
Compact RNA sensors for increasingly complex functions of multiple
inputs

Christian Choe1,a, Johan O. L. Andreasson2,10,a, Feriel Melaine3, Wipapat Kladwang3,11, Michelle
J. Wu4,12, Fernando Portela3,5, Roger Wellington-Oguri3,5, John J. Nicol3,5, Hannah K.
Wayment-Steele6, Michael Gotrik3,13, Eterna Participants5,b, Purvesh Khatri7,8, William J.
Greenleaf2,c, Rhiju Das3,4,9,c

1 Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
2 Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
3 Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
4 Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, CA,
USA
5 Eterna Massive Open Laboratory
6 Department of Chemistry, Stanford University, Stanford, CA, USA
7 Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
8 Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of
Medicine, Stanford, CA, USA
9 Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
10 Current address: Airity Technologies, Redwood City, CA, USA
11 Current address: Inceptive, Palo Alto, CA, USA
12 Current address: Verily Life Sciences, South San Francisco, CA, USA
13 Current address: Protillion Biosciences, Burlingame, CA, USA

a These authors contributed equally: Christian Choe, Johan O. L. Andreasson.
b Consortium author. All contributors are listed in Supplemental Table 1.
c Correspondence to be addressed to wjg@stanford.edu and rhiju@stanford.edu.

ORCID: Christian Choe, 0000-0001-8871-9682; Rhiju Das, 0000-0001-7497-0972; Michael
Gotrik 0000-0003-1784-1837; William J. Greenleaf, 0000-0003-1409-3095; Purvesh Khatri,
0000-0002-4143-4708; Feriel Melaine, 0000-0001-5238-2184; Eterna Participants,
0000-0002-7508-6705; Fernando Portela, 0000-0003-0238-9251; Hannah K. Wayment-Steele,
0000-0003-4949-2010; Roger Wellington-Oguri, 0000-0002-7818-2161; Michelle J. Wu,
0000-0003-1734-7994.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.04.572289doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.04.572289
http://creativecommons.org/licenses/by-nc/4.0/


ABSTRACT

Designing single molecules that compute general functions of input molecular partners
represents a major unsolved challenge in molecular design. Here, we demonstrate that
high-throughput, iterative experimental testing of diverse RNA designs crowdsourced from
Eterna yields sensors of increasingly complex functions of input oligonucleotide concentrations.
After designing single-input RNA sensors with activation ratios beyond our detection limits, we
created logic gates, including challenging XOR and XNOR gates, and sensors that respond to the
ratio of two inputs. Finally, we describe the OpenTB challenge, which elicited 85-nucleotide
sensors that compute a score for diagnosing active tuberculosis, based on the ratio of products of
three gene segments. Building on OpenTB design strategies, we created an algorithm
Nucleologic that produces similarly compact sensors for the three-gene score based on RNA and
DNA. These results open new avenues for diverse applications of compact, single molecule
sensors previously limited by design complexity.

INTRODUCTION

Throughout biology, many macromolecular systems carry out complex calculations essential for
life such as cell cycle regulation1, cell growth2, and tissue development3 but our ability to design
comparably sophisticated biomolecular computers de novo remains primitive. Progress in the
rational design of biomolecular computers would transform numerous fields – directed drug
delivery, gene editors, and biosensors are technologies that all would benefit from computations
at a microscopic scale in complex cellular environments. Sophisticated computations have been
achieved in networks of interacting molecules,4–12 but such systems, which rely on a multitude of
interacting parts at precise stoichiometries, are not always suited for complex in vivo
environments – especially as the number of interacting parts grows to accommodate more
complex computation. Computers that are instead based on single molecules might solve these
issues and be capable of accurate complex computation in ambient cellular conditions or as
‘stand-alone’ computers outside cells.13,14 Furthermore, such single molecule computers might
achieve thermodynamic efficiencies that outperform current electronic computers, potentially
creating entirely new paradigms for low-energy computing technologies.15,16

Is there a limit to the functional forms that a single molecule can approximate? The behaviors of
macromolecules have long been described through partition functions, which are ratios of two
polynomials with non-negative coefficients. For example, expressions for hemoglobin behavior
involve terms up to the fourth order in the partial pressure of oxygen and the concentration of
protons and small molecules,17,18 and such expressions should be capable of near-arbitrary
computations.19 Drawing motivation from this work and theorems derived for such positive
rational polynomials20,21 (translation in Supplemental Appendix 1), a single macromolecule at
equilibrium that is capable of binding input molecules and output molecules should be able to
approximate any bounded polynomial (Supplemental Appendix 2). Here, we sought to more
concretely explore the significance of these results by designing RNA-based approximators for
functions involving polynomials with practical interest. The versatility of RNA as an allosteric
biomolecular sensor is apparent in the diversity of natural “riboswitch” molecules that change
their structure to alter downstream regulation upon binding an input molecule, which could be a
drug, a metabolite produced by a downstream pathway, or a protein binding partner.22 Numerous
examples of ‘tandem’ riboswitches exist that carry out computations involving multiple input
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ligands.23 RNA’s versatility is also demonstrated by the diverse synthetic elements, including
designed allosteric riboswitches,24,25 therapeutics,26,27 and diagnostics28 that have been
implemented with RNA as a substrate. Nevertheless, these prior efforts have been limited to
‘digital’ logic gates tested at extreme concentrations of two oligonucleotide inputs. To the best of
our knowledge, molecular sensors designed to compute functions of multiple inputs across
continuous ranges of concentrations – as is carried out by natural macromolecules – have not
been successfully developed or tested.

As a driving application of a complex biomolecular calculation, we took inspiration from
ratiometric gene signatures being discovered across diseases and host responses including sepsis,
cancers, malaria, and pulmonary tuberculosis (TB).29–32 TB remains a major public health
challenge worldwide, and the development of an accurate and accessible tool to discriminate
active TB from latent TB and other diseases is a critical need. The World Health Organization
has identified the need for a non-sputum-based triage test to identify individuals who require
further testing.33 In this context, the use of a 3-gene transcriptional biomarker, including
guanylate binding protein 5 (GBP5), dual specificity phosphatase 3 (DUSP3), and Krüppel-like
transcription factor 2 (KLF2), has emerged as a promising signature for TB diagnosis.34–36 These
genes collectively form a 3-gene signature referred as Sweeney3 or, in this manuscript, the
‘TB-score’. Sweeney et al. identified this combinatorial score based on blood messenger RNA
(mRNA) expression levels, demonstrating its potential for discriminating active TB from other
diseases. However, the complexity of the TB-score, which involves the quantity
[GBP5][DUSP3]/[KLF2]2, currently requires expensive equipment involving quantitative
RT-PCR, precluding routine usage at the point of care in resource-poor settings. A molecular
sensor that could carry out the TB-score computation in samples after or during cell-free RNA
amplification would enable diagnosis with potentially much lower cost and wider accessibility,
but has not been achieved with nucleic acids, proteins, or cellular modalities.

