Fig. 2E-F**), but appeared to have a more modest
113 or inconsistent effect on M2C-CD300If cells pretreated with IFN- β (**Fig. 2C-D**), and had no effect on BV2
114 macrophages (**Fig. 2A-B**).

115 To quantify differences between IFN- λ and IFN- β treatments, we determined the difference in
116 IFN-stimulated protection for each CRISPR gRNA in M2C-CD300If cells (**Fig. 2G-H**). Notably, this
117 comparison was between IFN types within the same cell lines, thereby minimizing effects of variation in
118 MNV susceptibility between cell lines (**Table S2**). We found that *Irf6*-targeted cells had the largest
119 difference between IFN- λ and IFN- β treatments, with greater protection provided by IFN- λ than IFN- β
120 (**Fig 2G-H**). These results suggested that *Irf6* is a novel regulator of the IFN-stimulated antiviral response
121 in IECs.


122

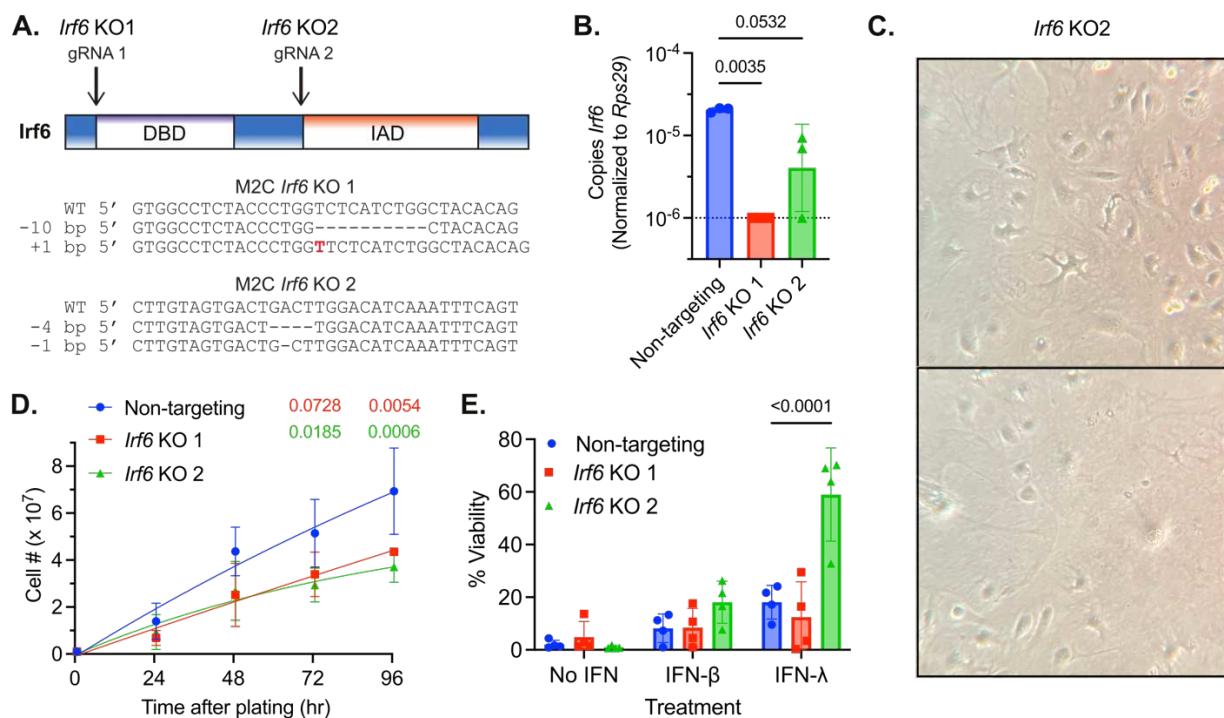
124 **Figure 2. CRISPR screen for IFN-stimulated protection of macrophage and IEC cell lines.** CRISPR KO cells were screened for
125 differences of IFN-stimulated protection from MNV. IFN-stimulated protection was calculated by subtracting viability of
126 untreated controls from IFN-treated cells (% protection, **A-F**), and differences between IFN types were determined by
127 subtracting IFN- β -stimulated protection from IFN- λ -stimulated protection ($\lambda - \beta$, **G-H**). Data is plotted as individual replicates (**B**,
128 **D, F, H**) or as the mean values from three replicate experiments for each of two independent gRNAs per gene (**A, C, E, G**). **A-B.**
129 IFN- β -stimulated protection of BV2 macrophages. **C-D.** IFN- β -stimulated protection of M2C-CD300lf IECs. **E-F.** IFN- λ -stimulated
130 protection of M2C-CD300lf IECs. **G-H.** Difference between IFN- λ - and IFN- β -stimulated protection of M2C-CD300lf IECs. Genes
131 positioned in the bottom left quadrant of **G** are more protected by IFN- β than IFN- λ and genes positioned in the upper right
132 quadrant are more protected by IFN- λ than IFN- β . Dotted lines in all plots represent the mean values of non-targeting control
133 gRNAs (blue). Shapes for individual replicate datapoints represent each independent gRNA. Mean values are indicated for each
134 gRNA. Data represents three experimental replicates.
135

136 To increase confidence in selecting candidate genes for further study, we complemented the
137 viability CRISPR screen with an orthogonal FACS-based pooled CRISPR screen (**Fig. 3A**). Pooled CRISPR-
138 transduced cells were pre-treated with IFN types, infected with MNV, and cells with the greatest
139 production of MNV protein (top 10% NS1/2-positive) were sorted for quantification of gRNA abundance
140 (**Fig. 3A**). MNV NS1/2 protein staining at 8 hours post-infection was consistently detected in the BV2 and
141 M2C-CD300lf pools (**Fig. 3B-C**, 'no IFN' group), indicating that these cell lines are similarly capable of
142 supporting MNV replication. IFN- β treatment resulted in lower fluorescence intensity of MNV NS1/2 in
143 both BV2 and M2C cells (**Fig. 3B-C**). However, IFN- λ treatment of M2C cells did not significantly reduce
144 MNV NS1/2 protein staining, confounding our ability to identify genes that influence IFN- λ activity by
145 this screening method. Notably, these data suggest that actions of IFN- λ to protect cells from MNV-
146 triggered death (**Fig. 1-2**) are distinct from those that block viral protein production (**Fig. 3B-C**).
147 Therefore, IFN- λ -treated cells were not further considered in analysis of this pooled CRISPR screen.

148 We sequenced gRNAs present within the top 10% of MNV NS1/2-positive cells, and compared
149 gRNA counts between groups. Genes that promote IFN-stimulated antiviral immunity were expected to
150 have correspondingly decreased gRNA counts within untreated groups relative to IFN-treated groups
151 (**Table S3**). Indeed, canonical genes (*Stat1*, *Stat2*, *Jak1*) were decreased within untreated M2C and BV2
152 cells relative to paired IFN- β -treated groups, whereas non-targeting control gRNAs were equally
153 represented (**Fig. 3D-G**). These expected outcomes validate our screen results. Analogous to the results
154 of the viability screen (**Fig. 2C-D**), *Irf2* was increased within untreated M2C relative to the paired IFN- β -
155 treated groups (**Fig. 3F-G**), but was not different in BV2 cells (**Fig. 3D-E**). Likewise, *Irf6* was increased
156 within untreated M2C relative to the paired IFN- β -treated groups (**Fig. 3F-G**), analogous to the results
157 from IFN- λ -treated cells in the viability screen (**Fig. 2E-F**). Thus, both CRISPR screening approaches
158 suggested a novel and cell type-specific role for *Irf6* in the regulation of IFN-stimulated antiviral
159 response of IECs.

160
161

162 **Figure 3. Pooled CRISPR screen for IFN-stimulated antiviral response in macrophage and IEC cell lines. A.** Pooled CRISPR
163 transduced cells were screened for genes that altered IFN-stimulated protection from MNV infection by cell sorting the top 10%


164 of infected cells based on staining for MNV NS1-2 protein production. **B.** Representative FACS plots of NS1-2 staining. **C.** Mean
165 fluorescence intensity (MFI) of MNV NS1-2 staining 8 hours post-infection of cells pre-treated for 24 hours with no IFN, 1 ng/ml
166 IFN- β , or 100 ng/ml IFN- λ , as indicated. Each dot represents the mean fluorescence intensity of a single replicate. **D-G.** Plotted
167 values indicate abundance of each gRNA in untreated cells divided by abundance of the same gRNA in cells pretreated with IFN-
168 β . Dashed line indicates mean of non-targeting control. **D, F.** Mean values of the two gRNAs for each gene plotted on x and y
169 axes. **E, G.** Plotted values of each replicate, with the gRNAs for each gene represented as distinct symbols. Mean values for each
170 gRNA are indicated. Genes are ranked from left to right in order of enhancement to inhibition of the IFN response. Data
171 represents two experimental replicates.

172

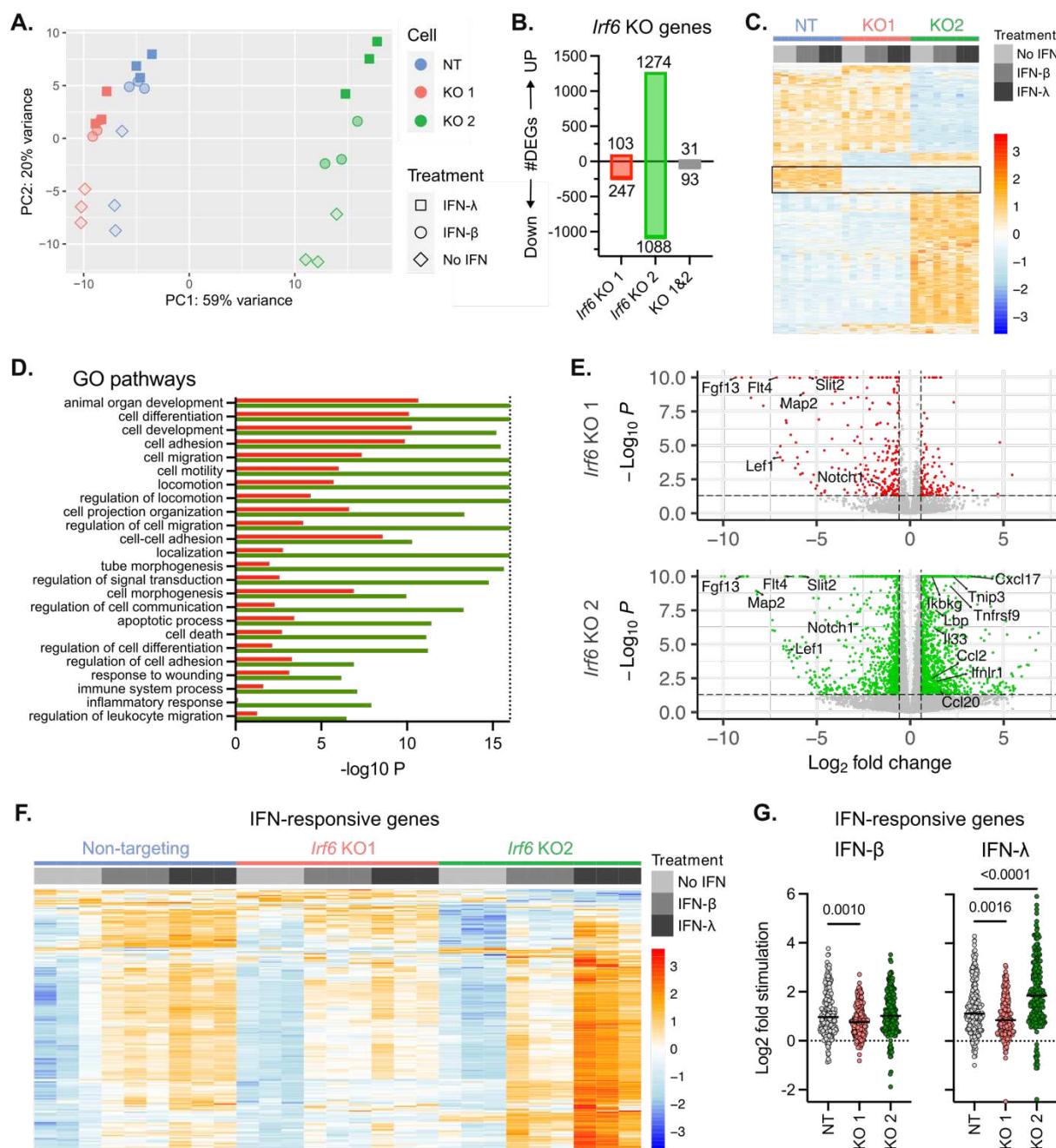
173 ***Irf6* KO slows growth and alters IFN-stimulated protection of an IEC cell line**

174 Both CRISPR screens suggested that targeting of *Irf6* resulted in greater IFN-stimulated antiviral
175 protection of M2C IECs. To further test the role of *Irf6*, we generated monoclonal cell lines targeted by
176 the two *Irf6* gRNAs used in the screen, and sequence-verified disruption of the *Irf6* locus. *Irf6* gRNA 1 cut
177 directly before the conserved DNA binding domain, and *Irf6* gRNA 2 cut near the beginning of the
178 predicted IRF-association domain (**Fig. 4A**). We selected monoclonal cell lines with mutations that
179 resulted in frame shift and early stop codons (**Fig. 4A**). *Irf6* qPCR from the KO cell lines indicated
180 undetectable (gRNA 1, KO1) or significantly reduced (gRNA 2, KO2) *Irf6* mRNA expression (**Fig. 4B**).
181 Notably, the baseline abundance of *Irf6* mRNA was low in all M2C cells (greater than 1000-fold less
182 abundant than the housekeeping gene *Rps29*, **Fig. 4B**), and we were unable to detect *Irf6* protein by
183 western blot. However, we observed phenotypic alterations following clonal isolation of the *Irf6* KO
184 cells, with fewer cells harvested during expansion compared to non-targeting controls, and several
185 instances of large and multinucleated cells within *Irf6* KO2 isolates (**Fig. 4C**). These observations
186 suggested monoclonal isolates may be selected for adaptation to *Irf6* deficiency. To quantitate the
187 growth phenotype, we counted cells over time after plating and found that that both *Irf6* KO M2C cell
188 lines had a decreased growth rate, with significantly fewer cells recovered compared to non-targeting
189 controls (**Fig. 4D**).

