

1 **Laboratory evolution of *E. coli* with a natural vitamin B₁₂ analog reveals roles for cobamide
2 uptake and adenosylation in methionine synthase-dependent growth**

3 Kenny C. Mok, Zachary F. Hallberg, Rebecca R. Procknow, and Michiko E. Taga[#]

4

5 Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA
6 U.S.A.

7

8 [#]Correspondence to taga@berkeley.edu

9

10 Running title: Lab evolution with pseudocobalamin

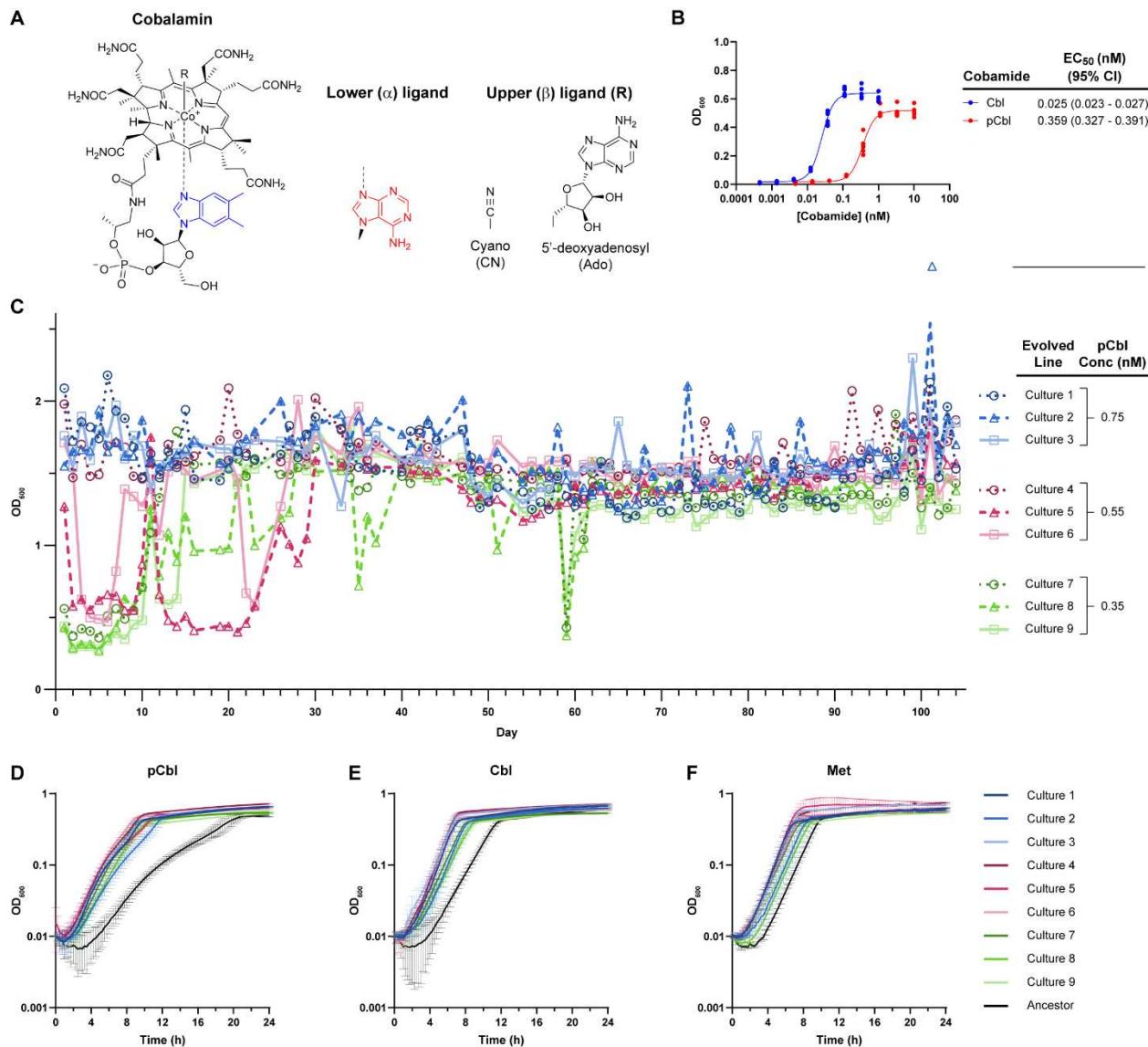
11

12 Abstract

13 The majority of bacteria use cobamides as cofactors for methionine synthesis or other diverse
14 metabolic processes. Cobamides are a structurally diverse family of cofactors related to vitamin
15 B₁₂ (cobalamin), and most bacteria studied to date grow most robustly with particular cobamides.
16 Because different environments contain varying abundances of distinct cobamides, bacteria are
17 likely to encounter cobamides that do not function efficiently for their metabolism. Here, we
18 performed a laboratory evolution of a cobamide-dependent strain of *Escherichia coli* with
19 pseudocobalamin (pCbl), a cobamide that *E. coli* uses less effectively than cobalamin for MetH-
20 dependent methionine synthesis, to identify genetic adaptations that lead to improved growth with
21 less-preferred cobamides. After propagating and sequencing nine independent lines and validating
22 the results by constructing targeted mutations, we found that increasing expression of the outer
23 membrane cobamide transporter BtuB is beneficial during growth under cobamide-limiting
24 conditions. Unexpectedly, we also found that overexpression of the cobamide adenosyltransferase
25 BtuR confers a specific growth advantage in pCbl. Characterization of this phenotype revealed
26 that BtuR and adenosylated cobamides contribute to optimal MetH-dependent growth. Together,
27 these findings improve our understanding of how bacteria expand their cobamide-dependent
28 metabolic potential.

29 Importance

30 In nature, bacteria commonly experience fluctuations in the availability of required nutrients. Thus,
31 their environment often contains nutrients that are insufficient in quantity or that function poorly
32 in their metabolism. Cobamides, the vitamin B₁₂ family of cofactors, are ideal for investigating the
33 influence of nutrient quantity and structure on bacterial growth because they must be acquired
34 exogenously by most bacteria and are structurally diverse, with most bacteria having preferences
35 for certain types. We performed a laboratory evolution experiment in *E. coli* with a less-preferred
36 cobamide to examine whether and how bacteria can improve their growth with less ideal nutrients.
37 We found that overexpression of genes for cobamide uptake and modification are genetic
38 adaptations that enable better growth under these conditions. Given that cobamides are key shared
39 metabolites in microbial communities, our results reveal insights into bacterial interactions and
40 competition for nutrients.


41 Introduction

42 Cobamides, the vitamin B₁₂ family of metabolites, are used by most bacteria as cofactors for
43 diverse metabolic processes including carbon metabolism, synthesis of methionine and
44 deoxyribonucleotides, and natural product biosynthesis (2). They are produced exclusively by
45 prokaryotes, though most bacteria that use cobamides must acquire them exogenously (3, 4).
46 Cobamides are modified tetrapyrroles (corrinoids) with a central cobalt ion that can coordinate to
47 upper and lower axial ligands (4). B₁₂ (cobalamin, Cbl) (Fig. 1A) is the most well-studied
48 cobamide due to its importance in human health (5), but nearly 20 other cobamides with structural
49 variability in the lower (α) axial ligand have been described (6-8). Different assortments of
50 cobamides have been found in microbial communities from host-associated and environmental
51 sources, and variability in cobamide abundances has been observed even in samples derived from
52 similar sources (7, 9, 10). Importantly, cobamide structure can profoundly influence microbial
53 growth, largely because cobamide-dependent enzyme function is differentially impacted by

54 cobamide structure (8, 11-18). Therefore, because microbes are exposed to different cobamides as
55 their environments shift, they encounter cobamides that function at varying levels of effectiveness
56 for their metabolism. Given that cobamide structure and availability impact bacterial fitness, it is
57 important to understand how bacteria are genetically wired to deal with different cobamides.

58 Many organisms have evolved strategies to cope with the absence of preferred cobamides. Some
59 bacteria and algae carry out cobamide remodeling, whereby non-preferred cobamides are
60 converted into forms that can be used by their cobamide-dependent enzymes (14, 19-22). In
61 addition, organisms can encode cobamide-independent alternative enzymes or pathways,
62 circumventing the need for cobamides for certain processes (23). For example, cobamide-
63 independent methionine synthase (MetE) and ribonucleotide reductases are commonly found in
64 bacteria, even in those that also encode cobamide-dependent counterparts to these enzymes (3,
65 24). Bacteria can also tailor their genetic response to the cobamides they prefer via selectivity in
66 riboswitches, noncoding RNA elements in the 5' untranslated region (UTR) of mRNA that, upon
67 binding to specific cobamides, typically downregulate expression of cobamide biosynthesis
68 enzymes, transporters, and cobamide-independent enzymes (25-28).

