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Abstract 

Knowing the ancestral states and lineage relationships of individual cells could unravel the 

dynamic programs underlying development. Engineering cells to actively record information 

within their own genomic DNA could reveal these histories, but existing recording systems have 

limited information capacity or disrupt spatial context. Here, we introduce baseMEMOIR, which 

combines base editing, sequential hybridization imaging, and Bayesian inference to allow 

reconstruction of high-resolution cell lineage trees and cell state dynamics while preserving 

spatial organization. BaseMEMOIR stochastically and irreversibly edits engineered 

dinucleotides to one of three alternative image-readable states. By genomically integrating 

arrays of editable dinucleotides, we constructed an embryonic stem cell line with 792 bits of 

recordable, image-readable memory, a 50-fold increase over the state of the art. Simulations 

showed that this memory size was sufficient for accurate reconstruction of deep lineage trees. 

Experimentally, baseMEMOIR allowed precise reconstruction of lineage trees 6 or more 

generations deep in embryonic stem cell colonies. Further, it also allowed inference of ancestral 

cell states and their quantitative cell state transition rates, all from endpoint images. 

baseMEMOIR thus provides a scalable framework for reconstructing single cell histories in 

spatially organized multicellular systems. 
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Introduction 

Cells divide, differentiate, and move to form exquisitely organized structures. Reconstructing the 

dynamic histories of individual cells, particularly their lineage relationships, could enable 

researchers to understand how tissues form, analyze the roles of intrinsic and extrinsic 

determinants of cell fate decisions, and reveal how processes are dysregulated in disease1. 

Recent advances in single cell sequencing and spatial genomics now allow us to capture single 

cell states at specific moments in time234. However, with a few exceptions5, the histories of those 

cells have largely remained hidden.  

Researchers have sought to address this challenge through engineered recording systems, 

which progressively introduce stochastic edits in genomically integrated barcode sequences as 

cells proliferate. Systems such as GESTALT638, CARLIN9, LINNAEUS10, SMALT11, and the 

homing CRISPR barcoded mouse12,13, use CRISPR/Cas9 or recombinases to edit designed 

target sequences, relying on next generation sequencing to read out edited barcodes. 

Alternative systems, including CAMERA, leverage CRISPR base editors to generate more 

specific types of barcode diversity.14,15 Further, prime editors introduced an additional paradigm 

for phylogenetic recording, sequentially inserting short nucleotide motifs for genomic information 

storage.16318 In all of these systems, lineage relationships between individual cells are 

reconstructed from each cell9s unique pattern of target site edits, in a manner analogous to 
sequence-based phylogenetic reconstruction.19,20 

These techniques can be powerful in their ability to recover lineage but disrupt spatial 

organization. A parallel set of methods were developed to allow barcode editing in ways that 

allow readout of edits and cell states by imaging21,22. For example, previous MEMOIR (Memory 

by Engineered Mutagenesis with Optical In situ Readout) systems showed that it is possible to 

stochastically and irreversibly edit engineered DNA barcodes, or 8scratchpads,9 using 
CRISPR/Cas921 or an integrase22, and then read out those edits by imaging. However, these 

methods were limited in accuracy by relatively low numbers of mutable target sites, which serve 

as memory in the genome. For example, existing image-readable systems have demonstrated 

only ~16 bits of information storage22.  

Recently, we showed that in situ T7 transcription can amplify genomic DNA into localized RNA 

clusters, which can then be competitively probed to discriminate single base edits23.  In this 

strategy, termed <Zombie,= a genomic DNA of interest can be maintained without transcription in 
live cells, transcribed after fixation with the addition of T7 polymerase, and finally detected by 

RNA-FISH. Zombie transcription avoids silencing problems that occur when barcodes must be 

continuously transcribed in live cells, generates large quantities of RNA that spatially localize 

around the active site of transcription, can detect mutations at single nucleotide resolution, and 

is compatible with subsequent sequential rounds of FISH to detect endogenous gene 

transcripts. Zombie enables readout of dense editable memory arrays, expanding the capacity 

of MEMOIR approaches. 

Here, we introduce <baseMEMOIR=, a multiplexed phylogenetic recording system which enables 
detailed recording of lineage relationships over time in a manner compatible with recovery of 
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spatial position and gene expression patterns (Figure 1a). We distributed mutable synthetic 

DNA sequences at high copy number randomly across the genome of mouse embryonic stem 

cells. These targets can be edited by the CRISPR A-to-G base editor (ABE), which complexes 

with guide RNAs to specifically mutate target sites within our synthetic sequences. For tight 

control of editing, we used two inducible systems to control the base editor (the TRE3G Tet-On 

system) and guide RNAs (controlled by a Wnt responsive promoter) respectively. On induction, 

mutations occur at a rate commensurate with cell division and are passed down from parent 

cells to their progeny through DNA replication, creating lasting marks that link related cells to 

one another. We then recovered mutation states through microscopic imaging, and applied 

Bayesian phylogenetic tools to infer lineage relationships as well as transcriptional state 

dynamics and spatiotemporal histories in a unified manner. By comparing the distinct pattern of 

mutations in each cell after a series of divisions, we were able to reconstruct phylogenies and 

estimate uncertainty in both tree topology and the timing of past cell divisions.  

 

To demonstrate the capabilities of baseMEMOIR, we applied this system to estimate state 

switching rates and probable past cell states along lineages of dividing mESCs grown in serum-

LIF conditions in the presence of a Wnt agonist. We find that mESCs grown in these conditions 

undergo reversible transitions between formative and 2C-like states, with an intermediate naive 

state that can be broken up into three distinct subclusters. Each state and subcluster, in addition 

to being transcriptionally distinct, is further distinguished by a set of allowed state transitions. 

The baseMEMOIR cell lines and platform can be applied, and further scaled, in any model 

system that permits genetic engineering, opening up spatially resolved analysis of embryonic 

development and other processes.  

Results 

Base editing can enable lineage recording with spatial readout 

To ultimately capture detailed lineage relationships between cells while maintaining spatial 

context, we first sought to design an image-readable stochastic base editing system. One 

possible system would use designed target sequences that would be editable at a single base. 

For example, the A-to-G base editor ABE could target a set of defined sequences to 

stochastically edit each target site. However, this scheme is susceptible to convergent edits in 

unrelated cells, i.e. homoplasy. In the limit of complete editing, every editable A would be 

converted to a G in all cells, and no lineage information could be recovered. 

To circumvent this issue, we used a modified design which takes advantage of the ability of the 

ABE to stochastically edit target sequences into one of multiple stable outcomes24. In our case, 

AA dinucleotide sequences in the target window are converted to any of three edited end-point 

states (GA, AG, or GG) (Figure 1b). Critically, because the GA and AG states each disrupt 

binding to the base editor gRNA, they are not expected to undergo further editing to GG. This 

dinucleotide editing scheme in principle reduces the likelihood of convergent editing, and 

prevents the effective <erasure= of recorded information at long times.  
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Based on this principle, we designed a library of barcoded, editable target arrays that could be 

integrated into the genome (Figure 1c). Each target array contained 6 tandem editable target 

sites, with unique protospacer sequences outside of the AA dinucleotide, so that each of the 6 

target sites required a distinct gRNA sequence for editing (Figure 1c). The arrays were flanked 

with piggyBac inverted terminal repeats, to enable high-copy-number genomic integration. To 

distinguish different integrations from one another, we also incorporated two static (non-

editable) random barcodes: first, a 10bp barcode (106 variants), for compact readout by 

sequencing; second, a pair of static 80bp image-readable barcode sequences, each of which 

could take on one of 200 possible sequences, for a total diversity of 2002 = ~104 unique 

barcodes (see Methods for construction of plasmid libraries). Finally, to enable imaging-based 

<Zombie= readout of edits, the arrays incorporated a T7 promoter upstream of the editable array 
(Figure 1c)23. 