190 We tested IFN-stimulated protection of KO cells by measuring viability after MNV infection, with
191 or without IFN pretreatments, as in the original CRISPR screen (**Fig. 2**). To ensure uniform susceptibility
192 of monoclonal isolates to MNV infection, we re-transduced them with lentivirus encoding CD300If. The
193 resulting cell lines were equally susceptible to MNV, with less than 10% surviving in the absence of IFN
194 pretreatment (**Fig. 4E**). IFN- β and IFN- λ pretreatment increased viability of all cell lines after MNV
195 infection. There were no significant differences in IFN- β -stimulated protection between the cell lines,
196 but *Irf6* KO2 had modest increase (two-fold) in average viability after IFN- β pre-treatment. In contrast,
197 there were significant differences in IFN- λ -stimulated protection between the cell lines, with *Irf6* KO2
198 increased to 60% average viability after IFN- λ treatment, compared to 20% average viability in control
199 cells (**Fig. 4E**). *Irf6* KO1 did not have significantly different viability from controls after either type of IFN
200 pretreatment, but exhibited high variance across the four replicates, with lower IFN-stimulated
201 protection in two experiments (**Fig. 4E**). Thus, there was an inconsistent effect of *Irf6* KO on IFN-
202 stimulated protection from MNV in M2C-CD300If cells. However, there was a consistent reduction in
203 growth rate for both *Irf6* KO, suggesting that *Irf6* plays an important homeostatic role in these cells.

204
205 **Figure 4. *Irf6* KO slows growth and alters IFN-stimulated protection in an IEC cell line.** **A.** Graphical representation of targeting
206 sites for each *Irf6* gRNA in the context of resulting protein domains, and sequences of monoclonal cell lines selected for further
207 study. DBD = DNA-binding domain. IAD = IRF-association domain. *Irf6* KO1 had a 10bp deletion and a 1bp insert resulting in
208 early stop codons. *Irf6* KO2 had a 4bp deletion and a 1bp deletion resulting in early stop codons. **B.** qPCR of *Irf6* of three
209 replicates. Dashed line indicates limit of detection. P-values calculated by one-way ANOVA. **C.** Representative images of large
210 multinucleated *Irf6* KO M2Cs. **D.** Growth curves from three experimental replicates. P-values are shown above for 72 and 96
211 hour timepoints, calculated by two-way ANOVA. **E.** ATPglo viability assay 24 hours after MNV infection of cells pre-treated for 24
212 hours with no IFN, 0.01 ng/mL IFN- β , or 10 ng/mL IFN- λ . Data points represent four experimental replicates. P-values calculated
213 by two-way ANOVA.

215 *Irf6* KO alters baseline and IFN-stimulated gene expression.


216 To better understand the baseline and IFN-stimulated growth and viability phenotypes, we
217 performed RNA sequencing on the *Irf6* KO and control cell lines. We harvested RNA from cells plated
218 and treated in parallel to the viability assay in **figure 4E**, including both untreated and IFN-treated
219 groups. Principal component analysis of the RNA sequencing results clustered groups with primary
220 separation based on cell identity (PC1, 50% variance) and secondary separation based on IFN treatment
221 (PC2, 20% variance) (**Fig. S1A**). Consistent with PCA analysis, there were hundreds of significantly
222 different genes at baseline in *Irf6* KO cell lines compared to non-targeting controls (**Table S4**). In *Irf6* KO1
223 we saw 103 up-regulated differentially expressed genes (DEGs), and 247 down-regulated DEGs; in *Irf6*
224 KO2 we saw 1274 up-regulated DEGs and 1088 down regulated DEGs; both *Irf6* KO cell lines shared 31
225 up-regulated DEGs and 93 down-regulated DEGs (**Fig. S1B**). There was a notable cluster of DEGs that
226 were uniformly down-regulated in both *Irf6* KO cell lines (**Fig. S1C**, box), and additional baseline DEGs
227 that were unique to KO2. Pathway analysis of DEGs for each *Irf6* KO cell line revealed shared significant
228 changes in pathways that regulate cell differentiation and growth (**Fig. S1D**). These enriched pathways
229 are consistent with the decreased growth rate of these *Irf6* KO cell lines (**Fig. 4D**). Several genes
230 decreased in both *Irf6* KO cell lines are part of the “cell differentiation” GO pathway, including fibroblast
231 growth factor 13 (*Fgf13*), Fms related receptor tyrosine kinase 4 (*Flt4*), *Notch1*, Lymphoid enhancer
232 binding factor 1 (*Lef1*), Microtubule-associated protein 2 (*Map2*), and Slit guidance ligand 2 (*Slit2*) (**Fig.**

233 **S1E**). Notably, previous ChIP-seq experiments from human keratinocytes (Botti et al., 2011) identified
234 IRF6-bound loci in 12 human orthologs of genes down-regulated at baseline in both *Irf6* KO M2C cell
235 lines (*SLC2*, *CELSR1*, *SMARCA1*, *CAMK1D*, *PEG10*, *KPNA3*, *LTBP1*, *JAM2*, *KDR*, *AIG1*, *PCDH17*, and
236 *EIF4G3*). These data indicate substantial changes to baseline gene expression in *Irf6* KO IEC cell lines, and
237 suggest roles for *Irf6* in growth and differentiation of IECs.

238 *Irf6* KO2 M2C cells had additional changes in baseline gene expression beyond the growth and
239 development genes shared between KO cell lines (Fig. S1A-E). Pathway analysis of *Irf6* KO2 DEGs
240 indicated significant enrichment of genes in “immune system process”, “inflammatory response”, and
241 “regulation of leukocyte migration” GO pathways (Fig. S1D, Table S4). These immune-related genes
242 upregulated at baseline in *Irf6* KO2 included *Cxcl10*, *Tnip3*, *Lbp*, *Ikbkg*, *Tnfrsf9*, *Il33*, *Ccl2*, *Ccl20*, and *Ifnlr1*
243 (Fig. S1E). The enrichment of *Ifnlr1* is particularly notable because it correlates with the increased IFN- λ -
244 stimulated viability seen in figure 4E.

245 To compare the expression of IFN-regulated genes in these cell lines, we compared IFN-
246 stimulated samples to replicate untreated controls (Fig. S1F-G). A heat map of all IFN-regulated genes
247 reveals that most of them are upregulated by IFN treatments, an expected characteristic of ISGs (Fig.
248 S1F, Table S4). To compare the magnitude of IFN responsiveness, we plotted the Log2 fold-change for
249 the IFN-regulated genes. These comparisons show significantly higher stimulation by IFN- λ in *Irf6* KO2
250 compared to non-targeting controls, and significantly less stimulation of *Irf6* KO1 by both IFN- β and IFN-
251 λ (Fig. S1G). The overall increase in ISGs seen in *Irf6* KO2 treated with IFN- λ correlates with the increased
252 viability following MNV infection (Fig. 4E).

253 Taken together, these RNAseq data indicate a consistent down-regulation of growth and
254 differentiation genes in *Irf6* KO cell lines. In contrast, immunity-related genes and ISGs exhibit divergent
255 phenotypes between the *Irf6* KO cell lines that may reflect unique adaptations to *Irf6* deficiency.
256 Although the primary goal of our CRISPR screen was to identify novel regulators of the IFN response in
257 IECs, these data suggest that *Irf6* plays more foundational roles in IEC biology at baseline.
258

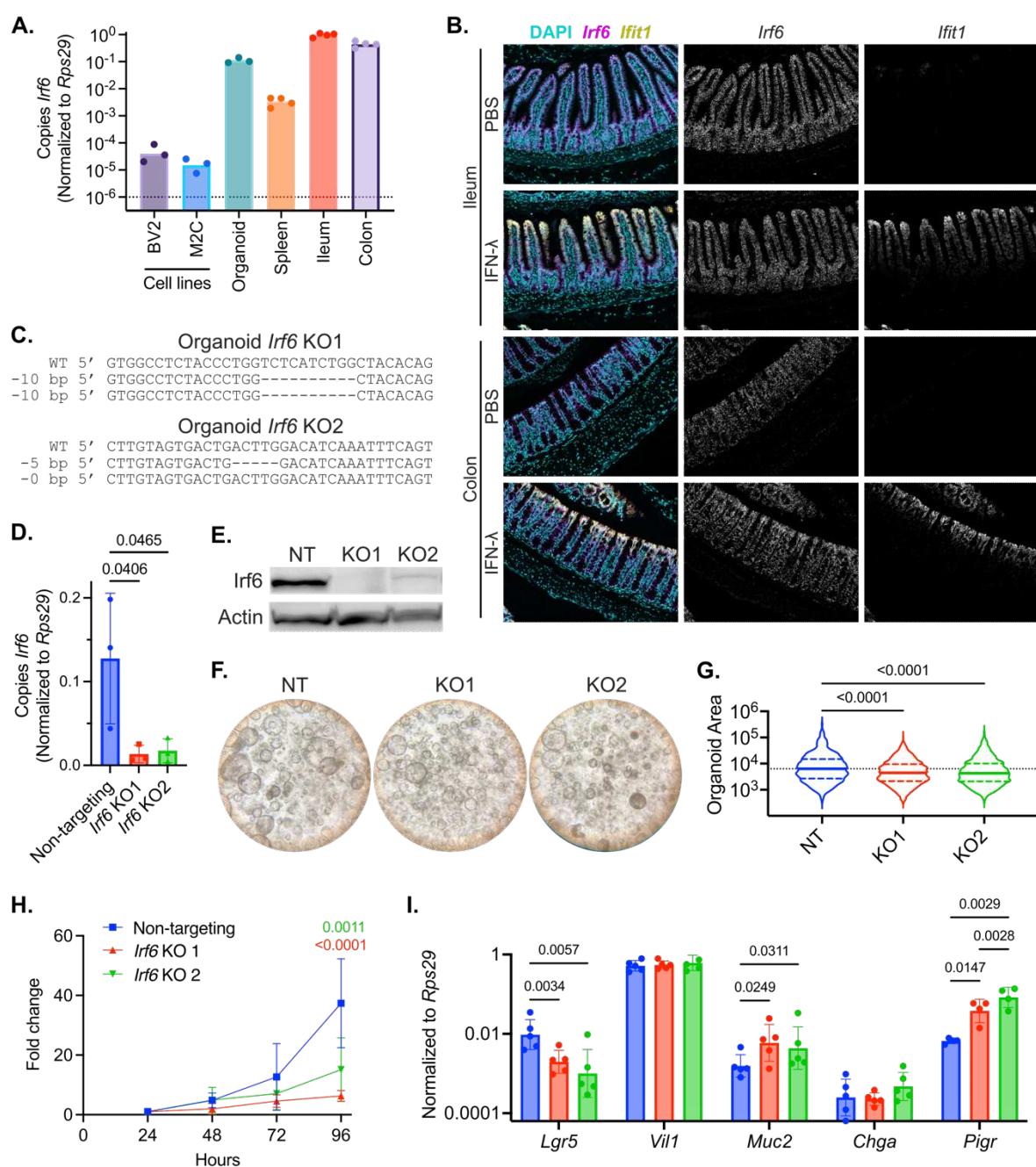
259
260
261
262
263
264
265
266
267
268
269

Figure S1. *Irf6* KO alters baseline and IFN stimulated gene expression. Related to figure 4. RNA sequencing of *Irf6* KO M2C cells and non-targeting controls with or without 24hrs of IFN treatment. All data is from three experimental replicates. **A.** Principal component plot. **B-E.** Differential gene expression of *Irf6* KO cells relative to non-targeting controls within the untreated ('No IFN') groups. **B.** Differentially expressed genes (adjusted p-value < 0.05 and fold-change > 1.5). **C.** Heatmap of DEGs from B, with data scaled and centered by row. Box highlights DEGs down-regulated in both KO cell lines. **D.** Selected GO pathways significantly associated with DEGs from *Irf6* KO1 (red bars) and *Irf6* KO2 (green bars) cell lines. **E.** Volcano plot of all genes; dotted line represents cut-off for DEGs. **F.** Heatmap of IFN-responsive genes, including genes differentially expressed in at least one IFN-treated group compared to respective no IFN control. Data scaled and centered by row. **G.** Log2 fold-change of genes from F. P-values calculated by Kruskal-Wallis test.

270

271 ***Irf6* is expressed in primary IECs and regulates organoid homeostasis.**

272 Transformed cell lines such as M2C may selectively downregulate IRF6 due to its role as a tumor
273 suppressor (Bailey & Hendrix, 2008; Botti et al., 2011; Restivo et al., 2011). Indeed, we saw that *Irf6* was
274 minimally expressed in M2C cells (**Fig. 4B, 6A**). So, we sought to test *Irf6* expression and function in
275 primary cells. We found that *Irf6* expression in mouse small intestine and colon tissues was >10,000-fold
276 higher than the M2C cell line, and *Irf6* in spleen tissue was significantly lower than intestinal tissues (**Fig.**
277 **5A**). Primary IEC organoids derived from mouse small intestine expressed *Irf6* at levels within the same
278 order of magnitude as intestinal tissues (**Fig. 5A**). These results indicate that the M2C IEC cell line
279 expresses sub-physiological levels of *Irf6*, so we focused subsequent study of *Irf6* on primary IECs.