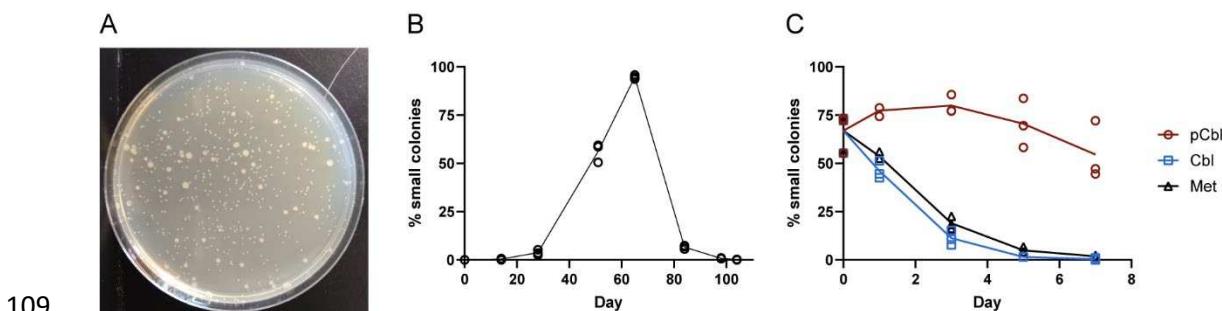
69 Here, we carried out a laboratory evolution experiment in *E. coli* to investigate whether there are
70 additional genetic strategies microbes may employ to improve their use of less-preferred
71 cobamides. We found that an *E. coli* Δ metE mutant, which relies on the cobamide-dependent
72 methionine synthase MetH, can improve its growth with adeninylcobamide (pseudocobalamin,
73 pCbl) (Fig. 1A) via several genetic strategies. Different sets of mutations were found in evolved
74 lines provided with different pCbl concentrations, but a common strategy that emerged was
75 increasing the expression of the outer membrane corrinoid transporter BtuB, which provided a
76 competitive advantage in limiting concentrations of cobamides. We additionally found that
77 evolved lines and engineered strains that overexpress the corrinoid adenosyltransferase BtuR are
78 better adapted for growth on pCbl. As a result, this evolution experiment revealed a previously
79 unknown role for BtuR in MetH-dependent growth.

80

Figure 1. Laboratory evolution of *E. coli* improves its growth with pCbl. A) Structure of cobalamin (Cbl) with its lower ligand 5,6-dimethylbenzimidazole in blue. Pseudocobalamin (pCbl) contains adenine (red) as its lower ligand. The structures of the upper ligands of cobamides used in this study are shown. B) Dose-response curves of *E. coli* Δ metE grown in the absence of methionine with various concentrations Cbl or pCbl. OD₆₀₀ was recorded after 22 hours. EC₅₀ values and 95% confidence intervals of six biological replicates for each cobamide are shown. C) Growth of *E. coli* Δ metE cultures during laboratory evolution. Three biological replicate cultures of *E. coli* Δ metE were inoculated into M9 medium supplemented with 0.75, 0.55, or 0.35 nM pCbl and propagated for 104 days. OD₆₀₀ was measured and cultures were passaged 1:100 into fresh medium every 24 hours. D-F) Growth curves of evolved populations (Day 104) and the ancestral Δ metE strain with 0.35 nM pCbl (D), 0.35 nM Cbl (E), or 0.1 mg/ml Met (F) are shown. The average of three biological replicates is shown; error bars represent standard deviation.

81

82


83 **Results**

84 *Laboratory evolution of *E. coli* improves use of pCbl during MetH-dependent growth*

85 *E. coli* MG1655 has two methionine synthase enzymes, the cobamide-dependent MetH and the
86 cobamide-independent MetE (29). pCbl is less efficient than Cbl in supporting growth of a Δ metE
87 strain in minimal medium lacking methionine (Fig. 1B). The concentration of pCbl necessary for
88 half-maximal growth (EC₅₀) of this strain is over 10-fold higher than for Cbl, and the maximal
89 growth yield (OD₆₀₀) is lower with pCbl. We therefore performed a laboratory evolution
90 experiment in pCbl to determine whether *E. coli* can improve its use of a less-preferred cobamide.
91 Nine independent cultures of the *E. coli* Δ metE strain were passaged daily for 104 days and a total
92 of approximately 700 generations in M9 minimal medium containing either 0.75, 0.55, or 0.35 nM
93 pCbl (Fig. 1C). These concentrations encompassed saturating to limiting growth of the ancestral
94 strain (Fig. 1B). Five of the nine cultures had an OD₆₀₀ below 0.6 during the first 10 days, but
95 exceeded an OD₆₀₀ of 1.0 for nearly all passages after day 25, suggesting they had adapted to the
96 limiting pCbl conditions (Fig. 1C). When compared to the ancestor, all nine populations showed
97 improved growth in 0.35 nM pCbl (Fig. 1D). The nine populations also showed improved growth
98 in Cbl (Fig. 1E), suggesting that they had evolved better use of cobamides in general. Growth on
99 Met was modestly improved in the evolved populations, indicating they had adapted to other
100 features of the growth medium (Fig. 1F).

101 *Mutants in one evolved population have a growth advantage specifically with pCbl*

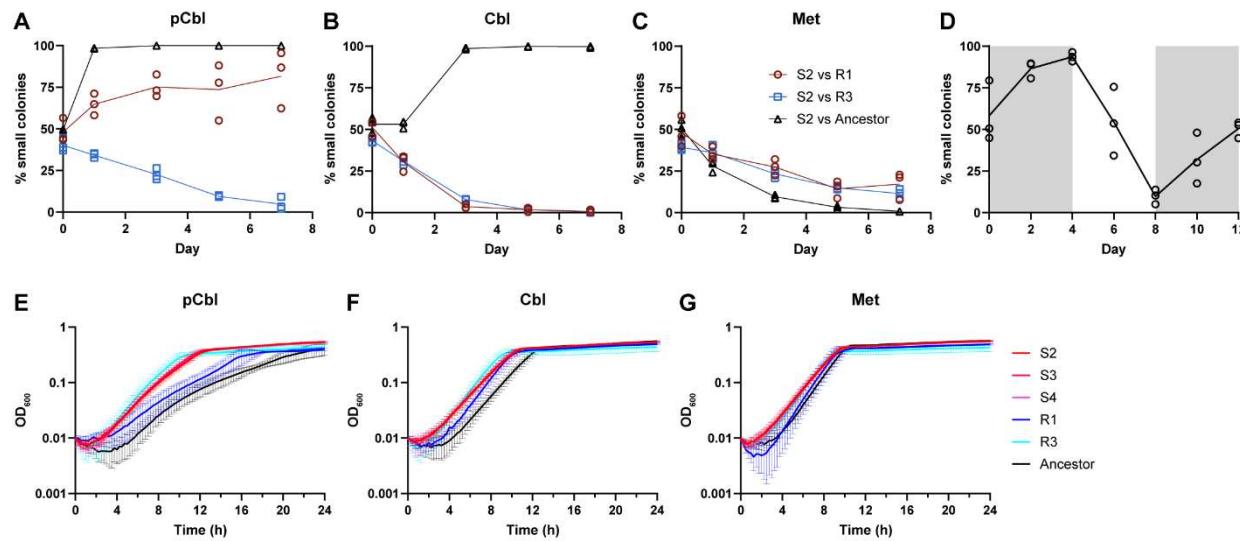

102 We noticed that, when plated on LB agar, some of the colonies from a passaged culture containing
103 0.35 nM pCbl (Culture 8) were distinctly smaller than the others (Fig. 2A). These small-colony
104 variants first appeared on day 28, and they made up nearly the whole population on day 65 before
105 being almost entirely lost after day 84 (Fig. 2B). Notably, we found that these variants from day
106 65 persisted only in the presence of pCbl (Fig. 2C). When the day 65 population was grown in
107 media containing Cbl or Met, the small-colony variants were not retained after one week of daily
108 passaging (Fig. 2C).

Figure 2. Small colony variants emerge during evolution of Culture 8. A) Plating of the day 65 archive of Culture 8 on LB shows the regular and small colony phenotypes. B) The percentage of total colonies with small size was determined for archived populations of Culture 8 following growth in pCbl. The Δ metE ancestor was used for the zero timepoint. C) The percentage of small colonies is plotted for the day 65 archived population of Culture 8 when cultured with 0.35 nM pCbl, 0.35 nM Cbl, or 0.1 mg/ml Met over seven days with daily passaging. Lines connect the means of three biological replicates.

110 We took advantage of the small colony morphology as a convenient markerless phenotype for
111 further characterizing the pCbl-specific growth advantage. We isolated colonies with different
112 sizes from the day 65 population and individually competed three “small” isolates (S2, S3, and
113 S4) against two “regular” isolates (R1 and R3), as well as the ancestral strain, in media containing
114 either pCbl, Cbl, or Met. All three small isolates had similar phenotypes. When co-cultured, the
115 small isolates outcompeted the ancestor strain in the presence of cobamides, taking over the entire
116 population after a single passage in pCbl and after three passages in Cbl (Fig. 3A, B; Fig. S1 A, B,
117 D, E). In media with methionine, however, the ancestral strain outcompeted the evolved isolates
118 (Fig. 3C; Fig. S1 C, F).