To mutate targets at a tunable rate, and create the potential for signal recording, we built 

constructs that allow inducible expression of the ABE and gRNAs. ABE expression was placed 

under doxycycline (dox) control using the Tet-ON system, by stably integrating the reverse 

tetracycline-controlled transactivator (rtTA)  (Methods)25.  gRNAs were also made Wnt-

inducible by expressing them from the 39 UTR of an mTurquoise reporter gene under the control 
of a Wnt-responsive element21,26 (WRE). This promoter is active only in the presence of Wnt 

signaling ligands, and can be driven by the small molecule GSK-3 inhibitor CHIR99021 

(CHIR)21,26. To generate fully functional gRNAs after expression, we flanked each gRNA with 

previously described ribozyme sequences27. After stable co-integration in mESCs using 

piggyBac transposition, we identified a clone, termed baseMEM-01, which contained 66 

genomically-dispersed array copies with diverse static barcodes (Figure 1d, Supplemental 

Figure 1). This cell line, which allowed recording in live cells with imaging-based readout of 

barcode base edits, static barcode sequences, and endogenous gene expression using multiple 

rounds of hybridization and imaging234 (Figure 1e), was used for all subsequent experiments. 

Induction drives editing into diverse mutational states 

Since lineage recording depends on edits being accumulated on the timescale of cell division, 

we next sought to analyze inducible base editing using the system. We exposed baseMEM-01 

mESC cultures to the inducers CHIR, doxycycline, or both, over an 8-day period, a timescale 

long enough to allow multiple stem cell generations and, in an embryonic context, approach 

gastrulation. We collected samples at multiple time-points (Figure 2a). We then analyzed the 

editable barcodes by next generation sequencing.  

Edits accumulated at all 6 target sites (Figure 2b). Without induction and in the absence of dox, 

some editing was observed. However, the fraction of such background edited sites generally 

remained constant during the time course, consistent with transient background editing during 

cell line construction, but minimal basal editing in stable clones. By contrast, in the presence of 

both CHIR and dox, edits accumulated rapidly at a rate that was well-fit by a model of editing 

with distinct edit rates at each site (Figure 2b, solid lines). Interestingly, in the presence of dox 

alone, editing still occurred, albeit at an attenuated rate. This non-zero edit rate could be due to 

basal transcriptional activity of the WRE promoter or to activation of gRNA expression by low 
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levels of endogenous Wnt signaling in the mESCs. However, these results showed that 

doxycycline, with or without CHIR, could provide tight control of edit rate, making the line 

sufficient for lineage recording.  

Next, we analyzed the distribution of edit outcomes at each site. Different sites exhibited distinct 

ratios of edit outcomes (Figure 2c). For example, site 6 exhibited a strong bias towards GA, and 

relatively little editing to AG. By contrast, sites 1 and 4 were more uniform in their outcomes. 

These differences in outcome bias across target sites are likely driven by differences in the 

sequences surrounding the dinucleotide for each target, which is known to impact CRISPR-

Cas9 cleavage28 and base editing24. Regardless of how edits were biased, however, all target 

sites exhibited constant biases over time, consistent with the notion that bias is an intrinsic 

feature of the sequence context (Figure 2c). Most importantly, this consistency indicates that 

the GA and AG edit outcomes are stable for at least 8 days and do not become further edited to 

GG over the timescales of these experiments. These results thus validate the design goal of 

using inducible base editors to produce multiple distinct, individually stable states. 

Imaging recovers edited barcode sequences 

We next turned from editing to imaging readout. In situ barcode readout creates the opportunity 

to assay lineage relationships without disrupting spatial relationships among cells. We 

developed an assay to readout barcode sequences through multiple rounds of single molecule 

RNA FISH (smFISH). We cultured BaseMEM-01 cells for 3 days 4 long enough for several cell 

generations 4 under editing conditions (3 µM CHIR, 1 µg/mL dox). We then fixed cells and 

performed in situ T7 transcription of barcodes using the previously described <Zombie= 
approach23 (Figure 3a, upper and lower left panels). Next, we hybridized pools of 24 primary 

probes designed to bind to one of the 4 possible dinucleotide states in each of the 6 target sites 

(Figure 3a,b). During hybridization, we also included 3 primary probes for each of the 400 

different 80bp potential static barcode sequences, for a total of 1200 probes altogether (Figures 

1c, 3a,b). We also included additional primary probe sets to analyze 12 different endogenous 

mRNAs, known to distinguish mESC pluripotency states in serum-LIF media2,29 (Figures 3a,c) 

(Methods).  

After hybridizing all primary probes, we sequentially added sets of  fluorescently-labeled 

secondary probes, designed to hybridize to corresponding <overhang= sequences engineered in 
the primary probes (Figure 3a, lower panels). For each set of secondary probes, we imaged 

cells in all channels, and then stripped secondary probes to enable the next round of secondary 

hybridization and imaging. We used two orthogonal fluorescent channels to halve the number of 

rounds of hybridization required (Methods). We also labeled membranes with dye-conjugated 

wheat germ agglutinin to enable cell segmentation. All imaging was performed on a wide-field 

fluorescence microscope equipped with an automated fluid handling system similar to those 

described previously234. This procedure, similar to that used for seqFISH and related 

approaches234,21323,30333, allowed us to systematically probe dynamic barcodes, static barcodes, 

and endogenous genes over a total of 50 rounds of hybridization and imaging.  
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In the resulting image sets, individual target arrays could be identified as bright spots across 

multiple rounds of imaging. Most dynamic barcodes and static barcodes could be uniquely 

identified by a pseudocolor or set of pseudocolors (rows in image grids, Figure 3b). We 

developed a computational pipeline to detect target array spots and classify the barcode states 

within each target array (Supplementary Figure 2). Across 8 mESC colonies, we were able to 

detect roughly 50-80% of the 66 uniquely integrated target arrays in any given cell (Figure 3d). 

One colony had many fewer arrays detected than the others and was excluded from 

subsequent lineage analysis. The fractional detection of each unique barcode integration among 

all cells was broad but unimodally distributed, consistent with noisy detection efficiency in the 

absence of strong systematic differences among integration sites (Figure 3e). Overall, after 

applying quality controls, we detect roughly 200 high confidence dynamic characters, i.e. 

editable dinucleotides, per cell (Figure 3f). Of most direct relevance for lineage reconstruction, 

with these detection statistics, ~100 shared characters could be confidently recovered in both 

members of any cell pair. 

Simulations show that baseMEMOIR can accurately reconstruct detailed lineage trees 

We next asked how the depth of tree reconstruction depends on the distribution of shared 

characters between cell pairs, as well as other parameters, such as the rate and uniformity of 

cell divisions, the rate of editing, and the duration of recording. To address these questions, we 

simulated barcode recording and recovery. During the recording phase, we simulated editing 

within a single initial cell and its progeny for up to 12 cell generations (Figure 4a, left), setting 

barcode edit rates based on our time course editing dataset (Figure 2b,c). To simulate 

incomplete recovery of edit patterns, we stochastically subsampled the resulting barcode 

sequences corresponding to the observed empirical recovery distribution after hybridization and 

imaging (Figure 3f). As a result, different cell pairs shared different fractions of recovered 

barcodes (Figure 4a, middle right). Finally, we explored a filtering strategy to improve 

reconstruction accuracy (at the cost of reduced numbers of cells per tree) by restricting analysis 

to cell pairs with a minimum number of shared recovered barcodes (Figure 4a, right). 

Next, we reconstructed lineage trees and compared them to the ground truth trees from the 

forward simulations (Figure 4b). As a metric of reconstruction accuracy, we used the 

normalized Robinson-Foulds distance, which quantifies the fraction of unmatched branches 

between the ground truth and reconstructed trees. For reconstruction, we adapted the Bayesian 

BEAST2 phylogenetic reconstruction framework, by incorporating a custom base editing 

model34 (Methods). BEAST2 uses Markov Chain Monte Carlo (MCMC) sampling to estimate 

the posterior probability distribution over different tree topologies and other system parameters. 

Briefly, it samples a forest of possible trees in proportion to their probability density (Figure 4b). 

As a Bayesian method, it allows for model-based inference, explicitly incorporates prior 

knowledge, and quantifies uncertainty in reconstruction.  

In the ideal case of full recovery of all barcode edits in all cells, we obtained near perfect 

recovery of full lineage relationships for trees up to 12 cell divisions deep (Figure 4c). When 

~50% of barcodes were lost, error rates for the same 12 generation tree increased to ~10%. 

However, this error rate could be reduced by restricting analysis to cells sharing at least 75 
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jointly measured barcode positions (Figure 4c). In contrast to the simulations, the experimental 

system could introduce additional factors such as errors in barcode readout, variability in mean 

edit rates between cells, and pre-existing edits in the ancestral (root) cell. Nevertheless, these 

simulations suggest that baseMEMOIR, with empirically observed error and edit rates, should 

be capable of reconstructing multi-generation lineage trees with cell cycle resolution at ~90% 

accuracy.  

