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Summary paragraph:

Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized
by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-3
and tau'?. Neuroinflammation mediated by microglia and brain-resident macrophages plays a
crucial role in AD pathogenesis'~, though the mechanisms by which age, genes, and other risk
factors interact remain largely unknown. Somatic mutations accumulate with age and lead to
clonal expansion of many cell types, contributing to cancer and many non-cancer diseases®’.
Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods
and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples
from different brain regions revealed significantly higher (~two-fold) overall burdens of somatic
single-nucleotide variants (sSSNVs) in AD brains compared to age-matched controls. Molecular-
barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed
enrichment of sSSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD
brain compared to control, with recurrent, and often multiple, mutations in genes implicated in
clonal hematopoiesis (CH)%°. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD
brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver
genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus
RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls
exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH!*!!,
Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the
transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that
somatic driver mutations in microglia are common with normal aging but further enriched in AD
brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first
insights into microglial clonal dynamics in AD and identify potential new approaches to AD
diagnosis and therapy.
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Main-text:

The importance of microglia in AD pathogenesis has been demonstrated by large-scale
genetic association studies which have identified risk variants in a growing list of microglia-
related genes'?1. As the primary immune cells in the central nervous system (CNS), microglia
play critical roles in brain development, injury response, and pathogen defense'¢, modulating
cellular responses involved in aging and neurodegeneration as well>>. Once abnormally reactive
in AD, microglia can promote synaptic and neuronal loss and exacerbate tau proteinopathy'”!%,
Recent single-cell transcriptomic studies have depicted specific populations of microglia
enriched in AD brains of mouse models and human patients, termed disease-associated microglia
(DAM)Y. DAM feature reduced expression of homeostatic genes but elevated expression of
genes involved in immune response and phagocytosis®2°, though whether DAM are beneficial or
detrimental to AD remains unsettled?!.

Somatic mutations accumulate in all cell types that have been studied, both during normal
development and during aging®*?*. Clonal expansion, driven by somatic mutations in genes
regulating cell proliferation, is considered the major cause of cancer®, but has also been recently
reported in various non-cancer cell types’ often in the absence of visible pathology. Clonal
expansion of mutant blood cells, called clonal hematopoiesis (CH), increases in prevalence with
age and is associated with increased risk of hematologic malignancies and cardiovascular
disease®’, likely through inflammatory effects of mutant cells on neighboring nonmutant cells®>.
A somatic V600OE mutation in BRAF, a common cancer-driver mutation, in the microglial
lineage has also been causally implicated in degeneration of neurons secondary to mutant
microglial activation in both mouse models and humans?®. Although gene panel sequencing of 20
AD brains?’ and whole exome sequencing of DNA from micro-dissected neuronal nuclei of 52
AD brains?® found no consistent excess of clonal somatic mutations in AD, these studies were
extremely limited in their ability to detect clonal somatic mutations by small sample sizes, the
examination of neuronal DNA only, and low sequence coverage.

Here we tested whether brain clonal somatic mutation is associated with AD by three
prospective and orthogonal approaches in >600 AD samples and >500 control brains of three AD
cohorts (Fig. 1a-c), and we found consistent increases in overall clonal somatic mutations in AD
compared to control, as well as function-specific enrichment in genes previously implicated in
CH and other pre-cancerous conditions. These somatic mutations were enriched in microglia
compared to other brain cell types, and microglia harboring these mutations exhibited a pro-
inflammatory transcriptional signature that has previously been associated with
neurodegeneration.

Identifying somatic mutations from bulk RNA sequencing

We first developed RNA-MosaicHunter, a method to identify somatic mutations in
coding regions of expressed genes, and applied it to 866 bulk RNA sequencing (RNA-seq) data
sets of various brain regions including prefrontal cortex (PFC), temporal cortex, and cerebellum
(Fig. 1a). The RNA-seq datasets were obtained from two independent harmonized cohorts of
aging and dementia, the Rush Religious Orders Study/Memory and Aging Project (ROSMAP
and a collection of brains under the Mayo Clinic Alzheimer’s Disease Genetics Studies
(MayoRNAseq)*’, in which the clinical consensus diagnosis of cognitive status was given by
expert neurologists based on detailed cognitive and neuropathologic phenotyping.

RNA-MosaicHunter, an extensive modification of MosaicHunter’!, developed for sSSNV
calling in various types of DNA sequencing (DNA-seq) data, first calculates the likelihood of
somatic mutation for each genomic position using a Bayesian graphical model, which
distinguishes true mutations from random sequencing errors by considering base quality metrics
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for covered reads (Fig. 1a). RNA-MosaicHunter also incorporates a series of empirical filters to
remove artifacts due to systematic base-calling and alignment errors in RNA-seq. Germline
variants were removed by comparing against matched whole-genome or whole-exome
sequencing data of the same individual. Considering the widespread adenosine-to-inosine (A-to-
I) RNA editing sites across the genome*?, where inosine will be recognized as guanine (G) and
therefore indistinguishable from A-to-G sSNVs in RNA-seq data, we only considered non-A-to-
G sites as sSNV candidates.

We benchmarked RNA-MosaicHunter using 19 esophageal carcinoma samples obtained
from The Cancer Genome Atlas (TCGA) Research Network>?. RNA-MosaicHunter identified
613 non-A-to-G sSNVs from the RNA-seq data, and 513 of them were supported by MuTect**
calls in matched whole-exome sequencing data, confirming the accuracy of RNA-MosaicHunter
(Fig. 2a). In addition, 65 of 100 sSNVs that were detected by RNA-MosaicHunter but not
MuTect showed mutant-supporting reads with >2% mutant allele fraction (MAF) in the DNA-
seq data, suggesting that they were true somatic mutations omitted by MuTect (Fig. 2a). Among
851 MuTect-called exonic mutations with sufficient RNA-seq read coverage, RNA-
MosaicHunter successfully recaptured 499 of them (Fig. 2b). In summary, RNA-MosaicHunter
achieved 59% sensitivity and 94% precision to identify non-A-to-G sSNVs from the tumor
RNA-seq data (Fig. 2b); the sSSNVs missed by RNA-MosaicHunter generally had poor coverage
or low MAF in RNA-seq data, likely due to their low expression level or allele-specific
expression®’ in the tumor samples.

Higher burden of somatic mutation in AD cortex

RNA-MosaicHunter revealed two-fold increases in clonal somatic mutations compared to
matched controls in two different AD cohorts. In PFC RNA-seq data of 228 persons with AD
and 338 non-AD controls (Extended Data Fig. 1a and Supplementary Table 1-2) from the
ROSMAP cohort?’, AD PFC samples showed a higher sSNV burden compared to controls with a
diagnosis of no or only mild cognitive impairment (Fig. 2c; p < 0.01, two-tailed proportion test;
OR =2.1). In a second, independent RNA-seq dataset from the MayoRNAseq project’’,
consisting of 300 brain samples from the temporal cortex and cerebellum of 92 patients who died
with neuropathologically confirmed AD and 82 matched controls (Extended Data Fig. 1a and
Supplementary Table 1-2), AD temporal cortex samples showed a consistent increase of SSNV
burden compared to neurotypical controls (Fig. 2d; p = 0.01, two-tailed proportion test; OR =
2.2), with a remarkably similar odds ratio to that seen in the ROSMAP PFC samples.
Interestingly, the disease-specific enrichment of sSSNV was limited to the temporal cortex
samples and not observed in cerebellum (Fig. 2d; p = 1, two-tailed proportion test), a brain
region not severely affected in AD*. The observed greater sSSNV burden in AD remained
significant after controlling for potential confounding factors including sex, age, RNA-seq
coverage, neuronal proportion, and batch effects (Fig. 2e and Extended Data Fig. 1b; p = 0.01,
linear regression). This enrichment persisted even when only the subset of sSSNVs predicted to
have deleterious impact on protein function were considered (Extended Data Fig. 1c-d; p =
0.047, linear regression).

To ensure that the larger number of somatic mutations in AD brains did not reflect
contamination by blood, we measured the presence of blood cell types by analyzing gene
markers for blood cells in both bulk and snRNAseq data of ROSMAP and MayoRNAseq (see
details in Methods). We confirmed that blood contamination as measured by blood-related
transcripts in these brain samples is minimal (Extended Data Fig. 1e); correcting our data for any
minimal blood did not change the elevated burden of somatic mutation in AD brains (Extended
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Data Fig. 1f). Our results from these two RNA-seq datasets consistently suggested that clonal
somatic mutations in the cerebral cortex are increased in AD patients.

Using Gene Ontology (GO) annotation, we observed that sSSNVs found in AD brains
were significantly enriched in genes related to ubiquitin-dependent proteolysis, which has been
reported to be associated with AD pathogenesis®’, as well as in genes that regulate cell cycle and
proliferation (adjusted p < 0.05, hypergeometric test), and this enrichment pattern was not found
in sSSNVs identified in control brains (Fig. 2f). Considering the role of proliferation-related genes
in amplifying somatic mutations, our results suggested that somatic mutations in proliferation-
related genes may be more common in AD cerebral cortex.

Somatic mutation in proliferation-related genes

As an orthogonal and more sensitive approach to examining the mutational burden in
proliferation-related genes in AD, we designed a hybrid capture gene panel covering 149 cancer
driver genes with UMI barcoding (Supplementary Table 3), and sequenced DNA from the PFC
of 190 AD patients and 121 matched controls from the ROSMAP cohort at an average
sequencing depth of >1000X after UMI collapsing (Supplementary Table 4 and Extended Data
Fig. 2a-b). By exponentially reducing base-calling errors when generating the consensus
sequence from multiple reads derived from the same original DNA molecule, this UMI-based
panel sequencing detects somatic mutations with MAFs as low as 0.1% (Extended Data Fig. 2c-
d), with much higher sensitivity and precision than previous methods not employing consensus
error correction®®. Using our customized computational pipeline, we successfully identified 199
sSNVs and 13 sIndels that were exclusively present in a single DNA sample (the “stringent” list;
Supplementary Table 5). To increase the detection power, we further allowed recurrent
mutations when they were specifically enriched in AD or control samples, which expanded our
list to 1001 sSSNVs and 20 sIndels, respectively (the “sensitive” list; Supplementary Table 5 and
Extended Data Fig. 3a-b). The mutation spectrum of sSSNVs is consistent with the cell
division/mitotic clock signature SBS1 (Extended Data Fig. 3a; cosine similarity 0.92), suggesting
that mutations predominantly occurred during cell division. We randomly selected 22 sSNVs
with a range of MAFs for validation using amplicon sequencing, along with 17 potentially
pathogenic sSNVs identified in AD brains that were predicted to be deleterious, and all of the 10
frameshift sIndels in the “sensitive” list. Thirty-five of 39 (90%) tested sSNVs and 8 of 10 (80%)
sIndels successfully validated in newly extracted DNA samples from the corresponding PFC
samples, confirming the high accuracy of our somatic mutation calling strategy even for those
with MAFs as low as 0.1% (Extended Data Fig. 2e-g).

