

1 NeoCOMM: A Neocortical

2 Neuroinspired Computational Model

3 for the Reconstruction and

4 Simulation of Epileptiform Events

5 **Mariam Al Harrach¹⁺, Maxime Yochum¹⁺, Giulio Ruffini², Fabrice Bartolomei³,**
6 **Pascal Benquet¹, Fabrice Wendling¹**

*For correspondence:

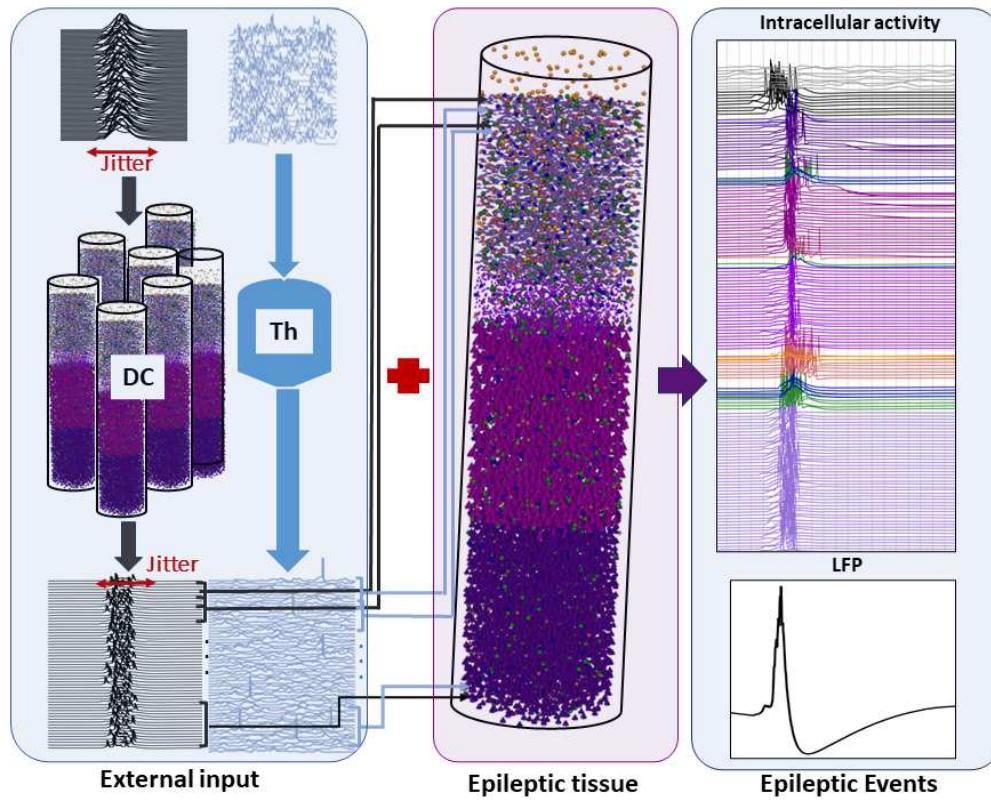
mariam.al-harrach@inserm.fr (MAH);
maxime.yochum@univ-rennes.fr
(MY)

¹These authors contributed
equally to this work

7 ¹University of Rennes, INSERM, LTSI-U1099, 35000 Rennes, France; ²Neuroelectrics, Av.
8 Tibidabo 47b, 08035 Barcelona, Spain; ³Hôpitaux de Marseille, Service d'Epileptologie et
9 de Rythmologie Cérébrale, Hôpital La Timone, Marseille, France

10 **Abstract** Understanding the pathophysiological dynamics which underline interictal
11 epileptiform events (IEEs) such as epileptic spikes, spike-and-waves or High-frequency oscillations
12 (HFOs) is of major importance in the context of neocortical refractory epilepsy, as it paves the way
13 for the development of novel therapies. Typically, these events are detected in local field
14 potential (LFP) recordings obtained through depth electrodes during pre-surgical investigations.
15 Although essential, the underlying pathophysiological mechanisms for the generation of these
16 epileptic neuromarkers remain unclear. The aim of this paper is to propose a novel
17 neurophysiologically relevant reconstruction of the neocortical microcircuitry in the context of
18 epilepsy. This reconstruction intends to facilitate the analysis of a comprehensive set of
19 parameters encompassing physiological, morphological, and biophysical aspects that directly
20 impact the generation and recording of different IEEs. Accordingly, a novel microscale
21 computational model of an epileptic neocortical column was introduced. This model incorporates
22 the intricate multilayered structure of the cortex and allows for the simulation of realistic
23 interictal epileptic signals. The proposed model was validated through comparisons with real IEEs
24 recorded using intracranial stereo-electroencephalography (SEEG) signals from both humans and
25 animals. Using the model, the user can recreate epileptiform patterns observed in different
26 species (human, rodent, and mouse) and study the intracellular activity associated with these
27 patterns. Our model allowed us to unravel the relationship between glutamatergic and
28 GABAergic synaptic transmission of the epileptic neural network and the type of generated IEE.
29 Moreover, sensitivity analyses allowed for the exploration of the pathophysiological parameters
30 responsible for the transitions between these events. Finally, the presented modeling framework
31 also provides an Electrode Tissue Model (ETI) that adds realism to the simulated signals and
32 offers the possibility of studying their sensitivity to the electrode characteristics. The model
33 (NeoCoMM) presented in this work can be of great use in different applications since it offers an
34 *in silico* framework for sensitivity analysis and hypothesis testing. It can also be used as a starting
35 point for more complex studies.

37


38 **Introduction**

39 Epilepsy is defined as a chronic neurological disease that is considered an important cause of dis-
40 ability and mortality *Beghi (2020)*. It is characterized by spontaneous recurrent seizures which
41 affect all age ranges and genders. Over 70 million people worldwide suffer from epilepsy *Thijs*
42 *et al. (2019)*. About one-third of epilepsy patients experience seizures that cannot be effectively
43 managed with anti-epileptic drugs, leading to their classification as pharmacoresistant *Löscher*
44 *et al. (2020)*. In such cases, surgery remains a viable option for only a small fraction of patients,
45 typically ranging from 15 % to 20%, who exhibit focal, well-defined, and accessible Epileptogenic
46 Zones (EZ) *Baud et al. (2018)*. Therefore, the precise delineation of the EZ plays a pivotal role in
47 the success of resection surgery. This delineation typically relies on biomarkers derived from elec-
48 trophysiological recordings, primarily Local Field Potentials (LFPs) collected via intracortical Stereo-
49 ElectroEncephalography (SEEG) electrodes *An et al. (2020)*. These biomarkers correspond to epilep-
50 tiform events observed during ictal (seizures) and interictal (spikes, High-frequency oscillations,...)
51 states. However, although seizures are generally unpredictable and infrequent, Interictal Epilepti-
52 form Events (IEEs) are considerably more frequent *Smith et al. (2022)* which makes them a valuable
53 and important asset.

54 Still, the pathophysiological mechanisms underlying the generation of different IEEs and their
55 relationship to ictal activity are still poorly understood *Aeed et al. (2020)*. In particular, for neo-
56 cortical focal epilepsies, the complexity of the multilayered structure of the cortex coupled with
57 the altered excitation-inhibition balance induces distinct patterns within intrinsic and diverse neu-
58 ral firing properties. The exact details of these dynamics that allow for the generation of either
59 Interictal Epileptic Spikes (IESs), Interictal Spike and Waves (SWs), or High-frequency Oscillations
60 (HFOs) remain ambiguous *Aeed et al. (2020); de Curtis et al. (2012)*. Unveiling their underlying neu-
61 robiological mechanisms can offer a better interpretation of the SEEG signals recorded during the
62 pre-surgical diagnostic studies *Aeed et al. (2020)*.

63 Over the past decade, research has increasingly emphasized the importance of advancements
64 in computational modeling to enhance the postoperative outcomes of epilepsy surgery *Rigney*
65 *et al. (2021); An et al. (2020)*. These computational methods encompass artificial intelligence-
66 based and biophysical *in-silico* modeling approaches. Their primary goal is to gain a deeper un-
67 derstanding of the pathophysiological mechanisms that drive the occurrence of epileptic events,
68 with the aim of providing valuable insights into tailored, patient-specific therapeutic approaches
69 *An et al. (2020)*. In the case of artificial intelligence-based models, they are usually limited by a
70 small number of sample sizes which can decrease their accuracy and predictive efficacies *Rigney*
71 *et al. (2021)*. In the context of physiologically relevant models, previous studies have produced
72 intricate and highly complex models of healthy cortical tissue *Markram et al. (2015)*. Nonetheless,
73 these models require significant computational resources and prove overly intricate for specific
74 types of analyses.

75 In this study, we present a new neuro-inspired microscale model of the multilayered neocorti-
76 cal column that reproduces the main physiological features of the cortex microcircuitry. This digital
77 reconstruction of the cortical volume incorporates a sufficiently large number of cells considering
78 the diversity of neuron and interneuron types and their electrophysiological firing patterns as well
79 as the complex inter and intracortical connectivity between them. Using the forward modeling
80 scheme, the proposed model is able to simulate realistic LFPs as observed in electrophysiologi-
81 cal recording using SEEG electrodes (Figure 11) and *in vivo* using microelectrodes to record the LFP
82 during epileptogenesis following the iron-chloride mouse model *Jo et al. (2014)* (Figure 12). Accord-
83 ingly, This model was used to explore how distinct intrinsic cell characteristics, when coupled with
84 modified synaptic dynamics and synchronized external inputs, can give rise to particular types of
85 IEEs. It strikes a balance between the complexity of electrophysiological aspects and computational
86 speed.

Figure 1. An overview of the Interictal Epileptiform Events (IEEs) simulation scheme. The simulation of IEEs requires a combination of two main elements: An epileptic tissue characterized by pathophysiological hyperexcitable network and a synchronous input of afferent volley of Action Potentials (APs) from the distant cortex (DC). The level of synchrony is described by the stimulation jitter. The neocortical column also receives external input from the Thalamus (Th). The epileptic event simulated in this figure depicts an Interictal Epileptic Spike (IES). The modified synaptic parameters adjusted to obtain this activity are as follows: for PYR cells the g_{AMPA} , g_{NMDA} , and g_{GABA} were set to 9.61, 0.47, and 36 mS/cm^2 respectively.

87 Results

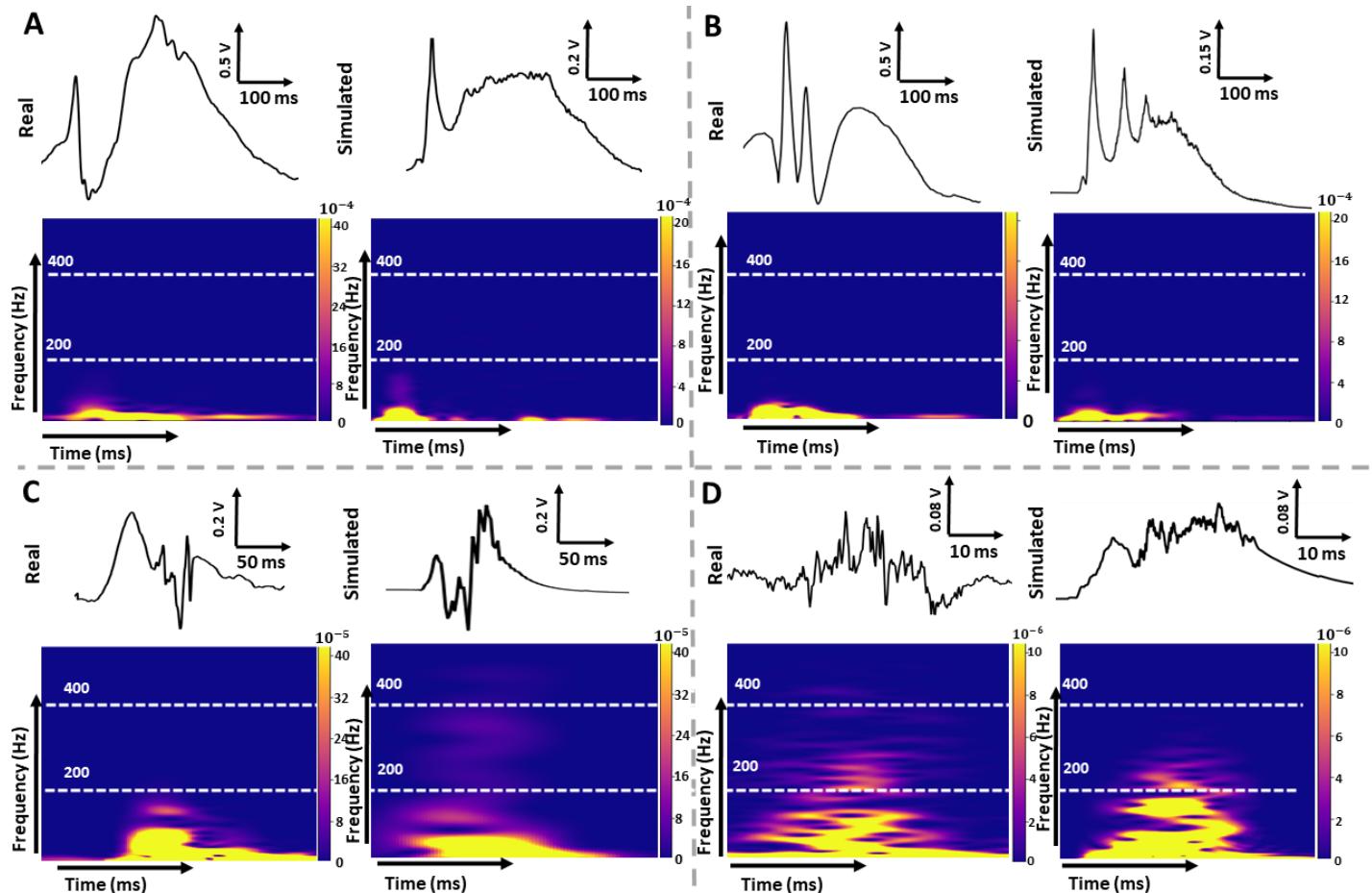
88 Pathophysiological dynamics of epileptiform events generation

89 Creating an epileptic network

90 We used the NeoCoMM computational model to create an epileptic tissue that is able to simulate
91 realistic IEEs. This was achieved, first, by adjusting the physiological parameters of the different
92 cells to create a multilayered hyperexcitable network that mimics an epileptic cortical column. Sec-
93 ond, the input from the Distant Cortex (DC) was rendered synchronous by decreasing the standard
94 deviation of the stimulation epochs of external Principal Cells (PCs) from different layers. The com-
95 bination of these two conditions and the adjustment of their respective parameters allowed us
96 to simulate different types of IEEs. This simulation scheme is portrayed in Figure 1. In this sec-
97 tion, we investigated the underlying pathophysiological parameters that induce the main types of
98 IEEs that are usually observed in intracerebral EEG recordings and are used as epileptic markers
99 by clinicians. Given that the NeoCoMM computational model permits the simulation of cortical
100 columns in humans, rats, and mice, our investigation will focus on examining the IEEs simulation
101 and generation mechanisms within human and mouse cortical tissues.

102 Generation of interictal events in the human neocortical tissue

103 Starting from the default configuration of the computational model (See section Neocortical Com-
104 putational Microscale Model (NeoCoMM)), we studied the network activity in response to an ex-


105 ternal volley of APs coming from the PCs of the DC and induced by a quasi-synchronous stimulus
106 obtained by adjusting the number of individual stimulating inputs and their jitter (their standard
107 deviation). With the default physiological values of the neocortical tissue, no response or very low
108 activity was observed in the recorded LFP which highlights the necessity of both conditions previ-
109 ously mentioned to simulate IEEs.

110 Accordingly, to simulate different IEE patterns including Interictal Spikes (IESs), Spike Waves
111 (SWs), Double Spikes (DSs) and waves (DSWs), and High-frequency Oscillations (HFOs) (ripples, and
112 Fast Ripples (FRs)), we conducted a simulation study of the parameters involved in the generation
113 of these events. This investigation consisted mainly of studying the impact of pathophysiological
114 synaptic transmission between GABAergic and Glutamatergic cells in the different layers of the
115 neocortical column along with the impact of the external DC input synchrony and intensity. In de-
116 tail, we focused on the conductances of excitatory ($AMPA_R$ and $NMDA_R$) and inhibitory ($GABA_R$)
117 synaptic receptors as well as on the reversal potentials of GABAergic postsynaptic currents simu-
118 taneously with the jitter value and the number of afferent APs (Figure 1).

119 Figure 2 shows the simulation results for SW, DSW, ripple, and FR compared to real clinical IEEs
120 as depicted in both time and frequency domains. It demonstrates the ability of our model to ef-
121 ficiently reproduce these different interictal patterns by adjusting the underlying dynamics of the
122 epileptic network. For the SW generation (Figure 2.A), simulations indicated that asynchronous in-
123 put (higher jitter) is needed for the external stimulation of the network along with an increase in
124 the excitatory conductances ($AMPA_R$ and $NMDA_R$) and the GABA reversal potential of postsynap-
125 tic current generated at the soma and dendrites of PCs in all layers. In the case of DSW (Figure 2.B)
126 same conditions were applied on the cortical column as for the SW except for the jitter of the input
127 from DC which was reduced (5 ms for DSW instead of 8 ms for SW). Figures 2.C and 2.D depict real
128 (left) versus simulated (right) Ripples and FR respectively. The ripples whether in the real or simu-
129 lated signals are characterized by a signal power in a frequency band of 80 to 200 Hz as opposed
130 to FR that have a signal power between 200 and 600 Hz. To simulate HFOs, the NMDA postsynaptic
131 current conductance of PYR cells was moderately increased to create a hyperexcitable tissue but
132 not to induce the depolarisation of a high number of PYR cells (Figure 2-figure supplement 3 and
133 Figure 2-figure supplement 4). In addition to this condition, the excitatory input from DC was set
134 to be of higher intensity for the FR simulation compared to the ripples with a jitter value between
135 4 and 5 ms. This resulted in a weakly synchronized firing of a set of PC cells (< 15%) that was higher
136 in the case of ripples (< 45%).

137 Another advantage of the model is its ability to simultaneously display the extracellular (Figure
138 3.A) and intracellular (Figure 3.B) activity of all the network cells. This highlights the capability of
139 the model to uncover the specific underlying mechanisms responsible for generating each type of
140 epileptiform pattern. Comparing the intracellular response with the corresponding LFP signal and
141 analyzing the adjusted electrophysiological parameters used to obtain the IEE pattern, allowed us
142 to elucidate and examine these distinct mechanisms. In this regard, Figures 3 and 4 presents IES
143 and SW simulations, respectively, compared to real signals, along with the corresponding intracel-
144 lular activity of PCs and interneurons in the five neocortical layers. In the case of IES (Figure 3), it
145 is characterized by a sharp wave lasting between 50 and 100 ms followed by a brief negative wave
146 (< 50ms). By examining the corresponding simulated intracellular activity (Figure 3.B), we observed
147 that during the sharp spike component, all PC cells in the column were depolarized and exhibited
148 high synchrony, with some cells firing several APs within a brief individual time frame (< 30 ms). Sim-
149 ilarly, interneuron activity was synchronous. However, the discharge period extended beyond that
150 of the PCs, resulting in the negative wave following the spike. To obtain the simulation presented
151 in Figure 3, the default parameters of the model were adjusted by increasing the conductances
152 $AMPA_R$ and $NMDA_R$ of PCs and increasing the reversal potential of GABAergic postsynaptic cur-
153 rents. The jitter value of the external input from DC was set to 4 ms.