280 To visualize distribution of *Irf6* within intestinal tissues we performed *in situ* hybridization for
281 *Irf6* in ileum and colon of mice injected with PBS or IFN-λ 24 hours prior to tissue collection (**Fig. 5B**). In
282 all intestinal tissues, *Irf6* was predominant within the epithelium, and was similar in abundance from
283 crypt base to mature enterocytes and colonocytes (**Fig. 5B**). The ISG response in mice injected with IFN-λ
284 was assessed by detection of *Ifit1*, and expression of this ISG was predominant within mature IECs (**Fig.**
285 **5B**). *Irf6* transcripts were not strikingly different between IFN-λ-treated mice and PBS controls,
286 suggesting that *Irf6* is not an ISG (**Fig. 5B**). These imaging analyses indicated that *Irf6* is expressed in IECs
287 of small intestine and colon, including IFN-λ-responsive cells.

288 We next sought to generate *Irf6* KO primary IECs by transducing organoids with *Irf6*-targeting
289 CRISPR lentiviruses used in the screens (**Fig. 4A**). We selected transduced IEC organoid clones and
290 sequenced gRNA target sites within the *Irf6* locus to assess gene disruption. We identified a homozygous
291 *Irf6* KO in organoids transduced with CRISPR gRNA 1 (**Fig. 5C**, KO1). However, in organoids transduced
292 with CRISPR gRNA 2 (cuts after DBD), we recovered only clones with heterozygous targeting of the *Irf6*
293 gene (**Fig. 5C**, KO2). Analysis of *Irf6* expression by qPCR showed significant decreases in both KO
294 organoid lines (**Fig. 5D**). Western blot of *Irf6* showed no detectable protein in KO1 organoids and a
295 substantially decreased protein level in KO2 organoids (**Fig. 5E**). We speculated that homozygous
296 targeting of *Irf6* using gRNA 2 may be more deleterious due to potential expression of a protein
297 fragment containing the *Irf6* DBD only (**Fig. 4A**). We were unable to visualize any such fragment on
298 western blot, but a similar heterozygous deletion has been linked to a human orofacial clefting
299 syndrome (Degen et al., 2020), indicating the potential for biological activity of this heterozygous
300 truncation. So, we included both *Irf6* KO organoid lines in our subsequent studies.

301 During culture of *Irf6* KO IEC organoids, we noticed that they appeared smaller and darker (**Fig.**
302 **5F**). To quantify organoid size, we took pictures two days after plating and measured the cross-sectional
303 area of organoids in each image. *Irf6* KO organoids were significantly smaller than the non-targeting
304 control organoids (**Fig. 5G**). Additionally, counting cells over time post-plating revealed that *Irf6* KO
305 organoids grew significantly more slowly than non-targeting controls (**Fig. 5H**). Thus, *Irf6* deficiency
306 reproducibly results in slower growth of primary IECs, similar to the baseline phenotype observed in *Irf6*-
307 deficient M2C cell lines.

308 The slower growth rate of *Irf6* KO organoids, together with the earlier observation of decreased
309 growth and development genes in *Irf6* KO M2C cell lines (**Fig. S1D-E**), led us to investigate the expression
310 of IEC differentiation genes in organoids. *Lgr5* is expressed by intestinal stem cells, and is reduced in
311 expression as enterocytes mature; *Lgr5* was 5- to 10-fold lower in *Irf6* KO organoids relative to non-
312 targeting controls (**Fig. 5I**). *Vil1* is an enterocyte marker, and was not significantly different in *Irf6* KO
313 organoids. *Muc2* is a mucin glycoprotein produced by goblet cells; we saw a ~5-fold increase in *Irf6* KO
314 organoids relative to non-targeting controls (**Fig. 5I**). *Chga* is marker for enteroendocrine cells; *Chga* was
315 not significantly different in *Irf6* KO organoids. *Pigr* is an Fc-receptor that facilitates translocation of
316 immunoglobulin A into the intestinal lumen, and is stimulated by innate responses to microbiota; *Pigr*

317 was 5- to 10-fold higher in the *Irf6* KO organoids (Fig. 5I). Taken together, these data indicate that *Irf6*
 318 deficiency in primary IEC organoids results in slower growth, reduced size, and increased expression of
 319 certain differentiation genes.
 320

321 **Figure 5. *Irf6* is expressed in primary IECs and regulates organoid homeostasis.** A Expression of *Irf6* in different cells and
 322 tissues. B. *Irf6* and *Ifit1* (ISG) expression in small intestine and colon of adult mice. Treatment with PBS or 3 μ g peg-IFN- λ , as
 323 indicated, 24hr prior to tissue collection. Representative of four mice per group. C. Sequence of *Irf6* locus in monoclonal IEC
 324 organoid lines transduced with CRISPR lentivirus. D. *Irf6* expression by qPCR. E. *Irf6* protein expression by western blot in the
 325 representative photos of organoids two days after plating. G. Cross-sectional area of organoids measured by ImageJ (arbitrary
 326 units) two days after plating. Violin plots show the median and quartiles of three experimental repeats (n = 1242, 1756, 1483).
 327

328 Dashed line indicates median of non-targeting control. P-values calculated by Kruskal-Wallis test. **H.** Growth curves of IEC
329 organoids from three experimental replicates, normalized within each replicate to cell number at 24 hours. **I.** Expression of
330 indicated genes by qPCR in *Irf6* KO organoids and non-targeting controls. Data points represent five experimental replicates. P-
331 values calculated by two-way ANOVA.

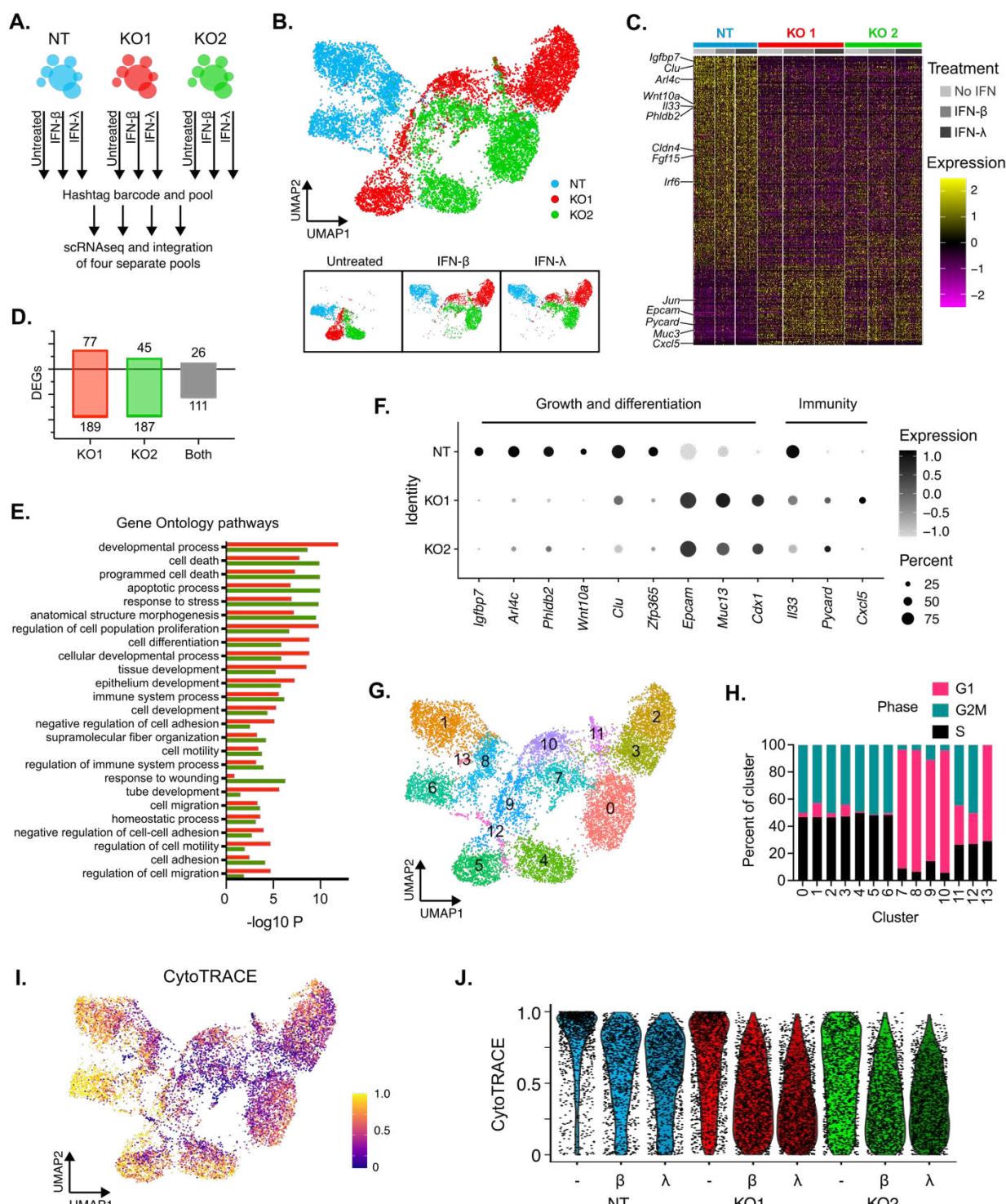
332

333 *Irf6* regulates development and immune response genes in primary IECs.

334 To define *Irf6*-dependent alterations to IEC organoid gene expression, we prepared single-cell
335 RNA sequencing libraries from four pools of organoid cells, with or without IFN treatments (**Fig. 6A,**
336 **methods**). Upon demultiplexing and integration of these four single-cell pools, we ended up with 12,151
337 cells suitable for analysis. Dimensional reduction of the integrated single-cell data revealed that a
338 primary source of variation (UMAP1) was related to *Irf6* KO and a secondary source of variation
339 (UMAP2) was due to IFN treatments (**Fig. 6B**). Separate clustering of the untreated groups confirmed
340 that a primary source of variation was related to *Irf6* KO, independent of IFN treatment (**Fig. S2A**).

341 To identify global *Irf6*-dependent transcriptional changes, we compared gene expression in each
342 *Irf6* KO organoid line to non-targeting controls. Hundreds of genes were significantly different in each
343 *Irf6* KO organoid line, with the majority of DEGs being downregulated relative to non-targeting control
344 (189 for KO1, 187 for KO2) (**Fig. 6C-D, Table S5**). There was substantial congruence in DEGs between KO
345 lines, with 111 shared down-regulated DEGs and 26 shared up-regulated DEGs (**Fig. 6D**). Likewise, GO
346 pathways associated with *Irf6* KO DEGs were shared between the two KO organoid lines, including
347 “epithelium development,” “cell death,” “cell adhesion,” and “regulation of immune system process”
348 (**Fig. 6E, Table S5**). These pathways in *Irf6* KO organoids included substantial overlap with pathways
349 altered in *Irf6* KO in M2C cell lines (**Fig. S1D**), increasing confidence in the association of *Irf6* with
350 epithelial homeostasis and immunity at baseline.