With similar sequencing depth and coverage between AD and control PFC samples
(Extended Data Fig. 2a-b), the stringent pipeline revealed that AD brains harbored significantly
more sSSNVs among the 149 targeted genes than aged-matched controls (Fig. 3a; p = 0.008, two-
tailed proportion test; OR = 1.6). When using the sensitive pipeline, which allows recurrent
mutations, the SSNV increase in AD brains became even more significant (Fig. 3b; p = 0.001,
two-tailed proportion test; OR = 1.3), and this pattern remained significant after controlling for
confounding factors including sex, age, sequencing coverage, and post-mortem interval (Fig. 3c;
p = 0.03, linear regression).

In addition to the increased sSSNV in AD, we also found age as an independent factor
positively correlated with the sSSNV burden (Fig. 3c; p = 0.002, linear regression) and the
proportion of sSSNV carriers (Extended Data Fig. 3c), suggesting a likely age-associated
accumulation of somatic mutations in proliferation-related genes in both normal and diseased
brains. Previous studies highlighted the age-related accumulation of low-MAF (<1-5%) somatic
mutations in cancer driver genes in blood*”. Our finding about age-related accumulation in brain
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is consistent with a recent study using deep whole-genome sequencing of a smaller sample*,
though our study was not designed to specifically test this. We observed that APOE4 carriers
tend to have more sSNV than non-carriers in both AD and control groups, though this pattern did
not reach statistical significance (Extended Data Fig. 3d; p = 0.09, linear regression).

Interestingly, when we divided cancer driver genes into (proto-)oncogenes and tumor
suppressor genes (TSGs), we observed a greater sSSNV burden in AD for TSGs but not for
oncogenes (Fig. 3d). Considering that TSGs lead to proliferation when they are inactivated by
loss-of-function mutations throughout the gene body, but oncogenes are usually only activated
by specific, recurrent, gain-of-function alleles affecting critical domains, our results suggested
that most sSN'Vs are associated with AD by a loss-of-function of TSGs. Besides sSSNV, we also
observed more frameshift sIndels in AD brains (5 in AD versus 2 in control; Supplementary
Table 5), though this enrichment did not reach significance in this small sample size.

Examination of the mutation burden at the individual-gene level revealed that somatic
mutations in the top 10 most commonly mutated genes were found in 39% of the AD patients
compared to only 20% of the aged controls (Fig. 3e); brain samples carrying mutations in
multiple genes were exclusively found in the AD cohort but not in controls (p = 0.0002,
hypergeometric test). Five “hotspot” genes—T7TET2, ASXLI, KMT2D, ATRX, and CBL—harbored
nominally more somatic mutations in AD brains than controls (Fig. 3e; p < 0.05, one-tailed
proportion test), though these individual gene burdens were not significant after multiple
hypothesis testing correction for 149 genes. All “hotspot” genes represent critical TSGs and have
been widely implicated in various cancers*' and CH**. Most AD somatic mutations in ASXL ]
were nonsense mutations broadly distributed across the encoded protein, including two recurrent
alleles observed in multiple AD patients, similar to what is seen in ASXL ] mutations in CH
events of blood; AD patients showed missense mutations in 7E72 that clustered in its critical
oxygenase domains (Fig. 3f), a similar mutational pattern to that seen in CH (Extended Data Fig.
3e) but not seen in aged controls. Somatic mutations in AD brains showed significantly higher
MAFs than did mutations in control brains, especially in the five hotspot genes, where the
average MAF was 40% increased, suggesting that many somatic mutations found in AD drive
the clonal expansion of cells that carry them to a greater extent than in control brains (Fig. 3g).
To further validate this, we examined the signal of positive selection for these mutations and
found that somatic mutations in AD brains experienced stronger positive selection in AD brains,
evidenced by elevated dN/dS ratios (Fig. 3h-1) as well as a greater abundance of positively
selected cell (Fig. 3j). In addition to individual genes, we observed that AD patients had
significantly more somatic mutations in PI3K-PKB/Akt pathway genes than controls (Extended
Data Fig. 3f; p < 0.05, one-tailed proportion test), a pathway that has been previously suggested
to be enriched with somatic mutations in AD brains?®. Overall, our panel sequencing results
revealed more frequent somatic mutations in cancer driver genes of AD brains, highlighting their
potential roles in driving the clonal expansion of certain proliferating cell types during AD
pathogenesis.

Microglia enrichment of proliferation-related somatic mutation

The overlap of many specific driver genes mutated in AD with those implicated in clonal
blood disorders suggested that microglia, which share a very early lineage with peripheral
myeloid cells, might be the carrier cells of these mutations in AD brains. To test this, we
developed a fluorescence-activated nuclei sorting (FANS) method to specifically isolate
microglial nuclei from frozen postmortem brain tissues using an antibody targeting CSF1R
(Extended Data Fig. 4a), a well-known cell surface marker for microglia whose nuclear
localization and function have been recently reported*’. Our subsequent snRNAseq (Fig. 4a) and
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ddPCR (not shown) results confirmed that >75% of sorted nuclei belonged to the microglial
cluster in both AD and control brains, verified by expression of microglia marker genes
including CX3CRI1, TMEM119, and P2RY12 (Extended Data Fig. 4b). Interestingly, another 4-
9% of the nuclei were classified as CNS-associated macrophages (CAMs; Fig. 4a and Extended
Data Fig. 4b), a recently identified class of brain-resident myeloid cells with high expression of
MS4A47 and MRCI**, while the remaining cells represented scattered neural cells or pericytes.
Both microglia and CAMs are brain-resident macrophages predominantly derived from
erythromyeloid progenitors during embryogenesis*’, but recent studies also report a contribution
of hematopoiesis-derived immune cells to the brain macrophage pool in adulthood***’,

We selected 7 sSSNVs and 4 sIndels identified from AD brains, all of which were
predicted to be deleterious for critical oncogenes or TSGs, and found a marked enrichment of
these mutations in the sorted microglial fraction. We measured the MAF of each somatic
mutation in four different populations of sorted cells using amplicon sequencing: microglia
(CSF1R+), neurons (NeuN+), glia and other nonneuronal cells (NeuN-), and all cells (DAPI+).
All ten sSNVs in TSGs were enriched (4- to 438-fold) in microglia when compared to neurons
sorted from the same brain sample (Fig. 4b and Extended Data Fig. 4c). For a splicing sSNV in
DNMT3A (c.1429+1G>A) and two deleterious missense SSNVs in TET2 (p.Prol1194Ser and
p.Vall371Asp), we observed >10% MAFs in microglia, dramatically higher than the MAFs
observed in neurons and other mixed cell populations (Fig. 4c; p < 0.05, two-tailed Wilcoxon
test), suggesting that mutant cells constitute >20% of all microglia in the sample. The last tested
sSNV, in the oncogene FGFRI (p.Arg506Gln), is a non-recurrent mutation predicted to cause
decreased activation of this oncogene, and was not enriched in microglia. Interestingly, this same
AD PFC sample harbored a variant in a TSG gene (DNMT3A4 (c.1429+1G>A)) that was almost
exclusively present in microglia, suggesting that these two variants originated in different
lineages (Extended Data Fig. 4c), but also showing that all tested variants predicted to confer a
proliferative advantage were enriched in microglia. Tested mutations were detected in up to 40%
of PFC microglia in carrier brains, implying that they provide strong survival and/or proliferative
advantages over microglia that do not carry the mutation.

Analysis of matched blood DNA showed that 10 of the 10 mutations enriched in
microglia were also present in blood, with a trend towards a positive correlation between MAFs
in microglia and blood (p = 0.052, Pearson correlation; Fig. 4d and Extended Data Fig. 4d). We
confirmed minimal blood contamination in unsorted bulk brains (as measured by RNA-seq
analysis) and in the sorted microglial nuclei (Fig. 4a and Extended Data Fig. 4b) as a cause of
this shared presence, but our results do not distinguish between a shared lineage, or migration of
myeloid or microglial cells into or out of the brain.

Mosaic chromosome alterations in AD snRNAseq data

To explore the effects of somatic mutations in microglia in Alzheimer’s disease, we
utilized a recent high-quality snRNAseq dataset of middle temporal gyrus neocortex samples
obtained from AD donors and age-matched controls, the Seattle Alzheimer’s Disease Brain Cell
Atlas (SEA-AD). Due to the high degree of transcriptional noise and sparsity within snRNAseq
data, there is no tool available to our knowledge that can reliably call sSSNVs without matched
DNA-seq*®. However, several methods have been successful at identifying mosaic chromosomal
alterations (mCAs), from snRNAseq data**!. Since recurrent mCA has also been associated
with CH and other myeloid overgrowth syndromes'®!'!, generally disrupting specific genes also
mutated by sSSNV, we hypothesized that AD brains would also carry mCA in microglia-CAMs.

We extracted cells that were annotated as microglia-perivascular macrophages (a subtype
of CAMs, hereby called microglia-CAMs) or were identified as microglia-CAMs through


https://doi.org/10.1101/2024.01.03.574078
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.03.574078; this version posted January 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

automatic cell-typing with scType (Extended Data Fig. 5a-b and Supplementary Table 6), and
then called microglia-CAM-specific mCAs within SEA-AD using CONICSmat* for all
individuals with a consensus clinical diagnosis of AD (n = 31) or healthy, age-matched controls
(n=31) (Supplementary Table 7). We also called mCAs in excitatory neurons (ExNs),
astrocytes, oligodendrocytes, or oligodendrocyte precursor cells (OPCs) and retained only mCAs
that were not called in any of these other cell types from the same donor and which passed
several stringent filtering criteria (Materials and Methods and Extended Data Fig. 5c).