154 Following the same approach, we simulated the SW presented in Figure 4. We noticed that the
155 model successfully mirrored the key elements of the recorded SW (Figure 4.A), both in time and fre-

Figure 2. Comparison between clinical and simulated Local field potentials (LFPs) during Interictal Epileptiform Events (IEEs): Spike-and-Wave (SW) (A), Double Spike-and-Wave (DSW) (B), High-Frequency Oscillations (HFOs) (ripples (C) and Fast Ripples (FRs) (D)). Real LFPs were obtained from an epileptic patient with neocortical Temporal Lobe Epilepsy (TLE) using depth SEEG electrodes and portray typical IEE events in time (up) with the corresponding spectrogram (bottom). A: Simulated SW (right) with a rapid component with high amplitude (spike) and a slow wave reflected in the frequency spectrum portraying key elements of the clinically recorded SW (left). This SW was obtained using the following synaptic adjustments: $g_{AMPA} = 9$, $g_{NMDA} = 0.67$, $g_{GABA} = 31$, $E_{GABA} = -67$ and input Jitter = 8 ms. B: Simulated DSW (right) with two successive rapid components with high amplitudes and a slow wave. The corresponding synaptic parameters are as follows: $g_{AMPA} = 7.61$, $g_{NMDA} = 0.80$, $g_{GABA} = 25$, $E_{GABA} = -73$ and input Jitter = 5 ms. C: Simulated (Right) and real (left) LFPs with interictal R characterized by a frequency range between 80 and 200 Hz. The adjusted parameters for this simulation are: $g_{AMPA} = 7.38$, $g_{NMDA} = 0.48$, $g_{GABA} = 38$, $E_{GABA} = -74$, D: Simulated (Right) and real (left) LFPs with interictal FR characterized by a frequency range between 200 and 600 Hz. The following parameters values were used to obtain this simulation: $g_{AMPA} = 7.6$, $g_{NMDA} = 0.5$, $g_{GABA} = 37$, $E_{GABA} = -74$ and input Jitter = 5 ms

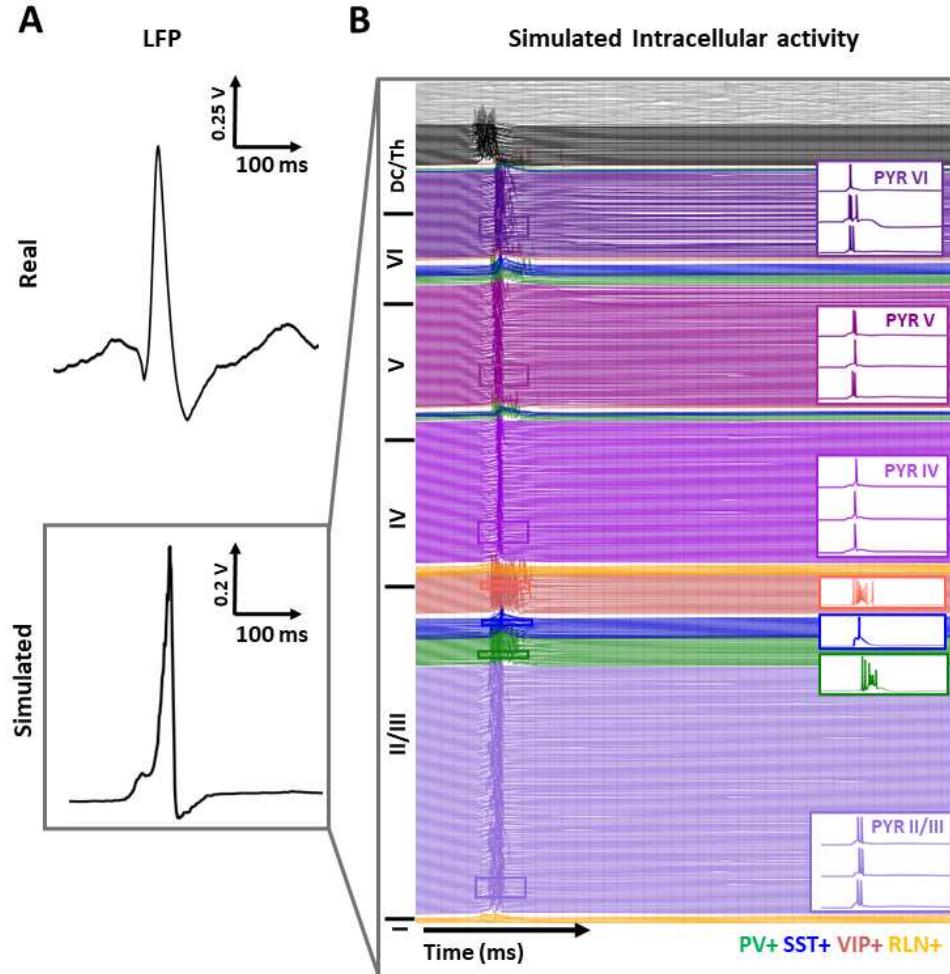

Figure 2—source code 1. The configuration files for the simulations in NeoCoMM: <https://gitlab.univ-rennes1.fr/myochum/neocomm/>

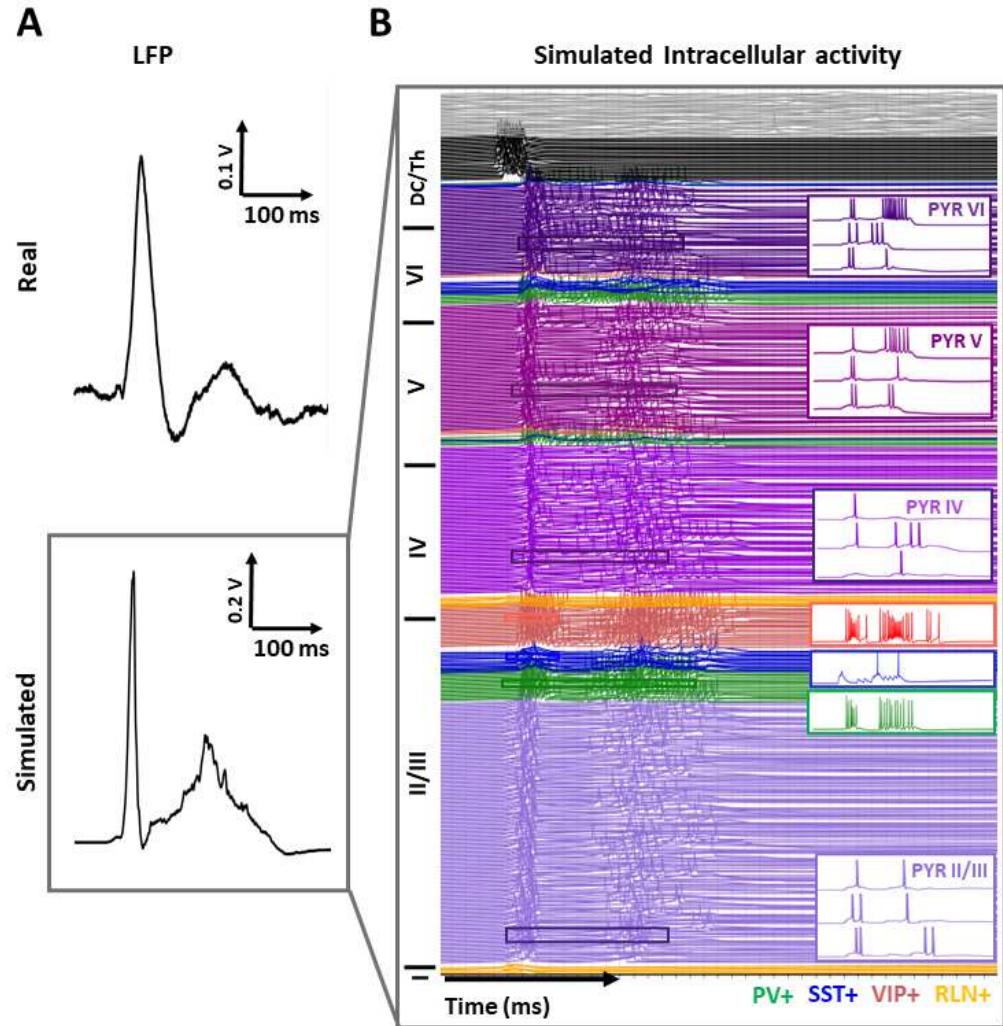
Figure 2—figure supplement 1. The intracellular activity corresponding to the SW signal in (A)

Figure 2—figure supplement 2. The intracellular activity corresponding to the DSW signal in (B)

Figure 2—figure supplement 3. The intracellular activity corresponding to the HFOs signal in (C)

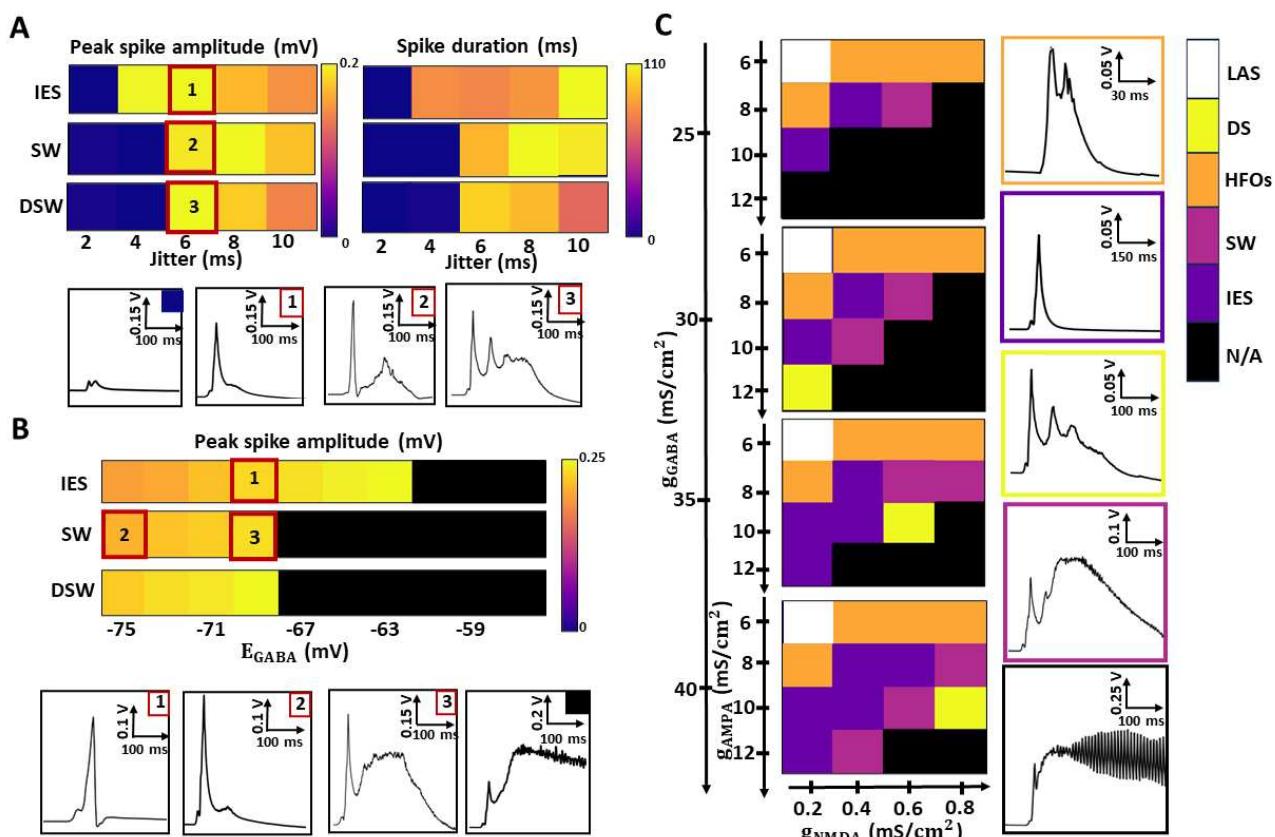
Figure 2—figure supplement 4. The intracellular activity corresponding to the FR signal in (D)

Figure 3. Interictal Epileptiform Spikes (IESs) simulation with the NeoCoMM model. A: Comparison between real and simulated local field potential (LFP) during an IES. (A, top) Typical clinical IES recorded with depth EEG electrodes in the transverse temporal gyri of Heschel from a patient with neocortical temporal lobe epilepsy. (A, bottom) Simulated IES generated by the computational model NEOCOMM. (B) Overview of the intracellular activity corresponding to the simulated LFP in (A, bottom). 30% of cellular activity is shown for the different cell types: Pyramidal cells (PYR), Parvalbumin expressing interneurons (PV+), Somatostatin expressing interneurons (SST+), vasoactive intestinal polypeptide expressing interneurons (VIP+) and Reelin expressing interneurons (RLN+). The synaptic parameters of the PYR cells were adjusted from default values in order to create an epileptic tissue. These values are: $g_{AMPA} = 8.76$, $g_{NMDA} = 0.63$, $g_{GABA} = 37$, $E_{GABA} = -66$. The input Jitter was set to 4 ms


Figure 3—source code 1. The configuration file for the simulation in NeoCoMM: <https://gitlab.univ-rennes1.fr/myochum/neocomm/>

156 quency content characteristics. Concerning the physiological parameters adjusted to obtain this
157 simulation compared to the IES in Figure 3, the DC stimulation jitter was increased (5 ms instead of
158 4 ms) as well as the intensity and number of stimulation epochs resulting in a higher afferent volley
159 from the DC to the epileptic column. Additionally, along with increasing the glutamatergic con-
160 ductances of synaptic receptors, we decreased the GABAergic conductance of synaptic receptors
161 for all PC cells. Upon analyzing the intracellular activity responsible for generating the SW pat-
162 tern (Figure 4.B), we observed that, in the same manner as the IES, the spike component resulted
163 from highly synchronous APs from PCs. However, in this case, the discharges from PCs didn't com-
164 pletely cease for all PCs after about 30-40 ms; instead, they continued for some time, triggering
165 a new wave of depolarization in all network cells (Figure 4.B). For the second wave, the APs were
166 highly asynchronous and took longer to dissipate (>150 ms). These asynchronous bursts of APs
167 determined the wave's shape, including its duration and amplitude. For example, the simulated
168 SW in Figure 2.A exhibited a wave with a much longer duration and higher amplitude. This was a
169 result of a more pronounced asynchronous bursting in all cells, as shown in Figure 2-supplement
170 figure 1. Compared to the SW of Figure 4, this difference can be attributed to higher $AMPA_R$ and
171 GABAergic reversal potential for postsynaptic currents in PC cells.

172 To assess the impact of the electrophysiological model parameters on the type and morpho-
173 logical features of the simulated IEEs, we conducted a sensitivity analysis centering around the
174 excitatory and inhibitory synaptic parameters. For each studied parameter and each IEE type, all
175 other model parameters were fixed during the simulations. We started by studying the impact of
176 the DC input synchrony level on the peak spike amplitude and duration for IESs, SWs, and DSWs.
177 Figure 5.A showed that the level of synchronization of the external cells' firing pattern has a direct
178 influence on the morphology of the simulated IEE. In the case of IES, reduced input jitter value
179 (below 4 ms) resulted in a very low amplitude signal (Figure 5.A). Above 4 ms the spike amplitude
180 decreased and its duration increased with input synchronization decrease (jitter increase). Simi-
181 larly, in the case of SW and DSW, the amplitude of the spike peak was higher for higher external
182 APs synchrony. Their duration, however, seemed to increase for the SW and decreased for the
183 DSW with the jitter value increase.


184 For these three IEEs (IESs, SWs, and DSWs), we also studied the impact of the GABA reversal
185 potential E_{GABA} of postsynaptic GABAergic currents on the simulated events shape. As depicted
186 in Figure 5.B, the spike component amplitude was higher for higher E_{GABA} values. For very hyper-
187 excitable neural networks, we obtained an oscillatory activity that appears like ictal activity and is
188 characterized by continuous bursting of all the network's cells (black squares in Figure 5.B). The
189 threshold for this ictal activity was found to be higher for IESs compared to SWs and DSWs. An-
190 other interesting finding was that for the SW, the simulated events switch from IES to SW between
191 -75 and -69 mV as shown in the IEEs plots in Figure 5.B red squares 2 and 3.

192 Finally, we focused on the postsynaptic conductance values associated with $AMPA_R$, $NMDA_R$,
193 and $GABA_R$ receptors of PCs and their impact on the type of simulated IEE. After freezing all other
194 parameters of the model, we simulated the response of the neocortical column to an external
195 stimulation for each triplet conductance value (g_{AMPA} , g_{NMDA} , and g_{GABA}) over predefined intervals.
196 Figure 5.C presents the color-coded maps indicating the different parameter configurations and
197 the corresponding IEE. These configurations are divided into four color maps for each $GABA_R$ con-
198 ductance value. Then, each colormap portrays the corresponding events of each excitatory pair
199 of $NMDA_R$ and $AMPA_R$ conductances. The boundaries of these conductances were chosen by
200 keeping in mind physiological realism. Our analysis revealed a repetitive pattern in the case of
201 the low amplitude signal and HFOs squares. This implies that independently from the inhibitory
202 postsynaptic current intensity of PCs, very low excitatory postsynaptic currents ($g_{AMPA} = 6mS/cm^2$
203 and $g_{NMDA} = 0.2mS/cm^2$) cannot simulate epileptic signals resulting in a low amplitude signal or
204 physiological LFP. Also, independently from the inhibitory conductance value of PC's postsynap-
205 tic receptors, setting g_{AMPA} to 8 mS/cm^2 or increasing $NMDA_R$ conductance ($g_{NMDA} > 0.2mS/cm^2$)
206 while maintaining the $AMPA_R$ conductance to 8 mS/cm^2 , leads to the simulation of HFOs. In the