119

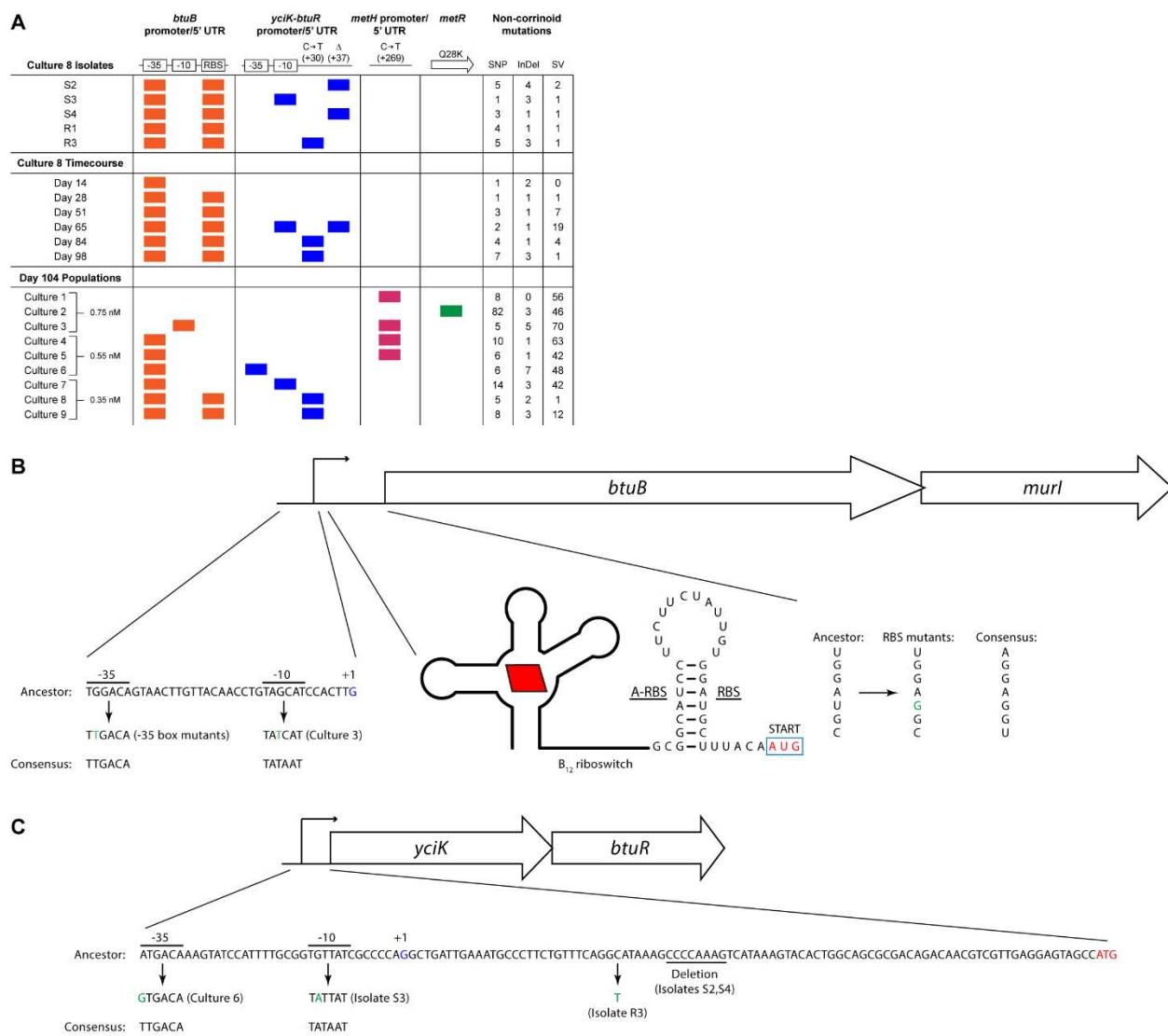
120

Figure 3. Growth characteristics of isolates S2, R1, and R3 from Culture 8. A-C) Isolate S2 was competed against isolates R1 and R3 and the ancestor strain for seven days with daily passaging in medium containing 0.35 nM pCbl (A), 0.35 nM Cbl (B), or 0.1 mg/ml Met (C). Cultures were diluted and plated on the indicated days to quantify the fraction of small colonies, corresponding to S2 strain abundance. D) Isolates S2 and R1 were competed in medium containing either 0.35 nM pCbl (shaded) or 0.35 nM Cbl (unshaded). Co-cultures were passaged for 12 days and aliquots were plated every two days to quantify the fraction of small colonies in the population. Lines connect the means of three biological replicates. E-G) Growth curves of isolates S2, S3, S4, R1, R3 and the ancestor strain with 0.35 nM pCbl (E), 0.35 nM Cbl (F), or 0.1 mg/ml Met (G). The average of three biological replicates is shown; error bars represent standard deviation.

121

122 When the small isolates were competed against the two regular isolates, the small isolates were
123 outcompeted in Cbl and Met, but we observed contrasting phenotypes in pCbl (Fig. 3 A-C, Fig.
124 S1). The small isolates had a competitive advantage over regular isolate R1 but were outcompeted
125 by R3 (Fig. 3 A, Fig. S1 A, D). The competitive advantage of the small isolates in pCbl was further
126 confirmed by co-culturing isolates S2 and R1 in medium supplemented alternately with pCbl and
127 Cbl. When passaged with pCbl for four days, the proportion of S2 increased to over 90%, but after

128 switching to the Cbl-containing medium, the proportion of S2 decreased to less than 10% after
129 four days. A subsequent return to pCbl resulted in an increase in S2 (Fig. 3D).


130 The phenotypes of the small and regular isolates that we observed in competition were consistent
131 with their growth characteristics in pure culture (Fig. 3E-G). Isolates S2, S3, and S4, which
132 outcompeted the ancestor in pCbl and Cbl but were outcompeted in Met, grew faster than the
133 ancestor in the presence of cobamides while showing similar growth in Met (Fig. 3E-G). Only
134 isolate R1, which competed poorly in pCbl, had less improved growth than the other isolates,
135 particularly in the medium containing pCbl (Fig. 3E). Isolate R3, which outcompeted the small
136 isolates in all three media conditions, grew similarly to the small isolates in each medium (Fig.
137 3E-G). Taken together, these results suggest that all of the isolates have acquired one or more
138 mutations that confer a growth advantage with cobamides. Further, based on the growth
139 phenotypes of strains S2, S3, S4 and R3 in pCbl, these strains likely have one or more mutations
140 that confer a specific advantage in pCbl.

141 *Evolved strains have mutations affecting cobamide-related genes*

142 To identify the mutations acquired during the evolution experiment, we performed whole genome
143 sequencing on the isolates from Culture 8. Each isolate has a unique set of mutations, which range
144 from 7 to 14 single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), or
145 structural variants (SVs) (Fig. 4A, Table S1). However, all five isolates have mutations in
146 cobamide-related genes. All of the isolates contain two identical SNPs in the promoter and the
147 ribosome binding site (RBS) of the *btuB-murI* operon, which encodes the outer membrane
148 corrinoid transporter BtuB and the glutamate racemase MurI (Fig. 4A, B). The promoter mutation
149 converts the native -35 sequence to the consensus *E. coli* -35 sequence (Fig. 4B) (30), likely
150 leading to an increase in transcription of the operon. Meanwhile, the RBS mutation may lead to
151 increased translation of the operon by converting it to a sequence closer to the consensus RBS
152 sequence (31). This mutation could also increase operon expression by weakening the translation-
153 inhibiting interaction between the RBS and anti-RBS (A-RBS) in the corrinoid riboswitch located
154 in the 5' UTR (Fig. 4B) (32). Increasing expression of the corrinoid transporter BtuB could explain
155 the improved growth of the isolates with limiting pCbl.

156 All of the isolates except R1 additionally have mutations in the promoter or 5' UTR of the *yciK-*
157 *btuR* operon. *yciK* is an uncharacterized gene annotated as a putative oxidoreductase, and *btuR*
158 encodes an adenosyltransferase that installs a 5'-deoxyadenosyl group as the β (upper) ligand of
159 corrinoids (cobamides and biosynthetic precursors). Isolate S3 has a G to A mutation in the -10
160 element of the promoter that likely increases transcription of the operon (Fig. 4C) (30). Given that
161 all four isolates with mutations in this region have improved growth in pCbl, if the *yciK-btuR*
162 operon is associated with this phenotype, the mutations in S2, S4 and R3 likely increase *yciK-btuR*
163 expression as well.

164 Sequencing of the archived populations of Culture 8 enabled us to follow the emergence of these
165 mutations during the evolution experiment. The *btuB-murI* mutations were established early and
166 were retained throughout the timecourse (Fig. 4A). Mutations in the -35 element and RBS were
167 present by days 14 and 28, respectively, and their appearances coincided with increases in the
168 OD₆₀₀ of the culture (Fig. 1C).