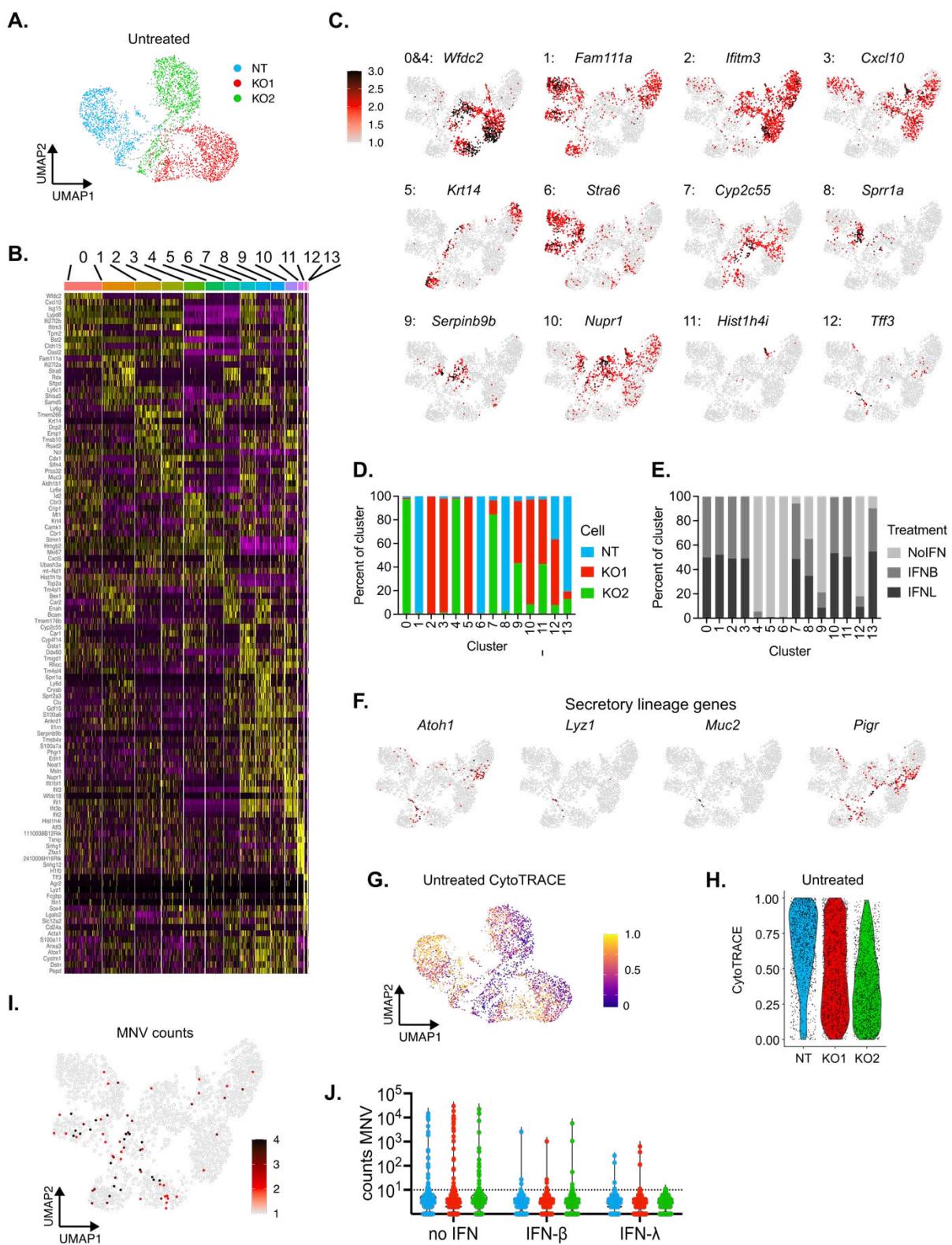
351 To determine which genes may be direct targets of *Irf6*, we compared our DEGs with IRF6
352 binding sites in ChIP-seq data from human keratinocytes (Botti et al., 2011). We saw 38 *Irf6*-associated
353 DEGs were orthologs of genes from IRF6 ChIP-seq (**Table S6**), including three of the most highly down-
354 regulated genes in both *Irf6* KO organoid lines: insulin-like growth factor binding protein 7 (*Igfbp7*), ADP
355 ribosylation factor-like GTPase 4C (*Arl4c*), and pleckstrin homology-like domain family B member 2
356 (*Phldb2*) (**Fig. 6F**). *Phldb2* is associated with growth of cancer cells (Luo et al., 2022), and *Arl4c* plays roles
357 in epithelial morphogenesis (Matsumoto et al., 2014), which is consistent with the reduced proliferation
358 and size of *Irf6* KO organoids (**Fig. 5G-H**).


359 To further identify highest-confidence *Irf6*-regulated genes, we compared organoid DEGs to
360 M2C cell line DEGs (**Fig. S1B-C**). 83 DEGs were shared between organoid KO and M2C KO lines (**Table**
361 **S6**), including downregulation of genes associated with Wnt signaling (*Wnt10a*), regenerative stem cells
362 (*Clu*), and maintenance of genome stability (*Zfp365*, also shared with IRF6 ChIP-seq) (**Fig. 6F**). Relatively
363 few DEGs in *Irf6* KO organoids were upregulated, but some upregulated DEGs were indicative of
364 increased differentiation: epithelial cell adhesion molecule (*Epcam*), mucin 13 (*Muc13*), and
365 differentiation-promoting transcription factor caudal type homeobox 1 (*Cdx1*) (**Fig. 6F**).

366 To determine whether separate clusters could be identified within each experimental group, we
367 performed unsupervised clustering of integrated single-cell data. We identified 14 clusters of differential
368 gene expression (**Fig. 6G**). The clusters distinguished *Irf6* KO organoids from non-targeting controls, and
369 identified distinct IFN-stimulated subsets (**Fig. S2B-C, Table S5**). Clusters 0-6 were distinguished by cell
370 line and IFN treatment, confirming significant roles for *Irf6* and IFN response in shaping transcriptional
371 profile (**Fig. S2D-E**). Further analysis of clusters revealed that cell cycle phase was a major defining
372 feature, with G1 phase represented in clusters 7-10, and G2M/S phases represented in clusters 0-6 (**Fig.**
373 **6H**). There was also a small cluster within untreated groups (**Fig. 6G**, cluster12) that expressed markers
374 of secretory progenitor IECs, including master transcription factor *Atoh1*, Paneth cell-associated *Lyz1*,

375 goblet cell-associated *Muc2*, and immunoglobulin transport receptor *Pigr* (**Fig. S2F**). This secretory
376 progenitor cluster was predominantly found in *Irf6* KO1 organoids (**Fig. S2D**), suggesting a role of *Irf6* in
377 blocking secretory progenitor differentiation.

378 As an orthogonal test of differentiation status, we performed CytoTRACE analysis (Gulati et al.,
379 2020), which examines transcriptional diversity to infer developmental potential. CytoTRACE analysis
380 indicated that *Irf6* KO organoids had less differentiation potential at baseline (No IFN groups) compared
381 to non-targeting control organoids (**Fig. 6I-J, S1G-H**). IFN treatments groups had further decreases in
382 developmental potential within each group (**Fig. 6I-J**). Together, these data reveal a significant role for
383 *Irf6* in regulating the homeostatic transcriptome and developmental gene expression of primary IEC
384 organoids.


385 Analysis of MNV genomes within the infected pool of cells indicated that most cells had a few
386 counts (0-10 genomes/cell), and a minority of cells had 100-10,000 genomes/cell (**Fig. S2I-J**). These data
387 indicate that most cells were not robustly infected, explaining why MNV was not a major driver of
388 differential gene expression in this experiment. IFN-treated groups of all organoid lines had significantly
389 fewer robustly-infected cells, and IFN-λ-treated *Irf6* KO2 cells were the only group that prevented any
390 robustly-infected cells (**Fig. S2I-J**). However, there were no significant differences in MNV infection
391 between cell lines. So, *Irf6*-dependent differences in antiviral control may be relatively nuanced in IEC
392 organoids compared to epithelial homeostasis pathways.

393
394
395
396
397
398
399

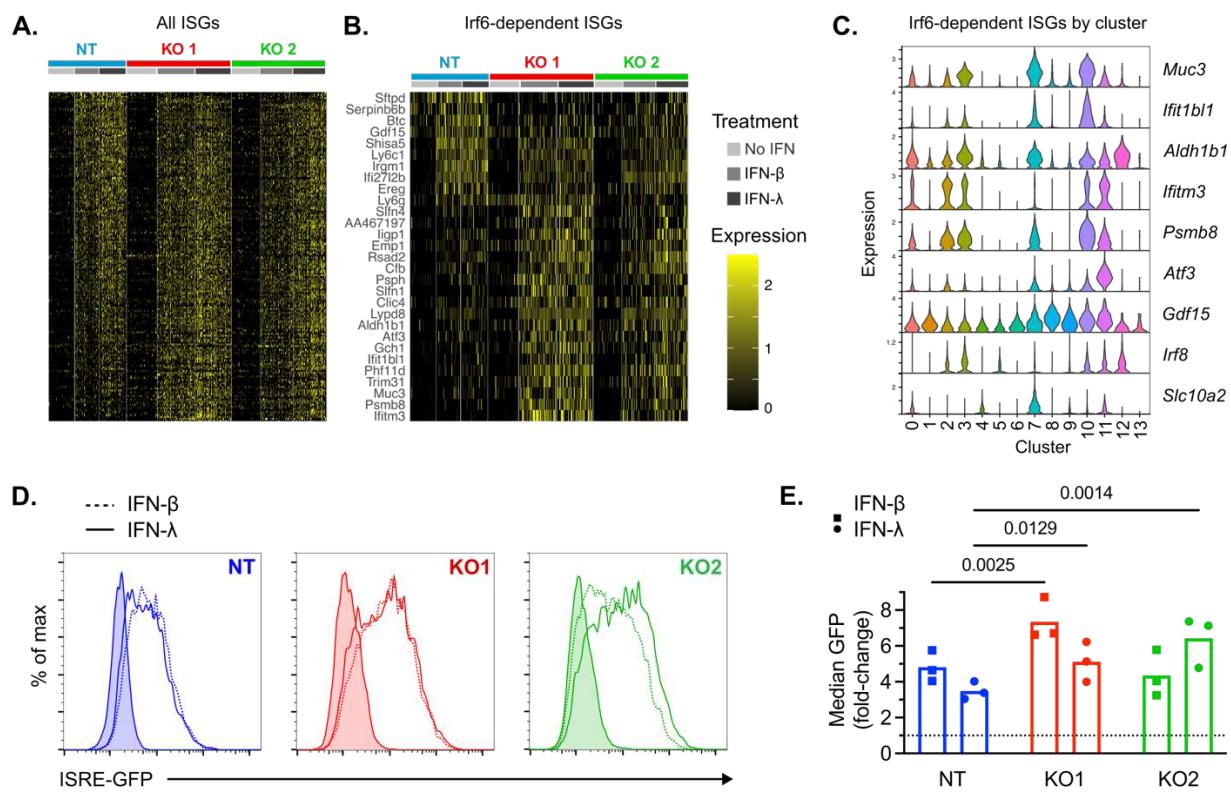
Figure 6. Irf6 regulates development and immune response genes in primary IECs. Non-targeting (NT) or *Irf6* KO organoids were treated with no IFN, 10 ng/mL IFN-β, or 25 ng/mL IFN-λ for 24 hours prior to preparation of single cells for scRNA-seq. **A.** Diagram depicting experimental groups, multiplexing, and pooling strategy. Two pools consisted of organoid lines transduced with the MNV receptor CD300lf, with or without MNV infection. **B.** UMAP multidimensional clustering of all sequenced cells, colored by cell line. Insets at bottom are split by IFN treatment group, as indicated. **C.** Heatmap of *Irf6*-dependent DEGs arranged by preferential expression in NT cells (top) to preferential expression in *Irf6* KOs (bottom). Selected genes related to

400 development and immunity are labeled. **D**. Number of DEGs from **C** for each KO organoid line compared to NT control, and
401 overlapping DEGs shared by KO organoid lines. **E**. Association between genes in **C-D** and selected GO pathways for *Irf6* KO1
402 (red bars) and *Irf6* KO2 (green bars) organoid lines. **F**. Feature plots depicting distribution of selected genes shared with other
403 IRF6 datasets or GO pathways, as indicated by headings. **G**. Identification of clusters with distinct gene expression profiles
404 among all groups (**B**). **H**. Distribution of cell cycle phase categories within each cluster. **I-J**. CytoTRACE analysis of
405 differentiation. Higher CytoTRACE score indicates more stem-like cells. All analyses performed on integrated data from four
406 single-cell pools (**A**). DEGs were defined as >1.5-fold change with adjusted p-value <0.05 using analysis pipelines described in
407 methods.
408

409
410
411
412

Figure S2. Related to figure 6. **A.** UMAP clustering of untreated cells only. **B.** Heatmap of 10 genes for each cluster (Fig. 6G) with the greatest fold-change relative to all other clusters. **C.** Feature plots depicting the distribution of expression for the top gene for each cluster. **D-E.** Distribution within each cluster of cell (D) or treatment (E) identities. **F.** Feature plots depicting

413 selected genes enriched in cluster 12. **G-H**. CytoTRACE analysis of differentiation on untreated cells only. Higher CytoTRACE
414 score indicates more stem-like cells. **I**. Feature plot of MNV genome count distribution among all groups. **J**. Violin plot of MNV
415 counts within the MNV-infected pool only.

