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ABSTRACT

Neural oscillations mediate coordination of activity within and between brain networks, supporting cognition
and behaviour. How these processes develop throughout childhood is not only a critical neuroscientific
qguestion but could also shed light on the mechanisms underlying neurological and psychiatric disorders.
However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds
from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform —
Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) —to study oscillations during
brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size
and robust to participant movement, can be used to collect high-fidelity electrophysiological data in
individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured
both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity,
showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of
electrophysiological activity drive beta oscillations throughout neurodevelopment, and how their probability
of occurrence and spectral content changes with age. Our results offer new insights into the developmental
trajectory of oscillations and provide the first clear evidence that OPM-MEG is an ideal platform for studying

electrophysiology in children.
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INTRODUCTION

Neural oscillations are a fundamental component of brain function. They enable coordination of
electrophysiological activity within and between neural assemblies and this underpins cognition and
behaviour. Oscillations in the beta range (13-30 Hz) are typically associated with sensorimotor processes ;
they are prominent over the sensorimotor cortices, diminished in amplitude during sensory stimulation or
motor execution, and increased in amplitude (above a baseline level) following stimulus cessation, termed
the post-movement beta rebound (PMBR)2. Beta oscillations and their modulation by tasks are robustly
measured neuroscientific phenomena and their critical importance is highlighted by studies showing
abnormalities across a range of disorders — e.g. autism 3, multiple sclerosis 4, Parkinson’s disease ° and
Schizophrenia ®. Despite this, little is known about the mechanistic role of beta oscillations, and most of what
is known comes from studies applying non-invasive neuroimaging techniques to adult populations. Whilst
the sensorimotor system changes little in adulthood, there are marked changes in childhood and a complete
characterisation of the neurodevelopmental trajectory of beta oscillations, particularly how they underpin
behavioural milestones, might offer a new understanding of their role in healthy and abnormal brain
function.

Several studies have investigated how neural oscillations change with age: Gaetz et al. 7 measured
beta modulation during index finger movement, showing that the post-movement beta rebound (PMBR) was
diminished in children compared to adults. Kurz et al. & reported a similar effect when studying 11-19 year
olds executing lower limb movement. Trevarrow et al. ° found an age related increase in the PMBR amplitude
in healthy 9-15 year olds, and further that the decrease in beta power during movement execution did not
modulate with age. Finally, Vakhtin et al.' showed an increase in PMBR amplitude between adolescence and
adulthood, and that this trajectory was abnormal in autism. A separate body of work has assessed neural
oscillations in the absence of a task, demonstrating that there is a redistribution of oscillatory power across
frequency bands as the brain matures. Specifically, low frequency activity tends to decrease, and high
frequency activity increases with age 713, These changes are spatially specific, with increasing beta power
most prominent in posterior parietal and occipital regions *1°. Beta oscillations are also implicated in long
range connectivity *!” and previous studies have demonstrated increased connectivity strength with age &,
particularly in attentional networks *°. In sum, there is accord between studies that show increases in task
induced beta modulation and connectivity as well as a redistribution of spectral power, with increasing age.

Despite this progress, neurodevelopmental studies remain hindered by instrumental limitations.
Neural oscillations can be measured non-invasively by either magnetoencephalography (MEG) or
electroencephalography (EEG). MEG detects magnetic fields generated by neural currents, providing
assessment of electrical activity with sub-centimetre spatial, and millisecond temporal precision. However,
the sensors traditionally used for field detection operate at low temperature, necessitating the use of fixed
‘one-size-fits-all’ sensor arrays. Because the signal declines with the square of distance, smaller head size

leads to a reduction in signal®. In addition, movement relative to fixed sensors degrades data quality. These
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limitations mean scanning young children with traditional MEG systems/SQUIDs is challenging. Similarly,
there are challenges in EEG. EEG measures differences in electrical potential across the scalp. The electrode
array adapts to head shape and moves with the head, making it ‘wearable’. However, the resistive properties
of the scalp and skull distort signal topography, limiting spatial resolution. EEG is also more susceptible to
interference from muscles than MEG 2%, particularly during movement. In sum, both EEG and MEG are
limited; MEG is confounded by head size, EEG has poor spatial accuracy, and both are degraded by
movement. However, in recent years novel magnetic field sensors — Optically Pumped Magnetometers
(OPMs) — have inspired a new generation of MEG system 22, OPMs are small, lightweight and have similar
sensitivity to conventional MEG sensors but do not require cryogenics. This enables construction of a
wearable MEG system and because sensors can get closer to the head, it provides improved sensitivity and
spatial specificity compared to both conventional MEG and EEG 2. OPM-MEG is, ostensibly, ideal for children;
for example, Hill et al. showed the viability of OPM-MEG in a 2 year old 2* and Feys et al. showed advantages
for epileptic spike detection in children %°. However, no studies have yet used OPM-MEG in large groups to
measure neurodevelopment.