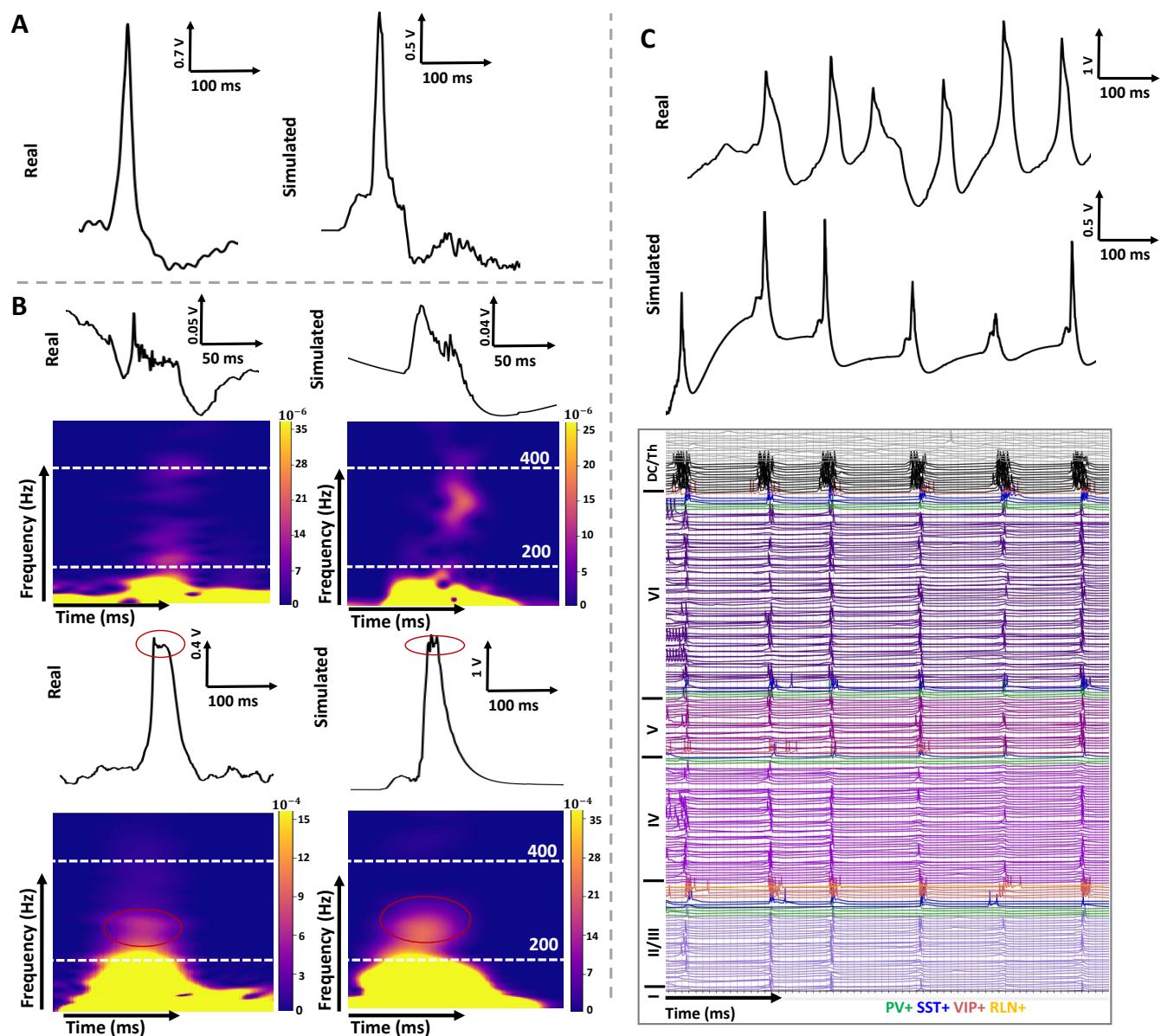
Figure 4. Interictal Epileptiform Spikes and Wave (SW) simulation with the NeoCOMM model. A: Comparison between real and simulated local field potential (LFP) during an SW. (A, top) Typical clinical SW recorded with depth EEG electrodes in the transverse temporal gyri of Heschel from a patient with neocortical temporal lobe epilepsy. (A, bottom) Simulated IES generated by the computational model NEOCOMM. (B) Overview of the intracellular activity corresponding to the simulated LFP in (A, bottom). 30% of cellular activity is shown for the different cell types: Pyramidal cells (PYR), Parvalbumin expressing interneurons (PV+), Somatostatin expressing interneurons (SST+), vasoactive intestinal polypeptide expressing interneurons (VIP+), and Reelin expressing interneurons (RLN+). The synaptic parameters of the PYR cells were adjusted from default values in order to create an epileptic tissue. These values are as follows: $g_{AMPA} = 7.25$, $g_{NMDA} = 0.65$, $g_{GABA} = 21$, $E_{GABA} = -72$. The input Jitter was set to 6 ms

Figure 4—source code 1. The configuration file for the simulation in NeoCoMM: <https://gitlab.univ-rennes1.fr/myochum/neocomm/>

Figure 5. Sensitivity analysis of simulated Interictal Epileptiform Events (IEEs) types and morphological features with model parameters (electrophysiological synaptic parameters). (A) Impact of the input Jitter of the peak spike amplitude and duration of Interictal Epileptic Spikes (IESs) and Spike and Waves (SWs). (B) Impact of the GABA reversal potential value (E_{GABA}) on the peak spike amplitude for IESs and SWs. (C) Color-coded maps illustrating the impact of $AMPA_R$, $NMDA_R$, and $GABA_R$ conductances on the type of simulated IEEs. LAS: Low Amplitude Signal, DSW: Double Spike and Wave, HFOs: High Frequency Oscillations, SW: Spike-and-Wave, IES: Interictal Epileptic Spike, N/A: oscillatory signal similar to ictal activity.

207 same vein, values (g_{AMPA} , g_{NMDA}) = (10,0.2) and (8,0.4) mS/cm^2 resulted in IES each time. In con-
 208 trast, for some (g_{AMPA} , g_{NMDA}) values the simulated event switched from IES to SW with increasing
 209 inhibitory synaptic conductance g_{GABA} . This implies that the neocortical tissue needs to be suffi-
 210 ciently hyperexcitable with increased excitatory input currents and inhibitory activity to simulate
 211 IESs and SWs. Additionally, we need to point out the GABAergic postsynaptic current importance
 212 wherein its decrease results in a much more hyperexcitable network leading to an oscillatory activ-
 213 ity that resembled ictal discharges (plot in black square in Figure 5.C). In the case of DSW, specific
 214 conductance combinations are needed, these triplet values are (g_{AMPA} , g_{NMDA} , g_{GABA}) = (10,0.2, 25),
 215 (10,0.6,30), (12,0.2,35) mS/cm^2 . The sensitivity analysis presented allowed us, not only, to inves-
 216 tigate the impact of certain parameters on the simulated IEEs but also provided a guideline for the simu-
 217 lations with NeoCoMM. A summary of the pathophysiological parameter values for the simu-
 218 lation of different interictal epileptic patterns is provided in Appendix 1-Table 1.

219 Generation of interictal events in the mouse cortical tissue
 220 As mentioned earlier, the NeoCoMM model can simulate the cortical column and microscopic activ-
 221 ity in humans, rats, or mice. In this section, we investigated the underlying mechanisms for creating
 222 epileptic networks that can generate IEEs in the mouse's cortical tissue. After performing a wide
 223 range of simulations, we found that in order to simulate IES, we need a combination of parameter
 224 configurations: Firstly, the external input from the DC needs to be highly synchronous. Secondly,


225 and similarly to the human case, the cortical column needs to be hyperexcitable. However, to
226 simulate this hyperexcitability, we needed to adjust the synaptic parameters of both PCs and in-
227 terneurons. Specifically, for the simulation of an IES, the following adjustments to the synaptic
228 currents are required in all layers of the simulated neocortical volume: 1) an increase in excitatory
229 conductances ($AMPA_R$ and $NMDA_R$) for PC cells, 2) an increase in $AMPA_R$ conductances for PV,
230 SST, and VIP cells. The combination of these criteria creates an epileptic network that can generate
231 IES events in response to a volley of synchronized APs from the DC. An example of a simulated
232 IES is presented in Figure 6.A. As depicted, with the appropriate parameter settings, the model
233 effectively replicated an IES, demonstrating its reliability when compared to real *in vivo* recording.

234 For the simulation of HFOs and particularly FRs, we used the model to uncover the mechanisms
235 responsible for the generation of different types of FR that are usually seen in experimental record-
236 ings in mice. In this regard, we chose the two widespread types of FR; isolated High-frequency
237 oscillations in the FR frequency band (200-600 Hz) and FR segment superimposed on a spike com-
238 ponent. An example of these two types is depicted in Figure 6.B. Going forward we will refer to the
239 isolated FR type as FR type 1 (Figure 6.B, up) and to the one cooccurring with a spike as FR type 2
240 (Figure 6.B, bottom). According to the simulations, and compared to IESs, FRs are the result of an
241 asynchronous firing of a small number of PCs throughout the cortical layers (Please refer to Figure
242 6. Figure supplement 2 and 3). A closer analysis indicated that for FR type 1, all PYR cells were
243 depolarised, but only a small percentage attained the threshold to fire out-of-phase APs (< 10%).
244 For the same external input as IES, FR Type 1 was obtained by reducing the $AMPA_R$ conductance
245 of PC cells from 12 mS/cm^2 (for IES) to 8 mS/cm^2 and by increasing the $GABA_R$ conductance of PV+
246 interneurons from 1.38 to 2 mS/cm^2 . These Adjustments created a less hyperexcitable network of
247 neurons that fires less and more asynchronously. Interestingly, to simulate the type 2 FR starting
248 with the same parameter configuration as type 1 FR, only the PV+ postsynaptic current parame-
249 ters needed to be adjusted. These adjustments consisted of decreasing the $AMPA_R$ glutamate
250 conductance to 4 mS/cm^2 and increasing the $GABA_R$ conductance to 4 mS/cm^2 . The new physio-
251 logical synaptic parameters created a new network activity with increased asynchrony with some
252 cells exhibiting a bursting activity (Figure 6- figure supplement 3).

253 Lastly, to mimic real activity with groups of repetitive IES, we simulated 1 s of activity wherein
254 the epileptic tissue (same configuration as for the IES in Figure 6.A) received external inputs (Volleys
255 of APs) of 8 Hz. These inputs are obtained by applying the same stimulation mechanism described
256 in the methods section (*jitter* = 6ms) in a continuous manner. The stimulation epochs were deter-
257 mined based on the 8 Hz stimulation frequency with a random uniform shift of 60ms to add realism.
258 The simulation result is shown in Figure 6.C along with an experimental recording showcasing the
259 same type of activity. Comparing the simulated signal to the experimental one highlighted the
260 performance of our model and its ability to not only accurately reproduce interictal patterns but
261 also its ability to offer an insight into the microscopic activity of cells responsible for these patterns.
262 The intracellular responses of individual cells suggested that the peak amplitude of IES is directly
263 linked to the number of synchronous APs fired by PCs. Moreover, the duration between external
264 stimulations was also found to play a role in the shape of the IES. For example, for very brief in-
265 terspike intervals, some interneurons continue to fire inhibiting the responses for the next spike
266 which results in a lower amplitude IES. This phenomenon is depicted in Figure 6.C in the second to
267 last IES of the simulated signal.

268 **Impact of the recording electrode on the characteristics of epileptiform events**

269 The NeoCOMM model incorporates a biophysical model of the recording electrode. This model
270 represents both the geometrical properties of the electrode (shape, radius, position, and insertion
271 angle), and the Electrode Tissue Interface (ETI) modeled as an equivalent circuit. In the case of
272 human simulations, we modeled the SEEG electrode that is usually used in clinical settings. A
273 diagram of this electrode is shown in Figure 7.A. For the clinical signals presented in this work,
274 the SEEG electrode used is a typical SEEG electrode with cylindrical Platinum (Pt) contacts of 2 mm

Figure 6. Comparison between experimental and simulated neocortical Interictal Epileptiform Events (IEEs) in mice. (A) Real vs. simulated Interictal Epileptic Spike (IES). The following synaptic adjustments were made to obtain this simulation: $PC/g_{AMPA} = 12$, $PC/g_{NMDA} = 0.6$, $PV/g_{AMPA} = 12$, $SST/g_{AMPA} = 8$, $SST/g_{GABA} = 2$, and $VIP/g_{AMPA} = 8 \text{ mS/cm}^2$. (B) Examples of two different types of simulated FRs compared to recorded *in vivo* ones. (up) A standalone FR obtained for $PC/g_{AMPA} = 9.7$, $PC/g_{NMDA} = 0.6$, $PV/g_{AMPA} = 6$, $PV/g_{GABA} = 2$, $SST/g_{AMPA} = 8$, $SST/g_{GABA} = 2$, $VIP/g_{AMPA} = 8 \text{ mS/cm}^2$ and $Jitter = 6\text{ms}$. (bottom) A FR superimposed on a spike obtained for $PC/g_{AMPA} = 10$, $PC/g_{NMDA} = 0.6$, $PV/g_{AMPA} = 4$, $PV/g_{GABA} = 4$, $SST/g_{AMPA} = 8$, $SST/g_{GABA} = 2$, $VIP/g_{AMPA} = 8 \text{ mS/cm}^2$. (C) Simulation of repetitive epileptic discharges (up) with the corresponding intracellular activity. This simulation was obtained for the same settings as in (A) with a periodic external input of 8 Hz. Outside the indicated parameter values that have been used for these specific simulations, the default parameter values defined in the NeoCOMM model were employed. The *in vivo* recordings were obtained from an epileptic mouse following the iron ion model described in section .

Figure 6—source code 1. The configuration files for the simulations are provided in: <https://gitlab.univ-rennes1.fr/myochum/neocomm/>

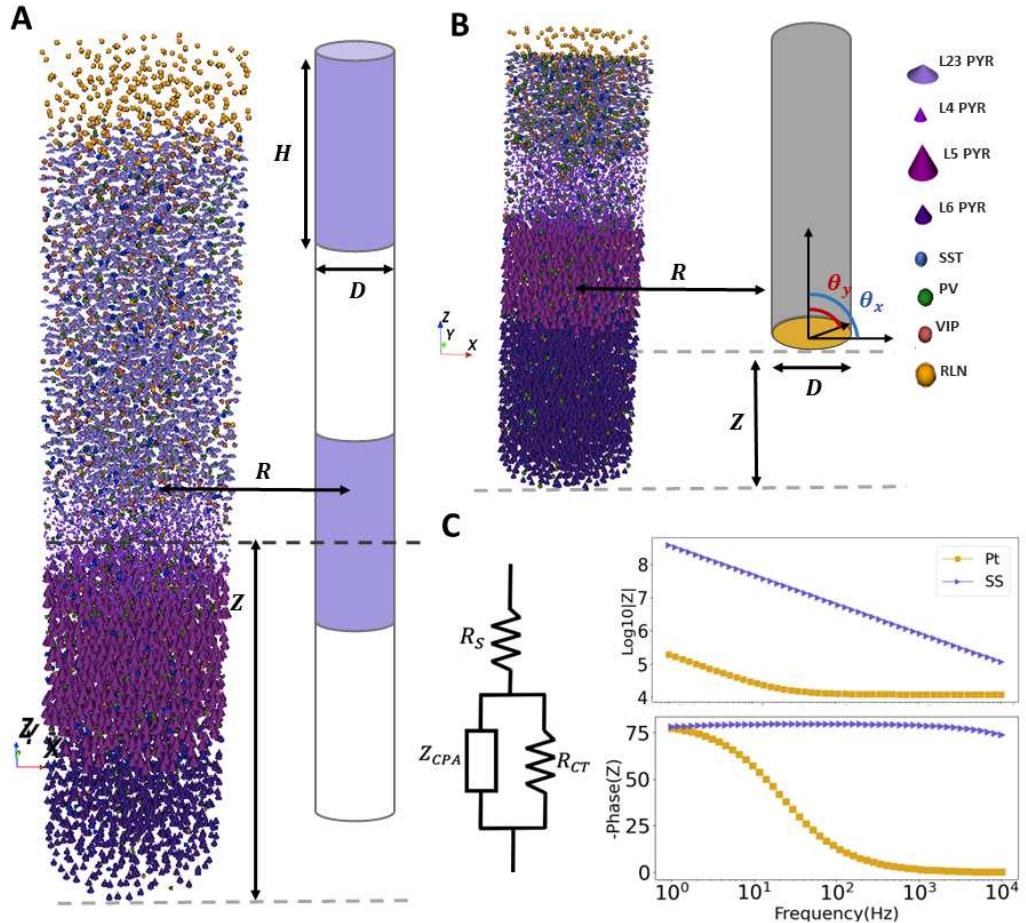
Figure 6—figure supplement 1. The intracellular activity corresponding to the IES signal in (A)

Figure 6—figure supplement 2. The intracellular activity corresponding to the FR type 1 signal in (B)

Figure 6—figure supplement 3. The intracellular activity corresponding to the FR type 2 signal in (B)

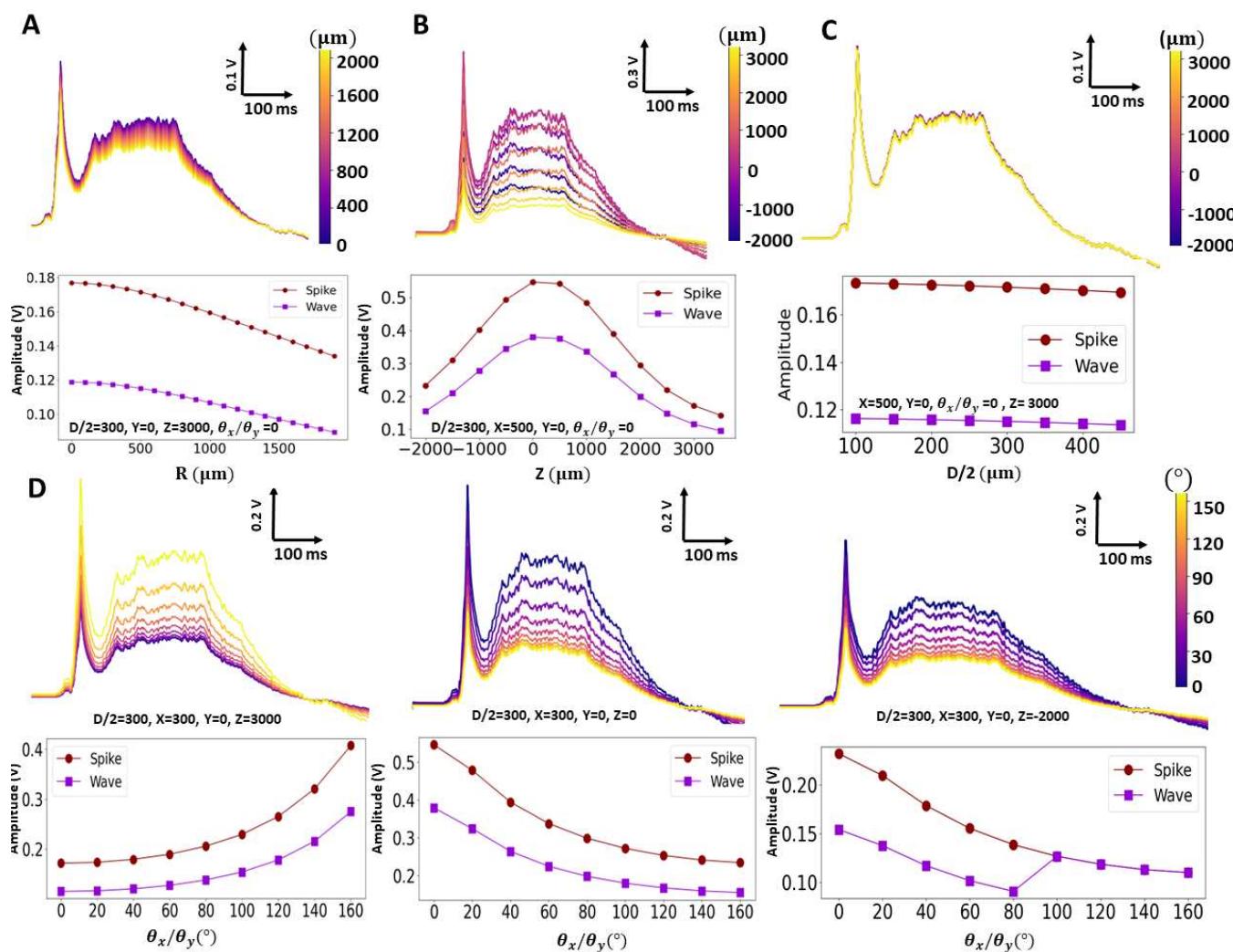
275 Heights (H) and 0.8 mm radii. On the other hand, in the case of mouse recordings, a wire electrode
276 was used with a Stainless Steel (SS) disk contact of 62.5 μm radius. The corresponding simulated
277 model is portrayed in Figure 7.B. For both humans and mice, the ETI model was integrated into
278 the simulations of the IEEs with the default values corresponding to each electrode illustrated in
279 Figure 7.