BaseMEMOIR reconstructs lineage trees in mESC colonies 

mESCs are known to undergo spontaneous reversible transitions among a set of molecularly 

and functionally distinct cell states, ranging from 2C-like to formative and primed epiblast-like 

states, in serum-LIF conditions2,29,35340. A fundamental question about the mESC state-switching 

process is the structure of the transition graph, i.e. which transitions occur and at what rates, 

and how those rates are influenced by input signals. In particular, CHIR, a Wnt pathway agonist 

that is often used to maintain pluripotent cells, could impact the observed cell states and their 

transitions. Although CHIR is known to promote expression of key pluripotency genes and self-

renewal in this system36,37,41347, the effects of CHIR on single cell state transition dynamics 

remain unknown.  

To study these dynamics, we grew mESC colonies over a 3-day period in the presence of CHIR 

and Dox, which also serve to induce editing (Figure 5a). After 3 days, we imaged the colonies 

as described above and recovered barcode states for 7 colonies out of 8 total measured 

(Figure 3d). In addition to reading out barcode states, we also recovered gene expression 

levels for 12 pluripotency state markers, then clustered to identify 5 gene expression states 

(Figure 5b,c and Supplemental Figure 4). We identified 3 major cell states comprising:  2C-

like cells with high expression of Zscan4C; naive cells expressing transcription factors Nanog, 

Esrrb, and Zfp42; and formative cells that express Otx2 and Dnmt3b in the absence of naive 

pluripotency factors and Zscan4C (Figure 5b). Naive cells exhibited a distribution of gene 

expression levels that varied from more 2C-like to more formative (Figure 5b,c and 

Supplemental Figure 4).These states largely correspond to those described in previous 

work2,29,40, although we observed high and relatively homogeneous Tbx3 expression across all 

cell states, in contrast to observations of cells grown in serum/LIF without CHIR2,29. This 

difference is consistent with previous work showing that Tbx3 is significantly regulated by CHIR 

in the observed direction47. 

We next applied the BEAST2 system described above to reconstruct lineage trees for cells in 

these colonies. To incorporate information of cell state and spatial position, we extended the 

underlying editing model (Figure 4) to represent these additional cellular properties, and 

thereby allowed simultaneous inference of cell state transitions and spatial movement alongside 

cell lineage (Methods). Applied to the mESC colonies, this approach reconstructed lineage 

relationships and division times with relatively low uncertainty in most cases, as indicated by the 

limited <fuzziness= of the reconstructed trees (Fig. 5d and Supplemental Figure 5). However, 

there were some ambiguities in reconstruction. For example, in Figure 5D, cell 23 is roughly 

equally likely to be a sister of cell 22 or cell 24. This illustrates the way in which uncertainties in 

the Bayesian reconstruction still provide specific alternative hypotheses rather than numerical 
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confidence values. Additionally, in some cases, we did not capture all neighboring cells, which 

may introduce branch lengths longer than a single cell division (for example, see clades A and B 

of colony 7, Supplemental Figure 5). Together, these results demonstrate that the recording 

system allows precise lineage reconstruction of 3-day clonal mouse ESC colonies, with tree 

sizes of 30-50 cells.  

The reconstructions also allowed estimation of cell state transition dynamics. To constrain the 

transition model, we treated transitions as a reversible, symmetric, continuous time Markov 

process (see Methods for discussion of these assumptions). Of the 10 possible symmetric 

interactions, posterior estimates suggested that ~5 occurred at appreciable rates during the 

growth of these colonies (Figure 5f,g). A sixth transition, between 2C-like and formative states, 

was suggested by a single event in colony 7 (Supplemental Figure 5). This event is 

unexpected given previous inference of chainlike dynamics, with these two states at opposite 

ends29, however it could be a result of CHIR exposure, which was not present in previous work. 

Further, a substantial amount of posterior probability indicates a negligible rate for this 

transition; more data would be needed to clarify this result (Figure 5f, Supplemental Figure 5). 

Overall, these reconstructions suggest frequent (median of 0.15 transitions per day across all 

colonies) transitions among Naive/2C-like, Naive, and Naive/Formative states, and frequent 

conversion between Naive/2C-like and 2C-like states (Supplemental Figure 5). Interestingly, 

the inferred transitions correlate with expectations based on transcriptional similarity among 

states, even though this information was not provided to the model (Figure 5b,c and 

Supplemental Figure 4).  

BaseMEMOIR recovers lineage relationships, cell states, and spatial relationships in 

mESC colonies 

By mapping lineage trees back onto the original images, we were able to simultaneously 

observe spatial and lineage organization of colonies (Figure 5d, lower panels). This analysis 

revealed correlations between lineage history, spatial position, and cell fate. For example, in 

Figure 5d, the related D and E clades contain Naive and Naive/Formative cells, and were 

located towards the interior of the colony, while cells in clades A,B, and C were largely in the 

Formative state and located around the periphery. Individual cell morphologies also varied 

systematically, with cells in the periphery exhibiting larger sizes. Other colonies were less 

radially structured, but still showed strong correlations between spatial positions and lineage 

relationships within each colony (Figure 5e, Supplemental Figure 5). These results show that 

it is possible to impose lineage relationships on spatial colonies with cell state information.  

Lineage motifs provide a complementary approach to analyzing cell state transitions48. They are 

defined as statistically over-represented patterns of cell fates on lineage trees, which reflect 

features of underlying stochastic cell fate control programs48. As a simple example, asymmetric 

division, in which sister cells acquire opposite fates, would be reflected in the enrichment of 

opposite fates among sibling pairs (<doublets=). In contrast to the inference of transition rates 
described above, lineage motifs can be identified with no assumptions about an underlying 

model. Applying Lineage Motif Analysis48 (LMA) to 1000 samples from the Bayesian posterior 

tree distribution, we identified 4 overrepresented doublet pairs with an adjusted p-value less 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.573434doi: bioRxiv preprint 

https://paperpile.com/c/KleEPH/iLlT8
https://paperpile.com/c/KleEPH/egHgv
https://paperpile.com/c/KleEPH/egHgv
https://paperpile.com/c/KleEPH/egHgv
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/


than 0.05 for a majority of the posterior samples (Figure 5h). These cases involve siblings in 

the same state, consistent with infrequent state transitions. Siblings in the formative state were 

the most overrepresented, mirroring results from the Bayesian Markov model, which predicts 

the slowest transitions to and from the formative state (Figure 5f,h).  

We also observe two statistically underrepresented heterogeneous sibling pairs (Figure 5h). 

The most underrepresented pair, containing naive and formative cells, was also qualitatively 

consistent with predictions of the Bayesian Markov model, which identified a negligible transition 

rate between these states. Additionally, the naive and naive/formative sibling pair was also 

significantly underrepresented. This corresponds to the most rapid inferred transition rate in the 

dataset (Figure 5f), consistent with high rates of independent transitions out of either the naive 

or formative states. Together, these results demonstrate how baseMEMOIR9s lineage 
reconstruction ability allows inference of lineage motifs.  

Finally, we combined the lineage reconstruction with spatial and cell state dynamics to infer a 

property that would be difficult to analyze from sequencing-based readout or static snapshots 

alone: the relative spatial mobilities of different cell states. The inferred histories of cell state and 

spatial position can be visualized (Supplemental Movies). These movies represent one 

possible history based on a simple model of cell diffusion, taking the highest credibility inference 

from BEAST2. Together, these results show how spatial position, cell state, and lineage can be 

analyzed and reconstructed together, and used to infer features of cell histories.  

Discussion 

A long-standing dream in biology is to image a tissue or organism and visualize not only its 

current state, but also its past history. Previous work has approached this ideal in different 

ways, including lineage recording by accumulation of irreversible recombination events and 

reconstruction of small trees, however these efforts were limited in the amount and scalability of 

memory storage21323. Here, we introduce a new approach, baseMEMOIR, which provides much 

larger memory sizes and allows for deeper, more accurate lineage tree reconstruction, while 

preserving spatial structure.  