In addition to instrumental limitations, most neurodevelopmental studies have used an approach to
data analysis where signals are averaged over trials. This has led to the idea that sensory induced beta
modulation comprises a drop in oscillatory amplitude during movement and a smooth increase on movement

2628 investigating unaveraged signals show that, rather than a smooth

cessation. However, recent studies
oscillation, the beta rhythm is, in part, driven by discrete punctate events, known as “bursts”. Bursts occur
with a characteristic probability, which is altered by a task?>3, and are not confined to the beta band but are
pan-spectral, with components falling across many frequencies ®%. There is also evidence that functional
connectivity is driven by bursts that are coincident in time across spatially separate regions *. Recent work
using EEG has found that, even in children as young as 12 months, beta band activity is driven by bursts 3.
These studies have changed the way that the research community thinks about oscillations 32 and a full
understanding of beta dynamics and their age dependence must be placed in the context of the burst model.

Here, we combine OPM-MEG with a burst analysis based on a Hidden Markov Model (HMM) 303334
to investigate beta dynamics during a somatosensory task in a large range of young children. Our study
addresses two objectives: First, we test the viability of a novel 192-channel triaxial OPM-MEG system for use
in paediatric populations, investigating its practicality in young children (from age 2 years) and assessing
whether previously observed age-related changes in task-induced beta modulation and functional
connectivity can be reliably measured using OPM-MEG. Second, we investigate how task-induced beta

modulation in the sensorimotor cortices is related to the occurrence of pan-spectral bursts, and how the

characteristics of those bursts change with age.
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RESULTS

Our OPM-MEG system comprised a maximum of 64 OPMs (QuSpin Inc., Colorado, USA) each capable
of measuring magnetic field independently in three orthogonal orientations, meaning data were recorded
using up to 192-channels. Sensors were mounted in 3D-printed helmets of differing size (Cerca Magnetics
Ltd. Nottingham, UK), allowing adaptation to the participant’s head (Figure 1A). The total weight of the
helmet ranged from ~856 g (in the smallest case) to ~906 g (in the largest case). The system was integrated
into a magnetically shielded room (MSR) equipped with an active field control system (see “coils” in Figure
1A-B; Cerca Magnetics Ltd. Nottingham, UK) which allowed reduction of background field to <1 nT. This was
to ensure that participants were able to move during a scan without compromising sensor operation 336, A
schematic of the system is shown in Figure 1B.

27 children (aged 2-13 years) and 26 adults (aged 21-34 years) took part in the study. All participants
performed a task in which two stimulators (Figure 1C) delivered somatosensory stimulation to either the
index or little finger of the right hand sequentially. Stimuli lasted 0.5 s, occurred every 3.5 s, and comprised
three taps on the fingertip. This pattern of stimulation was repeated, alternating 42 times between both
fingers. Throughout the experiment, participants could watch their favourite TV show. Following data
preprocessing, high fidelity data were available in 27 children and 24 adults Two datasets were excluded from
further analysis as data quality was not sufficient to perform our Hidden Markov Model analysis (see
Methods). We removed 19 + 12 % (mean + standard deviation) of trials in children, and 9 + 5 % of trials in
adults due to excessive interference. On average we had 160 + 10 channels with high quality data available

(note that not all sensors were available for every measurement — see also Discussion).
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Figure 1 Experimental setup and beta band modulation during sensory task. (A) 4-year-old child wearing an OPM-MEG
helmet (consent and authorisation for publication was obtained). (B) Schematic diagram of the whole system inside the
shielded room. (C) Schematic illustration of stimulus timings and a photo of the somatosensory stimulators. “Braille”
stimulators each comprise 8 pins, which can be controlled independently; all 8 were used simultaneously to deliver the
stimuli.
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Beta band modulation with age

Figure 2 shows beta band modulation during the task for a single representative child (7 years old).
Panel A shows the estimated brain anatomy (see Methods) with the locations of the largest beta
desynchronisation — contrasted between a stimulus period (0.3-0.8 s relative to stimulus onset) and rest (2.5-
3 s) — for index and little finger simulation (derived using a beamformer analysis (see Methods)) overlaid in
blue and red respectively. The largest effects fall in the sensorimotor cortices as expected. Panel B shows
time frequency spectra depicting the temporal evolution of the amplitude of neural oscillations. Blue

represents a decrease in oscillatory amplitude relative to baseline (2.5-3 s); yellow represents an increase.

As expected, there is a reduction in beta amplitude during stimulation

Fractional change

Figure 2: Data from a single participant: (A) Brain plots show slices through the left motor cortex, with a
pseudo-T-statistical map of beta modulation for a single 7-year-old participant. The blue peaks indicate
locations of largest beta amplitude reduction during stimulation for index finger trials (digit 2/D2), while the
red peaks show the little finger (digit 5/D5). (B) Time frequency spectra showing neural oscillatory amplitude
modulation (fractional change in spectral amplitude relative to baseline measured in the 2.5-3 s window) for
both fingers, using data extracted from the location of peak beta modulation (left sensorimotor cortex). Note
the beta amplitude reduction during stimulation, as expected.