To tackle this problem, we developed a set of crowdsourcing challenges for citizen scientists
engaging in the Eterna videogame37. Prior work has demonstrated the ability of the Eterna
community to solve RNA design tasks ranging from mRNA stabilization to design of
small-molecule-activated RNA sensors achieving thermodynamic optimality.38,39,39,40,13,14 Here,
we presented increasingly difficult challenges on the Eterna platform to build up to the final goal
of designing a complex, multi-input sensor (Figure 1; Supplemental Table 2). Within each
challenge were a set of design puzzles, each representing a sub-problem of the overall challenge
(Figure 1b). For example, in the pilot challenge of designing a single-input RNA sensor, one
task was to design an ON-sensor while another task was to design an OFF-sensor. Both ON and
OFF sensors accomplish the same goal of distinguishing the presence of an input RNA. The
Eterna interface was extended to allow players to design an RNA for more than one condition
simultaneously (Figure 1c) and to provide estimates of free energies of RNA folding in different
conditions to give players rapid computational feedback.41,42,43 Although imperfect, these free
energy estimates provide an approximation of the lowest energy secondary structure for a given
sequence to guide player designs. After player designs were collected, they were synthesized and
displayed on an Illumina sequencing chip for RNA-MaP (RNA on a massively parallel array)38

characterization. These experiments quantify the behavior of the player designs by measuring the
affinity of the RNA sensor for a fluorescent output ligand across different input ligand conditions
(Figure 1d-f). The results were then returned to the community, who, with this experimental
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feedback, were tasked with improving upon their previous results or tackling harder challenges
(Figure 1g).

The Eterna design challenges culminated with the OpenTB challenge, which asked players to
design an RNA sensor that could detect if the 3-gene TB-score is above the threshold that
corresponds to active tuberculosis.34 This biomarker signal takes as input the mRNA
concentrations of the genes GBP5, DUSP3, and KLF2. From each mRNA, we selected a short
fragment to create simplified RNA inputs to the RNA sensor to be designed. Output fluorescence
signal is generated by a fluorescently tagged RNA reporter engineered to bind to one of the
possible states designed for the RNA sensor. Along with further testing with flow cytometry as
an independent experimental readout, the results with OpenTB sensor design provide a proof of
concept for using RNA sensors to detect a complex diagnostic signature.

Through these progressively more difficult challenges, Eterna players developed and
documented new and productive RNA design strategies. We incorporated player-derived
strategies into a Monte Carlo tree search algorithm, called “Nucleologic,” that allowed for the
automation of the RNA sensor design process. Using Nucleologic, we generated candidate
designs to compute this complex TB-score biomarker output signal. After experimentally testing
a few selected designs, we identified a successful RNA and DNA sensor for the TB-score with
performance comparable to top designs submitted by players. Nucleologic, which harnesses the
human-inspired heuristics used by Eterna players, thus shows promise in expediting the process
for designing nucleic acid sensors that can compute increasingly complex functions of multiple
inputs.
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Figure 1. Pipeline for crowdsourced RNA sensor design and high-throughput testing. a) RNA
sensor design challenges are presented to the Eterna community. [Input] represents the
concentration of the input ligand. Concentration increases along the arrow direction. b) Each
challenge consists of multiple puzzles such as designing an ON or OFF sensor for the specified
inputs and outputs. c) Eterna interface enables players to design RNAs with two or more states.
d) Player designs are synthesized by DNA array synthesis and converted to libraries ready for
RNA-MaP characterization. e) Binding of fluorescent output reporter is quantified across all
clusters at increasing reporter concentrations in the background of input molecules at fixed
concentrations. Each cluster on the flow cell corresponds to a designed sequence. f) Binding data
are quantified from multiple clusters for a single RNA sensor variant with the median fit shown.
The data are then released to the Eterna community, and subsequent rounds of designs are
solicited, or the next challenge is presented. g) The community is challenged with increasingly
difficult design challenges gradually building up to the complex tuberculosis sensor. In (a) and
(g), yellow and blue coloring denote input conditions in which sensor response (binding of
output ligand) is tighter or weaker than a specified threshold.
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Figure 2. Pilot challenge: Single-input RNA sensors. The first challenge presented to the
Eterna community was to design a single-input RNA sensor to detect the presence or absence of
an input RNA oligonucleotide. a) One puzzle within the challenge involves designing the output
to bind a MS2 coat protein fused to a fluorescent tag. b) The other puzzles involved binding or
releasing an RNA oligonucleotide reporter conjugated to a fluorescent dye. c) Puzzle (a) results.
(top) Players were constrained to three different templates for design with each template having a
different MS2 hairpin location (top). Measured activation ratios across the architecture variants
over two iterative rounds. d) Top player design of an RNA input/MS2 output ON-sensor for
puzzle. e) Puzzle (b) results. Measured activation ratios for the ON and OFF sensors over two
iterative rounds. f) Top player design of an RNA input/RNA output ON-sensor puzzle. In (a) and
(b), yellow and blue coloring denote subspaces in which sensor response (binding of output
ligand) is tighter or weaker than a specified threshold. In (c) and (e), the red horizontal line is the
approximate maximum activation ratio that can be experimentally measured in RNA-MaP
(1000). In (d) and (f), RNA secondary structures were predicted using NUPACK.
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RESULTS

Pilot challenge: Single-input RNA sensors

As an initial step towards more complex RNA design challenges, Eterna players were presented
with a pilot challenge of designing single-input RNA sensors that responded to a separate RNA
oligonucleotide. As a baseline, we sought to emulate or outperform prior work which has
reported activation ratios as high as ~900 for sensors of RNA oligonucleotides (albeit in cellular
contexts).44–46 To connect this pilot round with the eventual challenge of designing TB-score
sensors, we explored two signaling mechanisms (i.e., “outputs”). In the first mechanism, RNA
sensors are turned ON by having binding of input RNA lead to display of an MS2 virus stem
loop RNA structure, which recruits fluorescently-labeled MS2 virus coat protein (Figure 2a).
This mechanism was chosen since Eterna players have previously designed RNA sensors with
MS2 protein binding as an output signal.38 The input for these puzzles was a short RNA derived
from hsa-miR-208a, a 22-nt miRNA (Supplemental Table 3) whose detection might aid in
diagnosing cardiac hypertrophy47. Motivated by the final goal of developing sensors compatible
with TB diagnosis, the second output mechanism involved hybridization of a fluorescent RNA
reporter to a complementary sequence element in the sensor in the ON state. This output
mechanism allows for incorporation in fluorescence-based or lateral flow-based diagnostic
devices. Depending on the puzzle, players designed either an “ON” sensor where the RNA
sensor fluoresces when bound to the input, or an “OFF” sensor where the RNA sensor fluoresces
when not bound to the input.

Based on our prior work demonstrating the importance of widely exploring the relative
placement of functional elements to achieve success,14 Eterna players were allowed to choose
between three different templates that placed the MS2 aptamer sequence at different locations
along the engineerable RNA molecule (Figure 2c). For the designs using an RNA reporter
output, the flexibility of the NUPACK prediction algorithm allowed the position of the RNA
reporter binding site to be left unconstrained. All designs were limited to 85 nucleotides in
length.

For sensor designs that used MS2 binding as output signal, 3,369 and 2,319 player designs were
characterized in Round 1 and 2 respectively, split across three different template options (Figure
2c). Round 1 presented players with only three templates while Round 2 introduced an additional
template to increase the diversity of designs. The affinity of the RNA designs for their output
molecules was then measured in the absence (0 nM) or presence (200 nM) of the input
oligonucleotide. From the affinities for the output reporters, the activation ratio (AR) was
calculated for each design by dividing the Kd [0 nM input] with the Kd [200 nM input]. The AR
represents the fold change in the observed Kd of reporter binding between the OFF state (weak
reporter affinity) and ON state (strong reporter affinity). Thus, larger AR values represent a
sensor that better discriminates between the high and low input environments. We chose to use
fold change in Kd to measure AR since it gives an unbiased and high signal-to-noise measure of
performance by taking into account overall switch behavior across multiple output
concentrations rather than at a single output concentration. In the limit that the output ligand
concentration approaches zero, the fold change in observed Kd is equal to the AR values
commonly reported in literature for switches (Methods and ref.48); because we can measure Kd
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values between 1 nM and 1 μM, AR values as high as 1000 can be precisely measured and are
experimentally reproducible (Extended Data Figure 1). Player designs improved dramatically
between the two rounds (Figure 2c). By refining previous submissions, players achieved designs
with AR values close to or above 100 with the top design achieving an AR of (error110

−50
+80

values written in superscript and subscript correspond to one standard error, derived from fits to
log Kd, which give log10 AR of 2.06±0.22) (Figure 2d). Additional design refinement in a third
round did not further improve AR values (Extended Data Figure 2).