169

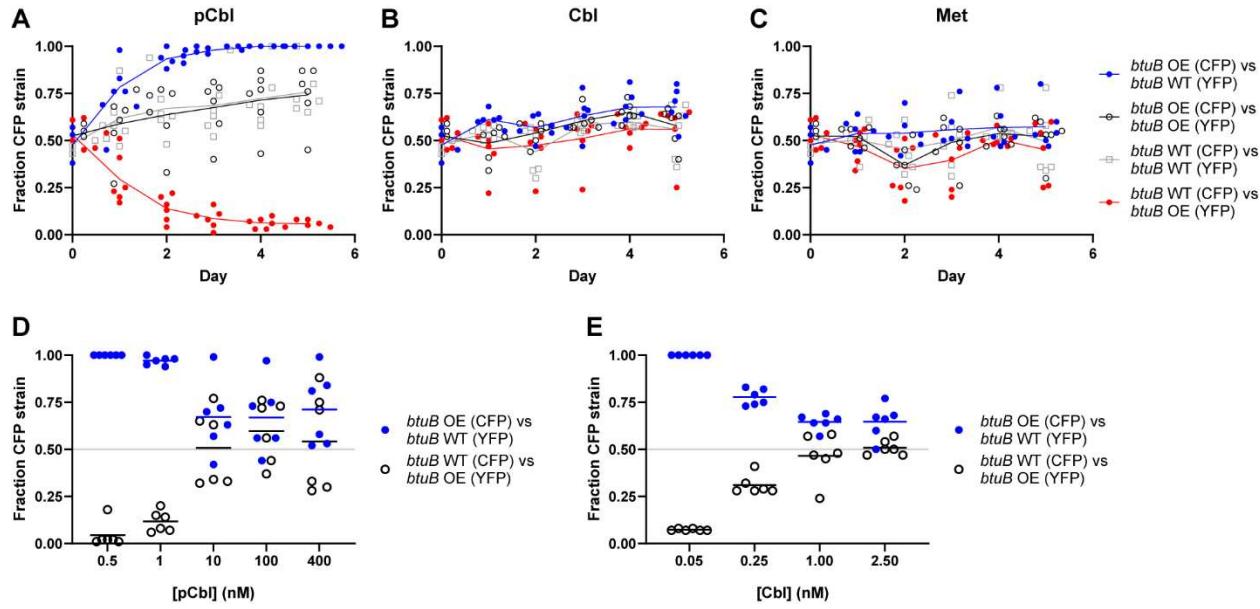
170

Figure 4. Mutations identified during laboratory evolution. A) Colored boxes show the presence of the indicated mutations affecting corrinoid-related genes in isolates and archived timepoints from Culture 8, and in the endpoint (Day 104) populations of all evolved lines. The concentrations of pCbl in each of the evolved lines (Cultures 1-9) are shown. The numbers of SNPs, InDels, and SVs affecting non-corrinoid-related genes in each sequenced isolate or population are listed (see Table S1). B) Changes in the promoter and 5' UTR (B_{12} riboswitch) of the *btuB-murI* operon found during the evolution. C) Changes in the promoter and 5' UTR of the *yciK-btuR* operon found during the evolution. Identified mutations are shown in green, transcriptional start sites in blue, and start codons in red. The consensus sequences for the σ^{70} promoter -35 and -10 elements are shown for comparison. The promoter for the *yciK-btuR* operon has not been experimentally characterized and was predicted by PromoterHunter (1).

171

172 The two *yciK-btuR* mutations found in the small isolates were first detected in the population on
 173 day 65, consistent with the small colony variants S2, S3, and S4 dominating the population at this

174 timepoint (Fig. 2B). At all of the following timepoints, however, only the C to T mutation found
175 in isolate R3 was detected in the population. Given that isolate R3 outcompeted isolates S2, S3
176 and S4 in pCbl (Fig. 3A, Fig. S1), it is likely that descendants of R3 became dominant in the
177 population after day 65.


178 *E. coli adapts differently in limiting versus replete pCbl*

179 Sequencing of the endpoint (Day 104) archives of the nine evolved cultures revealed that mutations
180 in different cobamide-related genes emerged in populations passaged in different concentrations
181 of pCbl (Fig. 4A). Like Culture 8, the two other populations passaged with 0.35 nM pCbl have
182 mutations upstream of both *btuB-murI* and *yciK-btuR* (Fig. 4A, Cultures 7 and 9). In contrast, only
183 one population passaged in 0.75 nM pCbl has a mutation upstream of *btuB-murI*, and one
184 population passaged in 0.55 nM pCbl has a mutation upstream of *yciK-btuR*, though all three
185 populations in 0.55 nM pCbl have a mutation in the *btuB-murI* -35 element. The former two
186 mutations likely increase expression by strengthening their respective promoters (Fig. 4, Cultures
187 3 and 6, respectively).

188 All of the evolved populations without mutations affecting *yciK-btuR* have a mutation upstream
189 of *metH* or in the coding sequence of *metR*, a transcriptional activator of *metH* (Fig. 4A, Cultures
190 1-5) (33). It is unclear how these mutations affect *metH* expression; the *metH* mutation is not
191 located in the promoter, RBS, or MetR binding site (34), while the *metR* mutation is located in its
192 DNA-binding domain (35). Taken together, these results suggest that increasing cobamide uptake
193 and adenylylation are effective strategies for improving growth in limiting to moderate pCbl
194 concentrations, while changing expression of *metH* facilitates adaptation at higher concentrations
195 of pCbl.

196 *Overexpression of the corrinoid uptake gene btuB is advantageous at limiting cobamide*
197 *concentrations*

198 To confirm that the mutations that commonly arose in our evolution experiment indeed impact
199 growth in pCbl, we constructed strains overexpressing the affected genes. Since the glutamate
200 racemase MurI has no known function in cobamide metabolism (36), we tested the hypothesis that
201 phenotypes associated with the mutations upstream of the *btuB-murI* operon are due to an increase
202 in the expression of *btuB*. We constructed a strain that overexpresses *btuB* by inserting a second
203 copy of the gene into the chromosome, with its promoter containing the G to T mutation found in
204 the -35 element of cultures 4-9. In a $\Delta metE$ background, we competed this strain against one
205 containing only the wild type *btuB* locus, with each strain expressing either CFP or YFP to monitor
206 their abundances in co-culture. We found that overexpression of *btuB* conferred a competitive
207 advantage in 1 nM pCbl, but not in 1 nM Cbl or in Met (Fig. 5 A-C). However, varying the
208 cobamide concentration showed that *btuB* overexpression is beneficial in both pCbl and Cbl at
209 concentrations at which the cobamide is limiting, namely 1 nM and less for pCbl, and under 0.25
210 nM for Cbl (Fig. 5D, E). Thus, the *btuB* mutations that arose during passaging in limiting pCbl
211 presumably improved *E. coli*'s ability to import cobamides to support MetH-dependent growth.

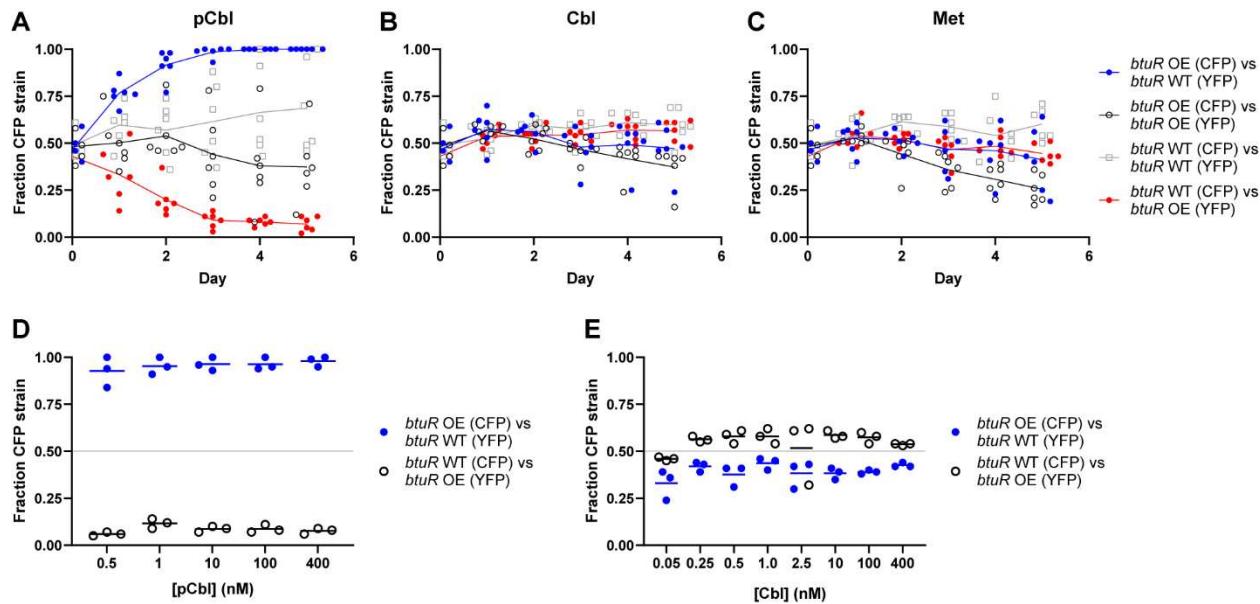

212

Figure 5. Overexpression of *btuB* confers a competitive advantage at limiting cobamide concentrations. A-C) *E. coli* Δ metE strains overexpressing *btuB* (OE) or producing native levels of *btuB* (WT) were competed in co-culture for five days with daily passaging in medium containing either 1 nM pCbl (A), 1 nM Cbl (B), or 0.1 mg/ml Met (C). The fraction of the CFP-containing strain in each co-culture is shown. Control co-cultures containing CFP- and YFP-expressing strains in the same genetic background (black and gray) were included to rule out a growth disadvantage caused by the fluorescent proteins. D-E) The CFP- and YFP-expressing strains that overexpress *btuB* (OE) or produce native levels of *btuB* (WT) were competed in co-culture at different concentrations of pCbl (D) or Cbl (E). Fluorescence measurements were taken on day 3 following daily passaging. Lines represent the means of six biological replicates.