280 Figure 7.C portrays the impedance variation with frequency for both electrodes. We can no-
281 tice that for SEEG electrode contacts, the impedance is almost three orders of magnitude lower
282 compared to that of the microelectrode electrode used in mouse recordings. This implies that
283 the blurring effect due to the ETI is more pronounced in the case of microelectrodes compared
284 to SEEG electrodes. However, we have to consider the spatial averaging that a larger recording
285 surface may entail. Moreover, while microelectrodes offer spatial selectivity resulting in higher
286 impedance, SEEG electrodes offer a larger recording field with lower impedance. In particular,
287 the filtering effect of the electrode is more clearly portrayed by the ETI transfer function (Figure
288 7-supplementary figure 1). For the SEEG electrodes, the cut-off frequency of the ETI filter is around
289 200 Hz meaning it only distorts the high-frequency contents of the LFP. In the case of microelec-
290 trodes, the ETI has a blurring effect for all frequency ranges that is more pronounced for higher
291 frequency oscillations.


292 Using the electrode model, we studied the effect of the geometrical characteristics of the record-
293 ing electrode on the recorded IEEs. In particular, we chose to study the different electrode char-
294 acteristics on the amplitude of the simulated SW. Figure 8 portrays the amplitude variation for both
295 spike and wave parts with the Radius of the electrode contact, the electrode depth, its distance
296 from the epileptic column, and the insertion angle.

297 For all the considered parameters both spike and wave components had the same variation
298 profiles. Their amplitude decreased with increasing distance of the electrode contact (Figures 8.A
299 and 8.B). Interestingly, the radius of the electrode contact did not affect the amplitude of the SW
300 (Figures 8.C) which can be explained by the fact that only one column is simulated which is not
301 the case in the cerebral cortex. Lastly, the insertion angle seemed to influence the recorded signal
302 amplitude depending on the position of the electrode's contact with respect to the cortical column.
303 Accordingly, the amplitudes increased with rotations of the electrode around the x or y axes when
304 the electrode was above the cortical tissue, and decreased when the electrode was below.

305 Discussion


306 This paper presents a novel and physiologically relevant-model of the cortical microcircuitry (Neo-
307 CoMM), encompassing realistic neural morphologies, layer dimensions, neural densities, ratios of
308 neuron subtypes, electrophysiology, synaptic physiology, connectivity, and a biophysical recording
309 electrode model. It also provides the possibility to choose from three different species: humans,
310 rats, and mice. This computational model is a simplified but still highly reliable tool to study and
311 uncover mechanisms underlying interictal activity in epilepsy. In this context, it provides the signif-
312 icant ability to simultaneously display both extracellular (local field potentials) and intracellular (ac-
313 tivation potentials) activity. This capability is especially important in a context where single-cell record-
314 ings are challenging to obtain for all involved cell types (excitatory and inhibitory) *Carlson et al.*
315 (2018). As a result, it can be used to reveal the behavior of single cells (both PCs and interneurons)
316 during the occurrence of epileptic events, which still remains unclear. This is of major importance
317 since understanding the connection between the response of single cells, their pathophysiological
318 parameters, and the recorded epileptic signal (LFP) can offer new prospects for improved thera-
319 peutic options.

320 In line with these points, in this work, we used NeoCoMM to study the dynamics of interictal
321 epileptiform events (IEEs) in the human neocortex and the mouse cortex. IEEs are usually de-
322 scribed by physiological and network abnormalities caused by enhanced excitatory connections
323 (hyperexcitable network) or reduced inhibitory connections *de Curtis et al.* (2012). In our model,

Figure 7. SEEG Recording electrodes simulation. (A) Schematic of the electrodes used in clinical SEEG recordings and simulated for the human neocortical LFP recording. (B) Diagram of the electrode used *in vivo* recordings and simulated for the recording of LFP in mice. (C) The electrode Tissue Interface (ETI) equivalent circuit and corresponding bode plots for Platinum (Pt) electrodes used in clinical settings and stainless steel (SS) used *in vivo*. The circuit elements consisted of the spreading resistance (R_s), the charge transfer resistance (R_{CT}), and the constant phase angle impedance (Z_{CPA}).

Figure 7—figure supplement 1. Bode plot of the transfer functions for both Pt and SS electrodes

Figure 8. Impact of the SEEG electrode's geometrical characteristics on the shape of the simulated SW signal for Pt type contacts. (A), (B) and (C) Variation of the spike and the wave amplitudes with the electrode distance (R) from the column, depth (Z) with respect to the column, and radius ($D/2$) respectively. (D) Impact of the electrode's insertion angles (θ_x/θ_y) on the spike and the wave amplitudes for $Z = 3000, 0$, and $-2000 \mu\text{m}$. For all the simulations the electrode contact height (H) was fixed at $2000 \mu\text{m}$. All studied parameters are visualized in the electrode's diagram in Figure 7.

324 two conditions were combined to simulate IEEs: i) increased synchrony of the DC input and
 325 adjustment of parameters involved in excitatory and inhibitory synaptic transmission.

326 In the case of the human epileptic neocortical column, the model was able to simulate the
 327 main types of IEEs including IESs, SWs, DSWs, and HFOs (Ripples and FRs) with high accuracy, as
 328 portrayed in Figures 2, 3 and 4. A sensitivity analysis allowed us to investigate the distinct hyper-
 329 excitability mechanisms related to each IEE type and their relationship to the pathophysiological
 330 parameters of the layered network. In the case of IES, they are usually described as the result of
 331 the synchronous firing of a hyperexcitable neural network **Karoly et al. (2016); Demont-Guignard**
 332 **et al. (2012); Lévesque et al. (2018)**. Our simulations found that this could be achieved by creating
 333 a hypersynchronous input from the DC (small jitter) that triggers a synchronous firing of single
 334 cells (Figure 3) as a result of enhanced glutamatergic postsynaptic potentials at the level of PCs
 335 along with increased inhibition threshold. These configurations were consistent with *in vivo* and *in*
 336 *vitro* recordings **Lévesque et al. (2018)** even though these studies also insist on the heterogeneity
 337 of single-cell firing patterns **Lai et al. (2023)**. We also observed that, depending on the neocorti-

338 cal layer, a bursting phenomenon is portrayed by the PCs which is in line with several studies that
339 pointed out that bursting pyramidal cells play a crucial role in IES initiation in the human neocortex
340 **Hofer et al. (2022); Tóth et al. (2018).**

341 The results presented also emphasized the critical role of excitatory to inhibitory ratio imbal-
342 ance on the single-cell dynamics and thence the generated epileptic event. For SW, the model re-
343 vealed that a slightly decreased synchrony of external input (increased jitter value) combined with
344 an increase of the NMDA conductance, compared to IES network settings, decreases the ability of
345 interneurons to entirely halt the firing of PCs (Figure 4.B). This results in a decreased feedforward
346 inhibition causing the initiation of a second wave of asynchronous firing of PCs due to synaptic
347 transmission governed by interneuron activation. The combination of the first synchronous firing
348 of PCs followed by the volley of asynchronous slower (longer) bursting of cells gives rise to the
349 SW pattern. Another example to underline this mechanism was given in Figure 2.A where an even
350 lower synchronized input was used to trigger the epileptic network characterized by an increased
351 excitability (compared to the previous one) and an increased inhibition threshold of PCs. This ex-
352 ample demonstrated the direct impact of these conditions on the amplitude and the duration of
353 the wave (Figure 2-supplementary figure 1). These findings are inconsistent with some studies that
354 claimed that SW patterns are initiated by paroxysmal depolarization shifts **de Curtis et al. (2012);**
355 **Keller et al. (2010).** However, these same studies also mentioned that the paroxysmal depolari-
356 sation hypothesis depended on the brain region and its level of epileptogenicity and presented
357 inconsistent single-unit responses **de Curtis et al. (2012).**

358 Simulations of HFOs (Figure 2.C and 2.D) for the human neocortex confirmed previously ob-
359 tained findings using computational modeling for the simulation of HFOs **Demont-Guignard et al.**
360 **(2012)** in the hippocampus. These findings suggested that HFOs are the result of the weakly syn-
361 chronized firing patterns in a small subset of PCs (Figures 2 - figure supplement 3, 4). Neverthe-
362 less, due to the multilayered nature of the neocortical tissue and the complex interconnectivity
363 between different cell types, the cluster hypothesis provided in **Demont-Guignard et al. (2012)** was
364 not adapted to NeoCoMM. Instead, the weakly synchronized firing phenomenon responsible for
365 HFOs was obtained by simply increasing the NMDA conductance for all PCs (all layers). Thus, cre-
366 ating a depolarization with APs of a subgroup of PCs wherein the majority of cells did not fire.
367 This supports the hypothesis of HFOs being mainly the result of enhanced excitation as opposed
368 to tapered inhibitory transmission in the neocortex **Lai et al. (2023).** Another difference between
369 the models was the fact that HFOs were generated without a depolarizing GABA ($E_{GABA} = -75mV$)
370 as was the case for the hippocampus model. The percentage of the firing PC cells determined
371 the nature of HFOs where higher firing cell percentage (between 20% and 45%) resulted in lower
372 frequency band oscillations and lower depolarized PCs with APs gave way to FR (< 15%). This is con-
373 sistent with other studies showing that pathological HFOs are the result of out-of-phase co-firing of
374 small groups of interconnected and epileptic (hyperexcitable) PCs **Zijlmans et al. (2012); de Curtis**
375 **et al. (2012); Lai et al. (2023).**

376 Besides its capability to realistically simulate various types of IEEs, the model also allowed us to
377 study how postsynaptic current conductance values influence the transition between different IEE
378 patterns. The results of this analysis reinforced the excitation-inhibition imbalance level principle
379 discussed earlier for the generation of IES, SW, and DSW. In this respect, higher inhibitory postsy-
380 naptic currents were found to require a further increase in the excitatory conductances to achieve
381 the desired event (Figure 5). In the case of HFOs, as explained in the previous part, their gener-
382 ation seems to be independent of the GABA postsynaptic current intensity. Based on this study,
383 our model has allowed us to draw recommendations regarding electrophysiological parameters
384 boundary values for the simulation of IEE patterns (Appendix 1-Table 1). A summary of the differ-
385 ent pathophysiological parameters of IESs, SWs and HFOs generation mechanisms can be found
386 in Table 1.

387 Given the substantial differences in neural connectomics and anatomy between humans and
388 rodents **Loomba et al. (2022),** we used our model to investigate the mechanisms and parameter

Characteristics	IES	SW	HFOs
Cellular Origin	Mainly PCs	PCs and Interneurons	Mainly PCs
Number of contributing PCs	All PCs	All PCs	Small subset
Intracellular response	Large depolarization With APs	Large depolarization With APs	Large depolarization with and without APs
Firing Patterns of PCs	Highly synchronized	Highly synchronized (Spike)	Weakly synchronized
Hyperexcitable cells distribution	Uniform	Uniform	Uniform
Increase of $AMPA_R$ (PCs)	High	High	Moderate
Increase of $NMDA_R$ (PCs)	Moderate	High	Moderate
Increase of $GABA_R$ (PCs)	Moderate to high	Moderate to high	Moderate to high

Table 1. Summary of pathophysiological characteristics of different Interictal Epileptiform Events (IEEs). IES: Interictal epileptic Spike, SW: Spike and Wave, HFOs: High Frequency Oscillations, PCs: Principal Cells, $AMPA_R$: α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor. $NMDA_R$: N-methyl-D-aspartate receptor, $GABA$: Gamma-aminobutyric acid receptor.

389 settings required for the simulation of IEEs generated in the mouse's cerebral cortex. Mainly, IEEs
390 observed in the mouse model of epilepsy (Kainate mouse model of epilepsy) were used to validate
391 our simulations including IESs, FRs, and repetitive spiking (Figure 12). Accordingly, we investigated
392 the pathophysiological parameters responsible for the generation of these events using the mouse
393 model settings in NeoCoMM. Interestingly, our results have highlighted the significant role of synaptic
394 transmission parameters in interneurons for achieving the desired mechanisms responsible for
395 IEEs generation. In fact, to simulate IEEs, it was necessary to increase not only the excitatory post-
396 synaptic current of PCs but also those of the interneurons. This finding can be explained by the fact
397 that, aside from the difference in neuron density and numbers, the locally projecting interneurons
398 are lower for rodents compared to humans *Vanderhaeghen and Polleux (2023)* and the number
399 of interneurons is 2.5 fold lower for mice compared to humans *Loomba et al. (2022)*. In the case
400 of HFOs simulation, the model allowed us to investigate the different subgroups (FR type 1 and
401 type 2) of FRs that are usually observed in real recordings *Frauscher et al. (2017)*. It highlighted the
402 role of postsynaptic current conductance values in interneurons. Furthermore, in the case of FRs,
403 it demonstrated that the same mechanism of weakly synchronized firing observed in human sim-
404 ulations can be replicated in mice by increasing the AMPA postsynaptic current of SST+ and VIP+
405 cells. However, this modification results in a simulation of Type 1 FRs, which are independent of
406 spikes. To simulate Type 2 FRs, which occur simultaneously with spikes, it was necessary to reduce
407 the firing of PV+ interneurons by decreasing $AMPA_R$ and increasing $GABA_R$ conductances.

408 Lastly, the presented model incorporated the biophysical model of the electrode contacts used
409 in both clinical (SEEG electrodes) and in vivo recordings (twisted wire electrodes). This extension
410 improved the realism of the model, as all the presented simulations included the ETI that inte-
411 grates the actual geometrical and physical characteristics of the electrodes used in both human and
412 mouse cases. By utilizing this feature, investigations into the geometrical and positioning char-
413 acteristics of the SEEG electrode contacts enabled us to draw conclusions about the optimal radius,
414 distance, depth, and orientation of the electrode contact to achieve the highest amplitude SWs.
415 This tool could be employed for further analysis of optimized electrode designs for the recording
416 of specific epileptic events in the future.

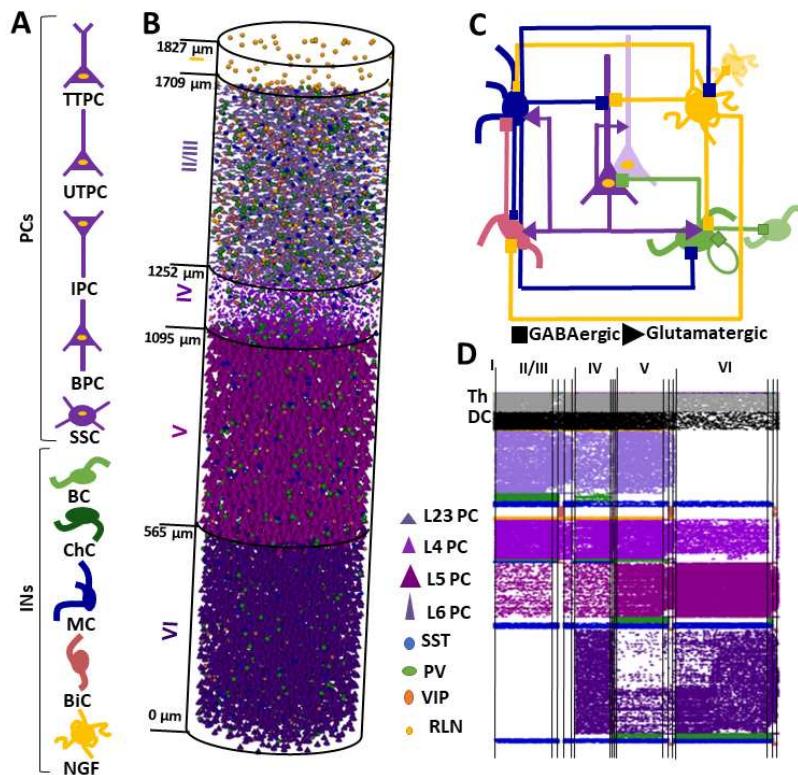
417 In this study, we introduced the NeoCoMM model as a new electrophysiologically reliable mi-

418 croscale computational model for simulating IEEs and investigating their underlying mechanisms.
419 However, it offers a wide range of applications and can be highly beneficial in other analyses, such
420 as assessing the impact of current stimulation, pharmacological modeling, designing electrodes
421 for specific biomarkers, or conducting hypothesis testing. It provides an alternative to more com-
422 plex, computationally demanding models while retaining essential physiological and biophysical
423 aspects necessary for accuracy.

424 Limitations of the proposed model reside in the use of the same electrophysiological equations
425 of voltage-dependent currents for all considered species. However, the connectivity, number of
426 cells, density, and column morphology were adapted for each species. Moreover, adjusting other
427 parameters allowed us to compensate for this shortfall. Another aspect that is lacking from the
428 model is the neuroplasticity of the neural network. Still, in the case of the short simulations pre-
429 sented in this paper, plasticity is irrelevant. Future work will provide a newer version of the model
430 which includes both physiological and electrophysiological plasticity. In addition, computing time
431 will be further reduced using parallel computing which will allow us to propose the possibility of
432 simulating multiple neocortical columns along with the interactions between them.

433 Methods and Materials

434 **Neocortical Computational Microscale Model (NeoCoMM)**


435 In this work, we propose a new physiologically realistic model of the cortical patch that incorporates
436 its microcircuitry across the six layers. This model can be adapted to either Human, rats, or mice
437 tissues and can be freely downloaded from <https://gitlab.univ-rennes1.fr/myochum/neocomm>.

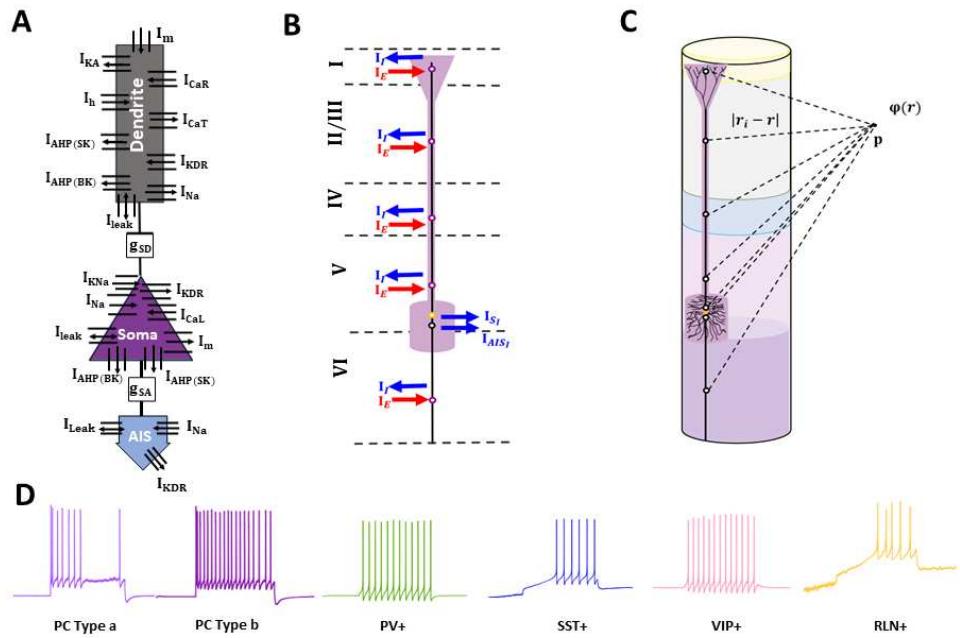
438 **Anatomical Structure of the Neocortical Column**

439 The architecture of the neocortical column is defined by the type of cells it includes, their distri-
440 bution in the column, the dimension of the different layers, and the connections between these
441 cells.