Motivated by excellent performance in MS2-based output problems, 1,237 and 2,118 player
designs were collected over two rounds for puzzles with RNA-based output more relevant for the
TB-score sensors (Figure 2e,f). Round 1 used an 18-nt input and a shorter 10-nt reporter
oligonucleotide, while Round 2 used a 17-nt input and a longer 20-nt reporter oligonucleotide.
The reporter length was increased due to community feedback suggesting it was too difficult to
design for a short output binding site (Supplemental Table 3). With a longer reporter
oligonucleotide, players achieved AR above 1000 with a maximum observed AR of 2050

−250
+280

(log10 AR of 3.31±0.06) (Figure 2e,f) for OFF sensors. The ON sensors achieved slightly lower
AR values, with a maximum observed AR of (log10 AR of 2.76±0.04). Overall,570

−49
+54

throughout the pilot challenge, players achieved activation ratios at or beyond our experimental
detection limits and previously reported RNA-triggered sensors.
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Figure 3. Challenge 1: Logic gates. Players were tasked with constructing all possible RNA
sensors capable of computing Boolean logic gates of two different input RNAs denoted as A and
B, with an output of binding a fluorescent MS2 coat protein. a) Each puzzle in this challenge
corresponded to a different logic gate: AND, OR, NOR, XOR, NAND, XNOR, A OR NOT B,
and A AND NOT B. b) Measured activation ratios (lower bound) of the eight different logic
gates over two iterative rounds. The red horizontal line is the approximate maximum activation
ratio that can be experimentally measured in RNA-MaP (1000). c) Top player design for XOR
puzzle. RNA secondary structures were predicted using NUPACK. d) RNA-MaP binding affinity
measurements of the player design in (c). Vertical lines correspond to the Kd values. The points
represent the median experimental fluorescence used to fit the binding curve. e) Ideal truth table
and experimental results for each logic gate. The experimental data are from the top two designs
from different Eterna player; Kd values given in nM. In (a) and ideal truth tables in (e), yellow
and blue coloring denote input conditions in which sensor displays or does not display the MS2
hairpin. In (e), 0 and 1 ‘binary’ values correspond to 0 and 100 nM concentrations of A and B.

Challenge 1: Logic gates

We next challenged the Eterna community to generate designs of RNA Boolean logic gates
(Figure 3a). This first full-scale challenge (Challenge 1) builds off of the pilot challenge by
incorporating one additional input. While the goal was to gradually provide the Eterna design
community experience in designing more complex multi-input RNA sensors, logic gates are, in
their own right, useful tools in synthetic biology and nanotechnology and can, in principle, be
chained together to execute complex computations.

All logic gates were designed to bind fluorescently tagged MS2 protein as the output signal. In
response to player feedback, an MS2 “stamp” tool was added to Eterna. This enabled players to
easily place the MS2 hairpin RNA sequence anywhere they wanted within their design, giving
players more flexibility in the design process compared to the Pilot Challenge. Each design was
tested under four conditions corresponding to the four different binary inputs of the logic gate
where A and B represent the first and second bit respectively. The binary input of 0 corresponds
to 0 nM, while a binary input of 1 corresponds to 100 nM, and the A and B sequences re-used
sequences of the input and output oligonucleotides used in the Pilot Challenge (Supplemental
Table 3). To evaluate performance for each design, a conservative ‘activation ratio lower bound’
(ARLB) was computed by calculating the ratio of the Kd values for the poorest affinity OFF state
with the tightest affinity ON state, where the OFF states and ON states are the conditions where
an ideal logic gate would return a 0 or 1 respectively. Prior work on single-molecule logic gates
have achieved ARLB values as high as 21 for OR, AND, and NOR gates9 and above 100 when
coupled to additional components like DNA polymerases49. ARLB values for XOR and XNOR
from RNA, protein, and DNA systems have remained below 10.9,25,50–55 We sought to determine
if similar or better values might be achievable with single-molecule RNA sensors designed on
Eterna.

In Round 1 of the logic gate challenge, Eterna players were tasked with designing OR, AND, and
XOR gates. These design tasks were expanded in the second round to include NOR, A OR NOT
B, NAND, A AND NOT B, and XNOR for a total of eight logic gates, which cover all possible
truth tables (up to permutation of A and B; Figure 3b). During the first round, the best of 1,892

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.04.572289doi: bioRxiv preprint 

https://paperpile.com/c/QJVWZ4/Axbm
https://paperpile.com/c/QJVWZ4/S8Ol
https://paperpile.com/c/QJVWZ4/qekr+VFkh+8bAV+eOHE+FIyz+NQT9+41qW+Axbm
https://doi.org/10.1101/2024.01.04.572289
http://creativecommons.org/licenses/by-nc/4.0/


player designs achieved ARLB values near 20, and in the second round, the best of 6,244 player
designs achieved ARLB greater than 100. Of all the logic gates, XOR gate was the most difficult
for Eterna players to design, with the majority of Round 1 designs having an ARLB value < 1.
Nevertheless, after Round 2, the top player designs for XOR and XNOR achieved ARLB of 60

−13
+16

(log10 ARLB=1.78±0.10) and (log10 ARLB=1.94±0.12), respectively (Figure 3c,d). Many87
−21
+28

successful XOR and XNOR gates in Round 2 (notably the distinct high ARLB population of
XNOR in Figure 3b) were designed by modifying sequences for Round 1 AND and OR gates
that experimentally gave hints of XOR or XNOR activity (Supplemental Table 4). This result
suggests that carrying out multiple simultaneous challenges on Eterna can lead to productive
cross-fertilization of solutions. For all 8 logic gates, top player designs successfully approximate
the logic gate outputs with the best designs achieving ARLB greater than single molecule logic
gates previously reported in the literature (Figure 3e).
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Figure 4. Challenge 2: Ratio sensor. a) Players were tasked with designing an RNA sensor that
turned on when [A]/[B] > ¼, with binding of fluorescent MS2 coat protein as output signal. b)
Measured activation ratios (lower bound) across different puzzles and rounds. The red horizontal
line is the theoretical maximum for ARLB of 20 for the tested conditions. c) Top player design
from the R2 puzzles. d) Top player design for the R3 puzzle. f) Ideal truth table and the player
design truth table for (d). g) Ideal truth table and the player design truth table for (c). The *
symbol in the ideal truth table of (f) and (g) indicates the in silico conditions simulated in Eterna
puzzles. Undefined = und., not defined = n.d. RNA secondary structures in (c) and (d) were
predicted using NUPACK. In (a) and ideal truth tables in (f-g), yellow and blue coloring denote
input conditions in which sensor displays or does not display the MS2 hairpin.

Challenge 2: Ratio sensor
With the aim of building up to the final challenge of sensing the 3-input TB-score, which
involves multiplication and division of the concentrations of input RNAs, we challenged the
Eterna community to design an RNA sensor capable of computing the ratio of the concentrations
of two input molecules. Specifically, players were tasked with designing an RNA sensor to detect
if the ratio of two input RNAs A and B is greater than 1/4 (Figure 4a). The key idea behind this
challenge was driven by a mathematical form guaranteed by equilibrium thermodynamics: if a
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sensor can be designed to have two mutually exclusive states, one state binding A (but not B),
and another state binding B but not A, the relative population of the states will be proportional to
[A]/[B] (Methods). If the relative energetics of the two states can be set to achieve equal
populations at [A]/[B] = ¼ and to favor the A-binding state under high [A]/[B] conditions and
the B-binding state at low [A]/[B] conditions, the sensor responds to the desired ratio.