AD brains harbored nominally more mCAs (4 in AD versus 1 in control; Fig. 5a) and
nominally 8-fold more mCA-carrying microglia-CAMs (Fig. 5b; p = 0.06, permutation test),
though as expected, the SEA-AD sample size was too small for these differences to reach
statistical significance. When we analyzed microglia and CAM separately, we observed a
stronger trend in microglia than CAMs (Fig. 5c; p = 0.07 and 0.11, permutation test). We also
observed an increasing trend of mCA in AD individuals versus controls in astrocytes, but not in
oligodendrocytes, OPCs, and ExNs (Fig. 5c and Supplementary Table 7), perhaps relating to the
widespread astrogliosis reported in AD>2.

Transcriptional effect of somatic mutations in AD microglia

While the SEA-AD sample size is too small to demonstrate independent enrichment of
mCA in microglia, they are certainly consistent with this, and allowed analysis of the
transcriptional effects of mCA in microglia, by creating an integrated snRNAseq atlas of
microglia-CAMs identified across AD cases and controls (Extended Data Fig. 6) and identifying
differentially expressed genes (DEGs) between mutant and wild-type microglia-CAMs from
mCA-carrying AD brains (Fig. 5d and Supplementary Table 8). Using gene ontology (GO)
enrichment analysis, we found that DEGs with increased expression in mutant microglia were
enriched (adjusted p < 0.05, hypergeometric test) for several terms related to immune activation
and signaling, suggesting that mutant microglia may upregulate pro-inflammatory pathways (Fig.
5e and Supplementary Table 8).

A recent study identified transcriptional signatures of microglial states in human stem-
cell differentiated microglia that emerge in response to various CNS challenges, such as
apoptotic neurons, amyloid-beta fibrils, and myelin debris**. We used these signatures to further
characterize the microglial state associated with mCAs. Using a hypergeometric test for
enrichment, we found marginally significant overlap between DEGs that are upregulated in
mutant microglia and genes associated with the DAM state (Fig. 5f and Supplementary Table §;
p = 0.04). DAMs are specifically enriched in AD brains and have been posited to play a role in
modulating the neuroinflammatory response to neurodegeneration®>*, suggesting that microglia
with mCA may share a similar phenotype in AD.

Discussion

Our results from three independent AD cohorts, using three orthogonal approaches,
revealed a consistently greater burden of somatic mutations in AD cerebral cortex samples when
compared to matched controls, suggesting that brain somatic mutation is associated with AD.
These somatic mutations were enriched in proliferation-related genes that have been widely
implicated in cancer and pre-cancerous conditions, with higher MAFs and stronger positive
selection in AD brains, implying their roles in clonal expansion of mutant cells. This was also
supported by the enrichment of AD cases with multiple CH-associated sSNVs. We further
confirmed that many mutations were specifically present in microglia, and potentially CAMs.
Finally, using snRNAseq analysis we found that microglia carrying mCAs associated with clonal
overgrowth syndromes showed pro-inflammatory and disease-associated transcriptional
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signatures compared to wild-type counterparts. While we cannot formally rule out that clonal
expansion of mutant microglia represents only a secondary response to proliferative signals in
AD brain, the DAM-related signature associated with mCA resembles effects of CH mutations in
blood myeloid cells that increase the risk of myocardial infarction and stroke while activating
immune cascades including IL18, IL6, and others®. These similarities suggest analogous roles of
microglial mutations in AD that would likely promote neuronal degeneration®’.

Two recent studies correlating CH mutations in blood with AD risk found no effect™® or a
surprising protective effect of blood CH on AD*. Although many methodological differences
exist between those blood studies and our brain study (Supplementary Discussion), the varying
results highlight the complexity and limitations of our current understanding of the relationship
between myeloid cells and microglia. Bouzid et al.> and we both found that microglial driver
mutations were typically shared in the blood of the same individual, as did a small earlier study
that also found cancer driver mutations in AD brain®’. Since somatic driver mutations that lead to
blood cancer, when dated by lineage analysis, often arise before birth®®, MiCE mutations may
occur in early progenitors of microglial and blood lineages. Under this assumption, microglia
carrying the same driver mutations may clonally expand in brain independently from blood.
Alternatively, recent studies show that myeloid cells from blood can enter the brain when there is
dysfunction of the blood-brain barrier (BBB), an early feature of AD®!, and can differentiate into
microglia-like cells®?. Others have reported that monocytes can enter the brain and form
microglia-like cells even independent of BBB disruption*®*’. Thus, BBB changes may be a
critical feature that might promote access of mutant myeloid cells to the CNS. Conversely,
activated microglia can form perivascular clusters in neurodegeneration as a result of BBB
breakdown®*** which might allow mutant brain microglial cells access to enter the bloodstream.

Our results suggest that microglia are the major cell type carrying somatic driver
mutations. Although our FANS results cannot completely exclude CAMs also carrying these
somatic mutations, our CSF1R+ cell population contained 3% and 9% CAMs in AD and control
brains, respectively (Fig. 4a), and 5 of the 11 somatic mutations represented >10% cell fractions
in the sorted microglial nuclei of AD brains, including the TET2 p.Pro1194Ser variants with
>40% cell fraction. This high MAF seems inconsistent with the mutation being limited to blood-
derived macrophages even assuming all CAMs came from the blood myeloid lineage.

Our analysis highlighted five hotspot genes as well as the PI3K-PKB/Akt pathway
(including a PIK3CA p.His1047Leu activating mutation and three loss-of-function mutations in
TSC1/2) that were recurrently disrupted by somatic mutations in AD brains. Drugs targeting such
genes have been widely used to treat cancer®>, thus they might serve as potential therapeutic
agents to suppress somatic-mutation-activated microglia and ultimately neurodegeneration in
AD. Since the role of disease-associated microglia in neuronal loss and dysfunction may be a
common feature shared across many neurodegenerative diseases as well as in age-associated
cognitive decline, studying somatic mutation in AD may provide an important new approach to
understanding the pathogenic mechanisms of dementia and other neurodegenerative conditions.
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Fig. 1. Overview of the experimental and analysis strategies. a, Transcriptome-wide screen of
sSNVs among 886 bulk RNA-seq data sets of AD and control brain samples. Somatic mutations
were called by RNA-MosaicHunter. MCI, mild cognitive impairment; NCI, no cognitive
impairment. b, Profiling sSSNVs and sIndels in 311 AD and control PFC samples using deep
molecular barcode sequencing with a panel of 149 cancer driver genes. Mutation candidates were
validated by amplicon sequencing and their mutant allele fractions were measured in different
FANS-sorted nuclei populations. ¢, Identification and transcriptomic profiling of microglia in
AD and control brain single-nucleus RNA-seq samples carrying mCA.
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Fig. 2. RNA-MosaicHunter reveals elevated burden of somatic mutations in the cerebral
cortex of AD patients. a-b, Benchmarking the performance of RNA-MosaicHunter using the
TCGA cancer data. 513 of 613 sSNVs identified by RNA-MosaicHunter were confirmed by
MuTect in the matched DNA-seq data (filled circle in a). RNA-MosaicHunter recaptured 65
sSNVs that are present in DNA-seq but missed by MuTect (open circle in a; grey bar in b). TP,
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true positive; FN, false negative; FP, false positive. e¢-d, Greater mutation burden in cerebral
cortex samples of AD patients when compared to matched controls. A significant two-fold
increase of sSSNV density in AD prefrontal cortex and temporal cortex was consistently found in
both ROSMAP (¢) and MayoRNAseq (d) cohorts. The burden increase was not observed in the
AD cerebellum. CI, cognitive impairment. e, Linear regression modeling confirms that the sSSNV
increase in AD brains remains significant after controlling for potential covariates. PMI, post-
mortem interval. f, Gene Ontology terms enriched for AD sSNVs. Genes regulating cell cycle
and proliferation are specifically enriched for AD but not control sSSNVs. c-e, Error bar, 95% CI.
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Fig. 3. Elevated burdens of somatic mutations in cancer driver genes in AD brains. a-b, AD
prefrontal cortex samples harbor significantly more sSNVs in 149 targeted cancer driver genes
than matched controls, using both the sSSNV list of stringent (a) and sensitive (b) identification
pipelines. The sensitive list additionally contains recurrent sSSNVs if they were specifically
enriched in the AD or control groups. ¢, Linear regression modeling confirmed that the AD
effect on greater SSN'V burden remains significant (p = 0.03) after controlling for potential
confounding factors. In addition to AD status, age is also positively correlated with the SSNV
burden (p = 0.002). d, The significant increase of sSSNV burden in AD brains was only observed
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for tumor suppressor genes (TSGs) but not for (proto-)oncogenes. e, Top 10 recurrently mutated
genes in AD and control brains. Different types of protein-altering sSSNV and sIndel are shown in
various colors, where “multiple hits” (black) denotes multiple protein-altering mutations in the
same gene. Asterisks denote the five “hotspot” genes that contain significantly more somatic
mutations in AD patients than matched controls (p < 0.05, one-tailed proportion test). Triangles
highlight individuals that carry mutations in multiple genes. f, Distribution of somatic mutations
in two AD hotspot genes, TET2 and ASXL 1. The color and height of each lollipop denote the
mutation type and the number of carrying individuals. g, Somatic mutations in AD brains
showed significantly higher allele fractions than controls (two-tailed t-test), with a larger
increase when only considering TSGs or AD hotspot genes, suggesting the clonal expansion of
cells that carry the somatic mutations. The increase in allele fraction was calculated using the
ratio of medians between AD and control groups. Boxplots show median and the first and third
quartiles, with whiskers denoting 1.5 * IQR from hinges. h, Positive selection of individual
genes in AD and control somatic mutations. Y-axis denotes p-value for testing if the gene’s
dN/dS ratio is higher than 1, with Benjamini-Hodgberg’s multiple hypothesis testing correction.
DNMT3A4, ASXL1, and TET2 show significant positive selection in AD brains, stronger than in
control brains. i, dN/dS ratios across all the 149 targeted genes, in which the rates of all protein-
altering mutations, missense mutations, nonsense mutations, and splicing mutations are
compared with the background neutral rate estimated by synonymous mutations. Asterisks
denote p-value < 0.05. j, AD brains harbor more positively selected cells than control brains,
especially when we only consider somatic mutations in AD hotspot genes. The number of
positively selected cells was inferred based on the gene-specific dN/dS ratio, the count of
somatic mutation per sample, and the average MAF (see details in Methods). a-d and i, Error
bar, 95% CI.
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Fig. 4. Deleterious somatic mutations are enriched in microglial clones of AD brains. a, 10X
snRNAseq confirms the high purity and unbiased representation of microglia in CSF1R+ nuclei
sorted from AD and control PFC samples. Clustering results suggest about 80% of the sorted
nuclei are microglia (red), whereas another 3-9% are CNS-associated macrophages (CAMs,
orange). Minimal blood cell contamination is confirmed with up to 1% monocytes and the
absence of B cells, T cells, and red blood cells. OPC, oligodendrocyte progenitor cell. b, The
ratios of mutant allele fractions between sorted microglial and neuronal nuclei of the same AD