442 **Diversity of Modeled Neurons**

443 The cells in the model were divided into two main classes: Principal Cells (PC), that are Glutamater-
444 gic excitatory neurons, and GABAergic inhibitory InterNeurons (IN). Based on their morphologies
445 PCs were further divided into five types: Tufted Pyramidal cells (TTPC), Untufted Pyramidal cells
446 (UTPC), Inverted Pyramidal Cells (IPC), Bipolar Pyramidal Cells (BPC) and Spiney Stellate Cells (SSC)
447 *Markram et al. (2015); Narayanan et al. (2016)* (Figure 9.A). In total, PCs account for 70% to 80% of
448 neurons in the neocortex and the rest are INs (Appendix 2-Table 1). The distribution of PC types
449 across the layers is inhomogeneous and is portrayed in Appendix 2-Table 2. A 3D simplified rep-
450 resentation of the PC cells' main structural elements: soma, dendrites, and axon were defined
451 for each type of cell (Appendix 2- figure 1). The dimensions of these volumes were adapted from
452 *Wang et al. (2018)* for each layer and each species. Based on the neuromarkers they express, INs
453 are comprised of four main types: the calcium-binding protein parvalbumin (PV+) expressing INs,
454 the neuropeptides somatostatin (SST+) expressing INs, the vasoactive intestinal peptide (VIP+) ex-
455 pressing INs, and the protein reelin (RLN+) expressing INs *Wamsley and Fishell (2017)*. In this study,
456 each IN type is represented by one cell type except the PVs that are divided into Basket cells (BC)
457 that inhibit the soma of PCs and Chandelier cells (ChC) that target the Axon Initial Segment (AIS) of
458 PCs *Wamsley and Fishell (2017)*. The other three types target the dendrites of other cells and are
459 portrayed in this model by Martinotti Cells (MC) for SST, Bipolar Cells (BiC) for VIP, and Neurogli-
460 aform Cells (NGF) for RLN (Figure 9.A. Their distribution in the neocortical layers was adapted from
461 *Markram et al. (2015)* and is depicted in 2-Table 2. Similarly to the PCs, the INs are represented
462 by simplified 3D volumes wherein dimensions were obtained by averaging values from different
463 studies (Appendix 2- figure 1) *Wamsley and Fishell (2017); Laturnus et al. (2020); Niquille et al.*
464 *(2018); Deleuze et al. (2019); Urban-Ciecko and Barth (2016); Prönneke et al. (2015); Cadwell et al.*
465 *(2016)*.

Figure 9. Anatomy of a cortical patch. A) The different cell types included in the model: Tufted Pyramidal cells (TTPC), Untufted Pyramidal cells (UTPC), Inverted Pyramidal Cells (IPC), Bipolar Pyramidal Cells (BPC) and Spiny Stellate Cells (SSC), Basket cells (BC), Chandelier cells (ChC), Martinotti Cells (MC), Bipolar Cells (BiC) and Neurogliaform Cells (NGF). B) A 3D rendering of the cortical patch with all the cell types for 13760 cells. C) The synaptic connectivity affinity diagram between the different cell types. D) an example of the connectivity matrix computed as described in section


466 Cortical patch structure

467 Depending on the selected species, the 3D cortical patch structure was delineated as a cylinder
 468 with a radius of $210 \mu\text{m}$ and varying heights: $2622 \mu\text{m}$ for humans, $1827 \mu\text{m}$ for rats, and $1210 \mu\text{m}$
 469 for mice, as detailed in prior studies [Markram et al. \(2015\)](#); [DeFelipe et al. \(2002\)](#); [DeFelipe \(2011\)](#).
 470 This cortical patch is composed of six layers, wherein layers II and III were combined due to
 471 their similar characteristics. The thickness of each layer is different depending on the species and
 472 is defined following [Defelipe et al. 2002](#) [DeFelipe et al. \(2002\)](#). The somas of different cells were
 473 placed inside each layer respecting their distribution using the best candidate algorithm [Mitchell](#)
 474 (1974). The number of cells in each layer was computed following the neuronal density measured in
 475 [DeFelipe et al. \(2002\)](#). An Example of the 3D neocortical volume simulated in this study is depicted
 476 in Figure 9.B. For this example, we modeled a human neocortical column of 1376 cells.

477 Connectivity of the Microcircuit

478 The synaptic connectivity of the microcircuit was determined following several steps. Based on
 479 Peter's rule [Braitenberg and Schüz \(2013\)](#), connectivity between two cells is determined by the
 480 overlapping of neurites. Accordingly, Using the 3D volumes defined for each type and subtype of
 481 cells in each layer of the neocortical patch, we computed the overlap of each cell's dendrites with
 482 all other cell axons [Packer et al. \(2013\)](#). For the connections between PVs (source) and PCs (target),
 483 the overlapping was computed between the axons of the PCs and the soma/AIS of the PV for BC/
 484 ChC respectively [Wamsley and Fishell \(2017\)](#); [Deleteuze et al. \(2019\)](#). The connection between two
 485 cells respected several rules (see Figure 9.C):

486 • VIP cells only inhibit SST cells

Figure 10. **A.** Pyramidal neuron computational model with three compartments: Soma, Dendrites, and Axon initial segment (AIS). All compartments have Voltage dependent sodium current (I_{Na}), potassium delayed rectifier (I_{KDR}) and a leak currents (I_{leak}). The soma has a muscarinic potassium current (I_m), calcium-dependant potassium currents (I_{AHP}), and an L-type calcium current (I_{CaL}). The dendrite have I_m , I_{AHP} , T- and R-type calcium current (I_{CaT} , I_{CaR}), inactivating potassium current (I_{KA}) and hyperpolarization-activated catonic current (I_h). coupling between compartments is achieved through conductances g_{SD} and g_{SA} . **B.** Diverse firing patterns of the different cells modeled in the neocortical circuit in response to a depolarizing step current injected into the cell's soma. **C.** A schematic of the Local Field Potential (LFP) reconstruction process.

487 • RLN cells do not receive intracortical excitatory input [Jiang et al. \(2013\)](#)
 488 • SST cells do not have autaptic connexions [Laturnus et al. \(2020\)](#)
 489 • PV cells inhibit only PCs and other PV cells in their own layers [Deleuze et al. \(2019\)](#)
 490 An afference matrix was also defined that outlines the percentage of afferences for each cell type
 491 following its type and layer [Denoyer et al. \(2020\)](#); [Wamsley and Fishell \(2017\)](#); [Urban-Ciecko and](#)
 492 [Barth \(2016\)](#); [Wamsley and Fishell \(2017\)](#); [Jiang et al. \(2013\)](#); [Tremblay et al. \(2016\)](#); [Karnani and](#)
 493 [Jackson \(2018\)](#) (Appendix 3- table 3). Respecting these rules, connectivity and weight vectors were
 494 determined for each cell describing the list of presynaptic cells and the corresponding synaptic
 495 weight. An example of the connectivity matrix is shown in Figure 9.D. The presynaptic weight was
 496 computed as the normalized 3D volumetric superposition of volumes of pre- and post-synaptic
 497 neurites [Hill et al. \(2012\)](#). The external input consisted of excitatory input from the Distant Cortex
 498 (DC) and Thalamus (Th) portrayed by Pyramidal cells from layers II/III (40 %) and V/VI (60 %). The
 499 external input number was defined as 7 % of the total number of PCs in the cortical patch [Peters](#)
 500 [and Feldman \(1976\)](#); [Denoyer et al. \(2020\)](#). These connections are added to the final connectivity
 501 matrix as shown in Figure 9.D.

502 Electrophysiological Models of Individual Cells

503 Electrical diversity of principal cells: The three compartments reduced model
 504 A reduced conductance-based model of three compartments was used for the modeling of PCs.
 505 This model was adapted from the two-compartment model of Demont et al. [Demont-Guignard](#)
 506 [et al. \(2009\)](#). It consisted of three separate compartments (1) soma (2) dendrites and (3) AIS that
 507 were coupled via two conductances as portrayed in Figure 10. The membrane potential variation
 508 for each compartment was computed following the electric charge conservation equation

509 described in the following differential equations:

$$-C_m \frac{V_s}{dt} = I_{Na}(V_s) + I_{KDR}(V_s) + I_{CaL}(V_s) + I_{AHP}(V_s) + I_m(V_s) + \frac{g_{SD}}{p_{SD}}(V_s - V_d) + \frac{g_{SA}}{p_{SA}}(V_s - V_a) + I_{leak}(V_s) + I_{syn} + I_{stim} \quad (1)$$

$$-C_m \frac{V_d}{dt} = I_{Na}(V_d) + I_{KDR}(V_d) + I_{CaT}(V_d) + I_{CaR}(V_d) + I_{AHP}(V_d) + I_m(V_s) + I_h(V_s) + \frac{g_{SD}}{1-p_{SD}}(V_d - V_s) + I_{leak}(V_s) + I_{syn} + I_{stim} \quad (2)$$

$$-C_m \frac{V_a}{dt} = I_{Na}(V_d) + I_{KDR}(V_d) + \frac{g_{SA}}{1-p_{SA}}(V_a - V_s) + I_{leak}(V_s) + I_{syn} + I_{stim} \quad (3)$$

510 Where V_s , V_d and V_a are the membrane potentials of the three compartments (soma, dendrites
 511 and AIS), C_m is the membrane capacitance, g_{SD} and g_{SA} are the conductances between soma/dendrites
 512 and soma/AIS respectively, p_{SD} and p_{SA} are the proportions of the soma area to the sum of soma/dendrites
 513 and soma/AIS respectively, I_{stim} is the external stimulation and I_{syn} is the sum of the synaptic cur-
 514 rents. Each compartment had a different set of channels. The key active ionic currents chosen
 515 for the soma and dendrites accounted for seven and ten different voltage-gated channels respec-
 516 tively (Figure 10) **Demont-Guignard et al. (2009)**. The AIS compartment had only two voltage-gated
 517 channels, the sodium I_{Na} and the Potassium delayed release I_{KDR} obtained from the Traub model
 518 **Traub et al. (1994)**. All compartments had a leak current that portrayed the resting membrane po-
 519 tential variation with a Gaussian noise. The equations of the ionic currents followed the Hodgkin-
 520 Huxley formalism: $I_{ion} = g_{ion}m^xh^y(V_m - E_{ion})$ equation with g_{ion} the ionic conductance, x and y are
 521 the number of gate activation and inactivation variables respectively, E_{ion} the reversal potential
 522 and V_m the membrane potential of the compartment. Gating variables dynamics are detailed in
 523 **Demont-Guignard et al. (2009)** for the soma and dendrites and in **Traub et al. (1994)** for the AIS.
 524 Passive properties were set as: 1 $\mu F/cm^2$ for the soma and AIS membrane capacitance (C_m) and 2
 525 $\mu F/cm^2$ for the dendrites, 0.18 mS/cm^2 for the mean leak conductance (g_{leak}) and -70 mV for the
 526 resting potential (E_r), 1 mS/cm^2 for g_{SA} and g_{SD} . In the context of neocortical pyramidal cells, the
 527 conductance values of ion channels for the three compartments were adapted in order to portray
 528 a firing rate profile similar to the one recorded from pyramidal cells in the neocortex **Zhang et al.**
 529 **(2017); Mitić et al. (2019)**. Accordingly, we defined two main groups of electric types for the PCs:
 530 layers II/III and IV and layers V and VI. The values of conductances used in this model are presented
 531 in Appendix 4 Table 1.

532 **Electrophysiological Model of Interneurons**

533 The interneuron models consisted of one a compartment model **Hajós et al. (2004)** with various
 534 numbers of voltage-gated channels that were adapted to portray the four different types of firing
 535 patterns of interneurons used in the model (PV+, SST+, VIP+, and RLN+). An example of the fir-
 536 ing pattern of each cell type in response to a depolarizing step current injected into the soma is
 537 presented in Figure 10.D

538 **Synaptic Diversity and External input**

539 For excitatory synaptic connections, both α -amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid
 540 (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors ($AMPA_R$, $NMDA_R$) were modeled. The
 541 corresponding glutamatergic postsynaptic currents were obtained following **Hajós et al. (2004)**;
 542 **Destexhe et al. (1994)**. Similarly, GABA(ergic) synaptic currents were modeled based on **Hajós et al.**
 543 **(2004)**. A constant (ω) for each synaptic connection was added to these equations in order to ad-
 544 just the weight of the excitatory and inhibitory connections received by each cell. The (ω) value

545 is obtained by normalizing the corresponding synaptic input weight vector in the weight matrix
546 obtained from the connectivity reconstruction algorithm described in section *Connectivity of the*
547 *Microcircuit*.

548 **Reconstruction of LFP**

549 The Local Field Potentials (LFP) is considered to be the signal resulting from extracellular electrical
550 potentials around the recording electrode *Einevoll et al. (2013)*. In the cortex, these potentials
551 derive from the transmembrane currents of principal cells wherein synaptic input is the primary
552 contributor. Accordingly, the LFP at a recording point p was computed based on the biophysical
553 forward modeling volume conductor theory. The extracellular medium is presumed to be infinite,
554 isotropic, and homogeneous. Currents entering and leaving the cell compartments are considered
555 sources and sinks respectively. For each three-compartment principal cell i , its contribution to
556 the extracellular potential (Φ) is obtained by the sum of the individual potentials evoked by the
557 presynaptic currents and their accompanying return currents at the recording point p as expressed
558 by equation (4) *Nunez and Srinivasan (2006)*.

$$\Phi_p^i(t) = \frac{1}{4\pi\sigma} \sum_{n=1}^N \frac{I_n^i(t)}{d_n^i} \quad (4)$$

559 With $I_n^i(t)$ the n^{th} transmembrane current, d_n^i the distance between the recording point and $I_n^i(t)$
560 locations, N is the total number of transmembrane currents and σ the extracellular conductivity.
561 The positions of the transmembrane currents were determined based on the biophysical prop-
562 agation of excitatory/inhibitory synaptic currents across the multi-compartments of a neuron. A
563 schematic illustration is depicted in Figure 10.C.

564 The total potential received by the active surface area of the electrode can be calculated by
565 integrating the previously defined extracellular potential equation across the entire surface area.
566 This is approximated as follows *Fuglevand et al. (1992)*:

$$LFP(t) = \sum_{p=1}^T \Phi_p(t) \quad (5)$$

567 with T representing the total number of discretization points. The step size used for discretiza-
568 tion is set at $10 \mu\text{m}$.

569 **Electrode Tissue Interface (ETI)**

570 A classical Randles Model was used as an equivalent circuit to simulate the recording electrode
571 employed in SEEG recordings. This model comprised spreading resistance (R_s) in series with the
572 double layer which includes a charge transfer resistance (R_{CT}) in parallel with a pseudo-capacitance
573 (Z_{CPA}) (Figure 7). For more information about the ETI, please refer to *Al Harrach et al. (2023)*.
574 The LFP recorded by the electrode is obtained after computing the inverse Fourier transform of
575 the product between the extracellular potential $V(f)$ and the ETI transfer function $H(f)$. The circuit
576 element values for the SEEG electrode's cylindrical contact of $300 \mu\text{m}$ diameter and 2 mm height and
577 the wire disc contact of $125 \mu\text{m}$ are given in Table 2. These values were adapted from *Al Harrach*
578 *et al. (2023); Franks et al. (2005)*. The appropriate electrode transfer function $H(f)$ was applied for
579 all the simulations presented in this study for human and mouse settings.

580 **SEEG Data**

581 The interictal clinical SEEG signals used in this study were obtained from recordings that took place
582 at the Epilepsy Surgery Department of La Timone University Hospital in Marseille, France. They
583 are part of a larger database of signals collected after authorization from the Institutional Review
584 Board (IRB00003888, IORG0003254, FWA00005831) of the French Research Institute of Health and
585 Medical Research (Inserm). SEEG signals were recorded from patients during presurgical evalua-
586 tion after informed consent and being aware of their potential use for research purposes. SEEG

Table 2. Values of the equivalent circuit elements used in the ETI model for the Platinum (Pt) and stainless steel (SS) electrode contacts.

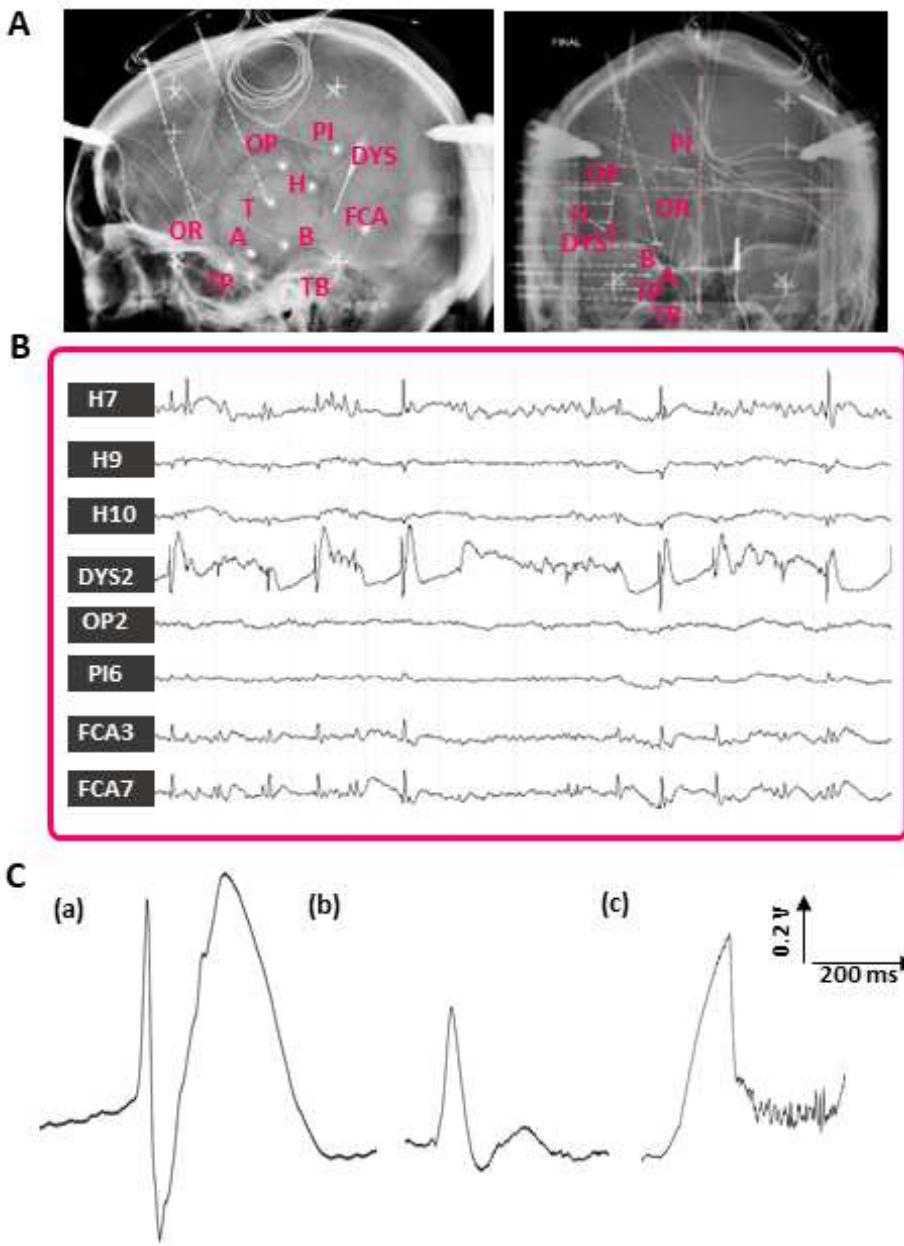
Circuit Elements	SS (125 μm)	Pt (300 μm)
$R_S(\Omega)$	$1,244 \times 10^3$	$3,748 \times 10^3$
$R_{CT}(\Omega.um^2)$	1.55×10^{14}	4.48×10^{13}
$C_{dl}(F.um^2)$	2.4794×10^{-15}	2.72×10^{-13}
n	0,88	0,90

587 electrodes placement was personalized based on medical information related to the epileptogenic
588 zone and controlled using telemetric X-ray imaging. A Deltamed-NatusTM system with 256 chan-
589 nels equal to 256 was used for the recording. The sampling frequency was set to 1024 Hz (to verify).
590 A hardware analog high-pass filter (cut-off frequency equal to 0.16 Hz) was present in the recording
591 system to remove very slow oscillations of the baseline. For this particular study, SEEG signals were
592 chosen in a patient with electrode contacts in the neocortical regions. Figure 11 presents exam-
593 ples of the patient's X-rays showing different implanted SEEG along with segments of the recorded
594 signals. An example of SW, IES, and HFOs is also illustrated in Figure 11.C.