Several different puzzles were created to explore which in silico constraints might yield the most
performant ratio sensors (Figure 4b). The “R2” puzzles tasked players to design a sensor that
exhibited the desired behavior at two different simulated input concentrations, while an “R3”
puzzle tasked players to design a sensor that exhibited the desired behavior at three different
input concentration combinations. The simulated design conditions for the R2 puzzle were 5 nM
A & 100 nM B and 100 nM A & B, corresponding to A/B of 1/20 and 1. Design conditions for
the R3 puzzle added a third condition, 0 nM A & 5 nM B, corresponding to [A]/[B] of 0. The
hypothesis for R3 was that by having an additional OFF condition constraining the puzzles,
designs submitted would be more robust across all A and B concentrations tested experimentally.
Furthermore, we sought to understand whether allowing players to each explore a wide set of
binding sites for A and B might be better than focusing the Eterna community’s attention on
specific sets of predefined binding sites. We deployed three sets of R2 puzzles to test this idea
(“predef.”, “predef. alt”, and “no predef.”, Figure 4b). Finally, to test generality of player design
strategies, we used different A and B sequences here than in Challenge 1, using input and output
sequences from different rounds of the Pilot Challenge (Supplemental Table 3).

The designs were experimentally tested across a total of seven conditions, expanding the two or
three conditions presented to Eterna players (Figure 4f,g), over two rounds with 2,254 and 2,534
designs tested, respectively. ARLB was again computed as a worst-case ratio of the
highest-affinity OFF state with the lowest-affinity ON state with respect to all seven test
conditions; the best possible theoretical ARLB value achievable was 20. Across the two design
rounds, many player designs achieved ARLB values greater than 10. The top player design from
R2 puzzles gave an ARLB of (log10ARLB 1.06 ± 0.26) (Figure 4c). These top designs came11

−5
+9

from the R2 puzzle without predefined binding sites, which overall led to significantly better
ARLB than the two puzzles that constrained designs with predefined A and B binding sites. This
result supported the principle that wide varieties of design patterns should be explored during the
design process, which was also supported by our prior work on small molecule sensors14 as well
as the previous challenges in this study (Figures 2-3). While the average performance in R3 is
slightly worse than in the R2 puzzles, the best overall submissions were from the R3 puzzle,
supporting our hypothesis that an additional simulated design condition would favor better
solutions (Figure 4b). The top R3 designs achieved experimental truth tables similar to the ideal
truth table across all conditions and a top ARLB of (log10ARLB = 1.53 ± 0.18) (Figure34

−12
+18

4f-g). Interestingly, many designs from this round came from strategies developed by Eterna
players in the previous challenges and developed further in the following challenge
(Supplemental Table 4).
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Figure 5. Challenge 3: OpenTB sensors. The three inputs are designated as A, B, and C with
the output being a fluorescent RNA reporter. a) Players were tasked with designing an “INC”
TB-score sensor with the fluorescent RNA reporter binding when [A][B]/[C]2 > 1/16 (left), or a
“DEC” sensor binding fluorescent RNA reporter when [A][B]/[C]2 < 1/16 (right). b) Measured
activation ratios (lower bound) for INC and DEC designs across two iterative rounds. The red
horizontal line is the theoretical maximum for ARLB of 9. c) Best INC player design from Round
2. d) Ideal truth table and experimental truth table for INC design in (c). e) Best DEC design
“AK2.5” from Round 2. f) Ideal truth table and experimental truth table for DEC design in (d).
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RNA secondary structures in (c) and (e) were predicted using NUPACK. In (d) and (f), the
separatrix plane for [A][B]/[C]2 = 1/16 appears as a line due to the chosen view of the 3D plot,
and gray points in ideal truth tables are undefined with respect to the three-gene TB-score.

Challenge 3: OpenTB sensors
After successfully creating two input sensors for logic gates and a ratio function, we challenged
Eterna players to design an RNA sensor to compute the 3-gene TB-score for active tuberculosis.
In clinical studies, active tuberculosis correlates with expression of three gene mRNAs (GBP5,
DUSP3, and KLF2; here called A, B, and C) in which [A][B]/[C]2 is greater than or equal to 1/16
(Methods). In the OpenTB challenge, we envisioned that both positive and negative sensors for
this signature would be clinically useful either separately or in combination for a more robust
diagnostic. We therefore challenged the Eterna community to design RNA sensors to address the
full TB-score calculation: [A][B]/[C]² > 1/16 (“INC” to detect when the TB-score is above the
threshold) or [A][B]/[C]² < 1/16 (“DEC” to detect when the TB-score is below the threshold)
(Figure 5a). Additional puzzles were presented to let players experiment with designing simpler
intermediate RNA sensors related to this final sensor (Supplemental Table 2; Extended Data
Figure 3).

Players were asked with designing RNA sensors that exhibit two mutually exclusive states, one
state binding a single copy of A and B but no C strands, and the other state binding two copies of
C but no A or B. The puzzles involved four simulated design conditions: 100 nM A & 100 nM
C, 100 nM B & 100 nM C, 50 nM A&B & 300 nM C, 50 nM A&B & 100 nM C. For all
conditions, 25 nM of the RNA output reporter R (initially chosen to be the same as prior
Challenge 2) is present. These four conditions correspond to values of the TB-score ratio equal to
0, 0, 1/36 and 1/4 respectively. The first two conditions that keep A or B as 0 nM ensure player
designs can properly bind A and B and will treat them as functionally interchangeable since they
are both multiplied on the numerator. This helps to avoid designing an [A]/[C] or [B]/[C] sensor.
Having the sensor switch its favored state between the last two conditions ensures that binding of
C competes with the binding of A and B; requiring two copies of C bind cooperatively ensures
the sensor’s output involves [C]2 in the denominator. Altogether, these four simulated solution
conditions establish strong boundary conditions for player designs. The standard formula for
chemical equilibrium then requires the ratio of the sensor’s two states to be proportional to
[A][B]/[C]2 and helps ensure that the sensor should sustain its desired behavior at other
concentrations of A, B, and C (Methods), an assumption we also tested experimentally below.
Throughout the OpenTB challenge, players also had access to simulation plots which provided in
silico NUPACK predictions at a whole suite of input concentrations ranging from fM to mM to
help players refine sequences beyond the four conditions presented in Eterna (Extended Data
Figure 4). In addition, after each round of experiments, the Eterna community was given a
detailed PDF summary of each design showing the binding curves of the reporter RNA under all
conditions tested in RNA-MaP (example in Extended Data Figure 7).

For Round 2, the 20-nt input sequences were changed after players selected new fragments from
the TB-score genes GBP5, DUSP3, and KLF2 based on BLAST analysis (Supplemental Table
3). Also, based on player recommendation, the RNA output reporter was lengthened from 10-nt
to 14-nt to create more binding potential. Finally, a “Freeze Mode” was added to Eterna at player
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request which allows players to modify their RNA sequence without triggering NUPACK
computation, which required over a minute on most player computers.