https://doi.org/10.1101/2024.01.03.574078
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.03.574078; this version posted January 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

brains, estimated by amplicon sequencing. Ten of the 11 profiled AD somatic mutations
demonstrated at least 4X microglial enrichment. ¢, Four somatic mutations in CH-associated
genes as examples show significantly higher allele fractions in microglia than the fractions in the
other three populations (p < 0.05, two-tailed Wilcoxon test), suggesting their microglial origins.
Each nuclei population was sorted four times from each AD brain sample to serve as replicates.
Error bar, SE. d, All but the FGFRI mutations are shared between microglia and whole-blood
samples of the same individual, indicating a common origin of these somatic mutations.
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Fig. 5. mCAs in AD microglia are associated with a pro-inflammatory, disease-related
signature. a, Microglia from AD brains contain nominally more mCAs associated with
hematopoietic overgrowth syndromes compared to age-matched controls, even in this small
sample (N = 31 each). Triangles highlight an individual with multiple mCAs. b, AD brains show
a trend (p = 0.06, permutation test) towards a higher fraction of mCA-carrying microglia than
age-matched controls. ¢, Odds ratios of mCA-carrying cells between AD and control individuals
across different cell types. Microglia-CAM (p = 0.06) and microglia (p = 0.07) have the smallest
nominal p-values in permutation test compared to CAMs (p = 0.11), astrocytes (p = 0.09),
oligodendrocytes (p = 0.50), OPC (p = 0.40), and ExN (p = 0.99). OPC, oligodendrocyte
progenitor cell. ExN, excitatory neuron. d, Volcano plot shows differentially expressed genes
between AD donor microglia-CAMs with and without mCA. Positive fold-change indicates
upregulation in microglia-CAMs with mCA. DAM-associated upregulated genes are colored red.
e, Significantly (adjusted p < 0.05, hypergeometric test) enriched gene ontology terms for genes
upregulated in microglia-CAMs with mCA. f, Enrichment of microglial state modules>® among
genes upregulated in microglia-CAMs with mCA. Significant enrichments implicate
inflammation and the DAM transcriptional state.
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Extended Data Fig. 1. Identification and functional annotation of sSSNVs in RNA-seq data.
a, Mutation type and tri-nucleotide context of sSSNVs. T-to-C (A-to-G) candidates were ignored
because they were more likely to be RNA-editing sites widespread in the human genome. b,
Similar sequencing depth between the AD and control brain samples in each AD cohort. The
overall higher depth in MayoRNAseq may explain the higher base-line mutation burden in
control brain samples than ROSMAP. Boxplots show median and the first and third quartiles,
with whiskers denoting 1.5 * IQR from hinges. ¢, Genic annotation and functional impact
prediction of sSSNVs identified from AD and control brain samples. d, AD brains had
significantly more deleterious sSSNVs than controls (p = 0.047, linear regression) after controlling
for potential confounding factors. e, Absent expression of blood marker genes in snRNAseq of
unsorted ROSMAP brains confirmed minimal blood contamination. f, The AD increase was
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consistently significant when the proportion of blood cell types indicated by the expression of
marker genes was additionally considered in the linear regression model. RBC, red blood cell.
d.f, Error bar, 95% CI.
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Extended Data Fig. 2. Benchmarking and validation results of sSSNVs and sIndels identified
from panel sequencing. a-b, Comparable sequencing depth (a) and coverage (b) between AD
and control PFC samples, calculated based on the consensus reads after UMI-based read
collapsing. e-d, Detection sensitivity (¢) and accuracy of allele fraction estimation (d) for our
panel sequencing and somatic mutation identification pipeline, benchmarked by in vitro mixture
of the DNA samples of two unrelated individuals with varied genome ratios. Error bar, SD. e-f,
Amplicon sequencing validation confirmed high accuracy for identified sSSNVs and sIndels in
AD and control samples (e). Somatic-I mutations are those with mutant allele fractions at least
3X larger than the fractions of the other two error alleles of the same genomic position, whereas
somatic-II are those that were further validated by comparing their mutant allele fractions in a
negative control sample (f). Error bar, SE. g, Mutant allele fraction of validated somatic
mutations between panel sequencing (discovery) and amplicon sequencing (validation).
Amplicon sequencing was performed using newly extracted DNA from the corresponding brain
sample, therefore the allele fractions could be varied between the discovery and validation
stages.
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Extended Data Fig. 3. Identification and functional annotation of sSSNVs in panel
sequencing data. a, Mutation type and tri-nucleotide context of SSNVs. b, Genic annotation and
functional impact prediction of sSSNVs identified from AD and control PFC samples. ¢, The
proportion of somatic mutation carriers increases with age. AD patients had a significantly larger
proportion of carriers with somatic mutations in AD hotspot genes than matched controls (p =
5.6e-5, linear regression). d, APOE4 carriers tend to have higher burden of sSN'V's than non-
carriers in both AD and control groups (p = 0.09, linear regression). e, Similar distributions
between somatic mutations identified in AD brains and previously reported CH-associated
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mutations in blood. f, Genes in the PI3K-PKB/Akt pathway contained significantly more somatic
mutations in AD brains (12% of AD samples vs 7% of control samples; p < 0.05, one-tailed
proportion test).
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Extended Data Fig. 4. Microglial purity and mutant allele fraction of FANS-sorted nuclei
population. a, Selectively isolated microglia from frozen brain tissues using FANS with an
antibody targeting epitopes of CSFIR, a gene highly expressed in microglia. b, Marker gene
expression profile for 10X single-nucleus RNA-seq of CSF1R+ sorted nuclei. Each column
represents a single nucleus, clustered by PCA based on their expression similarity. About 75-


https://doi.org/10.1101/2024.01.03.574078
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.03.574078; this version posted January 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

77% of the sorted nuclei are microglia with high expression of CX3CRI, TMEM119, and
P2RY12, whereas another 4-9% are CNS-associated macrophages (CAMs). Markers for blood
cell types (HBAI: red blood cell; CD3E: T cell; CCR7: B cell; FCNI: monocyte) confirm the
minimal presence of blood cells in sorted nuclei. CNS, central nervous system. AD microglia
showed generally reduced expression of CX3CRI and P2RY12, consistent with previous findings
in AD®. ¢, Mutant allele fractions across different sorted nuclei populations for all the 11 profiled
AD somatic mutations. Four mutations are shown in Fig. 4c as examples. In all but the FGFR]
mutation, we observed significantly higher allele fractions in microglia than in neurons (NeuN+).
Each population of nuclei was sorted four times from each AD brain sample to serve as
replicates. Error bar, SE. d, The correlation of mutant allele fractions between blood and three
nuclei populations (NeuN+, NeuN-, and DAPI+) sorted from matched brain samples.
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Extended Data Fig. 5. mCA burden analysis in microglia-CAMs and identification of
additional microglia-CAMs with scType. a, Schematic representation of supervised learning
framework and quality-control metrics used to detect additional high-quality microglia-CAMs
from SEA-AD. b, scType’d and pre-annotated microglia-CAMs show similar marker gene
expression profiles, with specific expression of microglia and CAM marker genes. ¢, Examples
of mCA called in two AD individuals, H21.33.017 (chr13p13-31 deletion) and H21.33.010
(chr22 amplification). Normalized median ratio of expression in mCA-carrying cells versus non-
carrying cells displayed per chromosomal region, with chromosome size proportional to number
of expressed genes in microglia-CAMs from that chromosome.
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Extended Data Fig. 6. Integrated snRNAseq atlas of microglia-CAMs in AD and healthy
controls. UMAP visualization of covariates of interest does not reveal significant clustering by
individual ID, nFeature, or nCount, consistent with successful integration across samples.
Microglia and CAMs (with high MRC1 expression) separate into distinct clusters.
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Extended Data Fig. 7. The odds ratio of AD enrichment for sSSNVs with different MAF
cutoffs. When we consider all the 149 genes targeted by the panel sequencing, we observe a
consistent trend of AD enrichment even for sSSNVs with 5% or more MAF. In comparison, when
we only consider deleterious somatic mutations in CH-associated genes, the odds ratio becomes
smaller than 1 when MAF is larger than 4% though with a very large confidence interval. The
dashed line represents the odds ratio of 1, and odds ratios larger and smaller than 1 denote the
enrichment and depletion of sSSNV in AD, respectively.
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Captions for online supplementary tables

Supplementary Table 1. RNA-seq sample information and summary. PMI, post-mortem
interval.

Supplementary Table 2. sSSNV candidates identified from RNA-seq samples. sSSNVs of
ROSMAP and MayoRNAseq samples are listed in separate tabs.

Supplementary Table 3. List of 149 cancer driver genes in panel sequencing. TSG, tumor
suppressor gene.

Supplementary Table 4. Panel sequencing sample information and summary. PMI, post-
mortem interval.

Supplementary Table 5. sSSNV and sIndel candidates identified from panel sequencing
samples. sSSNVs and sIndels called by the stringent and sensitive pipelines are listed in separate
tabs.

Supplementary Table 6. snRNAseq sample and cell-type annotation information and
summary.

Supplementary Table 7. mCA candidates identified from snRNAseq samples.