 

To achieve this, baseMEMOIR introduces several key innovations. First, it uses base editors to 

introduce stochastic, but precise, edits at dense target arrays (Figure 1c). Second, it uses 

dinucleotide editable target sites, each of which can be edited to any of three permanent end 

states (Figures 1b, 2c). Third, to discriminate between those states we expanded the Zombie 

readout system23 to allow 4-way probe competition (Figure 3a,b). Fourth, baseMEMOIR 

massively expands the amount of memory accessible in single cells by incorporating 66 unique 

statically barcoded target arrays, collectively providing 792 bits of editable information in the 

baseMEM-01 cell line. Theoretically, this number could be readily increased with additional 

target array integrations without modifying other components of the system. Fifth, baseMEMOIR 

achieves high density recording, while maintaining compatibility with FISH-based readout of 

endogenous genes (Figure 3c). Finally, to address the challenge of lineage reconstruction from 

stochastic edits, we adapted the BEAST2 framework for Bayesian tree inference, both by 

adding a new mutation model and taking advantage of its phylogeographical and discrete trait 
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models34,49 (Methods). We anticipate that this probabilistic framework should be applicable for a 

broad variety of lineage recording methods.  

 

To demonstrate these capabilities, we applied baseMEMOIR to stem cells undergoing 

interconversion among transcriptional states2,29,35338,47. This allowed us to reconstruct lineage 

trees for 7 colonies totaling 197 cells, with as many as 4-7 cell generations per colony (Figures 

5d, Supplemental Figure 5). Further, we were able to infer transition rates for specific pairs of 

states. These rates were consistent with a role for Wnt (through CHIR) in influencing state 

dynamics relative to similar cultures in the absence of Wnt2,29,47 (Figure 5f,g). Future work could 

use baseMEMOIR to systematically compare the effects of different signals and perturbations 

on cell state dynamics. While probabilistic inference is not equivalent to direct time-lapse 

observation, it nevertheless is beginning to yield related insights that would ordinarily be 

concealed from any static endpoint measurements (Supplemental Movies). Extrapolating from 

the capabilities of this system to future implementations, such as those containing either more 

memory or linking signaling pathway activity to recording machinery16,21, it should become 

possible to infer increasingly detailed views of earlier dynamic events in complex multicellular 

settings, effectively  <decorating= lineage trees with events, such as changes in cell state or 
even movements in space. BaseMEMOIR should also allow one to infer state-switching 

dynamics and developmental programs using approaches such as Kin Correlation Analysis and 

Lineage Motif Analysis that exploit lineage tree information29,48.  

 

While powerful, baseMEMOIR has some limitations. Because it does not directly probe the 

states of cells at earlier time points, it cannot directly detect earlier states that do not appear in 

the endpoint measurement. Analyzing systems at multiple timepoints could help to avoid 

missing transient states. Additionally, cells that die or migrate away prior to measurement will be 

omitted from the tree and could confound estimates of variation in cell cycle durations in 

different lineages. Similarly, failure to recover sufficient barcodes from an individual cell could 

make it difficult to classify. This issue may be addressed by further technical improvement to 

barcode imaging.  

 

baseMEM-01 can immediately be used to explore stem cell differentiation and early mouse 

embryogenesis, among other phenomena. Looking ahead, baseMEMOIR should be readily 

adaptable to diverse developmental and physiological processes. The constructs and system 

can be transplanted to additional cell types using standard methods, and potentially combined 

with readout of additional <multi-omics= information such as chromatin accessibility2. One can 

therefore anticipate augmenting spatial cell atlases with lineage information1, and using 

baseMEMOIR to investigate the role of lineage, signaling, and differentiation in disease 

progression.   
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Methods 

Dynamic barcoding strategy. 

Dynamic barcode sequences consist of 20bp CRISPR target sites with 3bp downstream NGG 

PAM sequences. These were chosen by designing sequences with AA nucleotides at the 

location predicted to be edited by the ABE (positions 5-6 in the protospacer sequence)50, then 

screening them for significant, varied editing of the AA sites. 6 unique target sites are arrayed 

sequentially downstream of a T7 promoter sequence to enable imaging-based readout as 

described below (Figure 1c). 

Static barcoding strategy. 

Static barcodes consist of two variable 80bp sequences downstream of the 6 dynamic barcode 

targets (Figure 1c). A pooled plasmid library was formed by generating constructs with 200 

variants at each of the two 80bp regions, for a total of 40,000 unique sequences (Supplemental 

Data). Each sequence contains three unique primary probe binding sites for signal amplification 

during FISH readout (Supplemental Data). 

Plasmid construction. 

Plasmids were constructed in piggyBac backbones for later transposase mediated integration 

into the genome. The inducible ABE plasmid was made by integrating a tet-responsive promoter 

(TRE3G, Takara Bio) and ABE 7.1050 (Addgene #102919) into a piggyBac plasmid51 with 

neomycin resistance. The Tet-On 3G protein gene used to activate the ABE in a doxycycline 

dependent fashion was supplied as a piggyBac plasmid with a pEF promoter and puromycin 

resistance. 

The dynamic and static barcode arrays were constructed in a piggyBac vector containing 

hygromycin resistance and double T7-T3 promoter sites followed by the dynamic barcode array, 

which was synthesized by Integrated DNA Technologies (IDT). The static barcode was then 

integrated 39 of the dynamic barcode array. The static barcode was composed of two sites of 80 
bp each, with 200 possible sequences for each of the two sites to give an overall possible 

barcode diversity of up to 40,000 unique sequences. The static barcode sequences were 

synthesized by Twist Bioscience and amplified with the appropriate cloning ends by PCR. The 

59 primer for the first static barcode site had a set of 10 random nucleotides to provide a further 
NGS-readable ID to each barcode. A mix of Gibson and sticky end cloning were used for 

plasmid construction. 

The plasmid library containing static barcodes was generated by transforming high-efficiency 

competent cells (NEB C3019), then plating them onto a large surface area of LB-agar (~30 10-

cm petri dishes) to generate a large number of colonies. These were scraped and pooled into a 

single liquid culture. Subsequently, plasmid DNA was collected using multiple DNA Miniprep 

columns (Qiagen 27104) and pooled. 
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An array of six gRNAs targeting the six sites of the dynamic barcode were integrated in the 39 
UTR of an NLS-mTurquoise gene. Each gRNA sequence was flanked by the hammerhead and 

HDV ribozyme sequences on upstream and downstream sides, respectively, in order to excise 

the gRNA from the transcript. These gRNA-ribozyme sequences were each synthesized as 

gBlocks by IDT and combined by assembly of unique sticky end junctions into the piggyBac 

plasmid. A Wnt-responsive promoter was integrated to drive expression of the mTurquoise-

gRNAs construct. This plasmid included blasticidin resistance for subsequent mammalian 

selection. 

Primary probe library construction. Primary probes for dynamic barcode readout were 

purchased from IDT as individual sequences. The primary probe library, containing 1200 probes 

targeting all static barcode variants across both regions (3 probes per variant, 200 variants per 

region, 2 regions), was ordered as an oligoarray pool from Twist Bioscience. Each probe was 

assembled with a 35-nucleotide sequence complementary to the static barcode sequence, five 

15-nucleotide readout sequences uniquely labeling each variant separated by a 2-nucleotide 

spacer, and two flanking primer sequences to allow for PCR amplification of the probe library 

(structure 59-(primer 1)-(readout 1)-(readout 2)-(probe)-(readout 3)-(readout 4)-(readout 5)-

(primer 2)-39). The probe library was amplified following an established protocol2. 

Endogenous marker genes were selected based on previous work.2,29 Probes for non-barcoded 

sequential smFISH of gene markers were a kind gift from Long Cai, generated as described 

previously2, using a single readout sequence repeated four times in place of a unique barcode 

(structure 59-(primer 1)-(readout 1)-(readout 1)-(probe)-(readout 1)-(readout 1)-(primer 2)-39). 

Readout probe synthesis. Fluorescently conjugated secondary readout probes 15-nt in length 

were designed as in previous work2,33. Probe sequences were ordered conjugated to AlexaFluor 

546 or 647 from IDT as indicated (Supplemental Data). 

Coverslip functionalization. 24 x 60 mm coverslips were functionalized prior to cell culture. 

Coverslips were first rinsed in 100% ethanol, then dried and functionalized using a plasma 

cleaner on the high setting for 5 minutes. Coverslips were subsequently immersed in 1% bind-

silane (GE, 17-1330-13) solution (1% bind silane, 10 mM acetic acid in 90% ethanol) for 1 hr at 

room temperature. Coverslips were rinsed in 100% ethanol then heat dried in an oven at 90 C 

for 30 minutes before being treated with 100 ug/mL Poly-D-Lysine in water overnight. The 

following day, slides were rinsed with nuclease free water and air dried. Slides were stored for 

up to 2 weeks at 4 C prior to use.  