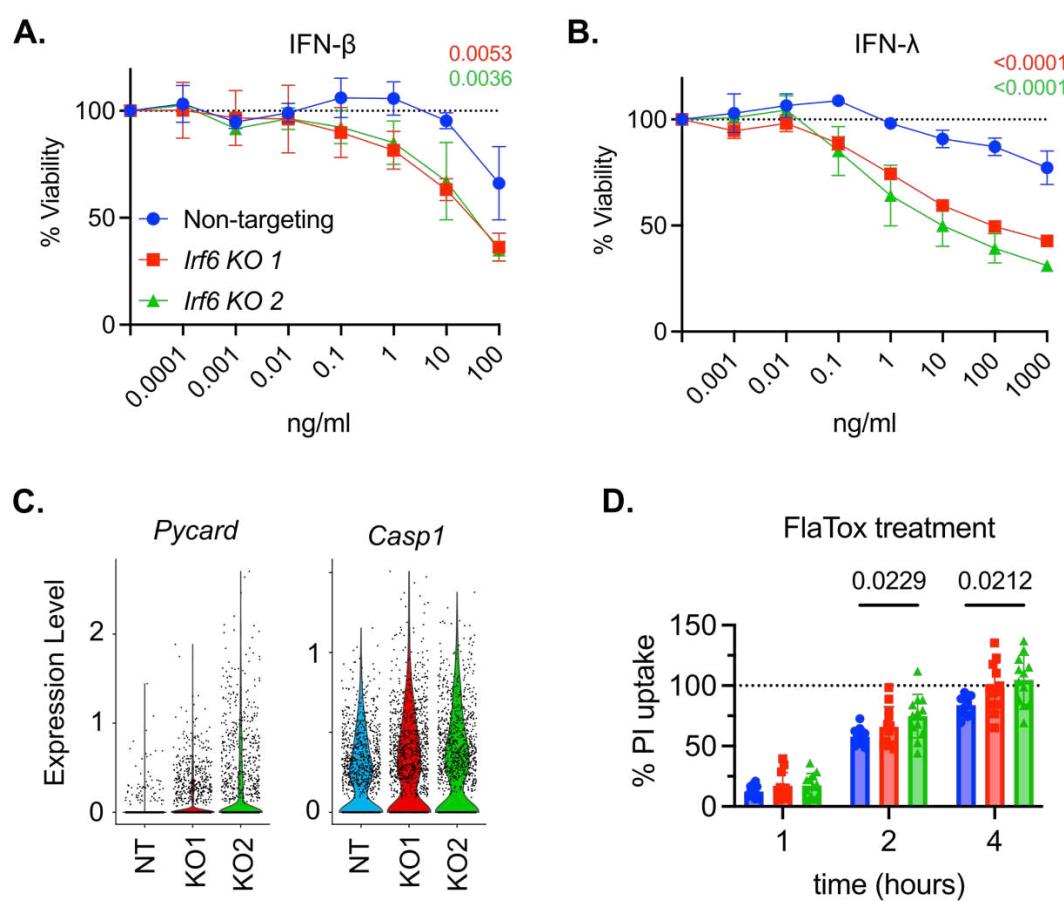

416

417 ***Irf6* regulates ISG expression and ISRE activity in IEC organoids.**

418 To identify all IFN-regulated genes within organoid RNAseq data, we compared IFN-treated
419 groups for each organoid line (NT, KO1, KO2) to their respective untreated controls. IFN types were
420 combined for this analysis because there were minimal differences in clustering between IFN- β and IFN- λ
421 treatments (Fig. 6A inset, Fig. S2E). We identified 162, 204, and 178 IFN-regulated genes for NT
422 control, *Irf6* KO1, and *Irf6* KO2 organoids, respectively (Fig. 7A, Table S5). Many antiviral ISGs were
423 similarly upregulated across all IFN-treated groups (e.g. *Ifh1*, *Tlr3*), but 20 ISGs were significantly higher
424 in *Irf6* KO organoids relative to non-targeting controls (Fig. 7B). Some of these *Irf6*-dependent ISGs were
425 favored within distinct IFN-stimulated KO subsets (Fig. 6G): *Muc3* and *Ift1bl1* were preferentially
426 stimulated in clusters 7 and 10 (G1 phase); *Iftm3* and *Psmb8* were preferentially stimulated in clusters
427 0, 2, and 3 (G2/S phases) (Fig. 7C). Additionally, cluster 11 was unique to IFN-stimulated *Irf6* KO organoid
428 lines and was distinguished by increased markers of apoptotic stress response (e.g. *Atf3*, *Atf4*, *Chac1*,
429 Figs. 8C, Table S5), suggesting increased IFN-stimulated stress and cytotoxicity in *Irf6* KO organoids.

430 Further analysis of gene clusters identified some ISGs unique to subsets of each organoid line.
431 For example, the bile acid cotransporter *Slc10a2* was preferentially stimulated in cluster 7 of KO2, but
432 was more modestly stimulated in *Irf6* KO1 (Fig. 7C). Additionally, IFN-stimulated cluster 3 expressed
433 secretory-lineage transcription factor *Atoh1* (Fig. S2F), suggesting ISGs in this cluster may be
434 preferentially IFN-stimulated within secretory-lineage cells. These cluster 3 ISGs included aldehyde
435 dehydrogenase (*Aldh1b1*) and *Irf8* (Fig. 7C). Furthermore, there was increased baseline expression of
436 *Aldh1b1* and *Irf8* within untreated secretory progenitors (Fig. 7C, cluster 12), further linking these genes
437 to IEC subsets. Together these data revealed clusters of IFN-stimulated response genes that correlated
438 with *Irf6* expression, cell cycle phase, and secretory progenitor genes.

439 Differences in the ISG transcriptome of *Irf6* KO organoids may be related to differential IFN-
440 stimulated activation of the ISRE promoter. The parental organoid line used to generate *Irf6* KOs was
441 derived from the small intestine of an ISRE-GFP reporter mouse (Uccellini & García-Sastre, 2018).
442 Therefore, we used flow cytometry to quantify GFP reporter expression as an indicator of ISRE
443 transactivation following 24 hours of treatment with either IFN- β or IFN- λ . All organoid lines had
444 significantly higher GFP expression following IFN treatments, confirming the utility of this reporter gene
445 (Fig. 7D-E). The median fold-increase in GFP fluorescence of *Irf6* KO1 organoids treated with either IFN
446 type was significantly higher than non-targeting controls (Fig. 7E). *Irf6* KO2 organoids exhibited a
447 preferential response to IFN- λ , with a significantly higher median fold-increase in GFP following
448 treatment with IFN- λ , but not IFN- β (Fig. 7E). This IFN- λ phenotype of *Irf6* KO2 organoids was consistent
449 with the result of preferential IFN- λ phenotype for *Irf6* in the viability CRISPR screen (Fig. 2G-H).
450 Together, these data support the conclusion that *Irf6* dampens IFN responsiveness of IEC organoids.
451


Figure 7. *Irf6* regulates the IFN response in primary IECs. **A-B.** Heatmaps of ISGs arranged by greater stimulation in non-targeting (top) to greater stimulation in *Irf6* KOs (bottom). **A.** all ISGs that are significantly increased by IFN treatment within at least one cell line **B.** ISGs that are significantly different between at least one KO line and non-targeting controls. **C.** Violin plots depicting expression of selected ISGs among clusters from **figure 6G**. **D-E.** Flow cytometry of Mx1-GFP expression 24hrs after treatment of indicated organoid lines with 10 ng/mL IFN- β (dashed lines) or 25 ng/mL IFN- λ (solid lines). **D.** Representative plots from three experimental replicates. **E.** Fold-change in median GFP expression of IFN-treated groups relative to their respective untreated controls. Data points represent replicates and significance was calculated using two-way ANOVA with Sidak multiple comparison correction.

Increased innate immune cytotoxicity in *Irf6*-deficient IEC organoids

RNAseq data suggested that *Irf6* deficiency led to an increase in IFN-stimulated stress and cytotoxicity (cluster 11, **Fig. 6G**, **Table S5**). To quantify differences in IFN-stimulated cytotoxicity between IEC organoid lines, we treated cells with a titration of IFN- β or IFN- λ for 48 hours and quantified viability by ATPglo cell titer assay. Treatment with IFN- β concentrations below 1 ng/mL resulted in no appreciable change in viability, but 10 ng/mL IFN- β resulted in lower viability (63%) for each *Irf6* KO organoid line compared to non-targeting controls (95% viability) (**Fig. 8A**). Treatment with IFN- λ concentrations below 10 ng/mL resulted in no appreciable change in viability for non-targeting control cells, but concentrations as low as 0.1 ng/mL IFN- λ resulted in 85% viability for *Irf6* KO organoids (**Fig. 8B**). Viability decreased to 31-42% for *Irf6* KO organoids treated with 1000 ng/mL IFN- λ , whereas non-targeting controls were only reduced to 77% viability at this maximum concentration of IFN- λ (**Fig. 8B**). These data indicated that IFN treatment of IEC organoids results in a greater loss of viability in the absence of *Irf6*, particularly for IFN- λ treatment, which is usually not cytotoxic.

in addition to IFN-stimulated cytotoxicity, we hypothesized that inflammasomes may be more active in the absence of *Irf6*. We noted that the gene for inflammasome adaptor ASC (*Pycard*) was significantly upregulated in *Irf6* KO organoids at baseline (**Fig. 6F**, **9C**). We also noted that the gene for

479 inflammasome effector caspase 1 was significantly higher in KO organoids (**Fig. 8C**). NLrc4 is an
480 inflammasome protein expressed by mouse IECs that can be activated by NAIP proteins upon detection
481 of cytosolic flagellin (Rauch et al., 2016, 2017). To test whether inflammasomes were differentially
482 active in *Irf6*-deficient IECs, we quantified inflammasome-driven lysis of IEC organoid lines by stimulating
483 the NAIP-NLRC4 inflammasome with agonist delivery to the cytosol (FlaTox) (von Moltke et al., 2012).
484 *Irf6* KO organoids exhibited significantly greater lysis following FlaTox addition compared to non-
485 targeting control organoids (**Fig. 8D**). Taken together with IFN-stimulated cytotoxicity, these data
486 indicate that IRF6-dependent gene expression programs can directly or indirectly moderate death of
487 IECs following activation of innate immune pathways.
488

489
490 **Figure 8. Increased innate immune cytotoxicity in *Irf6*-deficient IEC organoids.** **A.** *Irf6* KO and non-targeting (NT) control
491 organoids were treated with indicated concentrations of IFN- β (**A**) or IFN- λ (**B**) for 48hrs, and viable cells were quantified by
492 ATPglo assay relative to no IFN treatment controls. Two independent replicates with statistical significance by two-way ANOVA.
493 **C.** Gene expression for *Pycard* and *Casp1* from untreated cells in single-cell RNAseq data. **D.** Organoids were treated with
494 propidium iodide (PI) viability stain in the presence or absence of FlaTox, and the percent of maximum PI fluorescence was
495 measured relative to untreated control wells. Data points are combined from three independent experiments. Statistical
496 significance by two-way ANOVA.
497

498 **Discussion**

499 We set out to identify novel regulators of the IFN response in IECs through the use of
500 complementary CRISPR screens, and discovered that targeting *Irf6* in M2C IEC cells (but not BV2
501 macrophages) led to increased IFN-stimulated protection against MNV infection (**Figs. 2-3**). We found that
502 monoclonal isolates of *Irf6* KO M2C cells had a slower growth rate and decreased expression of epithelial
503 development pathway genes (**Figs. 4-5**). Primary IECs express substantially more *Irf6* than transformed
504 M2C cells (**Fig. 5A**), and *Irf6*-deficient IEC organoids had a reproducible reduction in growth and
505 differentiation genes as well as consistent alterations to ISG profile (**Figs. 6-7**). In particular, increased IFN-
506 stimulated expression of stress genes (**Fig. 6**) was correlated with a greater cytotoxicity of IFN-treated *Irf6*
507 KO IEC organoids (**Fig. 8A-B**). Thus, we have identified a novel role for IRF6 in shaping the biology of IECs
508 at baseline, with attendant roles in regulating the response to IFN. This role extends to other immune
509 pathways beyond IFN because we also found greater inflammasome-stimulated death in *Irf6*-deficient
510 organoids (**Fig. 8C-D**).

511 IRF6 is known to be important for fidelity of orofacial development, and *Irf6* knockout mice are
512 perinatal lethal with myriad developmental defects (Ingraham et al., 2006). IRF6 has been primarily
513 studied as a lineage-defining transcription factor within the epidermis, and is known to promote
514 expression of genes important for terminal differentiation of keratinocytes (Botti et al., 2011; Kousa et al.,
515 2017; Oberbeck et al., 2019). Our findings suggest that IRF6 may play an analogous role in the
516 development of IECs, with keratinocyte-specific transcriptional programs substituted for IEC-specific
517 programs. Indeed, a recent study of human organoids identified *IRF6*-targeted cells to be significantly
518 reduced in a pooled transcription factor screen (Lin et al., 2023), indicating an important role of IRF6 in
519 human IECs. Additionally, a genome-wide association study of inflammatory bowel diseases identified a
520 polymorphism within an *IRF6* intron that is associated with increased risk of disease (de Lange et al., 2017)
521 and is associated with decreased expression of IRF6 transcripts. Thus, our observation of decreased
522 developmental potential and increased cytotoxicity in *Irf6*-deficient IECs has potential implications for
523 human disease. Future studies in IEC-specific conditional knockout mouse models will definitively test *Irf6*
524 roles in development, immunity, and disease within intact tissues.

525 All IRF family transcription factors share a highly conserved DBD, and members of this
526 transcription factor family with developmental roles could also participate in regulation of IFN-stimulated
527 response genes. A dual role of IRF6 in development and immunity may be a beneficial strategy for shaping
528 the immune response of epithelia to suit their physiological roles within tissues. Our data suggest that
529 IRF6 restricts the IFN response of IECs, with increased stress and apoptosis pathway genes stimulated by
530 IFN when IRF6 is absent (**Fig. 6**). This activity of IRF6 may be beneficial in reducing damage to epithelial
531 cells during an active immune response in the intestine. Like the IFN response, inflammasome activation
532 thresholds need to be properly balanced within IECs to balance capacity for pathogen clearance with
533 cytotoxicity, and our data indicates a role for IRF6 in regulating this response threshold as well (**Fig. 8C-
534 D**).

535 Increased expression of epithelial development genes such as *Muc2* in *Irf6* KO organoids suggests
536 that secretory progenitor development may be limited by *Irf6* (**Fig. 5I**). Single-cell RNAseq data supports
537 this possibility, with increased expression of secretory IEC transcription factor *Atoh1* and reduced
538 expression of Notch ligand *Jag1* in *Irf6* KO organoids (**Fig. 6**). Organoid culture conditions used in this study
539 maintain cells in high Wnt, which favors maintenance of stem cells. So, future studies testing organoid
540 phenotypes under differentiation culture conditions that remove Wnt will be of interest.

541 The large, growth-arrested M2C cells observed within *Irf6* KO M2C cell isolation, and the
542 significant increase in apoptosis pathway genes, suggests that these cells are experiencing greater
543 genotoxic stress at baseline than non-targeting control cells. The selection pressure of genomic stress may
544 have resulted in variable adaptations between KO lines. Alternatively, distinct phenotypes may result from

545 the site targeted by each gRNA. *Irf6* gRNA 2 targets a sequence downstream of the DBD-encoding region,
546 and it is possible that there is leaky expression of the resulting DBD-only truncated protein isoform. Such
547 a DBD-only isoform would be predicted to act in a dominant-negative manner, with potential impacts
548 extending to other IRF family members. This distinction between gRNA target sites may explain why we
549 were unable to recover a homozygous knockout with *Irf6* gRNA 2 in IEC organoids as well as the
550 substantially increased number of DEGs in the M2C cell line targeted with this gRNA.