Group averaged beta dynamics are shown in Figure 3. Here, for visualisation, the children were split
into three groups of 9: youngest (aged 2 — 6 years), middle (6 to 10 years), and oldest (10 to 13 years). Data
were averaged within each group, and across all 24 adults (21 — 34 years) for comparison. The brain plots
show group averaged pseudo-T statistical maps of stimulus induced beta band modulation. In all groups, the
peak modulation appeared in the left sensorimotor cortex. We observed no significant difference in the
location of peak beta desynchronisation between index and little finger stimulation (see also Discussion). The
time-frequency spectrograms (TFSs) are also shown for each group. Here, we observe a drop in beta
amplitude during stimulation for all 3 groups, however this was most pronounced in adults and was weaker
in younger children. For statistical analysis, we estimated the difference in beta-band amplitude between the
stimulation (0.3-0.8 s) and post-stimulation (1-1.5 s) windows and plotted this as a function of age (Figure

3B) with Pearson correlation suggesting a significant (R? = 0.29,p = 4 X 1075) relationship. These data
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agree strongly with previous studies showing increased task induced beta modulation with age. However,

they are acquired using a fundamentally new wearable technology, and in younger participants.

A Youngest 9 Children (2 - 6 years)
05 T
-0.12

Middle 9 Children (6 - 10 years)

o
=y
N
w

Fractional Change

i('o 4 © Q ©
.5 S N 0] (%J 9 -
= A A A Children
© AN A o) O
302 A ﬁgfé» o0 & O Adults
g //ﬁ"é‘/ﬁ@ © ° 0, _ R?=029
1 A = U 4
s of & A7A p = 0.0000

0 8 10 15 20 25 30 35

Age (years)

Figure 3: Beta band modulation with age: (A) Brain plots show slices through the left motor cortex,
with a pseudo-T-statistical map of beta modulation (blue/black) overlaid on the standard brain. Time
frequency spectrograms show modulation of the amplitude of neural oscillations (fractional change in
spectral amplitude relative to the baseline measured in the 2.5-3 s window). In all cases results were extracted
from the location of peak beta desynchronisation (in the left sensorimotor cortex). Note the clear beta
amplitude reduction during stimulation. (B) Difference in beta-band amplitude (0.3-0.8 s window vs 1-1.5 s
window) plotted as a function of age (i.e., each data point shows a different participant; triangles represent
children, circles represent adults). Note significant correlation (R?=0.29, p=0.00004*). Also, all data here
relate to the index finger stimulation; similar results are available for the little finger stimulation in
supplementary information Figure S1.
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Functional connectivity in the beta band:

Whole brain beta-band functional connectivity was estimated by calculating amplitude envelope
correlation (AEC)* between (unaveraged) beta-band signals extracted from 78 cortical regions. Figure 4A
shows connectome matrices averaged across participants in each of the four groups; each matrix element
represents the strength of a connection between two brain regions. In the “glass brains”, the red lines show
the 150 connections with the highest connectivity. In adults, the connectome is in strong agreement with

those from previous studies!®>®

, with prominent sensorimotor, posterior-parietal- and fronto-parietal
connections. However, connectivity patterns in children differed in both strength and spatial signature, with
the visual network showing the strongest connectivity. To statistically test the relationship between
connectivity and age, we plotted global connectivity (i.e., the sum of all matrix elements) versus age (Figure
4B). Pearson correlation suggested a significant (R? = 0.42,p = 2.67 X 10~7) relationship with older
participants having increased connectivity. We also probed how this relationship changes across brain
regions: Figure 4D shows example scatter plots of node degree (i.e., how connected a specific region is to the
rest of the brain) for two pairs of homologous frontal and occipital regions. Note that the gradient of the fit
in the frontal regions (0.27 age™, R? = 0.44,p = 1.2 X 1077 and 0.27 age™*, R? = 0.50,p = 5.8 X
107°) is much larger than that in the occipital regions (0.10 age™, R? =0.18,p = 2.0 x 1073,
0.12 age_l, R? = 0.29,p = 4.2 X 1075.). This is delineated for all brain regions in Figure 4C, where each
region is coloured according to the gradient of the fit. The regions showing the largest change with age are