595 **Animal model**

596 For the in vivo experimental validation of the Model, we used the signal recorded from epilep-
597 tic mice following the iron chloride mouse model of epilepsy **Jo et al. (2014)**. This experiment
598 respected the European Communities Council Directive of 24 November 1986 (86/609/EEC) and
599 was approved by the ethics committee on animal experimentation in Rennes, France (agreement
600 23603). The electrode implantation was performed three months after $FeCl_3$ injection. The mice
601 were placed in a stereotaxic device during implantation (Figure 12.A). Four stainless steel (SS) elec-
602 trodes were inserted into the somatosensory cortex through drilled burr holes (Figure 12.B). Among
603 these electrodes, two were of 125 μm diameter and were placed at AP= -0.5 mm, ML= +1.5 and -1.5
604 mm, DV= 0.7 mm (coordinates from Bregma). The other two were of 250 μm diameter and were
605 inserted at AP = +0.5 and -3.5 mm, ML = -1.5 mm, DV= 0.5 mm. A reference electrode of 125 μm
606 was placed on the bone. Surgical glue and dental cement were used to fix the electrode. In this
607 work we only considered the recordings from the 125 μm radius microelectrode in the ipsilateral
608 hemisphere. An example of a 25 s recording is shown in Figure 12.B wherein IEE segments were
609 highlighted and are depicted in Figure 12.C for IES, HFOs, and repetitive spiking.

610 **Acknowledgments**


611 We would like to thank our Lab technician Mr Gabriel Dieuset (Laboratoire Traitement du Signal
612 et de l'Image (LTSI-U1099), Université de Rennes 1, INSERM, 35000 Rennes, France) for the exper-
613 imental data acquisition and his continuous help and support in the conception and application
614 of experimental protocols. We would also like to thank the research engineer in the Galvani ERC
615 Project Dr. Audrey Barbedette for her help in the in vivo recordings. This project has received fund-
616 ing from the European Research Council (ERC) under the European Union's Horizon 2020 research
617 and innovation program (grant agreementNo 855109)

618 **References**

619 **Aeed F, Shnitzer T, Talmon R, Schiller Y.** Layer-and Cell-Specific Recruitment Dynamics during Epileptic Seizures
620 In Vivo. *Annals of neurology*. 2020; 87(1):97–115.

621 **Fuglevand et al AJ.** Detection of motor unit action potentials with surface electrodes: influence of electrode
622 size and spacing. *Biological cybernetics*. 1992; 67(2):143–153.

623 **Franks et al W.** Impedance characterization and modeling of electrodes for biomedical applications. *IEEE*
624 *Transactions on Biomedical Engineering*. 2005 Jul; 52:1295–1302. doi: [10.1109/TBME.2005.847523](https://doi.org/10.1109/TBME.2005.847523).

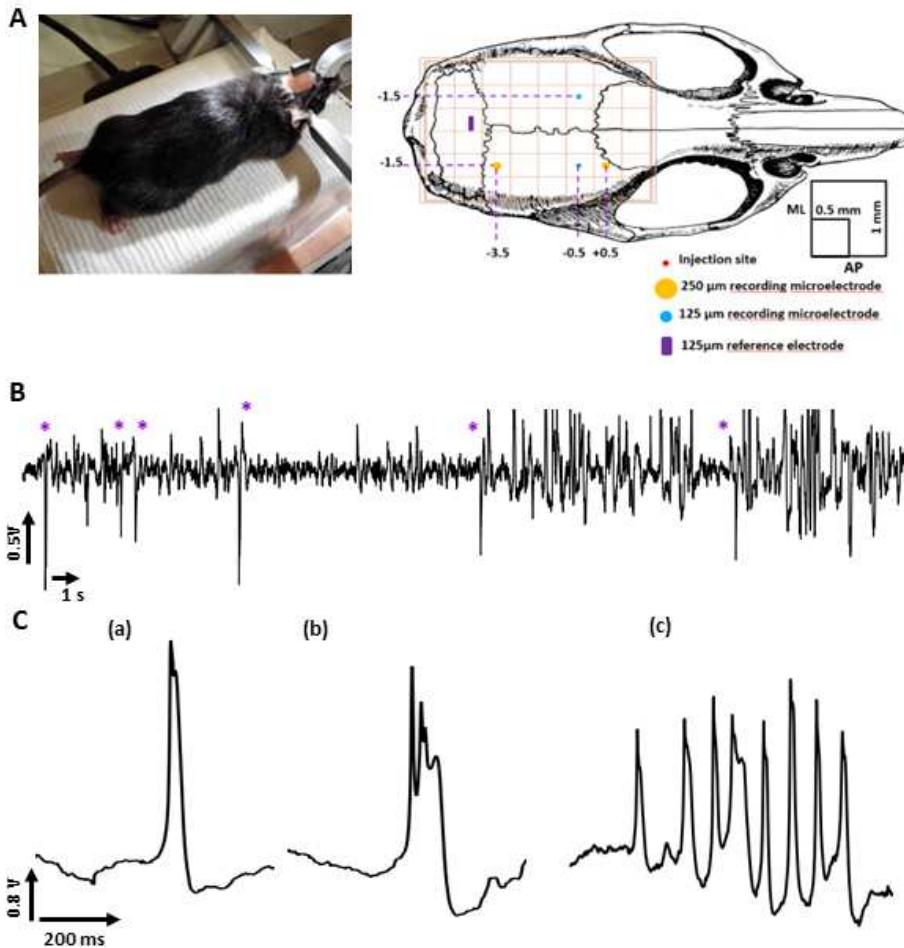


Figure 11. Interictal Epileptic Events (IEEs) recorded with intracranial electrodes from a human epileptic cortex. A) Skull X-rays (sagittal and coronal) of a patient illustrating the SEEG electrodes positioning. B) example of monopolar interictal SEEG signals. The visualized signals are a subset of a larger set of 128 channels. The electrodes are positioned as follows: TP: Temporal Pole, TB: Temporal Basalis, FCA: Fissura Calcarina Anterior, H: Heschl Gyrus, OR: frontal orbital, OP: parietal operculum, PI: Sub parietalis, FCA: anterior calcarine sulcus, T: anterior T1, A: amygdala, B: anterior Hippocampus. C) examples of interictal Spike and wave (a), Spike (b), and Ripples (c).

625 Al Harrach M, Dauly G, Seyedeh-Mousavi H, Dieuset G, Benquet P, Ismailova E, Wendling F. Improving Fast Ripples
626 Recording with Model-Guided Design of Microelectrodes. *IEEE Transactions on Biomedical Engineering*.
627 2023; .

628 An S, Kang C, Lee HW. Artificial intelligence and computational approaches for epilepsy. *Journal of epilepsy
629 research*. 2020; 10(1):8.

630 Baud MO, Perneger T, Rácz A, Pensel MC, Elger C, Rydenhag B, Malmgren K, Cross JH, McKenna G, Tisdall M,

Figure 12. Interictal Epileptiform Events (IEEs) in iron chloride epilepsy model. (A) Image of the operating field during electrode implantation (the mouse is fixed in a stereotaxic frame) with a schematic diagram of the multisite intracortical electrode implantation positions. AP: antero-posterior, ML: mesio-lateral. (B) A segment of the recorded signal using the 125 μm radius microelectrode. The IEEs in the segments were depicted with an asterisk(C) Examples of interictal Spike (IES) (a), FR (b), and repetitive spiking (c).

631 Lamberink HJ, Rheims S, Ryvlin P, Isnard J, Mauguière F, Arzimanoglou A, Akkol S, Deniz K, Ozkara C, Lossius
632 M, et al. *Neurology*. 2018; 91(2):e96–e106. doi: [10.1212/WNL.0000000000005776](https://doi.org/10.1212/WNL.0000000000005776).

633 Beghi E. The epidemiology of epilepsy. *Neuroepidemiology*. 2020; 54(2):185–191.

634 Braitenberg V, Schüz A. *Cortex: statistics and geometry of neuronal connectivity*. Springer Science & Business
635 Media; 2013.

636 Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz M, Reimer J, Shen S, Bethge M, Tolias KF, et al.
637 Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. *Nature
638 biotechnology*. 2016; 34(2):199–203.

639 Carlson AA, Rutishauser U, Mamelak AN. Safety and utility of hybrid depth electrodes for seizure localization
640 and single-unit neuronal recording. *Stereotactic and functional neurosurgery*. 2018; 96(5):311–319.

641 de Curtis M, Jefferys JG, Avoli M. Interictal epileptiform discharges in partial epilepsy. *Jasper's Basic Mechanisms
642 of the Epilepsies* [Internet] 4th edition. 2012; .

643 DeFelipe J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. *Frontiers
644 in neuroanatomy*. 2011; 5:29.

645 DeFelipe J, Elston GN, Fujita I, Fuster J, Harrison KH, Hof PR, Kawaguchi Y, Martin KA, Rockland KS, Thomson
646 AM, et al. Neocortical circuits: evolutionary aspects and specificity versus non-specificity of synaptic connec-
647 tions. Remarks, main conclusions and general comments and discussion. *Journal of neurocytology*. 2002;
648 31(3):387–416.

649 Deleuze C, Bhumbra GS, Pazienti A, Lourenço J, Mailhes C, Aguirre A, Beato M, Bacci A. Strong preference for
650 autaptic self-connectivity of neocortical PV interneurons facilitates their tuning to γ -oscillations. *PLoS Biology*.
651 2019; 17(9):e3000419.

652 Demont-Guignard S, Benquet P, Gerber U, Wendling F. Analysis of intracerebral EEG recordings of
653 epileptic spikes: insights from a neural network model. *IEEE Transactions on Bio-Medical Engi-
654 neering*. 2009 Dec; 56(12):2782–2795. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245744/>, doi:
655 [10.1109/TBME.2009.2028015](https://doi.org/10.1109/TBME.2009.2028015).

656 Demont-Guignard S, Benquet P, Gerber U, Biraben A, Martin B, Wendling F. Distinct hyper-
657 excitability mechanisms underlie fast ripples and epileptic spikes. *Annals of Neurology*. 2012;
658 71(3):342–352. <https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.22610>, doi: [10.1002/ana.22610](https://doi.org/10.1002/ana.22610), _eprint:
659 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/ana.22610>.

660 Denoyer Y, Merlet I, Wendling F, Benquet P. Modelling acute and lasting effects of tDCS on epileptic activity.
661 *Journal of Computational Neuroscience*. 2020; 48(2):161–176.

662 Destexhe A, Mainen ZF, Sejnowski TJ. Synthesis of models for excitable membranes, synaptic transmission
663 and neuromodulation using a common kinetic formalism. *Journal of computational neuroscience*. 1994;
664 1(3):195–230.

665 Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for studying the
666 function of cortical circuits. *Nature Reviews Neuroscience*. 2013; 14(11):770–785.

667 Frauscher B, Bartolomei F, Kobayashi K, Cimbalnik J, van 't Klooster MA, Rappaport S, Otsubo H, Höller Y, Wu JY,
668 Asano E, et al. High-frequency oscillations: the state of clinical research. *Epilepsia*. 2017; 58(8):1316–1329.

669 Hajós M, Hoffmann W, Orbán G, Kiss T, Erdi P. Modulation of septo-hippocampal θ activity by GABA_A receptors:
670 An experimental and computational approach. *Neuroscience*. 2004; 126(3):599–610.

671 Hill SL, Wang Y, Riachi I, Schurmann F, Markram H. Statistical connectivity provides a sufficient foundation for
672 specific functional connectivity in neocortical neural microcircuits. *National Acad Sciences*; 2012.

673 Hofer KT, Kandrács Á, Tóth K, Hajnal B, Bokodi V, Tóth EZ, Erőss L, Entz L, Bagó AG, Fabó D, et al. Bursting
674 of excitatory cells is linked to interictal epileptic discharge generation in humans. *Scientific Reports*. 2022;
675 12(1):6280.

676 Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ. The organization of two new cortical interneuronal circuits. *Nature
677 neuroscience*. 2013; 16(2):210–218.

678 Jo A, Heo C, Schwartz TH, Suh M. Nanoscale intracortical iron injection induces chronic epilepsy in rodent.
679 *Journal of Neuroscience Research*. 2014; 92(3):389–397.

680 Karnani MM, Jackson J. Interneuron cooperativity in cortical circuits. *The Neuroscientist*. 2018; 24(4):329–341.

681 Karoly PJ, Freestone DR, Boston R, Grayden DB, Himes D, Leyde K, Seneviratne U, Berkovic S, O'Brien T, Cook
682 MJ. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. *Brain*. 2016;
683 139(4):1066–1078.

684 Keller CJ, Truccolo W, Gale JT, Eskandar E, Thesen T, Carlson C, Devinsky O, Kuzniecky R, Doyle WK, Madsen JR,
685 et al. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex.
686 *Brain*. 2010; 133(6):1668–1681.

687 Lai N, Li Z, Xu C, Wang Y, Chen Z. Diverse nature of interictal oscillations: EEG-based biomarkers in epilepsy.
688 *Neurobiology of Disease*. 2023; p. 105999.

689 Laturnus S, Kobak D, Berens P. A systematic evaluation of interneuron morphology representations for cell
690 type discrimination. *Neuroinformatics*. 2020; 18(4):591–609.

691 Lévesque M, Salami P, Shiri Z, Avoli M. Interictal oscillations and focal epileptic disorders. *European Journal of
692 Neuroscience*. 2018; 48(8):2915–2927.

693 **Loomba S**, Straehle J, Gangadharan V, Heike N, Khalifa A, Motta A, Ju N, Sievers M, Gempt J, Meyer HS, et al.
694 Connectomic comparison of mouse and human cortex. *Science*. 2022; 377(6602):eabo0924.

695 **Löscher W**, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. *Pharmacological reviews*. 2020; 72(3):606–638.

697 **Markram H**, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L,
698 Antille N, Arsever S, et al. Reconstruction and simulation of neocortical microcircuitry. *Cell*. 2015; 163(2):456–
699 492.

700 **Mitchell TJ**. An Algorithm for the Construction of “D-Optimal” Experimental Designs. *Technometrics*. 1974 May;
701 16(2):203–210. <https://doi.org/10.1080/00401706.1974.10489175>, doi: 10.1080/00401706.1974.10489175,
702 publisher: Taylor & Francis.

703 **Mitić M**, Seewald A, Moschetti G, Sacerdote P, Ferraguti F, Kummer KK, Kress M. Layer-and subregion-specific
704 electrophysiological and morphological changes of the medial prefrontal cortex in a mouse model of neuro-
705 pathic pain. *Scientific reports*. 2019; 9(1):1–13.

706 **Narayanan RT**, Egger R, de Kock CP, Oberlaender M. Neuronal Cell Types in the Neocortex. In: *Axons and Brain
707 Architecture* Elsevier; 2016.p. 183–202.

708 **Niquille M**, Limoni G, Markopoulos F, Cadilhac C, Prados J, Holtmaat A, Dayer A. Neurogliaform cortical in-
709 terneurons derive from cells in the preoptic area. *eLife*. 2018; 7:e32017.

710 **Nunez PL**, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA;
711 2006.

712 **Packer AM**, McConnell DJ, Fino E, Yuste R. Axo-dendritic overlap and laminar projection can explain interneuron
713 connectivity to pyramidal cells. *Cerebral cortex*. 2013; 23(12):2790–2802.

714 **Peters A**, Feldman ML. The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I.
715 General description. *Journal of neurocytology*. 1976; 5(1):63–84.

716 **Prönneke A**, Scheuer B, Wagener RJ, Möck M, Witte M, Staiger JF. Characterizing VIP neurons in the barrel
717 cortex of VIPcre/tdTomato mice reveals layer-specific differences. *Cerebral cortex*. 2015; 25(12):4854–4868.

718 **Rigney G**, Lennon M, Holderrieth P. The use of computational models in the management and prognosis of
719 refractory epilepsy: a critical evaluation. *Seizure*. 2021; 91:132–140.

720 **Smith EH**, Liou Jy, Merricks EM, Davis T, Thomson K, Greger B, House P, Emerson RG, Goodman R, McK-
721 hann GM, Sheth S, Schevon C, Rolston JD. Human interictal epileptiform discharges are bidirectional trav-
722 eling waves echoing ictal discharges. *eLife*. 2022 jan; 11:e73541. <https://doi.org/10.7554/eLife.73541>, doi:
723 10.7554/eLife.73541.

724 **Thijs RD**, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. *The Lancet*. 2019; 393(10172):689–701.

725 **Tóth K**, Hofer KT, Kandrács Á, Entz L, Bagó A, Erőss L, Jordán Z, Nagy G, Sólyom A, Fabó D, et al. Hyperexcitability
726 of the network contributes to synchronization processes in the human epileptic neocortex. *The Journal of
727 physiology*. 2018; 596(2):317–342.

728 **Traub RD**, Jefferys J, Miles R, Whittington MA, Tóth K. A branching dendritic model of a rodent CA3 pyramidal
729 neurone. *The Journal of physiology*. 1994; 481(1):79–95.

730 **Tremblay R**, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. *Neuron*. 2016; 91(2):260–292.

732 **Urban-Ciecko J**, Barth AL. Somatostatin-expressing neurons in cortical networks. *Nature Reviews Neuro-
733 science*. 2016; 17(7):401–409.

734 **Vanderhaeghen P**, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. *Nature
735 Reviews Neuroscience*. 2023; 24(4):213–232.

736 **Wamsley B**, Fishell G. Genetic and activity-dependent mechanisms underlying interneuron diversity. *Nature
737 Reviews Neuroscience*. 2017; 18(5):299–309.

738 **Wang Y**, Ye M, Kuang X, Li Y, Hu S. A simplified morphological classification scheme for pyramidal cells in six
739 layers of primary somatosensory cortex of juvenile rats. *IBRO reports*. 2018; 5:74–90.

740 **Zhang X**, Sullivan CS, Kratz MB, Kasten MR, Maness PF, Manis PB. NCAM regulates inhibition and excitability in
741 layer 2/3 pyramidal cells of anterior cingulate cortex. *Frontiers in neural circuits*. 2017; 11:19.

742 **Zijlmans M**, Jiruska P, Zelmann R, Leijten FS, Jefferys JG, Gotman J. High-frequency oscillations as a new
743 biomarker in epilepsy. *Annals of neurology*. 2012; 71(2):169–178.