213

214 *The corrinoid adenosyltransferase gene btuR is required for optimal MetH-dependent growth*

215 Next, we assessed whether *btuR* expression levels impact MetH-dependent growth by
216 overexpressing *btuR* on a plasmid. We found that, similar to the results with *btuB*, a strain
217 overexpressing *btuR* outcompeted a strain with wild type *btuR* levels when grown with pCbl, but
218 not with Cbl or Met (Fig. 6 A-C). Though it is in an operon with *yciK*, *btuR* alone was responsible
219 for this phenotype, as overexpression of *yciK* did not confer a growth advantage in pCbl and co-
220 expression of *yciK* with *btuR* did not influence the effect of overexpression of *btuR* alone (Fig.
221 S2). However, unlike *btuB*, overexpression of *btuR* remained beneficial even at concentrations of
222 up to 400 nM pCbl, and failed to confer a competitive advantage at any concentration of Cbl tested
223 (Fig. 6 D, E).

224

Figure 6. Overexpression of *btuR* confers a growth advantage only during growth with pCbl. A-C) *E. coli* $\Delta metE$ strains overexpressing *btuR* (OE) or producing native levels of *btuR* (WT) were competed in co-culture for five days with daily passaging in medium containing either 1 nM pCbl (A), 1 nM Cbl (B), or 0.1 mg/ml Met (C). The fraction of the CFP-containing strain in each co-culture is shown. Control co-cultures containing CFP- and YFP-expressing strains in the same genetic background (black and gray) were included to rule out a growth disadvantage caused by the fluorescent proteins. D-E) The CFP- and YFP-expressing strains that overexpress *btuR* (OE) or produce native levels of *btuR* (WT) were competed in co-culture at different concentrations of pCbl (D) or Cbl (E). Fluorescence measurements were taken on day 3 following daily passaging. Lines represent the means of six biological replicates.

225

226 In the $\Delta metE$ mutant, which relies on MetH activity for growth, cobamides are used by the MetH
227 enzyme to transfer methyl groups from methyltetrahydrofolate to homocysteine by alternately
228 methylating and demethylating the cobamide at the β position. It was therefore puzzling to find
229 that overexpression of BtuR, which adenosylates cobamides at the β position, improves MetH-
230 dependent growth. To further explore the role of BtuR in MetH-dependent growth, we deleted
231 *btuR* and performed growth assays with pCbl or Cbl with either cyano (CN, as in Fig. 1-3, 5, 6) or
232 adenosyl (Ado) β ligands (Fig. 1A). Growth measurements with these cobamides showed that a
233 $\Delta btuR \Delta metE$ strain has impaired growth in cyanopseudocobalamin (CNpCbl), with a lower
234 maximum OD₆₀₀ and an EC₅₀ over 25-fold higher than the $\Delta metE$ strain (Fig. 7A). Growth with
235 adenosylpseudocobalamin (AdopCbl) led to a higher maximum OD₆₀₀ and lower EC₅₀ of the
236 $\Delta btuR \Delta metE$ strain, though growth was still considerably impaired compared to the $\Delta metE$ strain
237 (Fig. 7A). A similar trend was observed when these strains were cultured with cyanated versus
238 adenosylated forms of Cbl, though the growth impairment of the $\Delta btuR \Delta metE$ strain was more
239 modest (Fig. 7B). Together, these results confirm that *btuR* impacts MetH-dependent growth in *E.*
240 *coli*.

241

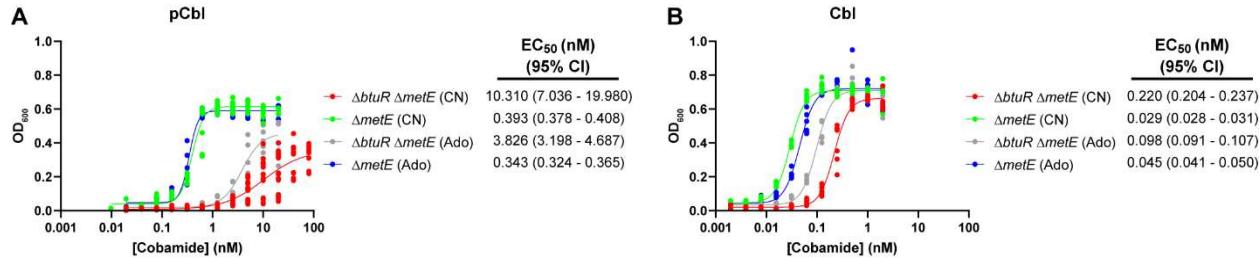


Figure 7. Deletion of *btuR* causes poorer growth with pCbl and Cbl. A-B) Cobamide dose-response curves are shown for *E. coli* $\Delta btuR::kan^R$ $\Delta metE$ and $\Delta metE$ strains grown in the absence of methionine and with various concentrations of CNpCbl and AdopCbl (A), or CNCbl and AdoCbl (B). OD₆₀₀ was recorded after 22 hours of growth. EC₅₀ values and 95% confidence intervals were calculated from 6-18 biological replicates for each cobamide.

242

243 The growth defect of the $\Delta btuR \Delta metE$ strain and partial rescue by adenosylated cobamides could
244 be due to differences in cobamide uptake or retention. To examine this, we cultured the $\Delta btuR$
245 $\Delta metE$ and $\Delta metE$ strains with each of the four cobamides tested in Figure 7 (AdopCbl, CNpCbl,
246 AdoCbl, CNCbl) and measured the amount of cobamide in the supernatant and cell pellet fractions
247 using a quantitative corrinoid bioassay. *E. coli* strains lacking *btuR* had approximately twofold less
248 AdopCbl and CNpCbl in the cell pellet fraction (Fig. S3A); this result was validated by HPLC
249 analysis of corrinoid extractions (Fig. S3D). No differences in the levels of either AdoCbl or
250 CNCbl was observed between the $\Delta btuR \Delta metE$ and $\Delta metE$ strains, but less AdoCbl was found in
251 the cell pellets than CNCbl (Fig. S3 B, C). The twofold differences in intracellular pCbl levels
252 between the strains likely only partially explains the 10- to 25-fold differences in EC₅₀ and
253 differences in maximal OD₆₀₀ observed in the dose-response assays (Fig. 7A). Thus, it is possible
254 that the adenosylated forms of cobamides are beneficial for MetH activity via a previously
255 unknown mechanism.

256 Discussion

257 Cobamides are considered key shared nutrients because they function as cofactors for numerous
258 microbial processes but are only produced by a subset of prokaryotes. They have been detected in
259 diverse microbial communities, both environmental and host-associated, and a wide range in
260 cobamide abundances has been observed across these ecosystems, with some dominated by one or
261 two cobamides, while others contain up to eight different types. These differences in cobamide
262 diversity across environments are noteworthy in light of the observation that many bacteria have
263 preferences for particular cobamides. This raises the question of how bacteria adapt in the presence
264 of non-preferred cobamides. We addressed this question here by using a cobamide-dependent
265 mutant of *E. coli* as a model in a laboratory evolution experiment. We found that *E. coli* is indeed
266 capable of improving its growth with pCbl, and it uses differing strategies depending on the
267 availability of the nutrient. Competition experiments and genetic analyses revealed regulation of
268 corrinoid uptake as a limiting factor in *E. coli* and a previously unappreciated role for the corrinoid
269 adenosyltransferase BtuR in MetH-dependent growth.

270 We previously showed that the cobamide-dependent enzyme methylmalonyl-CoA mutase (MCM)
271 has different binding affinities for different cobamides, and that these cobamide-binding affinities
272 largely mirror MCM-dependent growth with different cobamides in *Sinorhizobium meliloti* (16).
273 Other studies have shown that MetH orthologs from different organisms display distinct
274 preferences for different cobamides (14, 17, 21). Given that pCbl is less preferred by *E. coli* than
275 Cbl (Fig. 1B), we hypothesized that passaging in pCbl would lead to the accumulation of mutations
276 in the MetH enzyme that improved its ability to use pCbl. Though we observed mutations that
277 presumably impact *metH* expression, no mutations were found in the *metH* coding sequence.
278 Altering expression of corrinoid-related genes was the general outcome of our evolution
279 experiment, suggesting that modifying the regulation of cobamide metabolism may be a more
280 readily accessible mechanism of adaptation than changes to the specificity of the dependent
281 enzyme, particularly in our experimental timeframe. Changes to gene expression are routinely seen
282 in laboratory evolution experiments, including the targeting of global regulators (37, 38).

283 While mutations in *metH* and its transcriptional activator *metR* were found at the higher
284 concentration of pCbl, mutations upregulating the outer membrane corrinoid transporter BtuB
285 arose primarily when pCbl was limiting, consistent with its role in corrinoid uptake. Indeed, we
286 previously showed that overexpression of the corrinoid transport machinery in *Bacillus subtilis*
287 increases the amount of cobamide imported (28), and here, overexpression of *btuB* enables *E. coli*
288 to compete more effectively when cobamides, both pCbl and Cbl, are limiting. In the human gut
289 commensal bacterium *Bacteroides thetaiotaomicron*, cobamide uptake is critical for colonization
290 in a mouse model (39). *B. thetaiotaomicron* and other *Bacteroides* species encode multiple
291 corrinoid transport systems (40), which include high-affinity corrinoid binding proteins absent
292 from *E. coli*, and it is thought that these systems enable *Bacteroides* to outcompete other microbes
293 for corrinoids, allowing for successful gut colonization (41, 42). Based on our observation that
294 corrinoid uptake and competitiveness in *E. coli* can readily be improved via mutations in the *btuB*
295 promoter or RBS, we speculate that *E. coli* is not evolved to maximize corrinoid uptake, despite
296 its being a member of the gut microbiota like *B. thetaiotaomicron*. This is notable given that the
297 purinyl cobamides, which include pCbl, were found to be the dominant fecal corrinoids in the
298 majority of human subjects (7). *E. coli* could be under less selective pressure to maximize corrinoid
299 uptake because, unlike *B. thetaiotaomicron*, *E. coli* has the cobamide-independent methionine
300 synthase *metE* as well as *metH*, rendering it less dependent on exogenous cobamides. In addition,
301 BtuB is a phage receptor in *E. coli*, so increased expression of *btuB* may not always be beneficial
302 in natural settings (43).