Supplementary Table 8. Differential expression and functional annotation results between
mutant and wild-type microglia-CAMs from mCA-carrying AD individuals. Pct.1,
expression in microglia-CAM carrying mCA. Pct.2, expression in microglia-CAM that do not
carry mCA.
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Methods:
Sample information

Our study involves samples and sequencing data from three large-scale Alzheimer’s disease
(AD) studies, ROSMAP, MayoRNAseq, and SEA-AD. The ROSMAP study consists of two
prospective studies of aging, The Religious Order Study (ROS) and the Memory and Aging
Project (MAP), in which the participants were enrolled by the Rush Alzheimer's Disease Center
with detailed cognitive and neuroimaging phenotyping as well as structured neuropathologic
examination during the autopsy at the time of death!. The MayoRNAseq study performed
detailed clinical phenotyping and multi-omic profiling for 278 participants collected by the Mayo
Clinic Brain Bank and Banner Sun Health Research Institute?. The SEA-AD study performed
single-cell multi-omics, quantitative neuropathology, and deep clinical phenotyping on post-
mortem brain tissue from 84 aged donors and 5 additional younger neurotypical controls
collected at the University of Washington BioRepository and Integrated Neuropathology
laboratory and Precision Neuropathology core. Postmortem samples in all studies were collected
and de-identified following the protocol of the corresponding Institutional Review Board with
informed consent. The diagnosis of AD was based on the consensus conclusion from all
postmortem data generated by neurologists with expertise in dementia and neurodegeneration.

The RNA-seq bam file and the vcf file of germline mutation calls from matched whole-genome
sequencing data generated by the ROSMAP and MayoRNAseq studies were downloaded from
the AMP-AD Knowledge Portal, along with the detailed demographic and clinical information
for each sample. The raw single-nucleus RNA sequencing (snRNAseq) .h5 matrices for SEA-AD
and corresponding clinical and technical metadata were also downloaded from AMP-AD
Knowledge Portal. Supplementary Table 1 and 6 summarized all the bulk and single-nucleus
brain RNA-seq samples analyzed for somatic mutation calling. The ROSMAP dataset consists of
the prefrontal cortex (PFC) samples of 228 AD patients and 338 age-matched controls with no or
mild cognitive impairment collected by the ROSMAP project. The MayoRNAseq dataset
consists of the temporal cortex and cerebellum samples from 92 AD patients and 82 age-matched
controls collected by Mayo Clinic, most of whom have RNA-seq from both the temporal cortex
and cerebellum samples. The SEA-AD dataset consists of the middle temporal gyrus of temporal
cortex from 31 AD patients and 32 age-matched controls. In each dataset, the AD and control
samples showed similar distributions in sex, age, post-mortem interval, and sequencing depth
(Supplementary Table 1 and 6).

In addition to access to the sequencing data, we obtained genomic DNA (gDNA) from 190 AD
patients and 123 controls without cognitive impairment from ROSMAP for panel sequencing
(Supplementary Table 4), though this donor list has minimal overlap with the donor list of the
brain RNA-seq dataset due to the limited sample availability. Additional dorsolateral PFC brain
samples and gDNA from peripheral blood samples were also obtained from ROSMAP to
confirm the presence of somatic mutation and further study the cell type identity of mutation-
carrying cells.

Design of RNA-MosaicHunter
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Compared to DNA-seq data, RNA-seq data has unique features that need to be addressed for
somatic mutation calling. First, the exon-intron structure in mRNA requires the spliced
alignment of RNA-seq reads onto the human reference genome, which increases the chance of
alignment errors when the overhang sequence is relatively short®. Second, the widespread
adenosine-to-inosine (A-to-I) RNA editing sites across the human genome* are indistinguishable
from A-to-G somatic mutations in RNA-seq data, because inosine will be recognized as guanine
(G) in Illumina sequencers. Third, the allele-specific expression’, a phenomenon that the paternal
and maternal alleles have different expression levels, is observed in many autosomal and X
chromosome genes, which can lead to deviated allele fraction estimation in RNA-seq data.

To address these technical issues, we developed RNA-MosaicHunter, which was derived from
MosaicHunter®, a bioinformatic tool designed to identify somatic single-nucleotide variants
(sSNVs) in DNA-seq data. RNA-MosaicHunter consists of two major components, a Bayesian
genotyper to distinguish real mutations from base-calling errors, followed by a series of
empirical error filters to remove artifacts introduced from various sources (Fig. 1a). In the
Bayesian genotyper, G denotes the genotype state, T denotes the prior probability of each
genotype inferred from the population mutant allele fraction paic and default somatic mutation
rate pm, and d, ¢, and o denote the depth, base qualities, and bases for calculating genotype
likelihoods from the observed sequencing data. Since the mutant allele fraction in RNA-seq data
can be affected by allele-specific expression, we considered the posterior probability of both
germline heterozygous mutation and somatic mutation in our list of mutation candidates for
subsequent error filters, and further distinguished somatic mutations from germline heterozygous
mutations by using the genotyping results from matched whole-genome or whole-exome
sequencing data obtained from the same individual. In addition, RNA-MosaicHunter also
incorporated other filters to exclude 1) candidates with less than 5% mutation allele fraction or
less than 5 mutant-supporting reads; 2) candidates that are in repetitive and homopolymer
regions; 3) candidates that have a significant bias in strand, mapping quality, or within-read
position between the reference and mutant alleles; 4) candidates that show complete linkage to
adjacent candidates on the same read or read pairs, which is more likely to be caused by
alignment errors; 5) candidates that are supported by more than 50% of the “high-quality” reads
after confirming the alignment by a second aligner and masking bases adjacent to the start, end
or spliced junctions of each read; 6) candidates that are recurrently present in the RNA-seq data
of more than two unrelated individuals. The source code and default configuration file of RNA-
MosaicHunter are publicly available at https://gitlab.aleelab.net/august/rna-mosaichunter.git, and
it supports users to customize parameters that are used in the Bayesian genotyper and empirical
error filters.

Somatic calling from RNA-seq data

Each downloaded RNA-seq bam file was first converted back to the fastq format by Picard
(v1.138) and then aligned to the GRCh37 human reference genome by STAR (v2.5.0a)® in the
two-pass mode, where the reference gene annotation (Gencode version 19) was used in the first
pass and then a sample-specific annotation generated from the first pass was used in the second
pass. The aligned reads were processed by Picard (v1.138) to remove duplicates, followed by
SplitNCigarReads, indel realignment, and base quality recalibration of GATK (v3.6)°. Reads that
were improperly paired or with ambiguous alignment were removed, and only genomic positions
covered by 10 or more reads were subject to RNA-MosaicHunter. To exclude A-to-I(G) RNA


https://doi.org/10.1101/2024.01.03.574078
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.03.574078; this version posted January 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

editing sites, we only considered non-A-to-G candidates from the output of RNA-MosaicHunter.
We further excluded non-exonic candidates and candidates that are present in the polymorphism
databases of the general human population including dbSNP'°, the 1000 Genomes Project!!, the

Exome Sequencing Project!?, and the Exome Aggregation Consortium®?,

Benchmarking of RNA-MosaicHunter

RNA-seq and whole-exome sequencing data of 19 esophageal carcinoma samples as well as
whole-exome sequencing data of their matched normal samples were downloaded from The
Cancer Genome Atlas (TCGA) Research Network'*. The list of 19 esophageal carcinoma
samples is: TCGA-L5-A40F-01A, TCGA-V5-A7RC-01B, TCGA-LN-A4A1-01A, TCGA-IG-
A97I-01A, TCGA-L5-A8NE-01A, TCGA-JY-A93C-01A, TCGA-LN-A49M-01A, TCGA-IG-
A3YB-01A, TCGA-LN-A49Y-01A, TCGA-L5-A8NN-01A, TCGA-LN-A49L-01A, TCGA-LN-
A9FQ-01A, TCGA-L5-A40R-01A, TCGA-LN-AS8I1-01A, TCGA-L5-A891-01A, TCGA-L7-
A6VZ-01A, TCGA-LN-A4A4-01A, TCGA-LN-A5U5-01A, TCGA-L5-A40J-01A.

Somatic mutation calls created by the Broad Institute through the comparison of tumor and
matched normal whole-exome sequencing pairs using MuTect!® were also downloaded. A total
of 851 non-A-to-G, autosomal, exonic, tumor-specific somatic mutations were called from the 19
tumor samples and covered by 10 or more reads in tumor RNA-seq data. This callset served as
the gold standard for benchmarking our RNA-seq somatic mutation calling pipeline. We applied
our calling pipeline to 19 esophageal tumor RNA-seq profiles, without applying a filter for
removing recurrent candidates because these tumor samples may share common driver
mutations, and identified 613 non-A-to-G somatic mutations.

By comparing the RNA-MosaicHunter callset with the gold standard, we found that RNA-
MosaicHunter successfully identified 499 out of 851 MuTect-called mutations, equivalent to a
sensitivity of 59% (Fig. 2b). On the other hand, among 613 RNA-MosaicHunter-called
mutations, 513 were confirmed by the MuTect calls while 65 mutations were missed by MuTect
but showed reads with 2% or more mutant allele fractions in the DNA-seq data, suggesting an
overall precision of 94% for RNA-MosaicHunter (Fig. 2a-b).

Neuronal proportion estimation

To estimate the proportion of neurons and other brain cell types in bulk brain RNA-seq data of
ROSMAP and MayoRNAseq, we applied CIBERSORT (v1.05)!¢ to deconvolute the cell-type
composition for each RNA-seq sample, by using the cell-type-specific expression reference for
different neuronal and glial types (excitatory and inhibitory neuronal subtypes in the cortex,
cerebellar granule cells, Purkinje cells, endothelial cells, pericytes, astrocytes, oligodendrocytes
and their precursor cells, and microglia), generated from a large-scale brain single-cell RNA-seq
dataset!”. We summed the estimated proportion of all subtypes of excitatory and inhibitory
neurons to calculate the overall neuronal proportion for each sample.

Panel design and sequencing
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For hybrid capture, probes targeting the exons and exon-intron junctions of 149 cancer driver
genes (Supplementary Table 3) were designed using the SureSelect DNA Advanced Design
Wizard. The list of targeted genes was designed to include frequently mutated oncogenes and
tumor suppressor genes in various types of cancer and clonal hematopoiesis. A total of 23,171
probes with a genomic size of 691 kbp were eventually designed and generated. These probes
were then used for gene capture followed by library preparation using the SureSelect XT HS2
DNA Reagent Kit with 30 ng gDNA input. All prepared libraries were sequenced using three
Illumina NovaSeq 6000 S4 flow cells with 150 bp paired-end reads.