Just before cell attachment, coverslips were treated with UV in a biosafety cabinet for 5 minutes, 

then the surface was treated with 10 ug/mL laminin (Biolaminin 511 LN, Biolamina) at 37 C for 

90 minutes. Laminin was removed, then cell suspension was added directly to the surface for 

attachment. 

Cell culture. E14 mES cells (ATCC cat. No. CRL-1821) were cultured in medium containing 

GMEM (Sigma), 15% ES cell qualified FBS (Gibco), 1x MEM non-essential amino acids 

(Thermo Fisher Scientific), 1 mM sodium pyruvate (Thermo Fisher Scientific), 100 µM B-
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mercaptoethanol (Thermo Fisher Scientific), 1x penicillin-streptomycin-L-glutamine (Thermo 

Fisher Scientific) and 1000 U/mL leukemia inhibitory factor (Millipore). For cell engineering and 

standard culture, cells were maintained on polystyrene (Falcon) plates coated with 0.1% gelatin 

(Sigma) at 37 C and 5% CO2. 

Cell line engineering. Sequences of all integrated constructs are reported as Supplementary 

Data. BaseMEMOIR components were integrated over several rounds of transfection and 

selection. For all transfection steps, mESCs were cultured in 24 well plates, then cotransfected 

with the plasmid(s) to be integrated as well as piggyBac transposase plasmid with HD FuGENE 

transfection reagent. First, cells were cotransfected with ABE and Tet3G activator plasmids. The 

cells were allowed to recover for a day, passaged, and then underwent selection with 400 

ug/mL neomycin followed by 500 ug/mL geneticin. Cells were plated sparsely in a 10 cm dish to 

grow monoclonal colonies, and then the monoclones were selected and grown in 96 well plates. 

Clones were screened for ABE expression after dox induction by qPCR, then subsequently by 

FISH to identify clones with homogenous expression among single cells. 

Barcode target plasmids were integrated into the parental line containing inducible ABE by a 

second round of transfection, then selected with 100 ng/mL hygromycin as previously 

described. Monoclonal colonies were selected as previously, then screened by qPCR for high 

relative copy number. Zombie-FISH (described below) was used to screen promising 

candidates and select the clone with the highest visible integration number. 

Finally, gRNAs and additional ABE plasmid were integrated into the most promising line from 

the previous step. Cells were selected with 15 ng/mL blasticidin, then monoclonal lines were 

generated as described above. Clones with a clear mTurquoise expression upon addition of 3 

µM CHIR, which indicated expression of the gRNA construct, were kept for further analysis. 

The best clones were tested for array targeting by adding 1 ug/mL doxycycline and 3 µM CHIR 

for multiple days followed by Sanger sequencing. Editing resulted in mixed peaks at the edited 

bases. One of the clones (baseMEM-01) was identified to have the most editing via this 

approach and was used for all subsequent experiments. 

Next generation sequencing. Genomic DNA was extracted from cells using the DNeasy Blood 

and Tissue Kit (Qiagen) according to manufacturer instructions. Amplicon libraries containing 

the dynamic barcode sequences and short NGS static barcodes were generated with a two-step 

PCR protocol to add Illumina adapters and Nextera i5 and i7 combinatorial indices. Indexed 

amplicons were pooled and sequenced on the Illumina MiSeq platform with a 600-cycle, v3 

reagent kit (Illumina, MS-102-3003). Raw FASTQ files were aligned to a FASTA-format 

reference file containing the expected amplicon sequences. Alignment was performed using the 

Burrows-Wheeler alignment tool (bwa-mem52). Subsequent analysis and data visualization was 

performed in the R statistical computing platform, v 4.1.153 (Supplemental Data). 

Edit accumulation model. Edit accumulation at each target site was modeled by fitting 

Equation 1: 
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� = ���(12�) [(1 2 �)�+� 2 1]  (Equation 1) 

Here, edit accumulation, �, is a function of time, �, with parameters �, the probability of editing 

per unit time, and �, the duration of time during which edits accumulated prior to the zero time 

point, which accounts for empirically observed background edits (Figure 2b). This relation can 

be derived by assuming a probability � of a target site being editing per unit time � in a long 

string of target sites. After a unit of time �, we expect to see � edited targets and (1 2 �) 

unedited targets. By the same logic, after another time step we expect � + �(1 2 �) edited 

targets and (1 2 �)2 unedited targets. After � time steps we would expect to see 

� ∑ (1 2 �)��21
� = 0  

edited targets. Taking the limit of a discrete time step dt approaching zero, this sum can be 

approximated by the integral 

� ∫ (1 2 �)����
0  

which simplifies to Equation 1. 

Parameters were fit to editing time course data (Figure 2) to determine the empirical edit 

accumulation rate for each target using the <nls= function from the <stats= package53 in R 

(Supplemental Data). 

Stochastic simulations. Barcode editing was simulated in R using the Gillespie method54 

(Supplemental Data). Separate propensities were estimated for each editing outcome and 

target site by multiplying the edit accumulation parameter p (Equation 1) for each target site by 

the observed mean outcome proportion at each target site across time (Figure 2c). This 

stochastic simulation method recapitulates both the edit accumulation model fit and the 

empirical target state outcome distribution (Supplemental Figure 3). 

Cell division was modeled by allowing editing until a predetermined cell division time, after 

which barcodes were duplicated before allowing editing to continue. Cell division waiting times 

were drawn from a distribution derived from Eyring-Stover survival theory that has been shown 

to model cell division times more accurately than the exponential distribution55. 

Lineage relationships were reconstructed based on the resulting barcodes using BEAST2 

software as described below, considering only barcode data (see BEAST2 XML files for 

complete modeling information, available at https://doi.org/10.22002/327t7-ke088). 

Reconstructed trees were compared to simulated ground truth trees by computing the 

normalized Robinson-Foulds distance as implemented in the <RF.dist= function from the R 
package <phangorn=56. 
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Zombie preparation. For Zombie and subsequent RNA-FISH, cells were plated on treated 

coverslips as described above. After culture and editing, coverslips were washed with 1 mL PBS 

with calcium and magnesium (PBS +/+) then fixed with a 1:1 solution of Methanol : Acetic Acid 

(MAA) for 20 minutes. RNase-free reagents were used for all subsequent steps to minimize 

RNA degradation. MAA was removed, then coverslips were transferred to a 100 mm petri dish 

and covered with 70% ethanol. Petri dishes were parafilmed and stored at -20 C to await 

imaging. 

Immediately prior to imaging, coverslips were removed from cold storage and brought to room 

temperature. 70% ethanol was removed and replaced with a fresh solution of MAA, then 

incubated for 2 hrs at room temperature. The sample was washed twice with PBS +/+, 

incubating for 2-3 min between each wash. The final wash solution was removed and the 

sample was dried until all liquid had just evaporated. A custom fluidic cell, built to interface with 

a custom designed liquid handling system, was affixed to the coverslip surface234. Subsequent 

washes took place within the flow cell, manually adding reagents into the inlet of the cell and 

removing them from the outlet using a standard micropipette. The cells were washed with 

nuclease free water once, then replaced with T7 RNAP mix (New England Biolabs E2040S). 

The sample was incubated at 37 C overnight in a humidified tupperware. 

The following morning, the T7 RNAP mix was removed and replaced with fresh T7 RNAP mix, 

then incubated for 1 hr at 37 C in the humidified tupperware. The mix was removed, then the 

sample was immediately fixed with 4% paraformaldehyde for 10 min. This solution was removed 

and the sample was washed three times with PBS +/+, then washed with 30% formamide probe 

wash buffer (30% formamide in 5x SSC with 9 mM citric acid, 0.1% Tween-20, and 50 μg/mL 

heparin, pH 6.0) for an additional 5 min. The wash buffer was replaced with primary probe 

hybridization mix, then incubated overnight at 37 C. 