frontal and parietal areas, with visual cortex demonstrating the smallest effect.
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Figure 4 Functional connectivity — estimated using Amplitude Envelope Correlation (AEC) — varies
with age. (A) Connectivity matrices constructed using 78 regions of the AAL atlas and glass brains showing
average connectomes across groups and corresponding glass brains showing the strongest 150 connections.
AEC was estimated across the entire task recording. (B) Global average connectivity increases significantly
with age (R? = 0.42,p = 2.67 X 10~7*). (C) Age-related changes in connectivity vary spatially. Brain plot
shows the linear fit gradient of node degree (the sum across the rows of the connectivity matrices) against
age. Node degree varies less in occipital regions while frontal regions become more strongly connected with
increasing age. (D) Example plots show node degree against age for left and right frontal and occipital
regions. Pearson correlation yielded (from left to right): (R? = 0.44,p = 1.2 x 10~7, Degree = 0.27 - age +
0.26); (R? = 0.50,p = 5.8 x 107°,Degree = 0.28 - age + 0.17); (R*> = 0.18,p = 2.0 X 1073, Degree =
0.10 - age + 2.92); (R?> = 0.29,p = 4.2 X 107°,Degree = 0.12 - age + 2.38).
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Burst interpretation of beta dynamics:
To assess pan-spectral bursts, we applied a univariate, 3-state HMM to the broadband (1-48 Hz)
electrophysiological signal extracted from the location of largest beta modulation. This enabled us to identify

the times at which bursts occurred in sensorimotor cortex 303°,
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Figure 5: The relationship between beta-band amplitude modulation and pan-spectral burst
probability. (A) Raster plot showing burst occurrence (white) as a function of time for all trials and
participants combined (participants sorted by increasing age). (B) Trial averaged burst probability time-
courses across the four participant groups. Shaded areas indicate the standard error within groups. (C)
Stimulus- to post-stimulus modulation of burst probability (0.3-0.8 s vs 1-1.5 s) plotted against age. Note
significant (R?=0.13, p=0.0089*) positive correlation. (D) Beta amplitude modulation plotted against burst
probability. Note again significant correlation (R?> = 0.5,p = 5.2 X 10™°*). (Values for both measures were
z-transformed within the Children and Adult group respectively to mitigate the age confound). Triangles and
circles denote Children and Adults respectively.
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Figure 6: Spectral content of the burst state varies with age. (A) Average burst-state spectra across
groups. Shaded areas indicate standard error on the group mean. (B) Pearson correlation coefficient for the
PSD values in (A) against age across all frequency values. Red shaded areas indicate p < 0.01 (uncorrected).
The four inset plots show example scatters of PSD values with age at select frequencies (3 Hz, 9 Hz, 21 Hz, and
37 Hz). Low-frequency spectral content decreases with age while high-frequency content increases. No
significant correlation was observed in the high theta and alpha bands.

Figure 5A shows a raster plot of burst occurrence for all individual task trials in all participants. White
represents time points and trials where bursts are occurring; black represents the absence of a burst.
Participants are separated by the red lines and groups are separated by the blue lines. Burst absence is more
likely in the 0.3 s to 0.8 s time-period (during stimulation), indicating a task-induced decrease in burst-
probability. Figure 5B shows group averaged burst-probability as a function of time. In all age groups, bursts
were less likely during stimulation, though this modulation changes with age, with the younger group

demonstrating the least pronounced effect. This is tested statistically in Figure 5C which shows a significant
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(R? = 0.13,p = 8.9 x 1073*) positive Pearson correlation between the modulation of burst probability and
age. Figure 5D shows the association between beta amplitude and burst-probability modulation. Here the
significant (R? = 0.50,p = 5.2 x 107°*) positive relationship supports a hypothesis that the observed
change in task induced beta modulation with age (shown in Figure 3) is driven by changes in the modulation
of burst probability.

We estimated the spectral content of the bursts identified by the HMM. In Figure 6A the burst spectra
are shown for all 4 participant groups. In adults, the spectral power diminishes with increasing frequency,
with additional peaks in the alpha and beta band. In children, high frequencies are diminished, and low
frequencies are enhanced, compared to adults. This is also shown in Figure 6B where, for every frequency,
we perform a linear fit to a scatter plot of spectral density versus age. Here, positive values indicate that
spectral power increases with age; negative power means it decreases. The inset scatter plots show example
age relationships at 3 Hz, 9 Hz, 21 Hz, and 37 Hz. We see a clear decrease in low-frequency spectral content
and increasing high-frequency content, with age. Interestingly, spectral content in the alpha band appeared
stable with no significant correlation with age. Similar trends for changes in frequency content with age were

found for the non-burst states (See Figure S2).

DISCUSSION

There are few practical, non-invasive neuroimaging platforms capable of measuring brain function in
children with good spatial and temporal resolution. Functional magnetic resonance imaging (fMRI) “° tracks
brain activity with millimetre spatial resolution, but the mechanism of detection is indirect (based on
haemodynamic responses) and consequently fMRI has limited temporal precision. Participants must also lie
immobile in a large scanner while being exposed to high acoustic noise; many children find this environment
challenging and it is difficult to implement naturalistic experimental paradigms. Functional near infra-red
spectroscopy (fNIRS) #* also measures haemodynamics, but provides a wearable platform which allows
scanning of almost any participant during any conceivable experiment. However, fNIRS has limited temporal
resolution since measurements are driven by changes in blood flow and metabolism. fNIRS also has limited
(~1 cm) spatial resolution and is only sensitive to superficial sources. EEG *> measures electrophysiological
activity in neural networks and thus offers millisecond temporal precision. In addition, EEG is wearable,
adaptable to any participant, and therefore enables naturalistic experiments. However, spatial resolution is
restricted due to the inhomogeneous conductivity profile of the head (a problem made more challenging in
very young (<18 months) children due to additional inhomogeneities caused by the fontanelle). EEG is also
highly susceptible to artefacts from electrical activity in muscles. Conventional MEG *? offers both excellent
spatial and temporal resolution for non-invasive measurement of brain electrophysiology but is nevertheless
limited in both performance and practicality — particularly in young people — due to the fixed nature of the