303 The BtuR corrinoid adenosyltransferase is responsible for installing a 5'-deoxyadenosine moiety
304 as the β ligand of cobamides to produce adenosylcobamides (44), which are required for the subset
305 of cobamide-dependent enzymes, such as MCM, that carry out radical-based reactions (45).
306 However, no role for adenosylcobamides has been proposed for methyltransferases such as MetH,
307 which use methylcobamides – cobamides with a methyl group as the β ligand – to shuttle methyl
308 groups from a methyl donor to a substrate. Therefore, it was surprising to find that, in MetH-
309 dependent *E. coli*, overexpression of *btuR* provides a competitive advantage in pCbl, deletion of
310 *btuR* impairs growth in both pCbl and Cbl, and supplementation of the Δ *btuR* mutant with
311 adenosylcobamides did not completely rescue the phenotype. These results suggest that
312 adenosylcobamides, and perhaps the BtuR protein itself, could have previously unknown roles in
313 MetH function. Some cobamide-dependent enzymes such as MCM require a corrinoid
314 adenosyltransferase and other accessory proteins to load the cobamide cofactor into the enzyme

315 (46-48). It is possible that BtuR fulfills such a role for MetH in *E. coli*, particularly for cobamides
316 that function poorly as a cofactor for MetH. Alternatively, adenosylcobamides and/or BtuR could
317 facilitate SAM-dependent cobamide reactivation, a step required approximately every 2,000
318 turnovers for Cbl following spontaneous cofactor oxidation (49-51). Until recently, studies of *E.*
319 *coli* MetH have been unable to address the cofactor loading step because the enzyme is stable only
320 when pre-loaded with Cbl during purification. Future *in vitro* studies with a newly identified MetH
321 homolog that is stable in its apo form will facilitate analysis of the cofactor loading step (52).
322 Because pCbl functions more poorly than Cbl in *E. coli* MetH-dependent growth, our evolution
323 experiment may have fortuitously uncovered a role for adenosylated cobamides in corrinoid-
324 dependent physiology. Future work will be aimed at understanding the molecular mechanisms
325 underlying these observations.

326 **Material and Methods**

327 *Media and growth conditions*

328 *E. coli* MG1655 Δ metE evolution was performed at 37°C with aeration in M9 glycerol minimal
329 medium with the indicated concentrations of pCbl (53). 20 ml cultures were grown in glass test
330 tubes with 0.2 ml transferred into fresh media every 24 hours. A sample of each population was
331 archived on days 14, 28, 51, 65, 84, 98, and 104 in 25% glycerol and stored at -80°C. Before the
332 start of the evolution experiment, the three replicate cultures were passaged daily for 16 days with
333 a saturating concentration of pCbl (5 or 2.5 nM) to facilitate identifying the appropriate
334 concentrations for the evolution experiment.

335 M9 medium was supplemented with 0.1 mg/ml L-methionine (Met) when indicated. LB agar was
336 used as solid medium. For experiments with the *E. coli* Δ metE ancestor or evolved isolates from
337 Culture 8, M9 medium was inoculated with individual colonies grown on LB agar. Pre-culturing
338 of populations and strains in M9 medium was performed at 37°C with aeration.

339 *Strain construction*

340 All strains used for evolution and mutant validation are derivatives of wild type K12 strain
341 MG1655. *E. coli* strains were cultured at 37°C with aeration in LB medium. Media were
342 supplemented with antibiotics at the following concentrations when necessary: kanamycin, 25
343 mg/liter (pKIKO, pETmini); carbenicillin, 100 mg/liter (pCP20); chloramphenicol, 10-20 mg/liter
344 (pACYCDuet-1). pKIKO $arsB$ Km plasmids were propagated in *E. coli* DH5 α containing λ pir.

345 The Δ metE::kan^R and Δ btuR::kan^R mutations from the Keio collection were introduced by P1
346 transduction into *E. coli* strain MG1655 (54, 55). The kanamycin resistance cassette was removed
347 by introducing the plasmid pCP20 as described, leaving the FRT site in place of the metE coding
348 sequence (56).

349 An *E. coli* strain overexpressing *btuB* was created by integrating an additional copy of the gene at
350 the *arsB* (arsenite transporter) locus using the KIKO system as described (57). pKIKO $arsB$ Km
351 was a gift from Lars Nielsen & Claudia Vickers (Addgene plasmid # 46766;
352 <http://n2t.net/addgene:46766>; RRID:Addgene_46766). *E. coli* *btuB* with its promoter and
353 riboswitch was cloned into pKIKO $arsB$ Km, with the promoter containing the -35 element
354 mutation (TTGACA) found in evolved populations and isolates. The construct also contained a

355 synonymous mutation in codon 581 encoding a valine (GTT to GTA). The *btuB* construct was
356 integrated at the *arsB* locus using the PCR-based method. For a control strain, we integrated the
357 *arsB*-flanked kanamycin resistance cassette without an insert. The constructs were first integrated
358 into MG1655 and subsequently transduced via P1 into the $\Delta metE$ strain. Finally, the kanamycin
359 resistance cassette was removed using pCP20. Constructs were confirmed by PCR and Sanger
360 sequencing.

361 The *btuR* and *yciK* genes were overexpressed in a pACYCDuet-1 plasmid in which the T7
362 promoters were replaced with the *lac* promoter and operator (pACYCDuet-1-pLac). This allowed
363 for repression of gene expression in the presence of glucose (0.02% in LB, 0.2% in M9) and
364 expression in the absence of glucose due to the leakiness of the *lac* promoter. *E. coli* *btuR*, *yciK*,
365 and the *yciK-btuR* operon were each cloned downstream of the *lac* promoter in pACYCDuet-1-
366 pLac. mCerulean and mCitrine genes from pSG013 and pSG015 (with J23100 promoter and
367 B0034 RBS) were inserted between the chloramphenicol resistance cassette and p15A origin in
368 each of these plasmid constructs to enable tracking of strains by fluorescence measurements (58).

369 *Cobamide reagents*

370 CNCbl and AdoCbl were purchased from MilliporeSigma. CNpCbl was extracted from
371 *Propionibacterium acidi-propionici* strain DSM 20273 and purified as described (59, 60).
372 AdopCbl was chemically synthesized from CNpCbl and purified as described (16). Cobamides
373 were quantified spectrophotometrically (16, 22). Cbl and pCbl were used in their cyano forms
374 (CNCbl and CNpCbl) unless otherwise indicated.

375 *Growth assays and competition experiments*

376 To quantify the percentage of small colonies present during the evolution of Culture 8, archived
377 populations were cultured overnight in M9 glycerol medium supplemented with 0.35 nM pCbl,
378 diluted, and plated on LB agar.

379 Growth assays and competition experiments were performed in 200 μ l cultures in 96-well plates
380 (Corning, 3598). For growth curves, populations or isolates were pre-cultured in M9 glycerol
381 medium supplemented with 0.35 nM pCbl, while cultures for cobamide dose-response assays were
382 supplemented with Met. Cells from saturated cultures were collected by centrifugation,
383 resuspended in M9 glycerol medium, and OD₆₀₀ was measured. Each population or strain was then
384 inoculated at a starting OD₆₀₀ of 0.01 in M9 glycerol medium with the indicated supplement. 96-
385 well plates were sealed with Breathe-Easy (Diversified Biotech). Growth assays were performed
386 in a BioTek Synergy 2 microplate reader with shaking at medium speed at 37°C and OD₆₀₀
387 recorded every 15 min for 24 hours. OD₆₀₀ for cobamide dose-response assays was measured with
388 the BioTek Synergy 2 microplate reader following 22 h growth at 37°C with shaking in either the
389 plate reader or a heated benchtop microplate shaker (1,200 rpm, Southwest Science). Preparation
390 of cultures containing adenosylcobamides was done under red light and the plates were incubated
391 in the dark. EC₅₀ values were calculated using Graphpad Prism (Dose-response – Stimulation;
392 [Agonist] vs. response – Variable slope (four parameters)).

393 For competition experiments involving evolved populations or strains, cells were pre-cultured in
394 M9 glycerol medium supplemented with Met. Cells were pelleted, washed twice with 0.85%

395 saline, and resuspended in M9 glycerol medium, with the exception of the experiments shown in
396 Fig. 2C and 3D, in which the cells were pelleted and resuspended in M9 glycerol medium without
397 washing. OD₆₀₀ was measured and the population or an equal ratio of two strains was inoculated
398 at a starting OD₆₀₀ of 0.01 in 200 μ l M9 glycerol medium containing the indicated supplement. A
399 dilution of the culture was plated on LB agar to establish the percentage of small colonies at time
400 0. The plate was sealed and incubated at 37°C in a benchtop microplate shaker at 1,200 rpm. 2 μ l
401 of each culture was transferred into 198 μ l fresh medium every 24 h. On the indicated days,
402 dilutions from the cultures were plated on LB agar to determine the percentage of small colonies
403 in the population.