744 **Appendix 1**

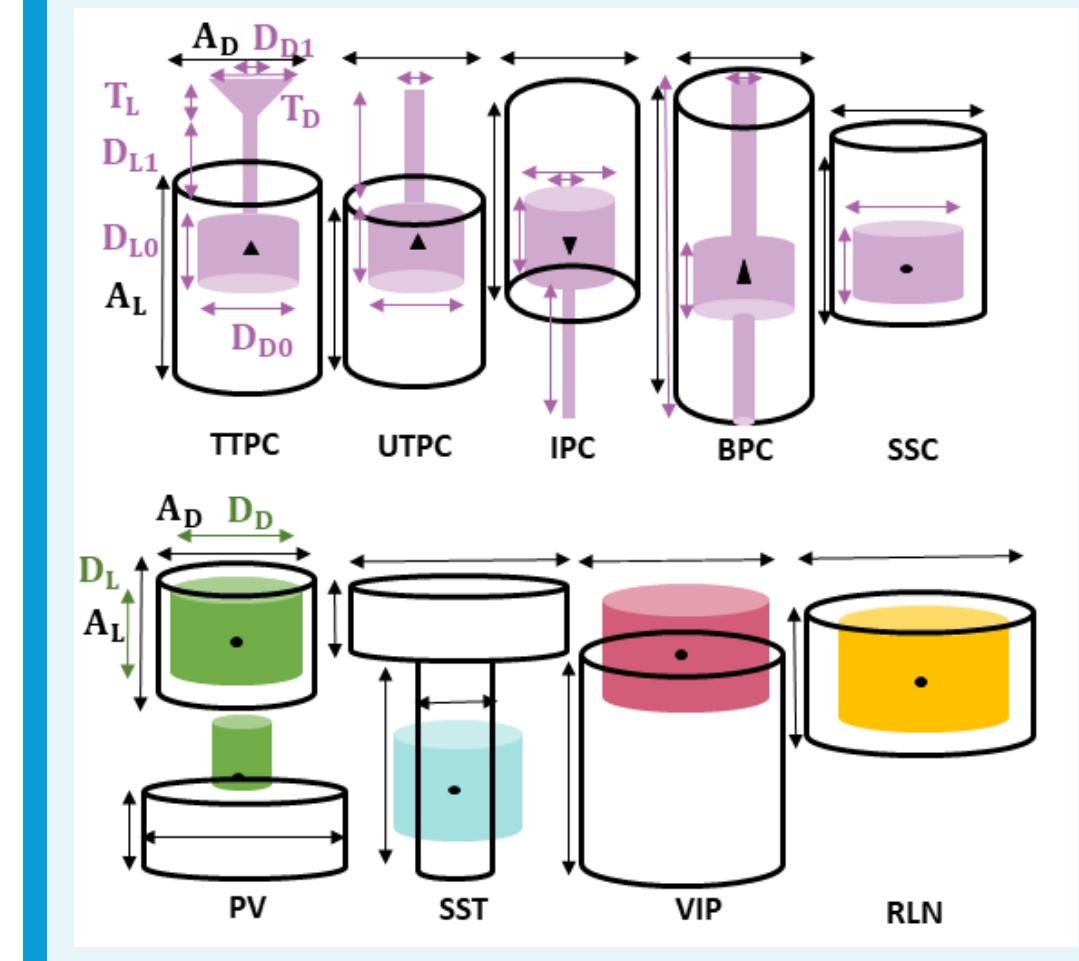
745
746
747

Appendix 1—table 1. Electrophysiological parameter values for the simulation of different neocortical Interictal Epileptiform Events (IEE) in the Human neocortex with NeoCoMM.

	Spikes	Spike and Wave	Ripples	Fast Ripples	Double Spike
$E_{GABA}(mV)$	[-75, -56]	[-75, -56]	[-75, -60]	[-75, -60]	[-75, -65]
$g_{GABA}(mS/cm^2)$	[25, 40]	[25, 40]	[25, 40]	[25, 40]	[25, 35]
$g_{AMPA}(mS/cm^2)$	[8, 12]	[8, 12]	[6, 8]	[6, 8]	[10, 12]
$g_{NMDA}(mS/cm^2)$	[0.2, 0.6]	[0.4, 0.8]	[0.2, 0.8]	[0.2, 0.8]	[0.2, 0.8]
<i>Jitter(ms)</i>	[4, 10]	[6, 10]	[6, 10]	[6, 10]	[8, 12]

748
749
750

751 **Appendix 2**


752 **Morphological characteristics of neocortical individual cells**

Layer	Total	TTPC	UTPC	IPC	BPC	SSC
I	-	-	-	-	-	-
II/III	70%	90%	-	10%	-	-
IV	90%	50%	36%	-	-	14%
V	80%	81%	19%	-	-	-
VI	90%	39%	17%	20%	24%	-

753 **Appendix 2—table 1.** Distribution of the Principal cells (PCs) across the Layers of the neocortex
Markram et al. (2015). TTPC: Tufted Pyramidal cells, UTPC:Untufted Pyramidal cells, IPC: Inverted Pyramidal Cells, BPC:Bipolar Pyramidal Cells and SSC: Spiney Stellate Cells.

Layer	Total	PV+	SST+	VIP+	RLN+
I	100%	-	-	-	100%
II/III	30%	90%	-	10%	-
IV	10%	50%	36%	-	-
V	20%	81%	19%	-	-
VI	10%	39%	17%	20%	24%

754 **Appendix 2—table 2.** Distribution of the Principal cells across the Layers of the neocortex. PV+:
755 parvalbumin, SST+: the neuropeptides somatostatin, VIP+: vasoactive intestinal peptide, RLN+: reelin.

762

763
764
765
766
767
768

Appendix 2—figure 1. The 3D simplified representation of the different cells described in the neocortex. TTPC: Tufted Principal Cells, UTPC: UnTufted Principal cells, IPC: Inverted Principal Cells, BPC: Bipolar Principal Cells, SSC: Spiny Stellate Cells, PV: Parvubalmin expressing interneurons (divided into Basket cells (BAS, up) and Chandelier Cells (ChC, bottom)), SST: SomatoStatin expressing Cells, and VIP: Vasoactive Intestinal Peptide expressing cells. The dimension parameters values are depicted in

	II/III	IV	V	VI
S_d	18	11.77	24.44	17.30
S_h	6.32	7.57	23.90	16.94
A_d	410	400	400	400
A_L	735	1057	1014	682
D_{D0}	206	272	293	243
D_{L0}	164	144	150	139
D_{D1}	10	10	10	10
D_{L1}	25	216	329	114
D_{D2}	195	186	293	286
D_{D2}	275.8	499	792	593

770
771
772

Appendix 2—table 3. Values of the 3D geometrical representation of the neurons soma, dendrites and axons depicted in Appendix 2-figure 1. The values are given in μm .

773
774
775
776

	PV		SST	VIP	RLN	
	BAS	ChC			I	II/III
A_D	200	300	150,450	150	400	120
A_L	300	250	250,125	600	150	250
D_D	150	50	100	60	150	150
D_L	150	150	250	150	150	150

Appendix 2—table 4. Values of the 3D geometrical representation of the interneurons soma, dendrites, and axons depicted in Appendix 2-figure 1. The values are given in μm .

778 **Appendix 3**

779 **Synaptic connectivity Computing**

Source	Target	I RLN	II/III					IV					V					VI				
			PC	PV	SST	VIP	RLN	PC	PV	SST	VIP	PC	PC	PV	SST	VIP	PC	PV	SST	VIP		
I	RLN	20	2	0	2	3	12	3	0	2	1	2	0	1	0	0	0	0	0	0	0	
II/III	PC	0	22	28	65	27	0	9	2	0	10	20	24	6	22	0	0	0	0	0	0	
	PV	0	7	11	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SST	15	2	3	0	9	15	1	1	0	0	1	1	0	2	1	1	0	0	0	0	
	VIP	0	0	0	13	0	0	0	0	3	0	0	0	3	0	0	0	0	1	0	0	
	RLN	10	5	4	5	5	26	4	0	3	2	3	0	2	0	0	0	0	0	0	0	
IV	PC	0	36	40	13	15	0	19	36	29	20	20	19	25	14	6	0	0	0	11	0	
	PV	0	1	2	0	0	0	7	5	0	0	1	2	0	0	0	0	0	0	0	0	
	SST	10	1	1	0	0	12	4	4	0	5	0	0	0	7	0	0	0	0	0	0	
	VIP	0	0	0	3	0	0	0	0	12	0	0	0	3	0	0	0	0	3	0	0	
V	PC	0	4	0	0	3	0	5	0	0	5	20	19	35	14	47	30	31	33	0	0	
	PV	0	0	0	0	0	0	0	1	0	0	7	7	0	0	0	2	0	0	0	0	
	SST	5	2	3	0	3	8	1	2	0	2	2	2	0	4	3	1	0	0	0	0	
	VIP	0	0	0	0	0	0	0	0	3	0	0	0	13	0	0	0	3	0	0	0	
VI	PC	0	0	0	0	0	0	28	29	35	15	5	5	3	4	23	48	49	22	0	0	
	PV	0	0	0	0	0	0	0	1	0	0	1	0	0	0	12	9	0	0	0	0	
	SST	0	2	3	0	3	2	1	2	0	2	2	2	0	4	3	3	0	0	0	0	
	VIP	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	9	0	0	0	
Th		15	6	2	2	14	10	11	10	7	20	11	7	3	18	4	5	3	24			
DC		25	10	3	4	18	15	6	6	6	18	5	2	2	11	1	1	1	10			

781 **Appendix 3—table 1.** Synaptic afferent matrix. The percentage of afferent input for each cell type per
782 layer in the neocortical column. PC: Principal Cells, PV: Parvalbumin expressing interneurons, SST:
783 Somatostatin expressing interneurons, VIP: vasoactive intestinal peptide expressing interneurons,
784 RLN: Reelin expressing interneurons, Th: Thalamocortical PCs, DC: distant cortex PCs. Values where
785 adapted from several studies *Urban-Ciecko and Barth (2016); Deleuze et al. (2019); Wamsley and*
786 *Fishell (2017); Jiang et al. (2013); Karnani and Jackson (2018); Tremblay et al. (2016); Denoyer et al.*
787 *(2020)*

791 **Appendix 4**

792

Electrophysiological parameters of neocortical individual cells

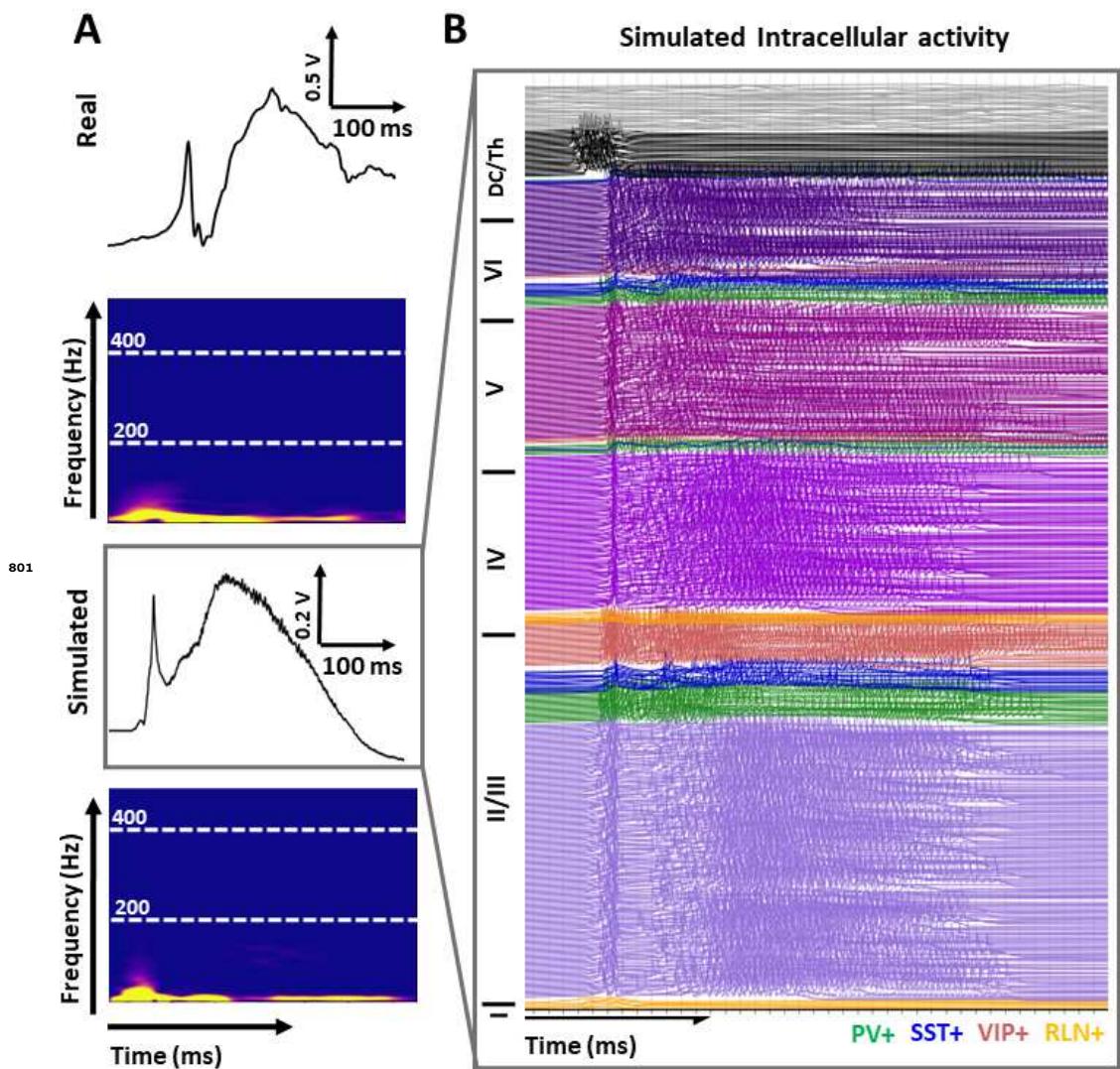
793

	II/III/IV			V/VI		
	Soma	dendrites	AIS	Soma	dendrites	AIS
g_{Na}	70	14	200	70	014	200
g_{KDR}	6	2	200	6	2	200
g_m	3.1	0.1	-	3.5	0.1	-
$g_{AHP_{SK}}$	0.1	10	-	0.1	20	-
$g_{AHP_{BK}}$	2	1	-	2	1	-
g_{CaL}	0.5	-	-	0.5	-	-
g_{CaT}	-	1	-	-	1	-
g_{CaR}	-	3	-	-	0.75	-
g_h	-	0.4	-	-	0.4	-
g_{KA}	-	55	-	-	55	-
g_{KNA}	0	-	-	0.5	-	-

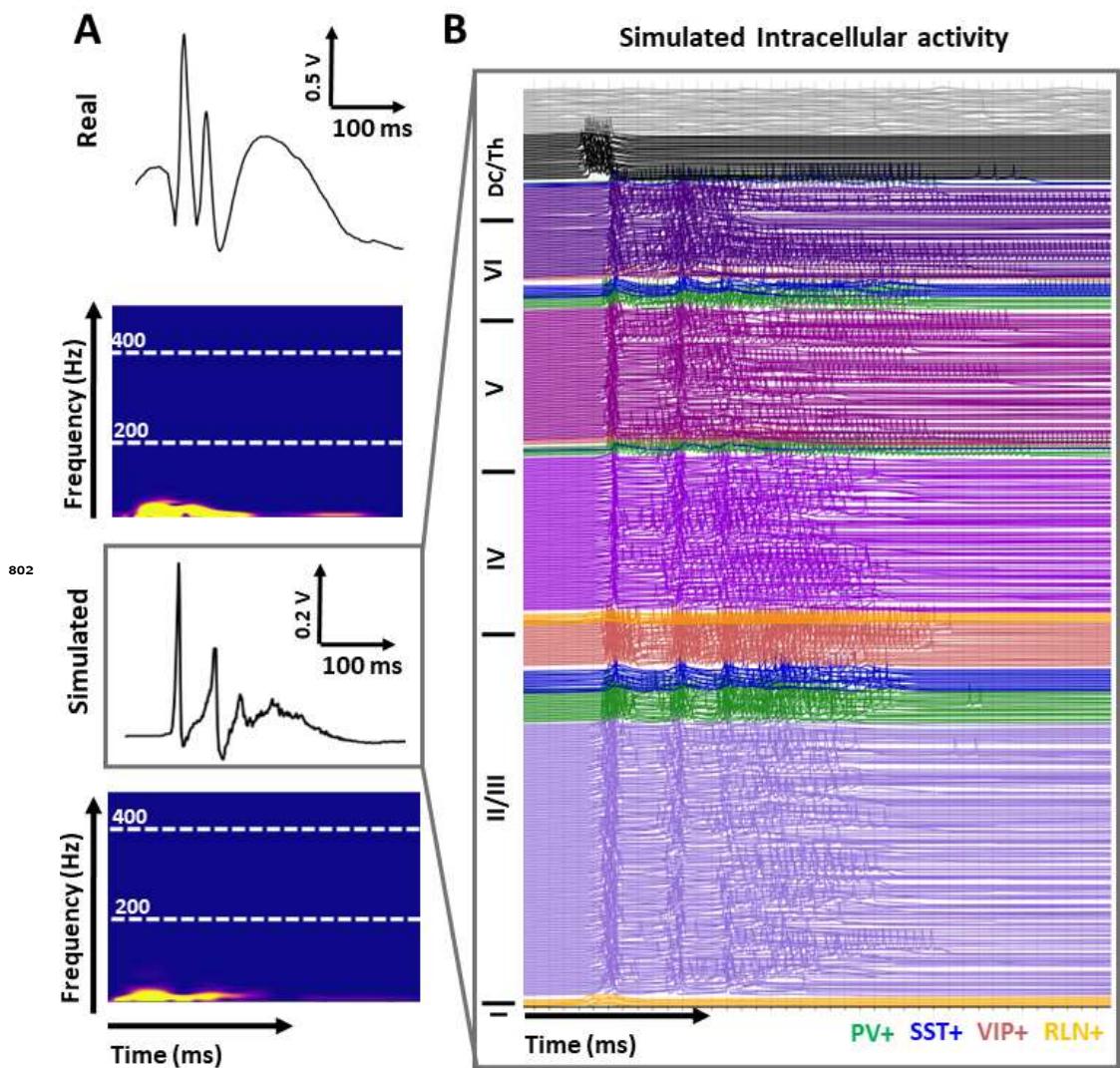
794

Appendix 4—table 1. ion channel Conductance values for the voltage-dependent currents defined in *Demont-Guignard et al. (2009)* for different cell types in mS/cm^2 . I_{Na} : Voltage-dependent sodium current, I_{KDR} : potassium delayed rectifier, I_m : muscarinic potassium current, I_{AHP} : calcium-dependant potassium currents ($I_{AHP_{SK}}$, $I_{AHP_{BK}}$), I_{leak} : leak, I_{CaL} : L-type calcium current, The T- and R-type calcium current (I_{CaT} , I_{CaR}), I_{KA} : inactivating potassium current and I_{KNA} : Sodium dependent potassium current.