Somatic mutation calling from panel sequencing

The UMI information of each read was first extracted from the fastq files by AGeNT’s Trimmer
(v2.0.2), and then reads were aligned to the GRCh37 human reference genome by BWA-MEM
(v0.7.15)'%. The aligned reads were processed by AGeNT Locatlt (v2.0.2) to generate the
consensus read sequence from multiple reads that were derived from the same original DNA
fragment and thus carried the same UMI, followed by GATK’s indel realignment (v3.6)°. We
only kept the consensus reads that were supported by two or more reads in both strands. As a
result, we achieved comparable depth and coverage between the AD and control samples, with
more than 1000X average depth and more than 80% coverage of the targeted regions at >500X
for consensus reads (Supplementary Table 4 and Extended Data Fig. 2a).

sSNVs and somatic indels (sIndels) were called from the consensus reads by MosaicHunter
(v1.0)” and Pisces (v5.3)!", respectively. For sSSNV, MosaicHunter calculated the likelihood of
the presence of a mutant allele, and only the candidates with a 0.5 or higher likelihood, 100 or
more total reads, and 4 or more mutant-supporting reads were considered. We further excluded
candidates as germline mutations if 1) they have a 30% or higher mutation allele fraction; 2) the
counts of mutant-supporting and total reads do not significantly deviate from the binomial
distribution for heterozygous mutations (p > 0.05); 3) they are present in the polymorphism
databases (dbSNP!?, the 1000 Genomes Project!!, the Exome Sequencing Project'?, and the
Exome Aggregation Consortium'?) or have a 0.01% or higher population allele frequency in the
Genome Aggregation Database?’. sIndels were called by Pisces with its default parameters, and a
similar method was used to call mutation candidates and remove germline mutations.

To balance the sensitivity and specificity of our sSSNV and sIndel detection, we developed two
different pipelines when considering the recurrent presence across multiple individuals. The
“stringent” pipeline only kept the mutations that were detected in one sample and completely
absent in any other samples, whereas the “sensitive” pipeline additionally allowed the mutations
that were exclusively present or specifically enriched (two-sample Z-test of proportion with p <
0.05) in the AD or control group.

Benchmarking of mutation calling using panel sequencing

A mixing experiment was performed to benchmark the performance of the designed panel and
variant calling pipeline. Germline mutation calls from two unrelated individuals, NA12878 and
NA24695, were downloaded from the website of the Genome in a Bottle Consortium?'. Genomic
sites in the covered regions of panel sequencing that were genotyped as heterozygous in
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NA24695 but reference-homozygous in NA12878 were considered as the gold-standard list of
somatic mutations, and gDNA from these two individuals were mixed to reach 10%, 5%, 2%,
1%, 0.5%, and 0.2% mutant allele fractions for these mutations. We applied the same experiment
and analysis protocols of panel sequencing to the mixed samples with varied allele fractions, and
then checked the proportion of gold-standard mutations that were identified by our identification
pipeline as well as the consistency between expected and observed allele fractions.

Fluorescence-activated nuclei sorting (FANS)

Nuclei were prepared following the previously published work??. Briefly, fresh frozen human
brain tissue samples were first lysed in a dounce homogenizer using a chilled nuclear lysis buffer
(10mM Tris-HCI, 0.32M Sucrose, 3mM Mg(Acetate)2, SmM CaCl2, 0.1mM EDTA, pH 8, ImM
DTT, 0.1% Triton X-100) on ice. Tissue lysates were layered on top of a sucrose cushion buffer
(1.8 M sucrose 3 mM Mg(OAc)2, 10 mM Tris-HCI, 1 mM DTT, pH 8) and ultra-centrifuged for
1 h at 30,000g. Nuclear pellets we resuspended in ice-cold PBS supplemented with 3mM MgCl2,
filtered, and then stained with the neuronal marker (NeuN, Millipore MAB377) or microglial
marker (CSF1R, Cell Signaling 65396) together with DAPI. For each brain sample, neuronal
(NeuN+), glial (NeuN-), microglial (CSF1R+), and total (DAPI+) nuclei populations were sorted
into 96-well plates by flow cytometry.

Cell type analysis from 10X snRNAseq

For the PFC sample of one AD patient (with a TET2 p.Pro1194Ser sSNV) and one healthy
control, ten thousand microglial nuclei were sorted separately into a well of the 96-well plate and
used for droplet generation and sequencing library preparation using the 10X Genomics Next
GEM Single Cell 3" GEM Kit v3.1 and Chromium Controller, following the manufacturer's
manual. The snRNAseq libraries were sequenced by Illumina HiSeq X, and down-sampled to
have a comparable sequencing throughput. We also downloaded a large-scale snRNAseq
dataset®®, consisting of 80,660 nuclei isolated from 24 AD and 24 control PFC samples collected
by ROSMAP, to serve as the reference. The sequencing data of our AD and control sample was
firstly processed by Cell Ranger (v6.0.0)** and then integrated and analyzed along with the
reference dataset by Seurat (v4.9.9)%, for variance normalization, anchor-based RPCA
integration, PCA clustering, and UMAP visualization. Cell clusters were manually annotated into
different cell types based on the expression profile of marker genes (Extended Data Fig. 4b) for
the major brain®® and blood?’ cell types (HBAI: red blood cell; CD3E: T-cell; CCR7: B-cell;
FCNI: monocyte). Our snRNAseq result confirmed 75-77% microglia purity in the CSF1R+
sorted nuclei of the AD and control brains, with additional 4-9% CNS-associated macrophages
(Fig. 4a). We also observed minimal blood contamination in the sorted microglial population,
with only 1% monocytes and the absence of other major blood cell types including red blood
cells, T-cells, and B-cells (Fig. 4a and Extended Data Fig. 4b). Using this reference dataset, we
also confirmed the minimal contamination of blood cells (< 0.3%) in ROSMAP brain samples.
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Amplicon sequencing

Amplicon sequencing was performed for validation and mutant allele fraction estimation in both
bulk gDNA samples and sorted nuclei. Bulk gDNA was extracted from frozen brain samples
using the EZ1 DNA Tissue Kit (Qiagen 953034). Five hundred nuclei of each cell type from
each brain sample were sorted into 96-well plates with four replicates. Whole-genome
amplification was then performed for sorted nuclei using the ResolveDNA Whole Genome
Amplification Kit (BioSkryb Genomics) to meet the minimal DNA amount for panel sequencing.
For each identified sSNV, three sets of primers were designed for PCR amplification of the
targeted genomic region. PCR amplification was performed using the Phusion Hot Start Il DNA
Polymerase kit (Thermo Fisher F549L) with the following cycles: 98 °C for 30 sec; 5 cycles of
98 °C for 10 sec, 68 °C for 30 sec (decrease 1 °C/cycle), and 72 °C for 30 sec; 25 cycles of 98 °C
for 10 sec, 63 °C for 30 sec, 72 °C for 30 sec; 72 °C for 10 min. The annealing temperatures of
primers varied for each design which was determined by a testing PCR. PCR products were then
purified using AMPure XP beads (Beckman Coulter A63882) and pooled for Amplicon-EZ
sequencing (GENEWIZ).

The sequencing reads were first aligned to the GRCh37 human reference genome by BWA-
MEM (v0.7.15)'® and then processed by GATK (v3.6) for indel realignment’. For each somatic
mutation candidate, the number of reads supporting each allele was calculated by MosaicHunter
(v1.0) and manually verified by Integrative Genomics Viewer (v2.3.93)?%. A candidate was
considered validated as somatic mutation (Extended Data Fig. 2e-g) if 1) the read fraction of the
mutant allele was more than three times as high as the fractions of the other two error alleles in
all three amplicons (somatic-I); or 2) the read fraction of the mutant allele in the corresponding
brain sample was significantly higher than the fraction in an unrelated negative control brain
sample for all three amplicons (somatic-II).

Functional annotation of sSSNV and sIndel

ANNOVAR (v2015Mar22)?° was applied to annotate somatic mutations into different genic
categories: 5° UTR, exonic (coding sequence), 3° UTR, splicing (within intronic 2 bp of a
splicing junction), and intronic. Exonic somatic mutations were further classified into multiple
categories based on their predicted impacts on amino acids. A somatic mutation was labeled as
deleterious if 1) it was annotated as splicing or predicted to cause stop-codon gain/loss; 2) it was
a frameshift insertion or deletion; or 3) it was a missense mutation whose amino acid change was
predicted to be deleterious by either PolyPhen23? or SIFT?!. For 149 cancer driver genes, we
grouped them into (proto-)oncogenes and tumor suppressor genes (TSGs) according to the
annotation of the COSMIC Cancer Gene Census®?. Genes annotated as both oncogenes and
TSGs were not considered in calculating the mutation burdens plotted in Fig. 3d. MAFTools
(v2.10.1)* was used to illustrate the gene-level distribution of somatic mutations. Genes and
driver mutations involved in clonal hematopoiesis of indeterminate potential (CHIP) were
extracted from a study that analyzed blood whole-genome sequencing data from 11,262 people®.

Functional enrichment analysis of Gene Ontology (GO) terms was performed using GOseq
(v1.34.1)*. Exonic somatic mutations identified from the RNA-seq of AD patients or normal
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controls were used as the input, and Wallenius’ noncentral hypergeometric distribution was used
to test the enrichment, with a probability weighting function to control for potential gene length
bias. Only GO terms with 3 or more hits and an initial overrepresentation p-value < 0.01 were
considered. GO terms with more than 1000 genes were excluded. All the GO terms with
significant enrichment of AD somatic mutations were plotted in Fig. 2f, where the p-value was
adjusted by Hommel’s method for the correction of multiple hypothesis testing. In comparison,
only one GO term “helicase activity” showed significant enrichment for somatic mutations
identified from normal controls.

Burden analysis of sSSNV and sIndel

Somatic mutation density in each clinical group was calculated by counting the total number of
somatic mutations and dividing it by the total size of powered genomic regions with >10X
coverage for RNA-seq or >500X for panel sequencing data sets, and the odds ratio and the two-
sample Z-test of proportion were used to test whether the AD group had a higher mutation
burden than the control group. In the gene-level analysis for panel sequencing data, we compared
the somatic mutation burden between AD and control groups using a similar two-sample Z-test
of proportion, in which the total genomic size for each gene was calculated as the product of the
exonic length and the number of individuals in AD or control group.