404 Competition experiments involving the *btuB*-overexpression strain were tracked by fluorescence
405 (58). Strains were pre-cultured in M9 glycerol medium supplemented with Met. Cells were
406 pelleted, washed twice with 0.85% saline, and resuspended in M9 glycerol medium. OD₆₀₀ was
407 measured and each sample was adjusted to an OD₆₀₀ of 0.25. Co-cultures were prepared by mixing
408 an equal volume of each strain. 100 μ l of each co-culture was transferred to a 96-well glass bottom
409 plate (P96-1.5P, Cellvis) and cyan and yellow fluorescence were measured on a multiwell plate
410 reader (Tecan Spark) as described (58). Separately, 8 μ l of each mono- and co-culture were added
411 to 192 μ l of M9 glycerol medium (starting OD₆₀₀ of 0.01) containing the specified amendment in
412 96-well plates. Plates were sealed and incubated at 37°C in a benchtop microplate shaker (1,200
413 rpm). 2 μ l of each culture was transferred into 198 μ l fresh medium every 24 h. At the specified
414 timepoints, aliquots were diluted in M9 medium and CFP and YFP values were measured.
415 Standard curves for normalization of fluorescence to OD₆₀₀ were generated from the overnight
416 cultures grown in tubes (for t = 0 readings only) or mono-culture controls grown in 96-well plates
417 (after 1 day). Competition experiments with pACYCDuet-1-pLac plasmids expressing *btuR* and/or
418 *yciK* were performed similarly except that strains were pre-cultured in M9 glucose (0.2%) medium
419 with Met.

420 *Whole genome sequencing and analysis*

421 Evolved populations were grown in M9 medium supplemented with 0.35 nM pCbl, while evolved
422 isolates and Δ *metE* ancestor were cultured in M9 medium supplemented with Met. Genomic DNA
423 was isolated with a DNeasy Blood and Tissue Kit (Qiagen) and submitted to Novogene
424 (Sacramento, CA, USA) for library preparation and whole genome sequencing using an Illumina
425 NovaSeq 6000.

426 Identification of mutations was performed by Novogene by comparison to the *E. coli* MG1655
427 reference genome (accession PRJNA57779). SNPs and InDels were detected using SAMtools with
428 the parameter ‘mpileup -m 2 -F 0.002 -d 1000’ and annotated using ANNOVAR (61, 62). The
429 results were filtered such that the number of support reads for each SNP/InDel was greater than 4
430 and the mapping quality of each SNP/InDel was higher than 20. SVs were detected by
431 BreakDancer and annotated by ANNOVAR (63). SVs were filtered by removing those with fewer
432 than 2 supporting PE reads. A comparison to the Δ *metE* ancestor was made to eliminate mutations
433 present prior to the laboratory evolution.

434 *Corrinoid bioassay to assess cobamide uptake and retention*

435 *E. coli* Δ *btuR* Δ *metE* and Δ *metE* strains were pre-cultured in M9 glycerol medium supplemented
436 with Met. The strains were then inoculated at an OD₆₀₀ of 0.01 in 1 ml M9 glycerol medium
437 supplemented with AdopCbl, CNpCbl, AdoCbl, or CNCbl. The medium was also supplemented
438 with 0.02 mg/ml Met, a concentration that ensured saturating growth of the pCbl cultures but did
439 not affect growth of the Δ *metE* strain in the subsequent bioassay. Cultures were incubated at 37°C
440 with aeration for 22 hours. Cultures containing adenosylcobamides were prepared under red light
441 and incubated in the dark. 750 μ l of each culture was centrifuged for 5 min at 6,000 x g to pellet
442 cells. 600 μ l of the supernatant was passed through a 0.22 μ m filter. The cell pellet was washed
443 twice with 0.85% saline and resuspended in 750 μ l saline. All samples were then incubated at
444 100°C for 20 min. Samples containing the pellet fraction were centrifuged for 5 min at 6,000 x g
445 and 600 μ l of supernatant was removed to use as the cell lysate. The *E. coli* bioassay was performed
446 in 96 well plates as described (60), except M9 glycerol was used as the growth medium and plates
447 were incubated at 37°C in a microplate shaker for 22 hours prior to measuring OD₆₀₀. The
448 concentration of cobamides in each sample was determined using standard curves generated with
449 CNpCbl and CNCbl.

450 *Corrinoid extraction and analysis*

451 *E. coli* Δ *btuR* Δ *metE* was pre-cultured in M9 glycerol medium supplemented with Met. OD₆₀₀ was
452 measured and cells were inoculated into 250 ml M9 glycerol medium containing 1 nM pCbl or
453 Cbl at an OD₆₀₀ of 0.01. The medium with 1 nM pCbl was supplemented with Met to enable growth
454 of *E. coli* Δ *btuR* Δ *metE*. Cultures were grown at 37°C with aeration for 22 h. Cells were collected
455 by centrifugation and washed twice with saline. Corrinoids were extracted with KCN as described
456 (60). Extractions were analyzed on an Agilent Zorbax SB-Aq column (5 μ m, 4.6 x 150 mm) with
457 an Agilent 1200 series HPLC equipped with a diode array detector using Method 2 (11).
458 Cobamides in each sample were quantified using standard curves generated with CNpCbl and
459 CNCbl.

460 **Acknowledgements**

461 We thank Zoila Alvarez-Aponte and Markos Koutmos for helpful discussions and Janani
462 Hariharan, Dennis Suazo, and Eleanor Wang for critical reading of the manuscript. We are grateful
463 to Olga Sokolovskaya for synthesis of AdopCbl and Sebastian Gude for construction of pSG013
464 and pSG015. This work was funded by National Institutes of Health grants R35GM139633 to
465 M.E.T. and 5K99GM143653-02 to Z.F.H. R.R.P. was supported by the T32GM132022 training
466 grant.

467 **References**

- 468 1. Klucar L, Stano M, Hajduk M. 2010. phiSITE: database of gene regulation in bacteriophages.
469 Nucleic Acids Res 38:D366-70.
- 470 2. Sokolovskaya OM, Shelton AN, Taga ME. 2020. Sharing vitamins: Cobamides unveil microbial
471 interactions. Science 369:eaba0165.
- 472 3. Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, Taga ME. 2019. Uneven distribution
473 of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME
474 J 13:789-804.
- 475 4. Roth JR, Lawrence JG, Bobik TA. 1996. Cobalamin (coenzyme B₁₂): synthesis and biological
476 significance. Annu Rev of Microbiol 50:137-181.
- 477 5. Huemer M, Baumgartner MR. 2019. The clinical presentation of cobalamin-related disorders:
478 From acquired deficiencies to inborn errors of absorption and intracellular pathways. J Inherit
479 Metab Dis 42:686-705.
- 480 6. Renz P. 1999. Biosynthesis of the 5,6-dimethylbenzimidazole moiety of cobalamin and of the
481 other bases found in natural corrinoids, p 557-566. In Banerjee R (ed), Chemistry and Biochemistry
482 of B12. John Wiley & Sons, Inc., New York.
- 483 7. Allen RH, Stabler SP. 2008. Identification and quantitation of cobalamin and cobalamin analogues
484 in human feces. Am J Clin Nutr 87:1324-35.
- 485 8. Yan J, Bi M, Bourdon AK, Farmer AT, Wang PH, Molenda O, Quaile AT, Jiang N, Yang Y, Yin Y, Simsir
486 B, Campagna SR, Edwards EA, Loffler FE. 2018. Purinyl-cobamide is a native prosthetic group of
487 reductive dehalogenases. Nat Chem Biol 14:8-14.
- 488 9. Men Y, Seth EC, Yi S, Crofts TS, Allen RH, Taga ME, Alvarez-Cohen L. 2015. Identification of specific
489 corrinoids reveals corrinoid modification in dechlorinating microbial communities. Environ
490 Microbiol 17:4873-84.
- 491 10. Hallberg ZF, Seth EC, Thevasundaram K, Taga ME. 2022. Comparative Analysis of Corrinoid Profiles
492 across Host-Associated and Environmental Samples. Biochemistry 61:2791-2796.
- 493 11. Mok KC, Taga ME. 2013. Growth inhibition of *Sporomusa ovata* by incorporation of benzimidazole
494 bases into cobamides. J Bacteriol 195:1902-11.
- 495 12. Shelton AN, Lyu X, Taga ME. 2020. Flexible Cobamide Metabolism in *Clostridioides* (*Clostridium*)
496 *difficile* 630 Δerm. J Bacteriol 202.
- 497 13. Ma AT, Beld J, Brahamsha B. 2017. An amoebal grazer of cyanobacteria requires cobalamin
498 produced by heterotrophic bacteria. Appl and Environ Microbiol 83:e00035-17.
- 499 14. Ma AT, Tyrell B, Beld J. 2020. Specificity of cobamide remodeling, uptake and utilization in *Vibrio*
500 *cholerae*. Mol Microbiol 113:89-102.
- 501 15. Schubert T, von Reuss SH, Kunze C, Paetz C, Kruse S, Brand-Schon P, Nelly AM, Nuske J, Diekert G.
502 2019. Guided cobamide biosynthesis for heterologous production of reductive dehalogenases.
503 Microb Biotechnol 12:346-359.
- 504 16. Sokolovskaya OM, Mok KC, Park JD, Tran JLA, Quanstrom KA, Taga ME. 2019. Cofactor Selectivity
505 in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme. mBio 10:e01303-
506 19.
- 507 17. Tanioka Y, Miyamoto E, Yabuta Y, Ohnishi K, Fujita T, Yamaji R, Misono H, Shigeoka S, Nakano Y,
508 Inui H, Watanabe F. 2010. Methyladeninylcobamide functions as the cofactor of methionine
509 synthase in a cyanobacterium, *Spirulina platensis* NIES-39. FEBS Lett 584:3223-6.
- 510 18. Watanabe F, Nakano Y, Stupperich E. 1992. Different corrinoid specificities for cell growth and
511 cobalamin uptake in *Euglena gracilis* Z. J Gen Microbiol 138:1807-1813.