sensor array. It therefore follows that the technologies currently in use for neurodevelopmental assessment

are limited by either practicality, performance, or both. Development of new techniques for use in this area
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is therefore of high importance. In principle, OPM-MEG offers the performance of MEG, with the practicality
of fNIRS or EEG, making it extremely attractive for use in children. Here, our first aim was to test the feasibility
of this platform for neurodevelopmental studies.

We designed our OPM-MEG system for lifespan compliance. The helmets were relatively lightweight,
ranging from ~856 g (in the smallest case) to ~906 g (in the largest case). While this is heavier than, for
example, a child’s bicycle helmet (the average weight of which is ~300-350 g) they were well tolerated by our
cohort, most likely due to the relatively short scanning duration of < 5 minutes. Multiple sizes of helmet
meant we could select the best fitting size for any given participant, reducing the confounds of small head
size which are associated with conventional MEG. Heat from the sensors (which require elevated
temperature to maintain operation in the spin exchange relaxation free regime %) was controlled via both
convection cooling, with air being able to flow through the helmet lattice, and an insulating material cap
worn under the helmet by all participants (See Figure 1A). Together, these ensured that participants
remained comfortable throughout data recording.

Whilst the helmet allows sensors to move with the head, the sensors are perturbed by background
fields (e.g., if a sensor rotates in a uniform background field, or translates in a field gradient, it will see a
changing field which can obfuscate brain activity and, in some cases, stop the sensors working 2). For this
reason, our system also employed active field control *® which enabled us to reduce the field to a level where
sensors work reliably, even in the presence of head movements. This meant that, although we did not
encourage our participants to move, they were completely unrestrained. The sensors themselves are robust
to head motion: every sensor is a self-contained unit connected to its own control electronics by a cable that
can accommodate rapid and uncontrolled movement. Another challenge when imaging children is the
proximity of the brain to the scalp — the brain-scalp separation is 15 mm in adults but can be as little as 5 mm
in children. Previous work % has shown that, when using radially oriented field measurements, a combination
of finite sampling and the proximity of the brain can lead to inhomogeneous coverage (i.e. spatial aliasing).
For this reason, our system was designed with triaxial sensors which helps to prevent this confound (though
not directly related to scanning children, we also note that triaxial sensors enable improved noise rejection
4647) Finally, our system was housed in a large MSR which allowed children to be accompanied by a parent
throughout the scan. All these design features led to a system that enables acquisition of high-quality MEG
data and is also well tolerated. We were able to obtain usable data in 27 out of 27 children and 24 out of 26
adults. Our findings of increased beta modulation and whole brain connectivity with age support previous
studies” 8, and in this way provide a validation for this technology.

Importantly, most prior studies of neurodevelopmental trajectory were carried out in older children
— for example Kurz et al. ® showed a similar effect in 11-19 year olds; Trevarrow et al. ° employed a cohort of
9-15 year olds and our own previous work also scanned a cohort of 9-15 year olds *°. In the present study,
we were able to successfully scan children from age 2 years. There are important reasons for moving to

younger participants: from a neuroscientific viewpoint, many critical milestones in development occur in the
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first few years (even months) of life — such as learning to walk and talk. If we can use OPM-MEG technology
to measure the brain activities that underpin these developmental milestones, this would offer not only a
new understanding of brain function but also new avenues to explore in atypically developing children. More
importantly, many disorders strike in the first years of life — for example autism can be diagnosed in children
as young as two years and epilepsy has a high incidence in children, including in the neonatal and infant
period %, In those where seizures cannot be controlled by drugs, surgery is often a viable option for
treatment; the younger the patient, the more successful the outcome®. For these reasons, the development
of a platform that enables the assessment of brain electrophysiology, with high spatiotemporal precision, in
young people is a significant step forward and one that has potential to impact multiple neuroscientific and
clinical areas.