FISH imaging. Images were collected across multiple rounds of fluorescence hybridization to 

identify barcode and cell states. Formamide wash buffers and secondary probe hybridization 

mixes were generated immediately prior to imaging. A custom-built, automated liquid handling 

system was used to perform sequential rounds of in situ hybridization as previously described23

4. Briefly, the sample was connected to an automated fluidics system attached to a widefield 

fluorescence Nikon Eclipse Ti microscope. The custom-made automated fluid sampler was 

used to transfer readout probes in hybridization buffer from a 2.0 mL 96 well plate through a 

fluidic valve (IDEX Health & Science EZ1213-820-4) to the custom-made flow cell using a 

syringe pump (Hamilton Company 63133-01). Fluidics and imaging were integrated using a 

custom script controlling uManager. Eleven fields of view (FOVs), capturing 8 well separated 

regions of cell growth, were selected based on the DAPI signal. For each FOV, images were 

acquired with 0.5-micron z steps for twenty total slices. Integration of the automated fluidics 

system and imaging was controlled by a custom script written in uManager57. 

First, twelve hybridization rounds were imaged to capture all dynamic barcode states. The 

hybridization buffer for each round included two unique 15-nucleotide readout probes 

(Supplemental Data) conjugated to either Alexa Fluor 647 (50 nM) or Alexa Fluor 546 (50 nM) 

in EC buffer (10% ethylene carbonate, 10% low molecular weight dextran sulfate, 4x SSC). 
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Probes were allowed to hybridize for 15 minutes. Excess probes were washed away with 10% 

wash buffer (10% formamide, 0.1% Triton X-100 in 2x SSC) incubating for 1 minute. Nuclei 

were re-stained with DAPI solution (5 ug/mL DAPI in 4xSSC) incubating for 2 minutes. The 

sample was washed with 4x SSC then imaged in antibleaching buffer (50 mM Tris-HCl pH 8.0, 

300 mM NaCl, 2xSSC, 3 mM trolox, 0.8% D-glucose, 1000-fold diluted catalase, 0.5 mg/mL 

glucose oxidase). After imaging, readout probes were stripped off using 35% wash buffer (35% 

formamide, 0.1% Triton X-100 in 2x SSC). Although 55% formamide is typical for stripping 

readout probes, we used a lower amount to avoid stripping primary probes and losing signal, as 

our primary probes are shorter than normal for dynamic barcode rounds (only 20-nucleotides 

compared to 28). Images were collected after probe stripping to verify loss of signal. Due to 

occasional technical issues such as loss of focus during automated imaging, these twelve 

rounds were repeated a second time to collect backup images for each dynamic barcode round. 

Static barcode sequences were captured by a similar scheme over twenty additional rounds of 

hybridization (see Supplemental Data for probe sequences), except using 55% formamide 

wash buffer to strip the readout probes. An additional six rounds of hybridization were used to 

capture the twelve gene markers described above. A final round of hybridization with wheat 

germ agglutinin (WGA) conjugated to Alexa Fluor 647 was used to stain cell membranes for 

downstream segmentation. 

Image processing. Images were processed using custom Matlab scripts (Supplemental Data). 

DAPI signal was measured in each round of imaging and used to register images across each 

hybridization round. After registration, z-stacks were projected by their maximum intensity to 

yield one image per channel per hybridization round for each colony. 

  

Transcribed barcodes form dots of variable intensity around the active site of T7 transcription. 

Dots were segmented using a combination of Laplacian of Gaussian filtering and watershed, 

requiring a maximum eccentricity of 0.8 to reduce noise. Loose parameters were chosen to 

detect all real dots at the expense of accepting some background noise. Binary images for each 

hybridization/channel were summed together to create a single mask, where pixel values 

represent the number of times a pixel was identified across all imaging rounds, termed <analog 
mask=. 
  

Since each real dot should appear across all hybridization rounds in at least one channel, we 

further reduced noise by thresholding this image. We determined a threshold for each colony 

individually based on the elbow method. Frequently, we observed segmentation errors where 

the watershed algorithm was unable to separate adjacent dots from one another. We manually 

corrected these errors based on the analog mask, yielding a final binary segmentation mask of 

all detected barcode dots for each field of view. 

 

We further generated DAPI segmentation masks using Ilastik to isolate individual cell nuclei58. 

Masks were manually corrected using ImageJ to separate nuclei that were segmented together. 

Cells that intersected the border of the image were excluded. Any Zombie dots identified outside 

of cell nuclei were filtered. Dots may not be completely captured by the binary mask within any 

given round of imaging. A K-nearest neighbors classifier was used to partition all pixels 
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belonging to each cell to the nearest dot in the segmentation mask so that intensity values could 

be extracted. 

 

Raw images were background subtracted to improve signal to noise. First, a tophat filter was 

used to globally reduce background. To further correct for variable intensity across images, local 

background correction was applied on a cell-by-cell basis by subtracting the median pixel 

intensity, excluding dilated segmented Zombie dots. 

 

We extracted several features for each dot across all channels and hybridization rounds based 

on the background-subtracted raw images (total intensity; median intensity; 90th percentile pixel 

intensity; pixel count; background median intensity; and intensity variance), taking the log + 1 of 

all intensity values. 

 

We used a supervised machine learning approach to classify barcode states across each 

hybridization round. The barcode state is reflected in higher intensity fluorescence of probes 

that outcompete other possible binders (Figure 3). We manually classified approximately 1000 

randomly sampled barcode spots for each image based on their pseudocolor intensities, then 

used this sample to train a support vector machine (SVM) classifier in Matlab (Supplemental 

Data). Some spots were ambiguous; these were omitted in manual classification. 10-fold cross 

validation was used to evaluate model generalization and control for overfitting (Supplemental 

Figure 2). 

 

For dynamic barcode sites, we estimated the posterior probability for each spot belonging to 

each class under the SVM model. Many barcodes could be classified with high accuracy (>70% 

posterior probability, Figure 3f and Supplemental Figure 2b). For static barcode sites, class 

assignments were compared to the white list of possible barcode sequences. We filtered out 

Zombie spots with a character distance greater than 2 from an expected sequence and those 

which did not unambiguously correspond to a white listed static barcode, leaving 79.3% of all 

detected spots after filtering. 

 

In many cases, duplicated barcodes were observed, where the same static barcode was 

identified multiple times in a single cell. These duplicates tended to be spatially localized and 

may be explained by either DNA replication or over-segmentation errors during analysis. For 

duplicated barcodes, classification probabilities were averaged at dynamic barcode sites and 

the most confident state was used for downstream lineage reconstruction. 

 

Membrane masks were manually generated based on WGA staining images, then gene 

markers were identified using the bigFISH package dot detection method.59 Thresholds for dot 

detection were manually determined for each gene. Segmented spots, corresponding to mRNA 

molecules, were tallied within each cell as defined by the membrane segmentation mask. To 

validate the consistency of this method, we plotted the detection frequency for each gene 

across all cells that were measured in multiple images (Supplemental Figure 6). The measures 

were highly correlated.  
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Cell type analysis. 

 

Cell types were determined by using k-means clustering on log transformed mRNA counts with 

5 centers to group the most distinct sets of cells in the dataset. Dimensionality reduction by the 

tSNE method visualizes three groups as well separated and three of the identified cell states 

(Naive/2C-like, Naive, and Naive/Formative) as potentially a continuous distribution, although 

we note that dimensionality reduction techniques can obscure the true distances between cells 

and clusters in the higher dimensional transcriptome space. Most importantly, we identify unique 

allowed and forbidden transitions between each purported cell state through subsequent lineage 

analysis that is agnostic to the underlying transcriptional information, bolstering the claim that 

these five clusters of cells should be treated as distinct populations. 

 

Lineage reconstruction and Bayesian modeling. 

 

We used a Bayesian model under the BEAST234 v2.7 framework that takes barcode 

information, end point cell labels, and cell centroid positions as input to jointly estimate lineage 

relationships, cell state transition dynamics, and cell motility. An XML file specifying all modeling 

information is provided as supplemental data and modeling choices are briefly described below. 

 

Barcode information for each dinucleotide was extracted using Matlab and R scripts 

(Supplemental Data). Each of the four dinucleotide states (AA, AG, GA, and GG) was encoded 

in a single character (A, T, C, or G). Characters that were not recovered during imaging were 

marked as missing data by the <?= character. Cell division for each tree was modeled as a pure 

birth process (the Yule model) with birth rate estimated.  