551 We selected *Irf6* for further study from our screen, but *Irf2* was also found to play a substantial
552 role in regulating the IFN-stimulated antiviral response in IEC cell lines (**Figs. 2-3**). IRF2 has been shown to
553 bind ISRE elements and block IFN responses (Taki, 2002). Additional recent studies have implicated *Irf2* in
554 IEC development, suggesting that it blocks IFN cytotoxicity of colonic stem cells (Minamide et al., 2020) or
555 restricts differentiation into secretory lineages (Sato et al., 2020). It is intriguing to speculate that IRF6 and
556 IRF2 may participate cooperatively or antagonistically in regulatory circuits related to IEC development
557 and immunity. It will be interesting to define interaction between IRFs and other post-translational
558 regulatory mechanisms for IRF6 in IECs. Regulation of IRF6 dimerization and nuclear translocation have
559 been studied in keratinocytes, but it remains to be determined whether distinct mechanisms are at play
560 in IECs. Further definition of these and other aspects of IRF6 regulation may have wide-ranging
561 implications for intestinal homeostasis, immunity and disease.

562
563

564 **Methods**

565

566 **Cell Culture**

567 BV2 (macrophage) cells and HEK 293T cells (ATCC #CRL-3216) were maintained in DMEM (Gibco
568 #11995065) with 5% fetal bovine serum (FBS), 1x penicillin/streptomycin/glutamine solution (Gibco
569 #10378016), and 10 mM HEPES (HyClone #SH30237). M2C transformed colon epithelial cells (Padilla-
570 Nash et al., 2012) were maintained with Advanced DMEM/F12 blend (Gibco #12634010) supplemented
571 with 10% FBS, 1x penicillin/streptomycin/glutamine solution, and 10 mM HEPES. All cells and organoids
572 were lifted and disrupted using trypsin/EDTA (Gibco #2500).

573 Organoids were generated, as previously described (Miyoshi & Stappenbeck, 2013), from the
574 small intestine of a female MX1-GFP mouse (B6.Cg-Mx1^{tm1.1Agsa}/J, Jackson Laboratory strain #033219). L-
575 WRN cells (ATCC #CRL3276) were cultured for collection of conditioned supernatants containing Wnt3a,
576 R spondin 3, and Noggin as previously described (Miyoshi & Stappenbeck, 2013). Organoid cultures were
577 grown in Matrigel (Corning #354234) with 50% L-WRN conditioned media (CM) supplemented with 10
578 µm Y-27632 (MedChemExpress #HY10583) and 10 µm SB-431542 (MedChemExpress #HY10431).

579

580 **Mice**

581 MX1-GFP mice were maintained in specific pathogen-free facilities at Oregon Health & Science
582 University (OHSU). Animal protocols were approved by the Institutional Animal Care and Use Committee
583 at OHSU (protocol #IP00000228) in accordance with standards provided in the *Animal Welfare Act*.

584

585 **Lentiviral production and cell transduction.**

586 Lentiviruses were produced from the following vectors: lentiCRISPRv2 hygro (Addgene #98291),
587 pLenti CMV Blast empty (w263-1) (addgene #17486), and pCDH-MSCV CD300lf-T2A-GFP (gift from Dr.
588 Craig Wilen). Insertion of gRNAs (**Table S1**) into the lentiCRISPRv2 hygro backbone was done as
589 previously described (Shalem et al., 2014). CD300lf was cloned from a gene block (IDT) by amplifying
590 with primers that included restriction site for XbaI and XhoI (**Table S1**). Vector backbone and CD300lf
591 amplicon were restriction digested following manufacturer's protocol. Fragments were gel purified and
592 cloned using T4 DNA ligase. Chemically competent STBL3 *E. coli* were heat shock transformed with the
593 ligated constructs and plated on ampicillin plates for selection. Resulting plasmid sequence was
594 confirmed by sanger sequencing.

595 To produce the lentiviral particles, 293T cells were plated at 500,000 cells per well in a 6-well
596 plate with 600 ng psPAX2, 300 ng pVSVg, 1000 ng lentiviral vector, 100 µl of Optimem (Gibco #31985-
597 062) and 6 µl of Transit-LT1 (Mirus #MIR2300). Two days after transfection lentivirus was harvested and
598 mixed with equal parts fresh media before overlaying on top of target cell lines. For transduction, BV2
599 cells were seeded at 20,000 cells per well and M2C cells were seeded at 1e4 cells per well in a 6-well
600 plate. Two days after transduction lentivirus was removed and antibiotic selection media was added.
601 After confirming death of untransduced control cells, transduced cell lines were cryogenically frozen in
602 nine parts FBS one part DMSO.

603 Monoclonal cell lines were isolated by diluting polyclonal populations to 0.5 cells per 100 µl of
604 media and 100 µl was plated in a 96-well plate. Wells were monitored for single cell colonies and CRISPR
605 mutations were confirmed using NGS amplicon sequencing (Genewiz). Amplicons were PCR amplified
606 for sequencing using Q5 polymerase with the corresponding primers (**Table S1**). Analysis of NGS
607 sequencing data was done using CRISPResso2 (Clement et al., 2019).

608 Lentiviruses for the pooled CRISPR screen were produced as described above with equal
609 proportions of all CRISPR/gRNA plasmids added to the transfection mix and the twelve wells of

610 transfected 293T cells. The pooled lentiviral prep was used to infect 1000 cells per gRNA, at an MOI=0.5,
611 as empirically determined for M2C and BV2 cells.

612 Lentiviral transduction of organoids was done after trypsinization to liberate from Matrigel and
613 separate into single cells. The single cells were resuspended in a 1:1 mixture of 50% CM and lentiviral
614 supernatant. The bottom of a 24-well plate was coated with 80 μ l of Matrigel and solidified. The
615 Cell/lentiviral mixture was then overlayed on top of the layer of Matrigel. Lentivirus was removed after
616 24hrs and replaced with 50% CM. Organoids were cultured and expanded for one week after
617 transduction to allow for accumulation of the resistance gene within clonal organoids. After one week of
618 culture, antibiotics were added to select for the transduced organoids. During selection, the surviving
619 organoids were expanded. Selection antibiotics were removed for two days after each expansion to
620 favor recovery after disruption of organoids and plating. Monoclonal organoids were generated by
621 pipetting a single organoid into a new well and expanding. Mutations to the gRNA target site were
622 determined as for cell lines above.

623

624 **Murine norovirus production, infection, and viability CRISPR screen**

625 MNV was produced from molecular clones as previously described (Robinson et al., 2019). A
626 chimeric strain CR6-VP1^{CW3} was used because it was shown to have the greatest lytic potential (Van
627 Winkle et al., 2018), increasing the dynamic range of the survival screen. M2C and BV2 cell lines were
628 seeded at 10,000 or 5,000 cells per well, respectively, in 96-well flat bottom black plates. At the time of
629 plating, cells were treated with the indicated dosage of IFN- β (PBL #12405-1) or IFN- λ 3 (PBL #12820-1).
630 24hrs after plating, cells were challenged with murine norovirus strain CR6-VP1^{CW3} at a MOI of either 50
631 for M2C cells or 10 for BV2 cells. 24 hours after infection, cell viability was quantified using the ATP-
632 GloTM Bioluminometric Cell Viability Assay (Biotium #30020-2) on a CLARIOstar plate reader.

633 For each CRISPR ko cell group, we calculated % viability compared to untreated controls, and
634 calculated "% protection" attributed to IFN pretreatments by subtracting the viability of untreated
635 conditions from viability of paired IFN-treatment conditions. We initially observed significant variance in
636 % viability between CRISPR-transduced M2C-CD300If cell lines after MNV infection (no IFN) that was
637 independent of the specific gene targeted. To limit potential confounding effects of baseline variance in
638 MNV susceptibility, and maximize the effect-size of IFN-treatment, we excluded poorly infected cells in
639 which % viability following MNV infection was >50% in the absence of IFN pretreatment (**Table S2**).
640

641 **Pooled CRISPR screen and FACS**

642 Pooled populations of CRISPR cell lines were plated at 500,000 cells per 10 cm dish. After
643 plating, BV2 cells were treated with 1 ng/ml IFN- β and M2C cells were treated with either 1 ng/ml IFN- β
644 or 100 ng/ml IFN- λ . After 24hrs of IFN treatment, the cells were inoculated with MNV CR6-VP1^{CW3}. BV2
645 cells were challenged with an MOI=10 and M2C cells were challenged with an MOI=100. After 8hrs the
646 cells were lifted using trypsin. All the media and PBS used to wash the cells were collected and
647 combined with the lifted cells to ensure any cells that died during infection were included in the sorting.
648 Cells were stained with Zombie AquaTM Fixable Viability Kit (Biolegend # 423102) and Fc receptors were
649 blocked using the CD16/32 antibody (Biolegend #101302) for 20min on ice. Cells were washed with PBS
650 and fixed in 2% paraformaldehyde for 20min at room temperature (RT). Cells were washed with PBS and
651 permeabilized in PBS with 0.2% Triton X-100, 3%FBS, 1% normal goat serum (perm/block) for 30min RT.
652 Cells were stored in perm/block at 4 degrees until both replicates had been collected. Immediately
653 before sorting, cells were stained with a MNV NS1/2 polyclonal rabbit antibody (generous gift of Dr.
654 Vernon Ward) for 30 minutes at room temperature. After washing two times, cells were stained with a
655 goat anti-rabbit IgG antibody conjugated to Alexa 647 (ThermoFisher #A21244) in perm/block for 30

656 minutes at room temperature. Cells were washed twice with PBS 0.2% Triton X-100 and resuspended in
657 FACS buffer for sorting.

658 The top 10% of cells stained with NS1/2 for each sample were sorted on the BD InFlux cell sorter
659 for sequencing. DNA extraction was done using the Quick-DNA FFPE Miniprep (Zymo #D3067). Genome
660 counts were determined through qPCR of the CRISPR insert (**Table S1**) and PCR amplification of the
661 gRNA insert was done on 2000 genomes per sample using Q5® Hot Start High-Fidelity DNA Polymerase
662 (NEB # M0493) with P5 and P7 primers that included the Genewiz partial adapter sequence (**Table S1**).
663 Amplicons were purified with AMPure XP beads (Beckman Coulter # A63880) and submitted for
664 amplicon sequencing (Genewiz). Analysis of gRNA sequences was done using MAGeCK (Li et al., 2014; B.
665 Wang et al., 2019).

666

667 **Bulk RNA sequencing and analysis**

668 RNA was extracted using the Zymo Quick-DNA/RNA Viral 96 Kit (ZymoResearch #D7023) from
669 three M2C cell lines and three treatment groups each in triplicate experimental replicates (27 total
670 samples). Quality of RNA samples were assessed using a TapeStation (Agilent) and mRNA sequencing
671 libraries were prepared by the OHSU Massively Parallel Sequencing Shared Resource (MPSSR) using the
672 TruSeq Stranded Poly(A)+ Library Prep Kit (Illumina). Barcoded libraries were pooled, paired-end
673 sequencing was performed using the Illumina NovaSeq platform, reads were trimmed of adaptors, and
674 reads were demultiplexed. Adaptor-trimmed and demultiplexed reads were mapped to the mouse
675 genome (GRCm39) using the STAR aligner (Dobin et al., 2013), and mapping quality was evaluated using
676 RSeQC (L. Wang et al., 2012) and MultiQC (Ewels et al., 2016). All samples had between 16 million and
677 27 million uniquely mapped reads with similar distributions across genomic features and uniform gene
678 body coverage. Read counts per gene were determined using the featureCounts program (Liao et al.,
679 2014), and differential expression analysis was performed using DEseq2 (Love et al., 2014), with each
680 cell/treatment combination representing a different group in the study design (9 total comparison
681 groups). PCA was performed on DEseq2 regularized logarithm (rlog)-transformed data. Heat maps were
682 generated using either rlog-transformed raw counts or counts normalized to control samples (“Non-
683 targeting” cells or “No IFN” treatment group), as indicated in figure legends. Heatmap clustering is based
684 on Euclidean distance. Volcano plots were generated using the EnhancedVolcano program
685 (<https://github.com/kevinblighe/EnhancedVolcano>).

686

687 **Single-cell RNA sequencing**

688 For some experimental groups, clonal lentiCRISPR-transduced organoid lines (non-targeting, *Irf6*
689 KO1, *Irf6* KO2) were further transduced with CD300lf using pCDH-MSCV CD300lf-T2A-GFP and
690 transduction methods described above.

691 Each IEC organoid line was treated with 10 ng/mL IFN- β , 25 ng/mL IFN- λ , or media only. One
692 group of replicate CD300lf-transduced organoids additionally received 9e5 PFU of MNV strain CR6-
693 VP1^{CW3} at the same time as IFN treatments. 24 hours after treatments, single cells were prepared by
694 incubation in trypsin/EDTA for 20 minutes, with pipetting every 5 minutes to disrupt organoids. The nine
695 groups of cell lines (NT, KO1, KO2) and treatment conditions (no IFN, IFN- β , IFN- λ) were incubated with
696 separate oligonucleotide-tagged antibodies (HTO) for multiplexing (Biolegend TotalSeq, A0301 - A0309).
697 Groups were counted and pooled in equal abundance, with four separate pools of cells: two groups
698 without CD300lf transduction or MNV infection, a CD300lf-transduced group without MNV infection,
699 and a CD300lf-transduced group with MNV infection (**Fig. 6A**). Pools were submitted to the OHSU Gene
700 Profiling Shared Resource for preparation of 10x chromium next GEM 3' single cell gene expression v3
701 libraries and HTO libraries. Libraries from the four pools were prepared separately and sequenced on an
702 Illumina NovaSeq by the OHSU MPSSR. Adaptor-trimmed and demultiplexed reads from the libraries of

703 each pool were mapped with Cell Ranger Count v7.1.0 to the mouse genome (mm10-2020-A), with
704 addition of MNV genome as a custom gene definition.