512 19. Gray MJ, Escalante-Semerena JC. 2009. The cobinamide amidohydrolase (cobyric acid-forming)
513 CbiZ enzyme: a critical activity of the cobamide remodelling system of *Rhodobacter sphaeroides*.
514 *Mol Microbiol* 74:1198-210.

515 20. Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L, Taga ME. 2012. Versatility in corrinoid
516 salvaging and remodeling pathways supports corrinoid-dependent metabolism in
517 *Dehalococcoides mccartyi*. *Appl Environ Microbiol* 78:7745-52.

518 21. Helliwell KE, Lawrence AD, Holzer A, Kudahl UJ, Sasso S, Kräutler B, Scanlan DJ, Warren MJ, Smith
519 AG. 2016. Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B₁₂.
520 *Curr Biol* 26:999-1008.

521 22. Mok KC, Sokolovskaya OM, Nicolas AM, Hallberg ZF, Deutschbauer A, Carlson HK, Taga ME. 2020.
522 Identification of a Novel Cobamide Remodeling Enzyme in the Beneficial Human Gut Bacterium
523 *Akkermansia muciniphila*. *mBio* 11.

524 23. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative genomics of the
525 Vitamin B₁₂ metabolism and regulation in prokaryotes. *J Biol Chem* 278:41148-59.

526 24. Jordan A, Torrents E, Sala I, Hellman U, Gibert I, Reichard P. 1999. Ribonucleotide reduction in
527 *Pseudomonas* species: simultaneous presence of active enzymes from different classes. *J Bacteriol*
528 181:3974-80.

529 25. Winkler WC, Breaker RR. 2005. Regulation of bacterial gene expression by riboswitches. *Annu Rev*
530 *Microbiol* 59:487-517.

531 26. McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. 2017. Riboswitch diversity and
532 distribution. *RNA* 23:995-1011.

533 27. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR. 2002. Genetic control by a
534 metabolite binding mRNA. *Chem Biol* 9:1043.

535 28. Kennedy KJ, Widner FJ, Sokolovskaya OM, Innocent LV, Procknow RR, Mok KC, Taga ME. 2022.
536 Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene
537 Regulatory Strategy. *mBio* 13:e0112122.

538 29. Ferla MP, Patrick WM. 2014. Bacterial methionine biosynthesis. *Microbiology* 160:1571-1584.

539 30. Hertz GZ, Stormo GD. 1996. *Escherichia coli* promoter sequences: analysis and prediction.
540 *Methods Enzymol* 273:30-42.

541 31. Shine J, Dalgarno L. 1974. The 3'-terminal sequence of *Escherichia coli* 16S ribosomal RNA:
542 complementarity to nonsense triplets and ribosome binding sites. *Proc Natl Acad Sci U S A*
543 71:1342-6.

544 32. Lussier A, Bastet L, Chauvier A, Lafontaine DA. 2015. A kissing loop is important for *btuB* riboswitch
545 ligand sensing and regulatory control. *J Biol Chem* 290:26739-51.

546 33. Urbanowski ML, Stauffer LT, Plamann LS, Stauffer GV. 1987. A new methionine locus, *metR*, that
547 encodes a trans-acting protein required for activation of *metE* and *metH* in *Escherichia coli* and
548 *Salmonella typhimurium*. *J Bacteriol* 169:1391-7.

549 34. Marconi R, Wigboldus J, Weissbach H, Brot N. 1991. Transcriptional start and MetR binding sites
550 on the *Escherichia coli* *metH* gene. *Biochem Biophys Res Commun* 175:1057-63.

551 35. Punekar AS, Porter J, Carr SB, Phillips SE. 2016. Structural basis for DNA recognition by the
552 transcription regulator MetR. *Acta Crystallogr F Struct Biol Commun* 72:417-26.

553 36. Doublet P, van Heijenoort J, Bohin JP, Mengin-Lecreux D. 1993. The *murl* gene of *Escherichia coli*
554 is an essential gene that encodes a glutamate racemase activity. *J Bacteriol* 175:2970-9.

555 37. Dragosits M, Mattanovich D. 2013. Adaptive laboratory evolution - principles and applications for
556 biotechnology. *Microb Cell Fact* 12:64.

557 38. Conrad TM, Lewis NE, Palsson BO. 2011. Microbial laboratory evolution in the era of genome-
558 scale science. *Mol Syst Biol* 7:509.

559 39. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight R, Gordon JI. 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. *Cell Host Microbe* 6:279-89.

560 40. Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. 2014. Human gut microbes use multiple transporters to distinguish vitamin B₁₂ analogs and compete in the gut. *Cell Host Microbe* 15:47-57.

561 41. Putnam EE, Abellon-Ruiz J, Killinger BJ, Rosnow JJ, Wexler AG, Folta-Stogniew E, Wright AT, van den Berg B, Goodman AL. 2022. Gut Commensal *Bacteroidetes* Encode a Novel Class of Vitamin B₁₂-Binding Proteins. *mBio* 13:e0284521.

562 42. Wexler AG, Schofield WB, Degnan PH, Folta-Stogniew E, Barry NA, Goodman AL. 2018. Human gut *Bacteroides* capture vitamin B₁₂ via cell surface-exposed lipoproteins. *Elife* 7.

563 43. Bradbeer C, Woodrow ML, Khalifah LI. 1976. Transport of vitamin B₁₂ in *Escherichia coli*: common receptor system for vitamin B₁₂ and bacteriophage BF23 on the outer membrane of the cell envelope. *J Bacteriol* 125:1032-9.

564 44. Escalante-Semerena JC. 2007. Conversion of cobinamide into adenosylcobamide in bacteria and archaea. *J Bacteriol* 189:4555-60.

565 45. Banerjee R, Ragsdale SW. 2003. The many faces of vitamin B₁₂: catalysis by cobalamin-dependent enzymes. *Annu Rev Biochem* 72:209-47.

566 46. Padovani D, Banerjee R. 2009. A G-protein editor gates coenzyme B₁₂ loading and is corrupted in methylmalonic aciduria. *Proc Natl Acad Sci U S A* 106:21567-72.

567 47. Padovani D, Labunská T, Palfey BA, Ballou DP, Banerjee R. 2008. Adenosyltransferase tailors and delivers coenzyme B₁₂. *Nat Chem Biol* 4:194-6.

568 48. Takahashi-Iniguez T, Gonzalez-Noriega A, Michalak C, Flores ME. 2017. Human MMAA induces the release of inactive cofactor and restores methylmalonyl-CoA mutase activity through their complex formation. *Biochimie* 142:191-196.

569 49. Datta S, Koutmos M, Patridge KA, Ludwig ML, Matthews RG. 2008. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor. *Proc Natl Acad Sci U S A* 105:4115-20.

570 50. Fujii K, Huennekens FM. 1974. Activation of methionine synthetase by a reduced triphosphopyridine nucleotide-dependent flavoprotein system. *J Biol Chem* 249:6745-53.

571 51. Jarrett JT, Huang S, Matthews RG. 1998. Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin. *Biochemistry* 37:5372-82.

572 52. Mendoza J, Purchal M, Yamada K, Koutmos M. 2023. Structure of full-length cobalamin-dependent methionine synthase and cofactor loading captured in crystallo. *Nat Commun* 14:6365.

573 53. Sambrook J. 2001. Molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

574 54. Silhavy TJ, Berman ML, Enquist LW. 1984. Experiments with Gene Fusions. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

575 55. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* 2:0008.

576 56. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* 97:6640-5.

577 57. Sabri S, Steen JA, Bongers M, Nielsen LK, Vickers CE. 2013. Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the *Escherichia coli* chromosome at well-characterised loci. *Microb Cell Fact* 12:60.

607 58. Gude S, Pherribo GJ, Taga ME. 2022. A Salvaging Strategy Enables Stable Metabolite Provisioning
608 among Free-Living Bacteria. *mSystems* 7:e0028822.

609 59. Hoffmann B, Oberhuber M, Stupperich E, Bothe H, Buckel W, Konrat R, Kräutler B. 2000. Native
610 corrinoids from *Clostridium cochlearium* are adeninylcobamides: Spectroscopic analysis and
611 identification of pseudovitamin B₁₂ and factor A. *J Bacteriol* 182:4773-82.

612 60. Mok KC, Hallberg ZF, Taga ME. 2022. Purification and detection of vitamin B₁₂ analogs. *Methods*
613 *Enzymol* 668:61-85.

614 61. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
615 Subgroup GPDP. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*
616 25:2078-9.

617 62. Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from
618 high-throughput sequencing data. *Nucleic Acids Res* 38:e164.

619 63. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q,
620 Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER. 2009. BreakDancer: an algorithm
621 for high-resolution mapping of genomic structural variation. *Nat Methods* 6:677-81.

622