 

Barcode character mutation in our system is irreversible. With few exceptions60, existing 

BEAST2 packages only model reversible character transitions because these make computing 

tree likelihoods more computationally efficient. We developed a new irreversible character 

substitution model to better capture the evolutionary process that generated our data (available 

as the 8irreversible9 package for BEAST2, with source code available from 
https://github.com/rbouckaert/irreversible). Under this model, each possible transition (AA to 

AG, GA, or GG) can take a unique rate value, which we assume is constant along the tree. 

Stationary frequencies, which are used at the root of the tree to calculate the tree likelihood, are 

set at 1 for the AA state, and 0 for the others, reflecting our knowledge that every state is AA at 

the root of the tree. Since we know that targets can edit at different rates and into different 

outcomes, we allow the rate to vary across sites through the gamma site heterogeneity model, 

partitioning the allowable rates into 4 categories61. This model is shared across all trees. 

Furthermore, we use a strict molecular clock since we do not expect significant rate variation 

per branch. 

 

Cell state transitions are modeled as a continuous time Markov chain with symmetrical transition 

rates possible between each state. These rates are assumed to be constant across time with an 

associated strict clock model. Transition rates are shared between all trees, so a single unified 

cell state transition model was estimated across all colonies. We assume symmetric transition 
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rates based on previous work, which identified most transitions as roughly symmetric in this 

system29. In principle, the assumption can be relaxed, although it greatly increases the number 

of parameters in the model, thus increasing susceptibility to overfitting. 

 

Cell motility was modeled as single parameter 2D diffusion along the surface of a sphere as 

implemented in previous phylogeographical work49. Spherical diffusion is a good approximation 

of diffusion in a 2D plane for small patches of the surface49 and its implementation is efficient. 

Accordingly, cell positions were mapped to geographical coordinates falling within 2 latitude and 

longitude degrees. The diffusion parameter describing motility was allowed to take unique 

values along each branch of the tree under a relaxed clock model. 

 

Notably, all 7 colonies in this dataset were analyzed simultaneously under a single model. This 

allowed us to infer barcode character substitution and cell state transition models that are 

shared across all the data, reflecting our belief that all colonies are representative of the same 

underlying barcode mutation and cell state transition processes. We think this is reasonable 

given that all colonies are generated from a monoclonal culture grown in identical culture 

conditions over the same time period. 

 

We chose priors to be uninformative with the exception of the root height, since we have strong 

prior information that experiments lasted 3 days. An uninformative but improper uniform 

distribution across all possible rates was chosen for barcode mutation rate, although this is not 

expected to affect the resulting analysis or MCMC mixing. Detailed prior information is recorded 

in the supplemental XML file for Figure 5 specifying all modeling choices. 

 

Supplementary movies were generated by creating inferred still images of the maximum a 

posteriori histories of cells over time, incorporating inferred ancestral cell states, positions, and 

cell division timings (Supplemental Data). These still images were compiled into movies using 

the open-source video editor Shotcut (Meltytech). 

 

Lineage motif analysis.  

 

The posterior baseMEMOIR trees were analyzed using Lineage Motif Analysis (LMA) as 

described previously48, using the resample_trees_doublets, resample_trees_triplets, and 

resample_trees_quartets functions with 1000 resamples. These functions are available in the 

publicly available <linmo= package for Python (https://github.com/labowitz/linmo). To generate a 
z-score and adjusted p-value for all cell fate patterns across the entire posterior distribution of 

each tree dataset, 1000 synthetic datasets were generated by randomly drawing one tree from 

the posterior distribution of each tree dataset. Each synthetic dataset therefore contains 7 total 

trees. LMA was then performed on each synthetic dataset, and the distribution of z-scores and 

adjusted p-values was plotted for each cell fate pattern. 

 

Data availability. 
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Raw image data is available at https://doi.org/10.22002/pmpby-gpj05. All analysis scripts, 

amplicon sequencing data, max projected image data, and additional supplementary files are 

available at https://doi.org/10.22002/327t7-ke088.  
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Figures 

 

Figure 1: Multiplexed, genomically dispersed, editable barcodes enable detailed 

recording of lineages over many generations with in situ readout. 

(a) Detailed lineage trees can be measured alongside transcriptional cell states while 

maintaining spatial context through phylogenetic barcoding. (b) Predicted stochastic editing of 

AA dinucleotides results in one of three terminal outcomes. (c) An inducible barcode editing 

system can be integrated into cells at high copy number via piggyBac transposase. Target 

arrays (top) contain 6 AA dinucleotides flanked by unique protospacer sequences as well as 

sequencing and imaging-readable static barcodes which serve to uniquely mark different 

genomic integrations of the array. Editing is induced by expression of guide RNAs (middle), 

controlled by a Wnt-responsive element, and base editor (bottom), controlled by the TRE3G tet-

on promoter. (d) We engineered a monoclonal mESC cell line containing 66 uniquely labeled 

target array copies (396 editable dinucleotides, or 792 bits of information) alongside the 

inducible editing machinery. (e) This cell line enables genomic lineage recording and recovery 

through FISH imaging and phylogenetic tree inference.  
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Supplemental Figure 1: 66 unique integrations are detected in the baseMEM-01 cell line. 

66 barcode integrations were identified by next generation sequencing of target arrays amplified 

from genomic DNA. We quantified the number of reads corresponding to unique sequenceable 

(a) and image readable (b) static barcodes, identifying approximately 66 variants in each case. 

The top 200 most frequent variants are shown; we separated true variants from noise 

heuristically by identifying the <knee of the curve= (dashed vertical lines). Importantly, these 66 
variants are all also identified in FISH experiments (Figure 3e).  
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Figure 2: Dinucleotide targets accumulate edits over time in engineered mESCs. 

(a) Next generation amplicon sequencing quantified editing over time after induction of gRNAs 

and ABE. (b) All targets edited over time in the presence of the two inducers together, although 

at distinct rates (b, purple). Dox induction alone drives editing at a slower rate (b, blue). In the 

absence of dox, editing does not proceed at an appreciable rate (b, red and gold). Three 

biological replicates were collected for each time point. The solid purple line shows the fit for a 

probabilistic model of editing over time (Methods). (c) Each target has a unique distribution of 

editing outcomes that remains constant as editing progresses.  
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Figure 3: Multiple rounds of Zombie-FISH recover dynamic and static barcode states. 
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(a) Barcode states can be recovered across multiple rounds of microscopic imaging. Ectopic 

application of T7 polymerase generates localized RNA clusters. Primary DNA probes are bound 

to the dynamic and static barcodes as well as to endogenous transcripts, competing primary 

probes against each other for binding to the different possible dynamic barcode variants. Each 

primary probe has an overhang sequence allowing for binding of one or more fluorescently 

labeled secondary probes, which are hybridized, imaged, and stripped away sequentially to 

recover barcoding (b) and transcriptional (c) information. (d) Across 8 colonies, we recovered 

50-80% of target arrays per cell. One colony had dramatically lower barcode recovery and was 

excluded from further analysis (d, colony 1). (e) Each unique target array is recovered in a 

similar fraction of cells. (f) We recovered approximately 200 dinucleotide dynamic targets with 

high confidence per cell, with around 100 of these measured jointly between any pair of cells. 

Scale bars are 20 µm.  
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Supplemental Figure 2: A support vector machine classifies barcode states based on 

fluorescence measurements. 

(a) Manually annotated barcodes are correctly classified by a quadratic kernel support vector 

machine (SVM) approximately 94% of the time. (b) Classification probability estimates are very 

high within the training dataset (b, left). Outside of the training sample, most classification 

probabilities are still high but with a subset of predictions that are less certain (b, right). The 

support vector machine predicts classes based on 16 fluorescence measurements 

corresponding to each pseudocolor as defined in Figure 3b. (c) Each class is well separated 
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based on these features. (d) After 3 days of editing induction, many dynamic barcodes are 

identified as class 2, corresponding to the unedited state (d, left). Static barcode classifications 

are more evenly distributed, as anticipated (d, right). (e) Static barcodes decoded by FISH 

typically perfectly match the 66 image readable barcode sequences identified by sequencing 

(Supplemental Figure 1b), although a fraction of barcodes are recovered with one or more 

character differences relative to their closest match.  
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Figure 4: Lineage can be accurately reconstructed for at least 12 generations in 

simulation. 