705 Gene counts from Cell Ranger were read into Seurat version 4.1.3 (Hao et al., 2021). Each pool
706 was filtered for cells with less-than 10% mitochondrial reads, greater than 1000 genes, and greater than
707 5000 counts. Gene counts were normalized and variable features identified within each pool using the
708 default parameters. Pools were integrated using FindIntegrationAnchors and IntegrateData functions
709 (50 dimensions). HTO data was normalized using centered log-ratio (CLR) transformation, and groups
710 were de-multiplexed using the HTODemux function (positive.quantile = 0.999). 12,151 demultiplexed
711 singlets were clustered by gene expression using the following functions: ScaleData, RunPCA,
712 FindNeighbors (dims = 1:15), FindClusters (resolution = 1), and RunUMAP (dims = 1:15). Experimental
713 groups were identified by HTO, and differentially expressed genes between groups were identified using
714 DESeq2 (Love et al., 2014) via the FindMarkers function. DEGs were defined as having a greater than 1.5
715 fold-change and adjusted p-value < 0.05. Marker genes for clusters were identified by Wilcoxon Rank
716 Sum test using the FindAllMarkers function (min.pct = 0.25). Cell cycle phase was determined using the
717 CellCycleScoring() function.

718

719 **Quantitative PCR**

720 RNA was extracted using the Zymo Quick-RNA Viral Kit (ZymoResearch #R1035). DNA
721 contamination was removed using the Turbo DNAfree kit (ThermoFisher #AM1907). cDNA was
722 generated with the ImPromII reverse transcription system (Promega #A3800). Quantitative PCR was
723 performed using PerfeCTa qPCR FasMix II (QuantaBio #95119) and the pre-designed primer and probe
724 assays from Integrated DNA Technologies (IDT) (**Table S1**). Absolute copy number was determined by
725 comparing Ct values to a standard curve generated using DNA of known copy number encoding the
726 target sequences. Samples are graphed as absolute copy number of the indicated target divided by the
727 absolute copy number of the housekeeping gene, *Rps29*, with log-transformation and normalization as
728 indicated in figure legends.

729

730 **Western blot**

731 Two days after plating, organoids were dissociated from Matrigel using trypsin/EDTA (Gibco
732 #2500), washed with PBS, and lysed in RIPA buffer (NaCl 150mM, Tris-HCl 50mM [pH 8.0], sodium
733 deoxycholate 0.5%, and SDS 0.1%) supplemented with cComplete mini, EDTA-free protease inhibitor
734 cocktail (Sigma #4693159001). Each sample was mixed with Bolt LDX buffer (ThermoFisher), Bolt
735 reducing agent (ThermoFisher), and incubated at 70C for 10 min. Samples were run on a 12% Bis-Tris
736 Bolt Mini protein gel (ThermoFisher) and transferred to a PVDF membrane using Bolt transfer buffer
737 (ThermoFisher). IRF6 antibody (BioLegend #674502) was diluted 1:500 and the secondary antibody goat
738 anti-mouse conjugated to horseradish peroxidase (ThermoFisher #62-6720) was diluted 1:5000.

739

740 **Fluorescence *in situ* hybridization**

741 FISH was performed using the Advanced Cell Diagnostics (Newark, CA) manual RNAscope assay
742 following manufacturer protocol from FFPE tissue sections. Probes specific for *Mus musculus*
743 genes *Irf6* (ACD, #462931) and *Ifit1* (ACD, #500071-C2) were purchased from Advanced Cell Diagnostics.
744 Slides were counter-stained with DAPI and mounted with ProLong Gold antifade reagent
745 (ThermoFisher). Fluorescent micrographs were captured using a Zeiss ApoTome2 on an Axio Imager,
746 with a Zeiss AxioCam 506 (Zeiss) detector.

747

748 **FlaTox inflammasome assay**

749 Organoids were seeded into 5 μ L Matrigel domes in 96-well plates, at least 3 wells per
750 treatment. After 2-3 days, organoids were treated with FlaTox (comprised of flagellin from *V.*
751 *parahemolyticus* (16 μ g/mL) and protective antigen (1 μ g/mL)) and propidium iodide (1:100 dilution) in
752 complete media. Absorbance was measured using on a CLARIOstar plate reader each hour following
753 treatment. Absorbance readings were first normalized to untreated controls (0%) and then normalized
754 to maximum PI uptake in replicate wells for each organoid line treated with 1% Triton-X (100%).
755

756 **Statistical Analyses**

757 Sample size estimation was performed based on historical data. Data were analyzed with Prism
758 software (GraphPad Prism Software), with specified tests as noted in the figure legends.
759

760 **Data availability.**

761 RNA sequencing data obtained in this study have been deposited in the NCBI gene expression
762 omnibus (GEO) under series number GSE245972.
763

764 **Acknowledgments**

765 The authors would like to thank the following OHSU core facilities: Integrated Genomics
766 Laboratory, Massively Parallel Sequencing Shared Resource, Advanced Light Microscopy Core, and Flow
767 Cytometry Core. T.J.N. and A.P.W. were supported NIH grant R01-AI130055 and the Medical Research
768 Foundation of Oregon. T.J.N. was additionally supported the Kenneth Rainin Foundation (Grant
769 #20220034), and OHSU school of medicine. The funders had no role in study design, data collection and
770 interpretation, or the decision to submit the work for publication.
771

772 **Disclosure**

773 We declare no competing interests.
774
775

776 **References**

777 Bailey, C. M., & Hendrix, M. J. C. (2008). IRF6 in development and disease: A mediator of quiescence and
778 differentiation. *Cell Cycle*, 7(13), 1925–1930. <https://doi.org/10.4161/cc.7.13.6221>

779 Baldridge, M. T., Lee, S., Brown, J. J., McAllister, N., Urbanek, K., Dermody, T. S., Nice, T. J., & Virgin, H.
780 W. (2017). Expression of Ifnlr1 on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of
781 Interferon Lambda against Norovirus and Reovirus. *Journal of Virology*, 91(7), e02079-16.
782 <https://doi.org/10.1128/JVI.02079-16>

783 Botti, E., Spallone, G., Moretti, F., Marinari, B., Pinetti, V., Galanti, S., De Meo, P. D., De Nicola, F., Ganci,
784 F., Castrignanò, T., Pesole, G., Chimenti, S., Guerrini, L., Fanciulli, M., Blandino, G., Karin, M., &
785 Costanzo, A. (2011). Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell
786 carcinomas. *Proceedings of the National Academy of Sciences*, 108(33), 13710–13715.
787 <https://doi.org/10.1073/pnas.1110931108>

788 Clement, K., Rees, H., Canver, M. C., Gehrke, J. M., Farouni, R., Hsu, J. Y., Cole, M. A., Liu, D. R., Joung, J.
789 K., Bauer, D. E., & Pinello, L. (2019). CRISPResso2 provides accurate and rapid genome editing
790 sequence analysis. *Nature Biotechnology* 2019 37:3, 37(3), 224–226.
791 <https://doi.org/10.1038/s41587-019-0032-3>

792 de Lange, K. M., Moutsianas, L., Lee, J. C., Lamb, C. A., Luo, Y., Kennedy, N. A., Jostins, L., Rice, D. L.,
793 Gutierrez-Achury, J., Ji, S.-G., Heap, G., Nimmo, E. R., Edwards, C., Henderson, P., Mowat, C.,
794 Sanderson, J., Satsangi, J., Simmons, A., Wilson, D. C., ... Barrett, J. C. (2017). Genome-wide
795 association study implicates immune activation of multiple integrin genes in inflammatory bowel
796 disease. *Nature Genetics*, 49(2), 256–261. <https://doi.org/10.1038/ng.3760>

797 Degen, M., Girousi, E., Feldmann, J., Parisi, L., La Scala, G. C., Schnyder, I., Schaller, A., & Katsaros, C.
798 (2020). A Novel Van der Woude Syndrome-Causing IRF6 Variant Is Subject to Incomplete Non-
799 sense-Mediated mRNA Decay Affecting the Phenotype of Keratinocytes. *Frontiers in Cell and
800 Developmental Biology*, 8. <https://doi.org/10.3389/fcell.2020.583115>

801 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras,
802 T. R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15–21.
803 <https://doi.org/10.1093/bioinformatics/bts635>

804 Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for
805 multiple tools and samples in a single report. *Bioinformatics*, 32(19), 3047–3048.
806 <https://doi.org/10.1093/bioinformatics/btw354>

807 Forero, A., Ozarkar, S., Li, H., Lee, C. H., Hemann, E. A., Nadjombati, M. S., Hendricks, M. R., So, L.,
808 Green, R., Roy, C. N., Sarkar, S. N., von Moltke, J., Anderson, S. K., Gale Jr., M., Savan, R., Gale, M.,
809 & Savan, R. (2019). Differential Activation of the Transcription Factor IRF1 Underlies the Distinct

810 Immune Responses Elicited by Type I and Type III Interferons. *Immunity*, 51(3), 451-464.e6.
811 <https://doi.org/10.1016/j.immuni.2019.07.007>

812 Gabriele, L., & Ozato, K. (2007). The role of the interferon regulatory factor (IRF) family in dendritic cell
813 development and function. *Cytokine and Growth Factor Reviews*, 18(5–6), 503–510.
814 <https://doi.org/10.1016/j.cytoogr.2007.06.008>

815 Gulati, G. S., Sikandar, S. S., Wesche, D. J., Manjunath, A., Bharadwaj, A., Berger, M. J., Ilagan, F., Kuo, A.
816 Hsieh, R. W., Cai, S., Zabala, M., Scheeren, F. A., Lobo, N. A., Qian, D., Yu, F. B., Dirbas, F. M.,
817 Clarke, M. F., & Newman, A. M. (2020). Single-cell transcriptional diversity is a hallmark of
818 developmental potential. *Science*, 367(6476), 405–411. <https://doi.org/10.1126/science.aax0249>

819 Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., Zheng, S., Butler, A., Lee, M. J., Wilk, A. J., Darby, C.,
820 Zager, M., Hoffman, P., Stoeckius, M., Papalexi, E., Mimitou, E. P., Jain, J., Srivastava, A., Stuart, T.,
821 Fleming, L. M., Yeung, B., ... Satija, R. (2021). Integrated analysis of multimodal single-cell data. *Cell*,
822 184(13), 3573-3587.e29. <https://doi.org/10.1016/j.cell.2021.04.048>

823 Harada, H., Fujita, T., Miyamoto, M., Kimura, Y., Maruyama, M., Furia, A., Miyata, T., & Taniguchi, T.
824 (1989). Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same
825 regulatory elements of IFN and IFN-inducible genes. *Cell*, 58(4), 729–739.
826 [https://doi.org/10.1016/0092-8674\(89\)90107-4](https://doi.org/10.1016/0092-8674(89)90107-4)

827 Ingraham, C. R., Kinoshita, A., Kondo, S., Yang, B., Sajan, S., Trout, K. J., Malik, M. I., Dunnwald, M.,
828 Goudy, S. L., Lovett, M., Murray, J. C., & Schutte, B. C. (2006). Abnormal skin, limb and craniofacial
829 morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). *Nature Genetics*, 38(11),
830 1335–1340. <https://doi.org/10.1038/ng1903>

831 Kousa, Y. A., Moussa, D., & Schutte, B. C. (2017). IRF6 expression in basal epithelium partially rescues
832 *Irf6* knockout mice. *Developmental Dynamics*, 246(9), 670–681.
833 <https://doi.org/10.1002/dvdy.24537>

834 Kwa, M. Q., Huynh, J., Reynolds, E. C., Hamilton, J. A., & Scholz, G. M. (2015). Disease-associated
835 mutations in IRF6 and RIPK4 dysregulate their signalling functions. *Cellular Signalling*, 27(7), 1509–
836 1516. <https://doi.org/10.1016/j.cellsig.2015.03.005>

837 Li, W., Xu, H., Xiao, T., Cong, L., Love, M. I., Zhang, F., Irizarry, R. A., Liu, J. S., Brown, M., & Liu, X. S.
838 (2014). MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9
839 knockout screens. *Genome Biology*, 15(12), 554. <https://doi.org/10.1186/s13059-014-0554-4>

840 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for
841 assigning sequence reads to genomic features. *Bioinformatics*, 30(7), 923–930.
842 <https://doi.org/10.1093/bioinformatics/btt656>

843 Lin, L., DeMartino, J., Wang, D., van Son, G. J. F., van der Linden, R., Begthel, H., Korving, J., Andersson-
844 Rolf, A., van den Brink, S., Lopez-Iglesias, C., van de Wetering, W. J., Balwierz, A., Margaritis, T., van
845 de Wetering, M., Peters, P. J., Drost, J., van Es, J. H., & Clevers, H. (2023). Unbiased transcription
846 factor CRISPR screen identifies ZNF800 as master repressor of enteroendocrine differentiation.
847 *Science*, 382(6669), 451–458. <https://doi.org/10.1126/science.adi2246>

848 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for
849 RNA-seq data with DESeq2. *Genome Biology*, 15(12), 1–21. <https://doi.org/10.1186/s13059-014-0550-8>