In addition to providing a new platform for neurodevelopmental investigation, our study also
provides insights into coordinated brain activity and its maturation with age. Beta band oscillations are
thought to mediate top-down influence on primary cortices, with regions of high beta amplitude likely being
inhibited (for a review see Barone and Rossiter ). Whilst most evidence is based on studies of movement,
there is significant supporting evidence from somatosensory studies in adults; for example Bauer et al. *°
showed that, when one attends to events relating to the left hand, a relative decrease in beta amplitude is
seen in the contralateral sensory cortex (right) and an increase in ipsilateral cortex — suggesting the brain is
inhibiting the sensory representation of the non-relevant hand. Given this strong link to attentional
mechanisms and top-down processing, it is unsurprising that beta oscillations are not fully developed in
children, and consequently change with age. Interestingly, Figure 3 implies that the well-known post stimulus
beta signal —the PMBR — appears to be absent in children but can be seen in adults. The rebound, as well as
being linked to top-down inhibition of the sensorimotor cortex, is associated with long range connectivity °Z.
The lack of rebound is therefore in agreement with the connectivity findings shown in Figure 4. We failed to
see a significant difference in the spatial location of the cortical representations of the index and little finger;
there are three potential reasons for this. First, the system was not designed to look for such a difference —
sensors were sparsely distributed to achieve whole head coverage (rather than packed over sensory cortex

IH

to achieve the best spatial resolution in one area). Second, our “pseudo-MRI” approach to head modelling is
less accurate than acquisition of participant-specific MRIs, and so may mask subtle spatial differences. Finally,
previous work >2 suggested that, for a motor paradigm in adults, only the beta rebound, and not the power
reduction during stimulation, mapped motortopically. Nevertheless, it remains the case that by placing
sensors closer to the scalp, OPM-MEG should offer improved spatial resolution in children and adults; this
should be the topic of future work.

The burst model of beta dynamics is relatively new, yet significant evidence already shows that the
neurophysiological signal is driven by punctate bursts of activity, whose probability of occurrence changes

depending on the task phase. Our study provides the first evidence that neurodevelopmental changes in the

amplitude of task induced beta modulation can also be explained by the burst model. Specifically, we showed
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that task induced modulation of burst probability changes significantly as a function of age, suggesting bursts
in somatosensory cortex are less likely to occur during stimulation of older participants compared to younger

|Il

participants. We also showed that the “classical” beta band modulation exhibited a significant linear
relationship with burst-probability modulation. In addition, when bursts do occur, they tend to have different
spectral properties in younger participants. Specifically, younger participants have increased low-frequency
activity and decreased high frequency activity, compared to adults. It is likely that a combination of the
change in burst probability with age, and the change in dominant frequency (away from the canonical beta
band) drives the observation from previous studies of changing beta modulation with age.

Our connectivity finding is also of note, showing a significant increase in functional connectivity with
age. This is in good agreement with previous literature — for example Schifer et al. ' showed quantitatively
similar data in conventional MEG, albeit again by scanning older children (ages 6 and up). Here we also
showed that connectivity changes with age are most prominent in the frontal and parietal areas, and weakest
in the visual cortex. It makes intuitive sense that the largest changes in connectivity over the age range
studied should occur in the parietal and frontal regions — these regions are typically associated with both
cognitive and attentional networks and are implicated in the networks that develop most between childhood
and adulthood. Here, we observed a relative lack of age-related change in the visual regions; this could relate
to the nature of the task — recall that all volunteers watched their favourite TV show and so the visual regions
were being stimulated throughout, driving coordinated network activity in occipital cortex. The visual system
is also early to mature compared to frontal cortex.

There are four limitations of our system which warrant discussion. Firstly, the range of available
helmets was limited, and future studies may aim to use more sizes to better accommodate variation in head
size and shape. Also, even the lightweight helmet used here may be too heavy for younger participants; whilst
in general it was tolerated very well, anecdotally, some of the very young participants commented that it was
heavy. This indicates that further optimisation of helmet-weight is needed if we want to move towards
younger (< 2 years) participants; in babies a fundamentally different solution must be found. Further
optimisation is possible since, whilst the total weight is approximately 900 g, the combined sensor weight is
just 250g. Similarly, the warmth generated by the sensors was controlled by a combination of convection and
insulation. However, for systems with a higher channel count, where more heat may be generated, active
cooling (e.g., air forced through the helmet) may be required. Second, the number of sensors available varied
across participants — this was mainly for pragmatic purposes (the system was experimental and not all OPMs
were available for every recording). Whilst we always ensured good coverage of sensorimotor cortex, and
tried to optimise whole brain coverage as much as we could, the system is likely to have diminished sensitivity
around the temporal cortex, and this may explain why there was relatively little change in connectivity with
age in those regions. In future, the inclusion of more sensors, particularly around the cheekbone would be a
natural extension. Thirdly, magnetic field control was only available over a region encompassing the head,

whilst participants were seated (i.e., participants had to be sat in a chair for the scanner to work). This was
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key to ensuring participants were unconstrained. However, in future studies, particularly in younger
participants, it may be desirable to accommodate different positions (e.g., participants seated on the floor)
and a greater range of motion (e.g., children crawling or walking). This may be possible with newly developing
coil technology >3. Finally, here we chose to study sensory stimulation. There are many other systems to
choose —and whether the findings here regarding beta bursts and the changes with age also extend to other

brain networks remains an open question that could be explored in future studies.