For the linear regression analysis, the count of somatic mutations in each sample was modeled as
a continuous outcome, whereas clinical status and other covariates of interest (e.g. age, sex,
sequencing depth, post-mortem interval, and neuronal proportion) were modeled as independent
variables. Our linear regression results from both RNA-seq and panel sequencing confirmed the
increased burden of somatic mutation in AD brains after controlling for all of these potential
confounding factors (Fig. 2e and 3¢). We only considered donors with ages less than 90, because
all the donors with age 90 or higher were labeled as “90+” in the demographic tables of the
ROSMAP and MayoRNAseq studies. We also tested whether APOE4 carriers exhibited different
somatic mutation burdens compared to non-carriers by considering this as an additional
covariate. However, the known strong correlation between the APOE4 allele and AD risk may
violate the independence of covariate assumption in linear regression, thus limiting the statistical
power. To further rule out the effect of potential blood contamination, we measured the
normalized gene expression level (transcript per million, TPM) of blood marker genes including
HBAI, CD3E, CCR7, and FCNI for each RNA-seq sample of ROSMAP and MayoRNAseq by
StringTie (v1.3.3b)*, and then modeled them as additional covariates in our linear regression
model. We observed minimal contamination of blood-derived immune cells in ROSMAP and
MayoRNAseq brain samples, and confirmed that our observed AD increase remains significant
after controlling for any of these genes (p < 0.01).

Positive selection analysis
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Signals of positive selection were assessed for sSSNVs identified from AD and control samples
separately by dNdScv?’. The dN/dS ratios and p-value for missense, nonsense, and splicing
mutations were calculated at the levels of individual genes and groups of genes, by comparing
against the background synonymous mutation rate with the consideration of the sequence
composition of genes. For each gene in AD or control group, we 1) calculated the number of
missense and truncating (nonsense and splicing) mutations under positive selection by
multiplying the number of all mutations in that gene by the proportion of positively selected
mutations inferred from the gene-specific dN/dS ratio; 2) determined the proportion of positively
selected cells by multiplying the number of positively selected mutations by the average mutant
allele fraction in that gene x 2 (given that almost all the sSSNVs should be heterozygous in carrier
cells). Assuming a consistent number of profiled cells in panel sequencing for each brain, we
further estimated the number of positively selected cells in each AD and control brain by
aggregating the number of positively selected cells across the group of genes and normalizing
this number based on the count of brain samples in AD and control groups.

Automatic cell-type identification with scType

Myeloid cells in the brain include both parenchymal microglia and CNS-associated macrophages
(CAMs), including meningeal, choroid plexus, and perivascular macrophages (PVMs)?®.
Microglia-perivascular macrophages, hereby referred to as microglia-CAMs, represented 3.37%
of all pre-annotated cells within SEA-AD, which is slightly lower than past estimates of
microglia-CAMs making up 5-15% of all brain cells***°. scType (v20220909)*! was used to
automatically identify any additional high-quality microglia-CAMs beyond those originally
annotated in SEA-AD (“pre-annotated” cells) to increase statistical power for calling mosaic
chromosomal alterations (mCAs). Excitatory neurons (ExNs) were also automatically typed as a
cell-type out-group to further facilitate accurate identification of microglia-CAMs, as scType’d
microglia-CAMs should have high microglia-CAM scType scores but low ExN scType scores.

Prior to running scType, each SEA-AD sample was processed, normalized, and clustered with
the Louvain algorithm using Seurat (v4.1.1)*. Each sample underwent quality control with the
following metrics: retain only 1) genes expressed in > 3 cells, 2) cells with > 10 expressed genes,
3) cells with < 5% mitochondrial gene expression, 4) cells with > 250 expressed genes and <
7500 expressed genes. Positive markers for microglia-CAMs (P2RY12, ITGAM, CD40, PTPRC,
CD68, AIF1, CX3CRI, TMEM119, ADGREI, C1QA, NOS2, TNF, ISYNAI, CCL4, ADORA3,
ADRB2, BHLHE41, BINI, KLF2, NAV3, RHOB, SALLI, SIGLECS, SLCI1A3, SPRYI, TALI) and
ExNs (SLC17A47, SLC1746, GRINI, GRIN2B, GLS, GLUL, GRIN2A) were downloaded from the
scType marker database and used to calculate microglia-CAM and ExN scType scores for each
individual cell.

In brief, scType calculates cell-type specific scores for each cell using a weighted and
normalized aggregation of marker gene expression, where marker genes are weighted more
highly if they are more specific for a given cell type (expressed in one cell type of interest, rather
than several). For each sample, both ExN and microglia-CAM scType scores were calculated for


https://doi.org/10.1101/2024.01.03.574078
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.03.574078; this version posted January 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cells that were pre-annotated as either ExNs or microglia-CAMs. Taking these pre-annotations as
ground truth, ROCR (v1.0.11)** and cutpointr (v1.1.2)* were used to calculate the optimal
cutpoint for ExXN and microglia-CAM scType scores that maximized the sum of sensitivity and
specificity of classification over 1000 bootstraps. Using these learned ExN and microglia-CAM
cutpoints, cells that were not pre-annotated were assigned as ExNs, microglia-CAMs, or neither.
A small number of cells had both microglia-CAM and ExN scType scores greater than the
corresponding optimal cutpoints; these cells were discarded due to ambiguity in assignment.

In addition to filtering of individual cells, 6 samples were filtered out due to not meeting at least
one of the following sample-specific metrics: 1) microglia-CAM AUC > 0.9, 2) ExN AUC > 0.9,
3) fraction of pre-annotated ExN typed by scType as microglia < 0.1, and 4) total number of pre-
annotated and scType’d microglia-CAMs > 50. This analysis filtered one individual H20.33.008,
as this donor had only one associated sample that was filtered due to not meeting the above
sample-specific metrics.

As a final step to ensure that scType’d cell microglia-CAMs were highly similar to their
corresponding pre-annotated cell types, pre-annotated and scType’d microglia-CAMs derived
from the same donor were merged into a single Seurat object and processed, normalized, and
clustered using the Louvain algorithm. Clusters in which over 50% of cells were pre-annotated
microglia-CAMs were identified and only scType’d microglia-CAM:s in these clusters were
retained as high-confidence scType’d microglia-CAMs cells. Only pre-annotated microglia-
CAMs and these high-confidence scType’d microglia-CAM cells were used for mCA-calling
and all subsequent downstream analyses.

mCA calling from snRNAseq

Genomic regions of non-uniparental disomy CH-associated mCA listed in Extended Data Figure
4d and 4e of Saiki et al.** were extracted, and genomic coordinates of these regions were
downloaded from the hg38 reference genome accessed through the UCSC Genome Browser®.

mCA calling was done for microglia-CAM, astrocytes, oligodendrocytes, oligodendrocyte
precursor cells (OPCs), and ExNs. For each cell type, raw count matrices (gene X cell) were
extracted for the 31 AD cases and 31 age-matched healthy controls that passed filtering as
described above. Each of these matrices was processed and normalized using Seurat (v4.1.1) and
then independently used as input for mCA-calling with CONICSmat (v0.0.0.1)*.

The aforementioned mCA regions identified in Saiki et al., were tested with CONICSmat
(Supplementary Table 7), and raw mCA calls were further filtered to increase specificity of calls.
In brief, a putative mCA was retained if it met the following criteria: 1) Bonferonni adjusted p-
value < 0.05; 2) <25% ambiguous cells (cells with a posterior probability > 0.25 and < 0.75); 3)
median expression of putative mCA-carrying cells is > or < 1.96 standard deviations of putative
normal cells of the same type for amplifications or deletions, respectively; 4) no negative control
regions (i.e. whole chromosome regions that have not been associated with mCA in past
literature) showed a larger difference in expression between putative normal and mCA-carrying
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cells than the called mCA; 5) the expression of putative normal cells was within 1.96 standard
deviations of baseline expression of cells of the same type across all other individuals; and 6) the
same mCA was not called in a different cell-type from the same individual. For microglia-
CAMs, putative mCAs were additionally filtered if the number of scType’d non-ambiguous cells
(posterior probability < 0.25 or > 0.75) were < 1.5x the number of pre-annotated non-ambiguous
cells for both altered and wild-type cells. This filtering criterion was added to ensure that mCA
calls identified from scType’d and pre-annotated microglia-CAMs were not driven by added
scType’d cells.

Burden analysis of mCA

Per cell type, the number of cells with mCAs from AD donors, the number of cells without
mCAs from AD donors, the number of cells with mCAs from control donors, and the number of
cells without mCAs from control donors were counted and an odds ratio (OR) of mCA-carrying
cells in AD donors vs control donors was calculated. For two cell types, CAMs and
oligodendrocytes, all mCA-carrying cells were in AD donors and the OR was thus infinite. To
facilitate comparison of the actual OR against an empirical null as described below, a
pseudocount of 1 was added to the number of mCA-carrying cells in AD and control groups
separately for these two cell types. To calculate the significance level of this calculated odds
ratio, an empirical null was generated using permutation. In brief, for each cell type, diagnosis
labels were permuted over the set of all cells from each donor, including both mCA-carrying and
wild-type cells. If a donor had multiple called mCAs, diagnosis labels were permuted over each
mCA individually. Specifically, for each called mCA in a given individual, cells were divided
into wild-type or mCA-carrying for that specific mCA. Each of these partitions of wild-type
versus mCA-carrying cells was then randomly assigned a diagnosis status. OR was calculated for
each set of permutated data. Permutations were repeated 1000 times and the p-value of the actual
OR was calculated as 1 — the percentile rank of actual OR against the empirical null distribution
of permutation ORs. Ten trials of 1000 permutations were completed to ensure the robustness of
p-values.