A total of 2,694 Round 1 designs were tested at 13 different combinations of A, B, and C input
concentrations, while 2,818 Round 2 designs were tested against 19 different combinations to
more fully explore the phase space of behaviors (Supplemental Table 5). Under each of these
conditions, full binding curves were derived measuring the effective Kd of the output signaling
reporter to the RNA molecule. For each design, ARLB was computed as a ‘worst-case’ metric,
similarly to the previous challenges, as the ratio of the highest-affinity OFF state with the
lowest-affinity ON state with respect to all experimentally tested conditions; a perfect sensor
would achieve ARLB of (1/4)/(1/36) = 9. The best INC design achieved ARLB of 1. 8

−0.6
+0.9

(log10 ARLB = 0.25±0.18; Figure 5c). Worse INC designs were observed in Round 2 compared to
Round 1. This decrease in ARLB may be due to the increased number of conditions tested, which
increases the likelihood of observing errors in the sensor that are sensitively captured by ARLB
(Figure 5b). The DEC design challenges were more successful, with player designs like AK2.5
reaching an ARLB of (log10 ARLB = 0.69±0.13) (Fig 5b,d). These values are affected by4. 9

−1.3
+1.8

experimental uncertainties in some of the 19 test conditions, likely leading to artificial
suppression of ARLB. When focusing specifically on the four A, B, and C conditions that were
simulated in the Eterna puzzle, this same AK2.5 sensor gives an ARLB* of 11. 5

−2.5
+3.3

(log10 ARLB* = 1.06±0.11; see Extended Data Figure 5), agreeing with the maximum value of 9.
To test if the improvements might be due to the updated input and output RNA sequences,
Round 3 repeated the challenges but reverted these sequences to the original Round 1 sequences
(Supplemental Table 2); indeed, this round led to sensor performance as poor as Round 1
(Extended Data Figure 6). For further independent evaluation across a broader range of input
conditions, the top INC and DEC designs were carried forward to flow cytometry measurements,
described next.
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Figure 6. Flow cytometer evaluation of the top performing DEC tuberculosis sensor. a)
Experimental pipeline for testing an RNA sensor with flow cytometry. 1 micron diameter beads
coated in (dT)25 were incubated with the RNA sensor and then washed to remove unbound RNA.
The beads were then incubated at various conditions and fluorescence measured in the flow
cytometer. b) Ideal and experimental truth tables across various conditions: (top to bottom) A,B
against C with A equal to B; A against C with B = 25 nM; A against B with C = 25 nM; and B
against C with A = 25 nM. The red line corresponds to the optimal fluorescent threshold to
approximate the intended logic function to diagnose active tuberculosis. The dotted black line
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corresponds to the ideal threshold for diagnosis. c) Best sensor AK2.2 tested by flow cytometry;
RNA secondary structures predicted using NUPACK. d) 3D scatter plot of the ideal truth table
(left) and experimental values (right) with the dividing plane at [A][B]/[C]2 = 1/16. e)
Distribution of measured fluorescence of design AK2.2 across different values of [A][B]/[C]2.
The black dashed line represents the tuberculosis diagnostic threshold at [A][B]/[C]2 = 1/16 and
the red line represents the best fluorescence cutoff to diagnose active tuberculosis. f) Receiver
operating characteristic (ROC) curve of design AK2.2. ‘Low input’, ‘medium input’, and ‘high
input’ correspond to computing AUROC for data points where [A]+[B]+[C] values are <75 nM,
75-170 nM, and >170 nM, respectively. In (d), the separatrix plane for [A][B]/[C]2 = 1/16
appears as a line due to the chosen view of the 3D plot.

Flow Cytometer Characterization of the Best OpenTB sensor. As an independent and more
thorough test of functional accuracy, the top-scoring player designs from the OpenTB challenge
were selected for characterization across a wide range of input conditions using flow cytometry
(Figure 6a). This orthogonal measurement of fluorescence response was achieved by first
attaching the sensors to the surface of magnetic beads and then incubating with a fluorescent
RNA reporter (30 nM) at different input concentrations of A, B and C input RNA molecules
(Figure 6b). Because some of the [A][B]/[C]2 conditions in the flow cytometry experiments
approach closely to the separatrix 1/16, the best achievable ARLB metric would approach 1 even
for perfect designs and not be useful for ranking. We therefore ranked designs by a metric more
common in diagnostic characterization, the area under the receiver operating characteristic curve
(AUROC), which varies the output fluorescence threshold and computes specificity and
sensitivity. In agreement with RNA-MaP measurements, DEC sensors outperformed INC sensors
in flow cytometry. A particularly notable DEC sensor with excellent performance at low
concentrations of A, B, and C input RNA molecules was a close homolog of AK2.5 named
AK2.2 (Figure 6c and Extended Data Figure 9), which achieved AUROC of 0.935 under these
test conditions (Extended Data Figure 8). AK2.2 was carried forward for more detailed testing
across 144 different conditions (Figure 6c). Overall, AK2.2 achieved AUROC 0.959 across
these conditions (95% confidence interval CI, 0.930–0.988; Figure 6d). Across the entire
input-space volume that was experimentally tested, AK2.2 was able to properly categorize points
as positive or negative with a specificity of 89.6% and a sensitivity of 89.5% at a threshold
chosen to maximize the sum of the specificity and sensitivity (red line, Figure 6e). The sensor
performance was expected to be best at the highest input oligonucleotide concentrations, where
the assumption that either A and B or two copies of C bound would best hold, without states with
fewer input oligos bound. Indeed, at concentrations of [A]+[B]+[C] > 170 nM, the sensor
performance is visually clearer (black points in Figure 6d) and AUROC increases to 0.979 (95%
CI, 0.948–1.0) for A, B, and C in this high input concentration range.
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Figure 7. Nucleologic automates the design of complex nucleic acid sensors by integrating
player inspired heuristics with a classic game play strategy, Monte Carlo tree search. a)
Schematic example demonstrating the use of Domain Matching Secondary Structure Design
(DMSSD) for a toy problem involving two input RNAs designated as A and B and one output
RNA reporter designated as R. The design is grouped into blocks of domains each with a label
that designates to which domain it is complementary. For example, A’ is complementary to the
input RNA A as well as to A”. The domains are interwoven such that the domains compete with
each other for the formation of base paired stems. b) Nucleologic performs two different types of
modifications to sensor sequences: 1) “Domain mutation” creates a random point mutation, and
2) “Domain move” removes the domain and reinserts it into a new location. c) The Nucleologic
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algorithm consists of three steps: selecting the best leaf node based on the Upper Confidence
bound for Trees (UCT) score, expanding the leaf node by generating children using the
modifications in (b), and scoring the leaf and backpropagating the value, updating the UCT
score of all nodes in the path back to the root node. d) Example of a design of a DEC sensor
HP_MCTS_130, designed using Nucleologic. e) Experimental truth tables measured at each
condition in (d). f) 3D scatter plot of the ideal truth table (left) and experimental values (right)
with the dividing plane at [A][B]/[C]2 = 1/16. g) Receiver operating characteristic (ROC) curve
of the Nucleologic RNA sensor HP_MCTS_130 over all tested conditions (green). Bins 1 to 3
correspond to computing the AUROC for data points where [A]+[B]+[C] are <75 nM, 75-170
nM, and >170 nM. ROC curves for AK2.2 (blue) and the Nucleologic DNA sensor
MCTS_DNA_DEC (orange) are shown for comparison. h) DNA DEC tuberculosis sensor
designed using Nucleologic. Experimental truth table for A,B (at equal concentrations) against
C. In (e) and (h), the red line corresponds to the optimal fluorescent threshold to diagnose active
tuberculosis. The dotted black line corresponds to the ideal threshold for diagnosis.