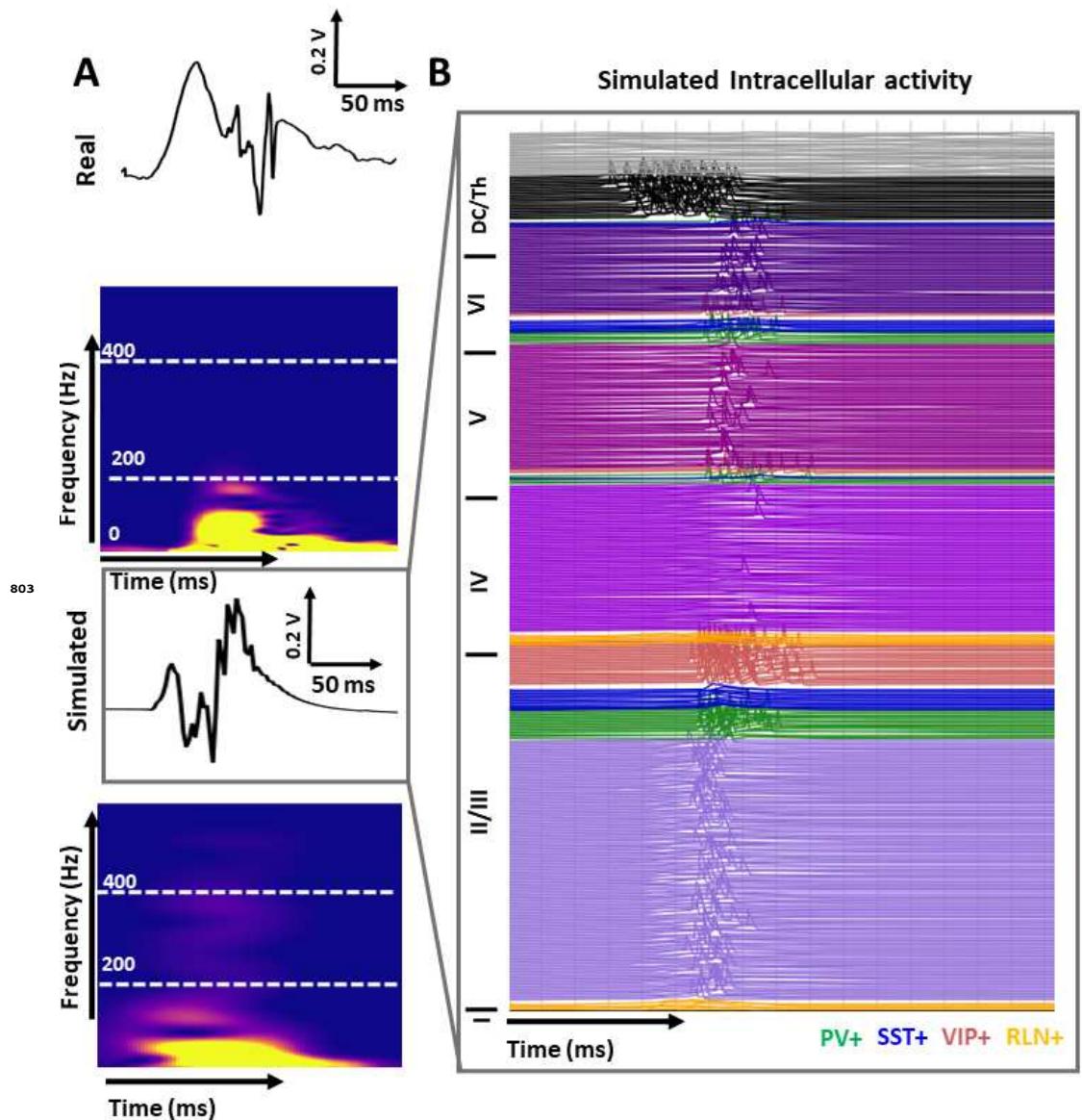
795

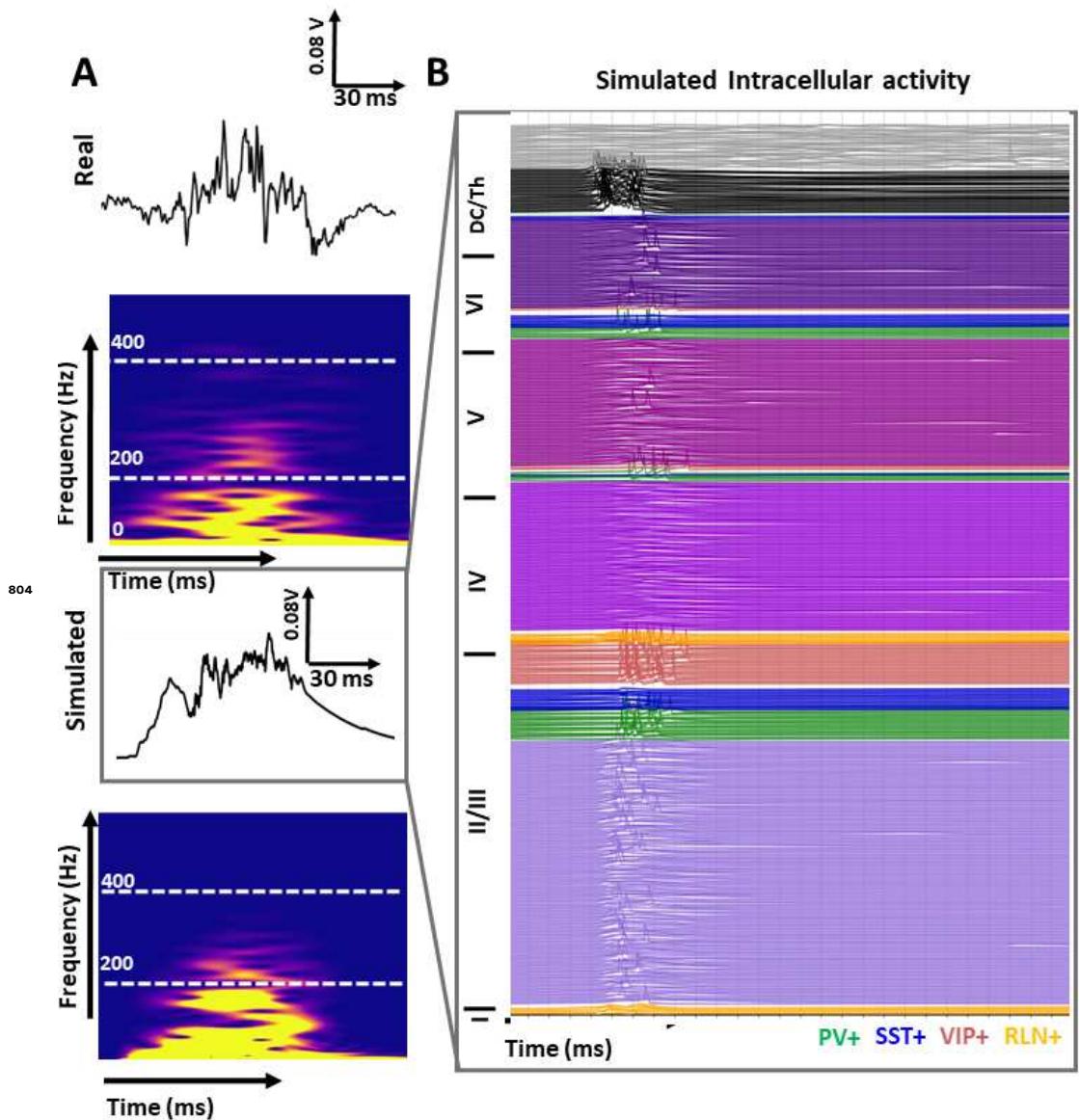

796

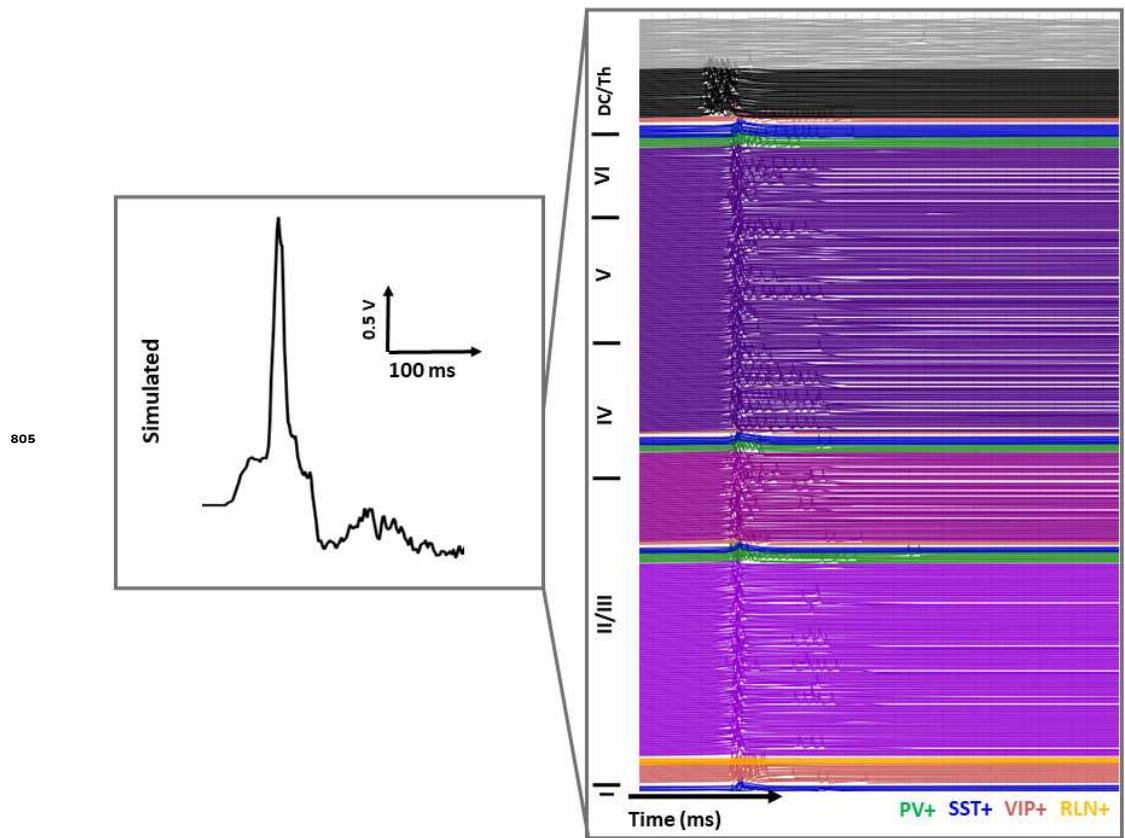
797

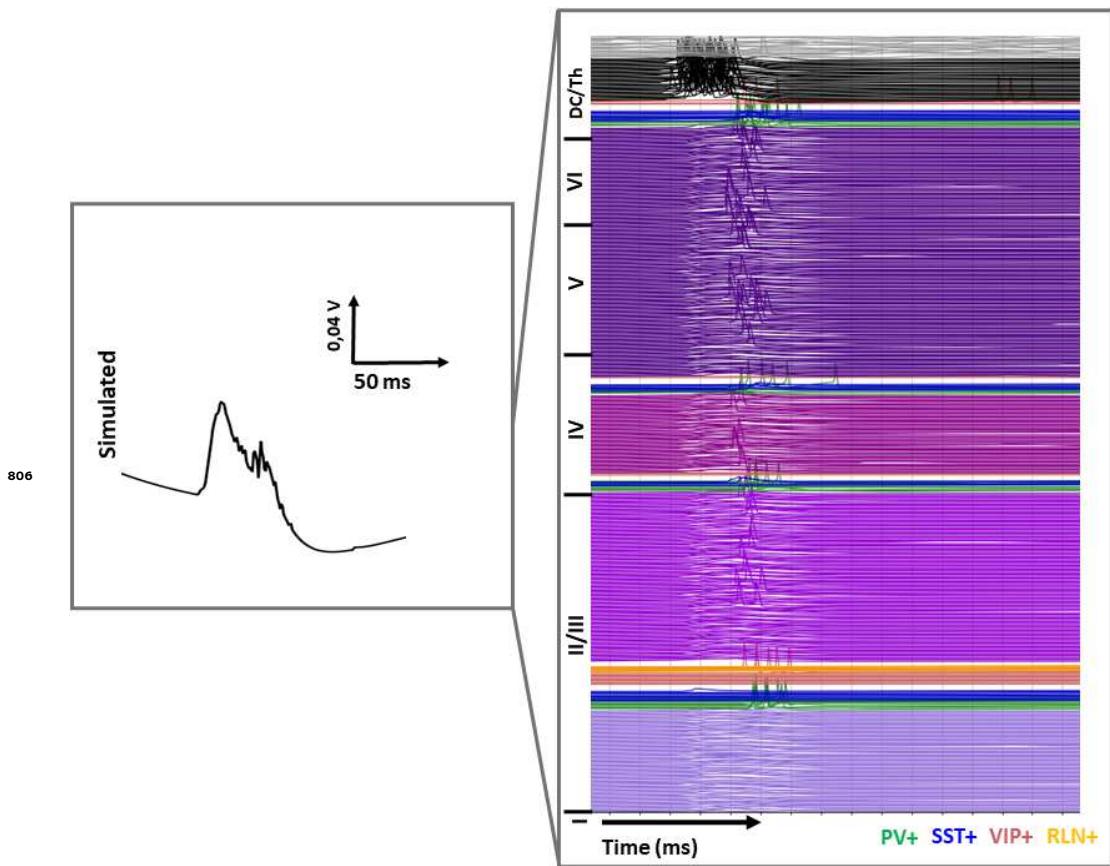

798

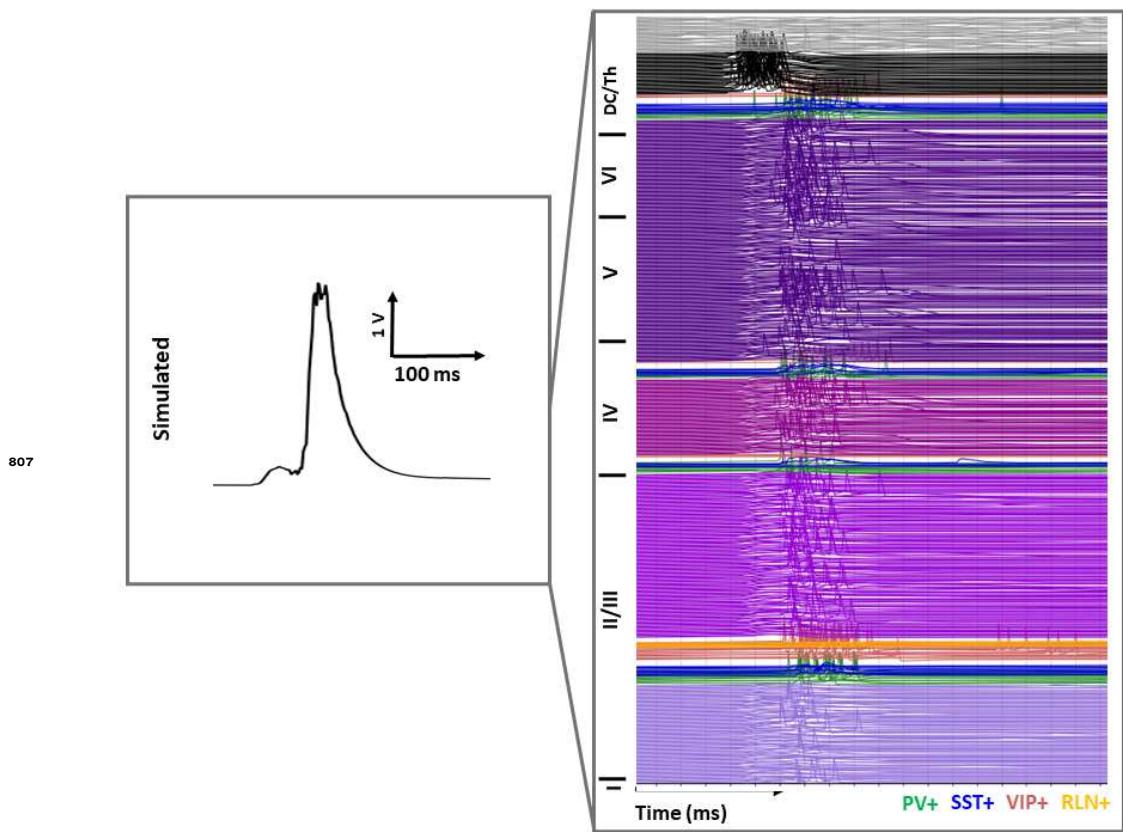
799


800


Figure 2—figure supplement 1. The intracellular activity corresponding to the SW signal in (A)


Figure 2—figure supplement 2. The intracellular activity corresponding to the DSW signal in (B)


Figure 2—figure supplement 3. The intracellular activity corresponding to the HFOs signal in (C)


Figure 2—figure supplement 4. The intracellular activity corresponding to the FR signal in (D)

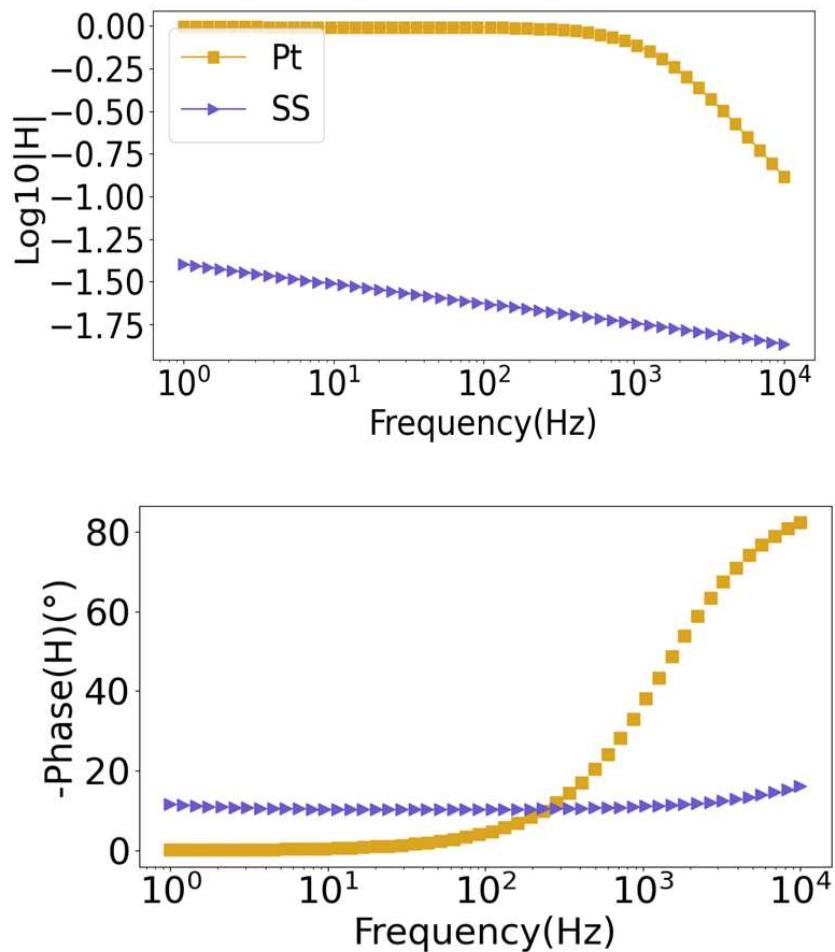

Figure 6—figure supplement 1. The intracellular activity corresponding to the IES signal in (A)

Figure 6—figure supplement 2. The intracellular activity corresponding to the FR type 1 signal in (B)

Figure 6—figure supplement 3. The intracellular activity corresponding to the FR type 2 signal in (B)

Figure 7—figure supplement 1. Bode plot of the transfer functions for both Pt and SS electrodes