Creation of an integrated snRNAseq microglia-CAM atlas

All scType’d and pre-annotated microglia-CAMs from AD and healthy control samples, with the
exception of the one associated with H20.33.008 as described above, were individually
processed with Seurat (v4.1.1). In brief, each sample underwent quality control with the
following metrics: retain only 1) genes expressed in > 3 cells, 2) cells with > 10 expressed genes,
3) cells with < 5% mitochondrial gene expression, 4) cells with > 250 expressed genes and <
7500 expressed genes. Variance-stabilizing normalization and regression of the technical
covariates percent.mt, nFeature RNA, and nCount RNA were performed with Seurat function
SCTransform, and clustering was done using the Louvain algorithm.
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Individual samples were then merged into a single Seurat object, and dimensionality reduction
was performed using PCA. This merged object was then integrated over constituent individual
samples using Seurat’s wrapper function for Harmony (v0.1.1)*’. UMAP visualization of the
integrated object showed no visible clustering by sample ID or individual ID, consistent with
successful integration (Extended Data Fig. 6).

Differential expression analysis and functional annotation of integrated microglia-CAM
snRNAseq atlas

Differential expression analysis was performed between microglia-CAMs with and without
called mCAs from mCA-carrying AD individuals using the FindMarkers function of Seurat
(v4.1.1) with a min.pct cutoff of 0.10 and no fold-change cutoff. Genes with an adjusted p-value
< 0.05 were called as differentially-expressed genes (DEGs).

clusterProfiler (v4.4.4)* was used to perform all enrichment analyses. GO enrichment analysis
was performed using standard parameters and a universe of all genes expressed in >10% of
microglia-CAMs in the integrated atlas. Terms were deemed significant if they had an adjusted
p-value < 0.05.

DEGs were also tested for enrichment of previously defined microglial state gene modules®. A
minority of genes (107/905; 11.9%) within these microglial state gene modules were shared
between multiple modules. To ensure specificity of module enrichment, genes were weighted by
the inverse of the number of modules in which they were present. Non-integer values were
rounded and module enrichment was tested using a hypergeometric test.

Data and material availability

All the RNA-seq and DNA-seq data of ROSMAP, MayoRNAseq, and SEA-AD are available via
the AMP-AD Knowledge Portal. The RNA-seq and DNA-seq data of TCGA are available via
the NCI Genomic Data Commons Data Portal. ROSMAP resources can be requested at
https://www.radc.rush.edu. The panel sequencing and snRNAseq data generated in this study
will be deposited to the AMP-AD Knowledge Portal, with controlled use conditions set by
human privacy regulations. Other materials are available from the authors upon reasonable
request.

Code availability

The source code and default configuration file of RNA-MosaicHunter are available at
https://gitlab.aleelab.net/august/rna-mosaichunter.git. Custom bash and R scripts used in this
study will be publicly available at https://gitlab.aleelab.net/august/ad-clonal.git.
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Supplementary Discussion:

In this study, we observed that AD brain samples harbor an increased burden of somatic
mutations in cancer driver genes, especially in CH-associated genes, suggesting that CH
mutations in the brain are positively associated with AD pathogenesis. However, a study by
Bouzid et al.! finds that CH mutations in blood appear to be protective against AD. Another
work from Kessler et al.? reports no association between CH mutations in blood and AD risk in a
much larger number of samples. Several technical and methodological differences may explain
the inconsistency between these three studies.

First, our study was designed to directly study brain samples of AD patients and healthy controls,
whereas both Bouzid ef al. and Kessler et al. were based on the re-analysis of peripheral blood
sequencing data. Although both studies reported that many of these CH mutations were shared
between brain (microglia) and blood samples of the same individuals, it remained unclear
whether CH mutations might have a different role in AD between the brain and blood (harmful
in brain vs. protective/neutral in blood).

Second, we screened for brain somatic mutations by ultra-deep panel sequencing with a UMI
design, such that we were able to detect mutations with MAFs as low as 0.1% (Extended Data
Fig. 2). In comparison, Bouzid et al. and Kessler ef al. utilized existing blood whole-exome
sequencing data with conventional depth, which was designed for germline variant detection and
could only detect CH mutations with MAFs > 5-10%2°, although CH mutations with lower
MAFs are more typical in the blood*. Indeed, we observed that the AD enrichment of somatic
mutations in CH-associated genes disappears when only high-MAF mutations are considered
(Extended Data Fig. 7b).

Finally, our panel sequencing covered a comprehensive list of 149 cancer driver genes
(Supplementary Table 3), including many genes that had been reported in cancer development
but not yet linked to CH. Our results suggest that somatic mutations in these non-CH-associated
genes also show an increased burden in AD brains, robust with different MAF cutoffs (Extended
Data Fig. 7a), but such effects would be missed in Bouzid et al. and Kessler ef al. because their
studies only focus on CH-associated genes.

Reference

1 Bouzid, H. et al. Clonal hematopoiesis is associated with protection from Alzheimer's disease.
Nat Med (2023). https://doi.org:10.1038/s41591-023-02397-2

2 Kessler, M. D. ef al. Common and rare variant associations with clonal haematopoiesis
phenotypes. Nature 612, 301-309 (2022). https://doi.org:10.1038/s41586-022-05448-9

3 Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature
586, 763-768 (2020). https://doi.org:10.1038/s41586-020-2819-2

4 Mitchell, E. ef al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606,

343-350 (2022). https://doi.org:10.1038/s41586-022-04786-y



https://doi.org:10.1038/s41591-023-02397-2
https://doi.org:10.1038/s41586-022-05448-9
https://doi.org:10.1038/s41586-020-2819-2
https://doi.org:10.1038/s41586-022-04786-y
https://doi.org/10.1101/2024.01.03.574078
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Manuscript_v22
	Main-text:
	Reference:
	Acknowledgments: We thank B. Stevens, B. Hyman, Po-Ru Loh, and B. Yankner for constructive discussions and suggestions on the manuscript, and R. S. Hill, J. E. Neil, D. Gonzalez, M. Chin, and T. Dolbeare for their help. R. Mathieu and T. Berisha from ...
	Author contributions: A.Y.H., Z.Z., M.B.M., E.A.L., and C.A.W. conceived and designed the study. A.Y.H. developed RNA-MosaicHunter and performed somatic mutation calling from bulk RNA-seq data, with the assistance of B.Z., D.K., and J.C.. Z.Z. designe...
	Competing interests: C.A.W. is a paid consultant (cash, no equity) to Third Rock Ventures and Flagship Pioneering (cash, no equity) and is on the Clinical Advisory Board (cash and equity) of Maze Therapeutics. No research support is received. These co...
	Correspondence and requests for materials should be addressed to E.A.L. or C.A.W.
	Fig. 1. Overview of the experimental and analysis strategies. a, Transcriptome-wide screen of sSNVs among 886 bulk RNA-seq data sets of AD and control brain samples. Somatic mutations were called by RNA-MosaicHunter. MCI, mild cognitive impairment; NC...
	Fig. 2. RNA-MosaicHunter reveals elevated burden of somatic mutations in the cerebral cortex of AD patients. a-b, Benchmarking the performance of RNA-MosaicHunter using the TCGA cancer data. 513 of 613 sSNVs identified by RNA-MosaicHunter were confirm...
	Fig. 3. Elevated burdens of somatic mutations in cancer driver genes in AD brains. a-b, AD prefrontal cortex samples harbor significantly more sSNVs in 149 targeted cancer driver genes than matched controls, using both the sSNV list of stringent (a) a...
	Fig. 4. Deleterious somatic mutations are enriched in microglial clones of AD brains. a, 10X snRNAseq confirms the high purity and unbiased representation of microglia in CSF1R+ nuclei sorted from AD and control PFC samples. Clustering results suggest...
	Fig. 5. mCAs in AD microglia are associated with a pro-inflammatory, disease-related signature. a, Microglia from AD brains contain nominally more mCAs associated with hematopoietic overgrowth syndromes compared to age-matched controls, even in this s...
	Extended Data Fig. 1. Identification and functional annotation of sSNVs in RNA-seq data. a, Mutation type and tri-nucleotide context of sSNVs. T-to-C (A-to-G) candidates were ignored because they were more likely to be RNA-editing sites widespread in ...
	Extended Data Fig. 2. Benchmarking and validation results of sSNVs and sIndels identified from panel sequencing. a-b, Comparable sequencing depth (a) and coverage (b) between AD and control PFC samples, calculated based on the consensus reads after UM...
	Extended Data Fig. 3. Identification and functional annotation of sSNVs in panel sequencing data. a, Mutation type and tri-nucleotide context of sSNVs. b, Genic annotation and functional impact prediction of sSNVs identified from AD and control PFC sa...
	Extended Data Fig. 4. Microglial purity and mutant allele fraction of FANS-sorted nuclei population. a, Selectively isolated microglia from frozen brain tissues using FANS with an antibody targeting epitopes of CSF1R, a gene highly expressed in microg...
	Extended Data Fig. 5. mCA burden analysis in microglia-CAMs and identification of additional microglia-CAMs with scType. a, Schematic representation of supervised learning framework and quality-control metrics used to detect additional high-quality mi...
	Extended Data Fig. 6. Integrated snRNAseq atlas of microglia-CAMs in AD and healthy controls. UMAP visualization of covariates of interest does not reveal significant clustering by individual ID, nFeature, or nCount, consistent with successful integra...
	Extended Data Fig. 7. The odds ratio of AD enrichment for sSNVs with different MAF cutoffs. When we consider all the 149 genes targeted by the panel sequencing, we observe a consistent trend of AD enrichment even for sSNVs with 5% or more MAF. In comp...
	Captions for online supplementary tables
	Supplementary Table 1. RNA-seq sample information and summary. PMI, post-mortem interval.
	Supplementary Table 2. sSNV candidates identified from RNA-seq samples. sSNVs of ROSMAP and MayoRNAseq samples are listed in separate tabs.
	Supplementary Table 3. List of 149 cancer driver genes in panel sequencing. TSG, tumor suppressor gene.
	Supplementary Table 4. Panel sequencing sample information and summary. PMI, post-mortem interval.
	Supplementary Table 5. sSNV and sIndel candidates identified from panel sequencing samples. sSNVs and sIndels called by the stringent and sensitive pipelines are listed in separate tabs.
	Supplementary Table 6. snRNAseq sample and cell-type annotation information and summary.
	Supplementary Table 7. mCA candidates identified from snRNAseq samples.
	Supplementary Table 8. Differential expression and functional annotation results between mutant and wild-type microglia-CAMs from mCA-carrying AD individuals.  Pct.1, expression in microglia-CAM carrying mCA. Pct.2, expression in microglia-CAM that do...

	Materials and Methods_v9
	Supplementary Discussion_v5