Computational design of RNA and DNA sensors for the TB-score
Starting with early design rounds on two-input Boolean logic gates, Eterna players derived a
sequence-independent heuristic for sensor design named Domain Matching Secondary Structure
Design (DMSSD; see Supplemental Table 4). DMSSD deploys a constraint-driven method
using predefined domains to design secondary structures. The method “chunks” the RNA
sequence into domains where each domain is associated with another complementary or
near-complementary domain in the sequence to facilitate intramolecular interaction via
secondary structure. This method is itself an improvement upon a common player strategy called
kernel attractors (Supplemental Table 4) where a domain in the designed sequence will be
“attracted” to the output and input oligomers due to complementary sequences. While the kernel
attractor strategy requires fine tuning the interaction strength of one domain with two or more
sequences, DMSSD simplifies the process by focusing on designing interactions between a
domain and its complementary domain and relying on mutual exclusion of interleaved stems in
RNA secondary structure.

Figure 7a shows an example of employing DMSSD to design an RNA sensor to detect two input
RNAs, A and B, along with an output RNA R. First the RNA sensor sequence is partitioned into
several domains: A’, A”, B’, B”, R’, and R”. Domains A’ and B’ were designated to harbor
complementary sequences to input A and B respectively. For the output, domain R is
complementary to a fluorescently tagged RNA reporter. In addition to these domains, extra
domains were added that are complementary to an existing domain such as A” which is
complementary to A’. This allows for complex secondary structure rearrangement in the absence
and presence of the input ligands due to the network of complementary regions in the RNA by
interweaving the domain locations. In particular, the R’-R’’ stem cannot occur simultaneously
with the A’-A’’ or B’-B’’ pairing. By altering the complementarity between domains and the
order of domains, it is possible to alter the RNA sensor's response to fit the boundary conditions
of a user-defined function f([A],[B]).

Inspired by these design principles from Eterna players, we created Nucleologic, a Monte Carlo
tree search algorithm for automating the design of complex RNA sensors (Figure 7b-c). The
input to Nucleologic is the set of domains that make up the single strand nucleic acid sequence as
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well as the order of the domains. Typically, a domain with a sequence complementary to the
input and output RNAs is included with extra domains that are filled with N’s. During sequence
optimization, Nucleologic can perform two types of moves to the sequence: domain mutation,
which mutates the sequence within the domain, or domain move, which moves the location of a
domain. The choices of which intermediate solutions to carry forward are made based on Monte
Carlo tree search, a classic automated game playing strategy.56,57,58 By posing the problem as a
game with DMSSD-inspired moves, Nucleologic optimizes the activation ratio and fold-change
between the ON-states and OFF-states defined by the user calculated using NUPACK. Using
Nucleologic, we computationally designed several hundred DEC and INC RNA sensors for the
TB-score, screened four designs by flow cytometry, and carried forward one of these
HP_MCTS_130 for testing across 144 input conditions (Extended Data Fig. 10 and Figure 7d).
While HP_MCTS_130 does not perform as well as AK2.2, it has a lower baseline fluorescence
and can accurately discriminate between the ON and OFF states when [C] is low (Figure 7e-f).
Across the 144 points in the input-space volume that were experimentally tested,
HP_MCTS_130 was able to properly categorize points as ON or OFF with a specificity of 78.5%
and a sensitivity of 69.5%, and AUROC of 0.900 (95% CI 0.852–0.947). In contrast to the
Eterna design AK2.2, this Nucleologic RNA sensor achieves better performance at lower input
concentrations: at [A]+[B]+[C] of 70 nM or lower, HP_MCTS_130 gives an improved AUROC
of 0.932 (95% CI 0.839–1.0). To test the generality of Nucleologic, we then tested two sensors
for computing the TB-score based on DNA instead of RNA (Extended Data Fig. 10).
Experimental results from flow cytometry demonstrated that one of these, named
MCTS_DNA_DEC, switches appropriately when A and B are varied against C with a specificity
of 78.47% and sensitivity of 69.47% (Figure 7f,g). The DNA sensor achieves an AUROC of
0.899 (95% CI 0.852–0.947) (Figure 7f).

DISCUSSION

RNA and DNA are ideal substrates for designing function approximators due to the ease of
large-scale nucleic acid synthesis, availability of computational modeling methods for predicting
nucleic acid structure, and increasing throughput of experimental evaluation methods.
Nevertheless, the complexity of functions achieved by single molecule nucleic acid sensors has
been limited. Here, starting from simple single-input RNA sensors, a community of Eterna
citizen scientists successfully designed more complex multi-input RNA sensors including all
possible logic gate sensors, two-input ratio sensors, and, in the OpenTB challenge, sensors of the
3-gene TB-score [GBP5][DUSP3]/[KLF2]2 for diagnosing active tuberculosis. In all challenges,
the activity ratios of Eterna sensors approached the limits of our experimental assays or the
theoretical upper bound for the sensors, and exceeded activation ratios achieved by prior studies.
The performance of Eterna sensors was particularly striking given their compact lengths – the 85
nucleotides of the TB-score sensors presented binding sites for the 14-nt reporter as well as
GBP5, DUSP3, and two KLF2 segments (20-nt each). In addition, the sensors were robust to
transferred from repurposed Illumina sequencers (for RNA-MaP) to display on beads for more
complete characterization by flow cytometry. Driving the success of these compact, near-optimal
designs were novel Eterna strategies such as the kernel attractor and DMSSD heuristics. By
incorporating these strategies into a Monte Carlo tree search, we created Nucleologic to automate
the design of complex nucleic acid sensors. Our work demonstrates the continuing utility of
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citizen science-based crowdsourcing integrated with iterative, high-throughput experimental
evaluation to design complex RNA molecules.

These results suggest a route to developing nucleic acid sensors for multi-gene signatures for
diseases beyond active tuberculosis, including septic shock, cardiovascular disease,
vaccine-induced immunity to malaria, and cancers.30–32,3630–32,36,4730–32,36 However, there are
limitations to the current proof of concept. Eterna and Nucleologic currently cannot handle
sensor designs with more than 6 inputs due to the impractical factorial scaling of computational
time with the number of interacting strands.43 This limitation currently precludes automated
design of, e.g., the 10-gene signature for sepsis.30 Furthermore, in future efforts, it will likely
remain necessary to experimentally screen multiple designs; current automated designs have
generally acceptable performance (AUROC of 0.9) but are worse at extreme input gene
concentrations, presumably due to inaccuracies in available modeling packages. Importantly, the
application of single molecule sensors for low-cost diagnostics will require enzymatic
amplification of gene segments and the readout of reporter binding in inexpensive platforms.
Such technologies have been developed for single-gene sensors59–61 but remain to be
demonstrated for the more complex multi-gene sensors like the ones described here.

There are more general limitations to this work. Most fundamentally, we only designed
single-molecule sensors for up to three distinct inputs and for systems restricted to two states.
The space of functions able to be approximated by a molecular sensor is much larger, comprising
the space of all positive rational polynomials. This space theoretically allows for approximation
of any continuous function in the nonnegative quadrant with nonzero leading homogeneous term
(Supplemental Appendices). Designing systems that have more than two states and binding of
more than three inputs would allow for sensing of more complex functions, with more elaborate
contours like ellipses or the piecewise linear functions encoded by artificial neural networks,19

but has not been carried out. Last, for applications involving low-energy computing or
embedding computation in nucleic acid therapeutics, thermodynamic reversibility of sensors
would enable repeated and continuous use in real world settings. Such reversibility appears
feasible through the approaches described here and has been demonstrated for RNA sensors of
single small molecules14 but has not been demonstrated for multi-input sensors.
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MATERIAL AND METHODS

Eterna online interface
The design of RNA molecules in Eterna has been described previously.14,37 In this work, the
interface was further improved to allow for visualization, calculations, and design using several
strands of RNA. Multi-stranded folding calculations from the NUPACK folding package43 were
integrated into Eterna, thereby providing players with computational feedback during the design
process. For designs utilizing RNA reporter output, the RNA reporter binding site is fully
unconstrained in terms of binding site location, and the simulated reporter concentration was set
to 100 nM (single input sensors) or 25 nM (OpenTB). The puzzle interface provides
visualization of the secondary structure of the complex with highest probability under each
simulated condition. All RNAs were constrained to have no repeat of any four nucleotides and
uniform lengths of 85 nucleotides to aid synthesis. Only the RNA in/MS2 out designs are 77
nucleotides. Wet-lab experimental scores were converted to numbers between 0 and 100 and
were based on either activation ratios (AR) or, for multiple state problems, lower bound
activation ratios over a subset of input conditions (ARLB*); see main text. Links to all puzzle
project pages, which include in-game scores, viewing of all submitted designs, and experimental
summaries made available to the player community are compiled in Supplemental Table 2.