851 Luo, M., Huang, Z., Yang, X., Chen, Y., Jiang, J., Zhang, L., Zhou, L., Qin, S., Jin, P., Fu, S., Peng, L., Li, B.,
852 Fang, Y., Pu, W., Gong, Y., Liu, Y., Ren, Z., Liu, Q.-L., Wang, C., ... Chen, H.-N. (2022). PHLDB2
853 Mediates Cetuximab Resistance via Interacting With EGFR in Latent Metastasis of Colorectal
854 Cancer. *Cellular and Molecular Gastroenterology and Hepatology*, 13(4), 1223–1242.
855 <https://doi.org/10.1016/j.jcmgh.2021.12.011>

856 Mahlakoiv, T., Hernandez, P., Gronke, K., Diefenbach, A., & Staeheli, P. (2015). Leukocyte-derived IFN-
857 alpha/beta and epithelial IFN-lambda constitute a compartmentalized mucosal defense system
858 that restricts enteric virus infections. *PLoS Pathog*, 11(4), e1004782.
859 <https://doi.org/10.1371/journal.ppat.1004782>

860 Mancino, A., & Natoli, G. (2016). Specificity and Function of IRF Family Transcription Factors: Insights
861 from Genomics. *Journal of Interferon & Cytokine Research*, 36(7), 462–469.
862 <https://doi.org/10.1089/jir.2016.0004>

863 Matsumoto, S., Fujii, S., Sato, A., Ibuka, S., Kagawa, Y., Ishii, M., & Kikuchi, A. (2014). A combination of
864 Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. *The
865 EMBO Journal*, 33(7), 702–718. <https://doi.org/10.1002/embj.201386942>

866 Mendoza, J. L., Schneider, W. M., Hoffmann, H.-H., Vercauteren, K., Jude, K. M., Xiong, A., Moraga, I.,
867 Horton, T. M., Glenn, J. S., de Jong, Y. P., Rice, C. M., & Garcia, K. C. (2017). The IFN-λ-IFN-λR1-IL-
868 10Rβ Complex Reveals Structural Features Underlying Type III IFN Functional Plasticity. *Immunity*,
869 46(3), 379–392. <https://doi.org/10.1016/j.jimmuni.2017.02.017>

870 Minamide, K., Sato, T., Nakanishi, Y., Ohno, H., Kato, T., Asano, J., & Ohteki, T. (2020). IRF2 maintains the
871 stemness of colonic stem cells by limiting physiological stress from interferon. *Scientific Reports*,
872 10(1), 14639. <https://doi.org/10.1038/s41598-020-71633-3>

873 Miyoshi, H., & Stappenbeck, T. S. (2013). In vitro expansion and genetic modification of gastrointestinal
874 stem cells as organoids. *Nature Protocols*, 8(12), 2471. <https://doi.org/10.1038/NPROT.2013.153>

875 Mordstein, M., Neugebauer, E., Ditt, V., Jessen, B., Rieger, T., Falcone, V., Sorgeloos, F., Ehl, S., Mayer,
876 D., Kochs, G., Schwemmle, M., Günther, S., Drosten, C., Michiels, T., & Staeheli, P. (2010). Lambda

877 interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral
878 infections. *Journal of Virology*, 84(11), 5670–5677. <https://doi.org/10.1128/JVI.00272-10>

879 Negishi, H., Taniguchi, T., & Yanai, H. (2018). The Interferon (IFN) Class of Cytokines and the IFN
880 Regulatory Factor (IRF) Transcription Factor Family. *Cold Spring Harbor Perspectives in Biology*,
881 10(11), a028423. <https://doi.org/10.1101/cshperspect.a028423>

882 Nice, T. J., Baldridge, M. T., McCune, B. T., Norman, J. M., Lazear, H. M., Artyomov, M., Diamond, M. S.,
883 & Virgin, H. W. (2015). Interferon-λ cures persistent murine norovirus infection in the absence of
884 adaptive immunity. *Science (New York, N.Y.)*, 347(6219), 269–273.
885 <https://doi.org/10.1126/science.1258100>

886 Oberbeck, N., Pham, V. C., Webster, J. D., Reja, R., Huang, C. S., Zhang, Y., Roose-Girma, M., Warming, S.,
887 Li, Q., Birnberg, A., Wong, W., Sandoval, W., Kőműves, L. G., Yu, K., Dugger, D. L., Maltzman, A.,
888 Newton, K., & Dixit, V. M. (2019). The RIPK4–IRF6 signalling axis safeguards epidermal
889 differentiation and barrier function. *Nature*, 574(7777), 249–253. <https://doi.org/10.1038/s41586-019-1615-3>

890 Padilla-Nash, H. M., Hathcock, K., Mcneil, N. E., Mack, D., Hoeppner, D., Ravin, R., Knutsen, T., Yonescu,
891 R., Wangsa, D., Dorritie, K., Barenboim, L., Hu, Y., & Ried, T. (2012). Spontaneous transformation of
892 murine epithelial cells requires the early acquisition of specific chromosomal aneuploidies and
893 genomic imbalances. *Genes, Chromosomes and Cancer*, 51(4), 353–374.
894 <https://doi.org/10.1002/GCC.21921>

895 Pervolaraki, K., Rastgou Talemi, S., Albrecht, D., Bormann, F., Bamford, C., Mendoza, J. L., Garcia, K. C.,
896 McLauchlan, J., Hofer, T., Stanifer, M. L., & Boulant, S. (2018). Differential induction of interferon
897 stimulated genes between type I and type III interferons is independent of interferon receptor
898 abundance. *PLoS Pathog*, 14(11), e1007420. <https://doi.org/10.1371/journal.ppat.1007420>

899 Pott, J., Mahlaköiv, T., Mordstein, M., Duerr, C. U., Michiels, T., Stockinger, S., Staeheli, P., & Hornef, M.
900 W. (2011). IFN-lambda determines the intestinal epithelial antiviral host defense. *Proceedings of
901 the National Academy of Sciences of the United States of America*, 108(19), 7944–7949.
902 <https://doi.org/10.1073/pnas.1100552108>

903 Rauch, I., Deets, K. A., Ji, D. X., von Moltke, J., Tenthorey, J. L., Lee, A. Y., Philip, N. H., Ayres, J. S.,
904 Brodsky, I. E., Gronert, K., & Vance, R. E. (2017). NAIP-NLRC4 Inflammasomes Coordinate Intestinal
905 Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8.
906 *Immunity*, 46(4), 649–659. <https://doi.org/10.1016/j.immuni.2017.03.016>

907 Rauch, I., Tenthorey, J. L., Nichols, R. D., Al Moussawi, K., Kang, J. J., Kang, C., Kazmierczak, B. I., & Vance,
908 R. E. (2016). NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo.
909 *The Journal of Experimental Medicine*, 213(5), 657–665. <https://doi.org/10.1084/jem.20151809>

910

911 Restivo, G., Nguyen, B.-C., Dziunycz, P., Ristorcelli, E., Ryan, R. J. H., Özyosal, Ö. Y., Di Piazza, M., Radtke,
912 F., Dixon, M. J., Hofbauer, G. F. L., Lefort, K., & Dotto, G. P. (2011). IRF6 is a mediator of Notch pro-
913 differentiation and tumour suppressive function in keratinocytes. *The EMBO Journal*, 30(22), 4571–
914 4585. <https://doi.org/10.1038/emboj.2011.325>

915 Robinson, B. A., Van Winkle, J. A., McCune, B. T., Peters, A. M., & Nice, T. J. (2019). Caspase-mediated
916 cleavage of murine norovirus NS1/2 potentiates apoptosis and is required for persistent infection
917 of intestinal epithelial cells. *PLOS Pathogens*, 15(7), e1007940.
918 <https://doi.org/10.1371/journal.ppat.1007940>

919 Sadler, A. J., & Williams, B. R. G. (2008). Interferon-inducible antiviral effectors. *Nature Reviews
920 Immunology*, 8(7), 559–568. <https://doi.org/10.1038/nri2314>

921 Sato, T., Ishikawa, S., Asano, J., Yamamoto, H., Fujii, M., Sato, T., Yamamoto, K., Kitagaki, K., Akashi, T.,
922 Okamoto, R., & Ohteki, T. (2020). Regulated IFN signalling preserves the stemness of intestinal
923 stem cells by restricting differentiation into secretory-cell lineages. *Nature Cell Biology*, 22(8), 919–
924 926. <https://doi.org/10.1038/s41556-020-0545-5>

925 Schneider, W. M., Chevillotte, M. D., & Rice, C. M. (2014). Interferon-stimulated genes: a complex web
926 of host defenses. *Annual Review of Immunology*, 32(4), 513–545. [https://doi.org/10.1146/annurev-immunol-032713-120231](https://doi.org/10.1146/annurev-
927 immunol-032713-120231)

928 Schoggins, J. W. (2019). Interferon-Stimulated Genes: What Do They All Do? *Annu Rev Virol*, 6(1), 567–
929 584. <https://doi.org/10.1146/annurev-virology-092818-015756>

930 Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelsen, T. S., Heckl, D., Ebert, B. L., Root,
931 D. E., Doench, J. G., & Zhang, F. (2014). Genome-Scale CRISPR-Cas9 Knockout Screening in Human
932 Cells. *Science (New York, N.Y.)*, 343(6166), 84. <https://doi.org/10.1126/SCIENCE.1247005>

933 Sommereyns, C., Paul, S., Staeheli, P., & Michiels, T. (2008). IFN-Lambda (IFN- λ) Is Expressed in a Tissue-
934 Dependent Fashion and Primarily Acts on Epithelial Cells In Vivo. *PLoS Pathogens*, 4(3), e1000017.
935 <https://doi.org/10.1371/journal.ppat.1000017>

936 Taki, S. (2002). Type I interferons and autoimmunity: lessons from the clinic and from IRF-2-deficient
937 mice. *Cytokine & Growth Factor Reviews*, 13(4–5), 379–391. [https://doi.org/10.1016/S1359-6101\(02\)00023-0](https://doi.org/10.1016/S1359-
938 6101(02)00023-0)

939 Taniguchi, T., Ogasawara, K., Takaoka, A., & Tanaka, N. (2001). IRF family of transcription factors as
940 regulators of host defense. *Annual Review of Immunology*, 19(1), 623–655.
941 <https://doi.org/10.1146/annurev.immunol.19.1.623>

942 Tsujimura, H., Nagamura-Inoue, T., Tamura, T., & Ozato, K. (2002). IFN Consensus Sequence Binding
943 Protein/IFN Regulatory Factor-8 Guides Bone Marrow Progenitor Cells Toward the Macrophage

944 Lineage. *The Journal of Immunology*, 169(3), 1261–1269.
945 <https://doi.org/10.4049/jimmunol.169.3.1261>

946 Uccellini, M. B., & García-Sastre, A. (2018). ISRE-Reporter Mouse Reveals High Basal and Induced Type I
947 IFN Responses in Inflammatory Monocytes. *Cell Reports*, 25(10), 2784-2796.e3.
948 <https://doi.org/10.1016/j.celrep.2018.11.030>

949 Van Winkle, J. A., Constant, D. A., Li, L., & Nice, T. J. (2020). Selective Interferon Responses of Intestinal
950 Epithelial Cells Minimize Tumor Necrosis Factor Alpha Cytotoxicity. *Journal of Virology*, 94(21), 1–
951 16. <https://doi.org/10.1128/JVI.00603-20>

952 Van Winkle, J. A., Peterson, S. T., Kennedy, E. A., Wheaton, M. J., Ingle, H., Desai, C., Rodgers, R.,
953 Constant, D. A., Wright, A. P., Li, L., Artyomov, M. N., Lee, S., Baldridge, M. T., & Nice, T. J. (2022). A
954 homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral
955 defense within discrete pockets of intestinal epithelium. *eLife*, 11, 2021.06.02.446828.
956 <https://doi.org/10.7554/eLife.74072>

957 Van Winkle, J. A., Robinson, B. A., Peters, A. M., Li, L., Nouboussi, R. V., Mack, M., & Nice, T. J. (2018).
958 Persistence of Systemic Murine Norovirus Is Maintained by Inflammatory Recruitment of
959 Susceptible Myeloid Cells. *Cell Host & Microbe*, 24(5), 665-676.e4.
960 <https://doi.org/10.1016/j.chom.2018.10.003>

961 von Moltke, J., Trinidad, N. J., Moayeri, M., Kintzer, A. F., Wang, S. B., van Rooijen, N., Brown, C. R.,
962 Krantz, B. A., Leppla, S. H., Gronert, K., & Vance, R. E. (2012). Rapid induction of inflammatory lipid
963 mediators by the inflammasome in vivo. *Nature*, 490(7418), 107–111.
964 <https://doi.org/10.1038/nature11351>

965 Wang, B., Wang, M., Zhang, W., Xiao, T., Chen, C. H., Wu, A., Wu, F., Traugh, N., Wang, X., Li, Z., Mei, S.,
966 Cui, Y., Shi, S., Lipp, J. J., Hinterndorfer, M., Zuber, J., Brown, M., Li, W., & Liu, X. S. (2019).
967 Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. *Nature Protocols*, 14(3),
968 756–780. <https://doi.org/10.1038/s41596-018-0113-7>

969 Wang, H., Lee, C. H., Qi, C., Tailor, P., Feng, J., Abbasi, S., Atsumi, T., & Morse, H. C. (2008). IRF8 regulates
970 B-cell lineage specification, commitment, and differentiation. *Blood*, 112(10), 4028–4038.
971 <https://doi.org/10.1182/blood-2008-01-129049>

972 Wang, L., Wang, S., & Li, W. (2012). RSeQC: quality control of RNA-seq experiments. *Bioinformatics*,
973 28(16), 2184–2185. <https://doi.org/10.1093/bioinformatics/bts356>

974