CONCLUSION

Characterising how neural oscillations change with age is a key step towards understanding the
developmental trajectory of coordinated brain function, and the deviation of that trajectory in disorders.
However, limitations of conventional, non-invasive approaches to measuring electrophysiology have led to
confounds when scanning children. Here, we have demonstrated a new platform for neurodevelopmental
assessment. Using OPM-MEG, we have been able to provide evidence — supported by previous studies — that
shows both task-induced beta modulation and whole brain functional connectivity increase with age. In
addition, we have shown that the classically observed beta power drop during stimulation can be explained
by a lower burst probability, and that modulation of burst probability changes with age. We further showed
that the frequency content of bursts changes with age. Our results offer new insights into the developmental
trajectory of beta oscillations and provide the first clear evidence that OPM-MEG is an ideal platform to study

electrophysiology in children.

METHODS

Participants and Experiment

The study received ethical approval from the University of Nottingham Research Ethics Committee
and written consent was obtained from the parents of each participant. Consent and authorisation for
publication of Figure 1A were also obtained.
The paradigm comprised tactile stimulation of the tips of the index and little fingers using two braille
stimulators (METEC, Germany) (See Figure 1C). Each stimulator comprised 8 independently controlled pins
which could be raised or lowered to tap the participant’s finger. A single trial comprised 0.5 s of stimulation
(during which the finger was tapped 3 times using all 8 pins) followed by 3 s rest and the finger stimulated
(index or little) was alternated between trials. There was a total of 42 trials for each finger, meaning the
experiment lasted a total of 294 s. Throughout the experiment, participants watched a television program of
their choice (presented via projection onto a screen in the MSR). All children were accompanied inside the

MSR by a parent and one experimenter throughout their visit.

Data collection and co-registration
The sensor array comprised 64 triaxial OPMs (QuSpin Inc, Colorado, USA, Zero Field Magnetometer,

Third Generation, Triaxial Variant) which enabled a maximum of 192 measurements of magnetic field around
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the scalp (192-channels). The OPMs could be mounted in one of four 3D-printed helmets of different sizes
(Cerca Magnetics Ltd., Nottingham, UK); this affords (approximate) whole-head coverage and adaptation to
the participants head size. All participants wore a thin aerogel cap underneath the helmet to control heat
from the sensors (which operate with elevated temperature). The system is housed in a magnetically shielded
room (MSR) equipped with degaussing coils > and active magnetic field control 3¢ (Cerca Magnetics Ltd.,
Nottingham, UK). Prior to data collection, the MSR was demagnetised and the magnetic field compensation
coils were enabled (using currents based on previously obtained field maps, the demagnetisation procedure
ensures a repeatable background field and the magnetically quiet campus location of our MSR ensures field
drifts <0.05 nT/min >>°¢). This procedure, which results in a background field of ~0.6 nT ¢, is important to
enable free head motion during a scan ’. All OPMs were equipped with on-board coils which were used for
sensor calibration. MEG data were collected at a sampling rate of 1,200 Hz using a National Instruments (NI,
Texas, USA) data acquisition system interfaced with LabVIEW (NI).

Following data collection, two 3D digitisations of the participant’s head, with and without the OPM
helmet, were generated using a 3D structured light metrology scanner (Einscan H, SHINING 3D, Hangzhou,
China). Participants wore a swimming cap to flatten hair during the ‘head-only’ scan. The head-only
digitisation was used to measure head size and shape, and an age-matched T1-weighted template MRI scan
was selected from a database % and warped to fit the digitisation, using FLIRT in FSL >>%°, This procedure

|”

resulted in a “pseudo-MRI” which provided an approximation of the subject’s brain anatomy. Sensor
locations and orientations relative to this anatomy were found by aligning it to the digitisation of the
participant wearing the sensor helmet, and adding the known geometry of the sensor locations and

orientations within the helmet #1783, This was done using MeshLab .

MEG Data Preprocessing

We used a preprocessing pipeline described previously ©. Briefly, broken or excessively noisy
channels were identified by manual visual inspection of channel power spectra; any channels that were either
excessively noisy, or had zero amplitude, were removed. Bad trials were defined as those with variance
greater than 3 standard deviations from the mean trial variance, and automatically removed. A visual
inspection was also carried out and any remaining trials with excess artefacts were removed. Notch filters at
the powerline frequency (50 Hz) and 2 harmonics, and a 1-150 Hz band pass filter, were applied. Finally, eye
blink and cardiac artefacts were removed using ICA (implemented in FieldTrip %) and homogeneous field

correction (HFC) was applied to reduce interference °®,

Source Reconstruction and Beta-Modulation
For source estimation, we used a LCMV beamformer spatial filter ¢’. For all analyses, covariance
matrices were generated using data acquired throughout the whole experiment (excluding bad channels and

trials). Covariance matrices were regularised using the Tikhonov method with a regularisation parameter
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equal to 5% of the maximum eigenvalue of the unregularized matrix. The forward model was based on a
single shell volumetric conductor .