High-throughput characterization of designs
The quantitative characterization and analysis of RNA designs through RNA-MaP was
performed as previously described.14,38,39 DNA templates for designs were purchased in
oligonucleotide pools (CustomArray, Bothell, WA), amplified by PCR or emulsion PCR, and
sequenced on Illumina MiSeq instruments (primers in ref.14); the RNA was transcribed directly
on the MiSeq sequencing chip in a repurposed Illumina Genome Analyzer II instrument. The
sequences and protocols for preparing an array of clonal RNA clusters and for preparing
fluorescently labeled MS2 coat protein were those described in ref.14. Here, several fluorescent
RNA reporters were also used to measure the affinity across several input conditions. For each
experiment, a full binding curve was collected for each cluster over a concentration range of
0.7–1500 nM for MS2 protein and of 0.09–1500 nM for fluorescent RNA oligos, enabling a
maximum range of activation ratios of approximately 1000. For RNA input and output sequences
used in the experiments, see Supplemental Table 3. For experimental conditions tested for
Challenge 3 on RNA-MaP, see Supplemental Table 4.

Independent assessment of TB-score sensors using flow cytometry
Flow cytometry enabled characterization of selected sensors across a large collection of input
RNA concentrations. For each RNA sensor, DNA primer oligos for assembly were found using
Primerize62,63 and ordered from Integrated DNA Technologies (IDT). Full-length DNA templates
were assembled using standard PCR assembly protocols available at
https://primerize.stanford.edu. Briefly, 100 µL of 1x PCR mix containing Phusion DNA
polymerase (Thermo Fisher Scientific) was prepared with 2 µM of first and last primers (P1 and
P4 or P6 for BC_AK2.2 or HP_MCTS130_DEC respectively), and 40 nM of the other primers.
Then the DNA was amplified and transcribed to RNA as previously described14. For the
MCTS_DNA_DEC construct, the sequence was ordered as a single-stranded DNA from IDT.
The sequences are listed in Supplemental Table 3. Nucleic acid beads were prepared as in a
previous study on small molecule sensors.14 Nucleic acids were loaded onto the magnetic bead
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by first preparing 3.33 𝜇L of bead mix solution by mixing 0.33 𝜇L of poly-T-coated beads, 0.175
𝜇L RNA (250 nM), and 2.825 𝜇L of H2O and incubated at 37˚C for 5 minutes and then put on ice
for 5 minute. The buffer was removed and the beads were washed three times with 100 𝜇L
solution containing 1x Other buffer and 1x TMK buffer (10x Other buffer contains 1 mg/mL
BSA, 10 mM DTT, 0.1 mg/mL yeast tRNA, 0.1% Tween-20; 5x TMK buffer contains 500 mM
Tris-HCl pH 7.5, 400 mM KCl, 20 mM MgCl2). After washing, the beads were resuspended in
3.33 𝜇L of H2O. The bead mix is then added to 20 𝜇L TMK buffer, and 10 𝜇L Other buffer, 3 𝜇L
reporter (R) RNA, and 43.66 𝜇L of H2O resulting in 80 𝜇L of solution. 20 𝜇L of solution
containing different concentrations of RNA A, B, and C was added. The final concentration of R
was 30 nM, set slightly higher than the 25 nM simulated reporter concentration in Eterna based
on empirical calibration of sensor affinities from RNA-MaP experiments. Each sample was
analyzed using a Sony SH800S Cell Sorter and data for 10,000 events were collected per sample.
Beads were excited using a 561 nm laser and their emitted fluorescence was measured from the
600±60 nm emission channel.

Nucleologic
Nucleologic is a Monte Carlo tree search (MCTS) algorithm56,57 for designing riboswitches,
available at https://eternagame.org/about/software. Inspired by the Eterna player strategy of
domain mapping secondary structure design (DMSSD), the sensor is treated as an ordered list of
domains with each domain containing its own sequence. The root node of the MCTS is generated
based on the user input. Possible inputs and outputs are limited to aptamers and RNA/DNA.
When using aptamers in Nucleologic the sequence, secondary structure, and Kd must be
specified. The input file must also specify the condition(s) that the sensor must satisfy in order
for it to be considered a solution. Each condition is specified as ON or OFF depending on
whether the output is bound or not; as well as the criterion of success, at which point the
algorithm terminates even if it has not completed the total number of iterations Niterations. For
example, the ON state could be input A is 100 nM and the OFF state could be input A is 0 nM;
and the early termination success criterion could be specified as having an activation ratio of
greater than 50. At least one ON and one OFF condition must be specified. Extra parameters to
alter the MCTS run can also be specified such as the number of iterations, number of children
generated, folding package (e.g., NUPACK, etc), and more. The code documentation includes
details and examples of input files. The MCTS then involves growing a tree whose nodes
represent sequence solutions for the sensor, with scores updated through the following four-step
process:

Step 1: Selection. Starting from the root node of the tree, child nodes are successively chosen
until a leaf node is reached. If a node has multiple children nodes, the child node that has the
maximum value of the UCT (Upper Confidence bound for Trees) score is chosen.

(1)𝑈𝐶𝑇 =  𝑣
𝑛 + 𝑐 ln 𝑁

𝑛

Here N is the total count of visits for the parent node, n is the total count of visits for the child
node, c is the exploration constant, and v is the value of the child node’s sequence. The value v is
defined to be sum of Boltzmann probabilities that each state matches its target condition (ON𝑝

𝑖
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or OFF), i.e.,

𝑣 =
𝑖

∑ ln 𝑝
𝑖

(2)𝑝
𝑖

= 𝑃𝑟𝑜𝑏(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖)

Thus the value of each node reflects the probability to fulfill the desired constraints with a higher
value being close to ideal. This formulation of the node value for MCTS is heuristic and
alternative formulations could be explored, but are not discussed here.

Step 2: Expansion. Once a leaf node is chosen, a child node is created by running the
Metropolis–Hastings algorithm. Starting with the leaf node sequence, the sequence is randomly
mutated through either a domain mutation or domain move (Fig. 7) and its corresponding value v
is computed. The probability of accepting the sequence as the child node is computed as

∆𝑣 =  𝑚𝑖𝑛( 𝑣
𝑐ℎ𝑖𝑙𝑑

− 𝑣
𝑙𝑒𝑎𝑓

,  0)

𝑃 =  𝑒
∆𝑣
𝑇

where T is an effective temperature. If the value of the child node candidate sequence is better
(higher) than the leaf node, the sequence is always accepted. This is repeated until n child nodes
are created from the leaf node.

Step 3: Simulation. From the children created, choose a random child node and compute its value
using formula (2).

Step 4: Backpropagation. From the child chosen in step 3, backpropagate up the tree by updating
the UCT score of the parent node, its parent node, etc., back up to the root node.

Typical values for MCTS searches were n = 3, c = 1, Niterations = 300 (corresponding to maximum
number of expansion steps of 100), and T = 0.61597.

Functions computed by RNA sensors
Equilibrium sensors can be modeled using simple equilibrium expressions involving ratios of
polynomials with positive coefficients, also called positive rational polynomials, as described in
the Supplemental Appendix 2. We give four examples from each of the challenges in this study
below.

Pilot challenge: RNA sensors for single-input oligonucleotides. With a single input RNA A and
an output reporter R, a two state model is adequate for describing the desired sensor S. As an
example, the scheme for an OFF sensor with high enough concentrations of A and R is described
by the equilibrium A•S ↔ R•S, and the fraction of sensor with reporter bound is:𝑓

𝑅

,𝑓
𝑅

 =  [𝑅]
[𝑅]+𝐾[𝐴]
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where K is an equilibrium constant, which is simulated in Eterna with NUPACK. At a fixed
reporter concentration (100 nM simulated in Eterna), the sensor’s fluorescence switches from 1
to 0 as [A] increases from 0 to high concentrations. To precisely characterize the sensor
RNA-MaP experiments, the concentration of R was titrated and its apparent dissociation constant

was measured at zero and high [A]. At equilibrium, the expression above and the standard𝐾
𝑑
𝑎𝑝𝑝

relationship defining the dissociation constant, i.e., , guarantees that = K [A]𝑓
𝑅

 =  [𝑅]
[𝑅]+𝐾

𝑑
𝐾

𝑑
𝑎𝑝𝑝

for an accurately designed single-input sensor. Although the maximal activation ratio for the
system is unbounded in this simple two-state model, taking into account other states (e.g., free
sensor in the absence of A or R) leads to the maximum AR given by the ratio of the test
concentration [A] (here, 100 nM) and the intrinsic hybridization affinity of A for its complement
(which can be femtomolar or smaller); see ref.48. This value can be very large (>106) so in
practice, the maximum AR value for ‘binary’ sensors responding to oligonucleotide inputs is
limited by the experimental range of measurable in RNA-MaP (~1000). Similar expressions𝐾

𝑑
𝑎𝑝𝑝

and considerations hold for an ON sensor.48

Challenge 1: Two-input logic gates. For two inputs and complex logic gates, a few-state model
remains sufficient to describe the sensor. The most complex case is an XOR system that responds
to two inputs A and B, which is minimally described by four states: S ↔ A•R•S ↔ B•R•S ↔
A•B•S. The output of the system is described by:

,𝑓
𝑅

 =  
𝐾

𝐴
[𝐴][𝑅]+𝐾

𝐵
[𝐵][𝑅]

1+𝐾
𝐴

[𝐴][𝑅]+𝐾
𝐵

[𝐵][𝑅]+𝐾
𝐴𝐵

[𝐴][𝐵]

where KA, KB, and KAB are equilibrium constants that can be estimated in packages like
NUPACK. For a given [R], the expression is zero under conditions without A or B, or conditions
with high concentrations of both A and B, but approaches 1 with high concentrations of just A or
just B. RNA-MaP experiments varied [R] to enable more precise characterization, fitting an
apparent dissociation constant which, in the case of a well-designed sensor, will conform to the

rational polynomial . This should lead to a weak (large ) value without𝐾
𝑑
𝑎𝑝𝑝 =

1+𝐾
𝐴𝐵

[𝐴][𝐵]

𝐾
𝐴

[𝐴]+𝐾
𝐵

[𝐵] 𝐾
𝑑
𝑎𝑝𝑝

any inputs or with both inputs, and a tight (small ) value with high concentrations of any𝐾
𝑑
𝑎𝑝𝑝

single input. For A and B that bind their complement tightly, maximal activation ratios can be
>106; as with single-RNA input gates, the maximum activation ratios are set here by the
experimental range of measurable by RNA-MaP, about 1000 with MS2 protein binding. See𝐾

𝑑
𝑎𝑝𝑝

Supplemental Appendix 2 for a graph of an XOR sensor response.

Challenge 2: Ratio sensor. A ratio sensor requires only two states to describe, A•R•S ↔ B•S.
The output of the system is:

,𝑓
𝑅

 =  [𝐴][𝑅]
[𝐴][𝑅]+𝐾[𝐵] = ([𝐴]/[𝐵])

([𝐴]/[𝐵])+𝑟  

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.04.572289doi: bioRxiv preprint 

https://paperpile.com/c/QJVWZ4/8uM6
https://paperpile.com/c/QJVWZ4/8uM6
https://doi.org/10.1101/2024.01.04.572289
http://creativecommons.org/licenses/by-nc/4.0/


where K is an equilibrium constant, and r = K/[R]. At a fixed reporter concentration [R], the
system therefore varies from 0 to 1 as a monotonic function of the ratio [A]/[B], with the
midpoint (‘separatrix’) set by r, here targeted as r = ¼ for [R] set to the Kd for MS2 coat protein
reporter; in Eterna, this condition is equivalent to simulating whether the MS2 hairpin is
displayed or not displayed in the lowest free energy sensor state at the different [A] and [B].
RNA-MaP experiments characterized sensors by titrating [R] and measuring apparent
dissociation constants which, for an accurately designed sensor, is given by = K [A]/[B].𝐾

𝑑
𝑎𝑝𝑝

For a perfect sensor, a lower bound on the activation ratio is set by the two conditions whose
[A]/[B] are closest to the separatrix r from above and below: ARLB = min[A]/[B]>r ([A]/[B]) /
max[A]/[B]<r ([A]/[B]).

Challenge 3: OpenTB sensor. Sensors computing the TB-score, which depend on concentrations
of three RNA segments as [A][B]/[C]2, can be achieved with designs that populate just two
states. For a DEC sensor, the two states are A•B•S ↔ C•C•R•S, and

,𝑓
𝑅

 =  [𝐶]2[𝑅]

𝐾[𝐴][𝐵]+[𝐶]2[𝑅]
= 𝑟

[𝐴][𝐵]/[𝐶]2 + 𝑟
 

where K is an equilibrium constant, and r = [R]/K. Similar to the ratio sensor above, at a fixed
reporter concentration [R], the system varies from 1 to 0 as a monotonic function of the ratio
[A][B]/[C]2 with the midpoint (‘separatrix’) set by r. Here, we targeted r = 1/16 at [R] = 25 nM.
This value for r was set based on a study34 that defined the TB-score as (GBP5 + DUSP3) / 2 −
KLF2, with individual values defined as logarithm (base 2) of gene concentrations to enable
convenient comparison to quantitative RT-PCR cycle threshold values, and a separatrix value of
−2 based on clinical samples. Again, similar to the ratio sensors, RNA-MaP experiments read out

= K [A][B]/[C]2 for a perfect TB-score sensor, and ARLB = min[A][B]/[C][C]>r ([A][B]/[C]2) /𝐾
𝑑
𝑎𝑝𝑝

max[A][B]/[C][C]<r ([A][B]/[C]2). Similar expressions and considerations hold for an INC sensor
(reporter binding at [A][B]/[C] above rather than below a threshold).

DATA AVAILABILITY
Experimental data for all figures, including estimated Kd values for each tested sequence, can be
found in the Github repository:
https://github.com/eternagame/paper-data-rationally-designed-RNA-sensor. Data compiled at the
finer level of individual RNA-MaP sequence clusters are available at
https://github.com/eternagame/EternaDataRibonet and described in reference.64

CODE AVAILABILITY
Code for generating simulated plots for visualizing response curves to different concentrations of
A, B, and C can be found in the Github repository: https://github.com/eternagame/conc_plots.
Code for Nucleologic can be downloaded from https://eternagame.org/about/software.
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