To construct the Pseudo-T statistical images, data were filtered to the beta-band (13-30 Hz) and
narrow band data covariance matrixes generated. Voxels were placed on both an isotropic 4-mm grid
covering the whole brain, and a 1-mm grid covering the contralateral sensorimotor regions. For each voxel,
we contrasted power in active (0.3-0.8 s) and control (2.5-3 s) time windows to generate images showing the
spatial signature of beta band modulation. Separate images were derived for index and little finger trials. To
generate time frequency spectra, we used broad-band (1-150 Hz) data and covariance matrices. The
beamformer was used to produce a time course of neural activity (termed a “virtual electrode”) at the voxel
with maximum beta-band desynchronisation. The resulting projected broad-band data were frequency
filtered into a set of overlapping bands, and a Hilbert transform used to derive the analytic signal for each
band. The absolute value of this was computed to give the envelope of oscillatory amplitude (termed the
Hilbert envelope). This was averaged across trials, concatenated in frequency, baseline corrected and
normalised yielding a time frequency spectrogram showing relative change in spectral power (from baseline)
as a function of time and frequency. Finally, to quantify the magnitude of beta-modulation, we filtered the
virtual electrode to the beta band, calculated the Hilbert envelope and measured the mean difference in
amplitude between stimulation (0.3-0.8 s) and post-stimulus (1-1.5 s) time windows. These values (derived

for every participant) were plotted against age and a relationship assessed via Pearson correlation.

Functional Connectivity Analysis

To estimate connectivity, we first parcellated the brain into distinct regions. To this end, estimated
brain anatomies were co-registered to the MNI standard brain using FSL FLIRT >%%° and divided into 78 cortical
regions according to the Automated Anatomical Labelling (AAL) atlas 8972, Virtual electrode timecourses were
generated at the centre of mass of each of these 78 regions, and the beta band Hilbert envelope derived. We
then computed Amplitude Envelope Correlation (AEC) as an estimate of functional connectivity between all
possible pairs of AAL regions 7. Prior to AEC, we applied pairwise orthogonalisation to reduce source
leakage 7>73. This resulted in a single connectome matrix per participant. We estimated “Global Connectivity”
as the mean connectivity value across all elements in the connectome. This was plotted against age and the
relationship assessed using Pearson correlation. To visualise the spatial variation in age-related connectivity
changes, we also estimated the correlation between node degree (i.e., the column-wise sum of connectome

matrix elements) and age, for each of the 78 AAL regions.

Beta Bursts and Hidden Markov Modelling

To estimate beta burst timings we employed a three-state, time-delay embedded univariate HMM34,
This method has been described extensively in previously papers 3%3°, Briefly, virtual electrode time series
were frequency filtered between 1-48 Hz. The HMM was used to divide this timecourse into three “states”

each depicting repeating patterns of activity with similar temporo-spectral signatures. The output was three
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timecourses representing the likelihood of each state being active as a function of time. These were binarized
(using a threshold of 2/3) and used to generate measures of the probability of state occurrence as a function
of time in a single trial. The state whose probability of occurrence modulated most with the task was defined
as the “burst state”. We estimated age-related changes in burst probability modulation and the relationship
between burst probability modulation and classical beta-modulation (see above) using Pearson correlation.
Further, we investigated the spectral content of the burst state and its modulation with age using multi-taper
estimation of the power spectral density (PSD) 3. Having derived the spectral content of the burst state we

used Pearson correlation to measure how the PSD magnitude, for every frequency, changes with age.
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Figure S 1: Beta band modulation with age for little finger stimulation: (A) Brain plots show
slices through the left motor cortex, with a pseudo-T-statistical map of beta modulation (blue/black)
overlaid on the standard brain. Time frequency spectrograms show modulation of the amplitude of
neuraloscillations (fractionalchangein spectral power relative to the baseline measured in the 2.5-3
swindow). In all cases results were extracted from the location of peak beta power reduction during
stimulation (in the left sensorimotor cortex). (B) Difference in beta-band amplitude (0.3-0.8 s window
vs 1-1.5 s window) plotted as a function of age (i.e., each data point shows a different participant;

triangles represent children, circles represent adults). Note the significant correlation
(R2=0.23, p=0.00032*).
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Figure S 2 Spectral content of the non-burst states. (A) Average non-burst-state spectra
across groups. Shaded areas indicate standard error on the group mean. (B) Pearson correlation
coefficient for the PSD values in (A) against age across all frequency values. Red shaded areas
indicate p < 0.01 (uncorrected). The four inset plots show example scatters of PSD values with age
at select frequencies (3 Hz, 9 Hz, 21 Hz, and 37 Hz). Low-frequency spectral content decreases with
age while high-frequency content increases. Results broadly mirror the frequency content and age
relationships found in the burst state, however, features in the spectra corresponding to classical
alpha and beta peaks are less prominent outside the burst state.
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