(a) To estimate the expected accuracy of reconstruction, we simulated cell division and 

stochastic editing starting with unedited barcodes, represented as sets of AA dinucleotides (left) 

over time to produce heterogeneous edit patterns. We then either retained all sequences or 

dropped 50% of the data to represent random FISH detection losses, and filtered out cells that 

had few barcode characters overlapping with those measured in other cells (right). (b) Based 

on these ground truth simulations, we reconstructed lineage relationships and computed the 

Robinson-Foulds distance between the ground truth input (left) and reconstructed output (right) 

trees. (c) Reconstruction accuracy was nearly perfect without barcode dropout (dark blue 

dots). With dropout, we observed ~ 10% error rates with tree depths up to 12 cell generations 

(c, gray dots). In the presence of dropout, filtering cells with few shared units moderately 

improved the reconstructed tree (c, light blue dots).  
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Supplemental Figure 3: Stochastic simulations closely recapitulate the empirical editing 

process. 

(a) We developed a stochastic editing simulator based on the Gillespie algorithm that closely 

recapitulates the average edit accumulation model developed in Figure 2b (Methods). (b) The 

simulated edit outcome distributions for each target site match the observed distributions from 

Figure 2c.  
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Figure 5: Joint measurements of lineage, gene expression, and spatial position reveal 

cell state transition dynamics. 

(a) We recorded lineage relationships in mESC cells cultured in serum-LIF media over a 3 day 

period, inducing editing with 3 µM CHIR and 1 µM Dox. (b,c) Cells clustered into 5 states based 

on gene expression as measured by smFISH. Two clusters were well separated from the other 

groups while three clusters appeared continuously related and expressed different levels of key 

marker genes (see Supplementary Figure 4). (d-g) Lineage reconstruction infers topological 

lineage tree relationships, cell division timing, ancestral cell states, and transition rates between 

those states. Uncertainty in lineage tree measurements is visualized by overlaying trees 

sampled from the posterior distribution of trees generated by Markov chain Monte Carlo for 

each colony (d, top; Supplemental Figure 5). Cell states and clade groups from the lineage 

tree can be mapped to the spatial colony images to qualitatively inspect the relationships 

between cell state, lineage, and spatial location (d, bottom; Supplemental Figure 5). (e) 

Spatial distance is larger between cells with more distant common ancestors. (f) Several cell 

state transitions were inferred to have nonzero median values across all posterior samples. (g) 

These state transitions predict a restricted cell state transition graph. One transition (denoted by 

*) contained a high fraction of posterior samples with a transition rate of 0. Numbers indicate the 

median expected number of transitions per day for cells of the given type. (h) Several doublet 

motifs are significantly over or underrepresented across the lineage tree posterior samples. N: 

Naive; 2: 2C-like; F: Formative; N2: Naive, trending to 2C-like; NF: Naive, trending to formative; 

MRCA: Most recent common ancestor.  
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Supplemental Figure 4: mESC gene expression clustering. 

(a) Principal component analysis is largely in agreement with nonlinear dimensionality reduction, 

with separation between major clusters observed along the first three components. The naive 

states also appear continuously related in this view. (b) Clusters have distinct marker gene 

expression patterns, with some similarity between the Naive/2C-like, Naive, and 

Naive/Formative states.  
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Supplemental Figure 5: BaseMEMOIR reveals lineage relationships, cell states, and 

spatial positions across multiple colonies. 

Posterior tree distributions are visualized and mapped back to illustrations of each colony as in 

Figure 5d.  
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Supplemental Figure 6: Gene detection is consistent across images. 

Gene counts as quantified from FISH images by the bigFISH package59 are correlated for cells 

that were measured in multiple images.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.573434doi: bioRxiv preprint 

https://paperpile.com/c/KleEPH/3MDuM
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

References 

1. Domcke, S. & Shendure, J. A reference cell tree will serve science better than a reference 

cell atlas. Cell 186, 110331114 (2023). 

2. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. 

Nature 590, 3443350 (2021). 

3. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA 

seqFISH. Nature 568, 2353239 (2019). 

4. Shah, S. et al. Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron 

seqFISH. Cell 174, 3633376.e16 (2018). 

5. Emert, B. L. et al. Variability within rare cell states enables multiple paths toward drug 

resistance. Nat. Biotechnol. 39, 8653876 (2021). 

6. Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate 

brain. Nat. Biotechnol. 36, 4423450 (2018). 

7. McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative 

genome editing. Science 353, aaf7907 (2016). 

8. Simeonov, K. P. et al. Single-cell lineage tracing of metastatic cancer reveals selection of 

hybrid EMT states. Cancer Cell 39, 115031162.e9 (2021). 

9. Bowling, S. et al. An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of 

Lineage Histories and Gene Expression Profiles in Single Cells. Cell 181, 169331694 

(2020). 

10. Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR-

Cas9-induced genetic scars. Nat. Biotechnol. 36, 4693473 (2018). 

11. Liu, K. et al. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics 

during organ development. Nat. Methods 18, 150631514 (2021). 

12. Kalhor, R. et al. Developmental barcoding of whole mouse via homing CRISPR. Science 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.573434doi: bioRxiv preprint 

http://paperpile.com/b/KleEPH/dChso
http://paperpile.com/b/KleEPH/dChso
http://paperpile.com/b/KleEPH/dChso
http://paperpile.com/b/KleEPH/dChso
http://paperpile.com/b/KleEPH/dChso
http://paperpile.com/b/KleEPH/dChso
http://paperpile.com/b/KleEPH/3t3V
http://paperpile.com/b/KleEPH/3t3V
http://paperpile.com/b/KleEPH/3t3V
http://paperpile.com/b/KleEPH/3t3V
http://paperpile.com/b/KleEPH/3t3V
http://paperpile.com/b/KleEPH/3t3V
http://paperpile.com/b/KleEPH/3t3V
http://paperpile.com/b/KleEPH/3t3V
http://paperpile.com/b/KleEPH/OKgD4
http://paperpile.com/b/KleEPH/OKgD4
http://paperpile.com/b/KleEPH/OKgD4
http://paperpile.com/b/KleEPH/OKgD4
http://paperpile.com/b/KleEPH/OKgD4
http://paperpile.com/b/KleEPH/OKgD4
http://paperpile.com/b/KleEPH/OKgD4
http://paperpile.com/b/KleEPH/OKgD4
http://paperpile.com/b/KleEPH/8umiT
http://paperpile.com/b/KleEPH/8umiT
http://paperpile.com/b/KleEPH/8umiT
http://paperpile.com/b/KleEPH/8umiT
http://paperpile.com/b/KleEPH/8umiT
http://paperpile.com/b/KleEPH/8umiT
http://paperpile.com/b/KleEPH/8umiT
http://paperpile.com/b/KleEPH/8umiT
http://paperpile.com/b/KleEPH/Qml5L
http://paperpile.com/b/KleEPH/Qml5L
http://paperpile.com/b/KleEPH/Qml5L
http://paperpile.com/b/KleEPH/Qml5L
http://paperpile.com/b/KleEPH/Qml5L
http://paperpile.com/b/KleEPH/Qml5L
http://paperpile.com/b/KleEPH/Qml5L
http://paperpile.com/b/KleEPH/Qml5L
http://paperpile.com/b/KleEPH/3c6S8
http://paperpile.com/b/KleEPH/3c6S8
http://paperpile.com/b/KleEPH/3c6S8
http://paperpile.com/b/KleEPH/3c6S8
http://paperpile.com/b/KleEPH/3c6S8
http://paperpile.com/b/KleEPH/3c6S8
http://paperpile.com/b/KleEPH/3c6S8
http://paperpile.com/b/KleEPH/3c6S8
http://paperpile.com/b/KleEPH/8Urmh
http://paperpile.com/b/KleEPH/8Urmh
http://paperpile.com/b/KleEPH/8Urmh
http://paperpile.com/b/KleEPH/8Urmh
http://paperpile.com/b/KleEPH/8Urmh
http://paperpile.com/b/KleEPH/8Urmh
http://paperpile.com/b/KleEPH/8Urmh
http://paperpile.com/b/KleEPH/8Urmh
http://paperpile.com/b/KleEPH/nMB5y
http://paperpile.com/b/KleEPH/nMB5y
http://paperpile.com/b/KleEPH/nMB5y
http://paperpile.com/b/KleEPH/nMB5y
http://paperpile.com/b/KleEPH/nMB5y
http://paperpile.com/b/KleEPH/nMB5y
http://paperpile.com/b/KleEPH/nMB5y
http://paperpile.com/b/KleEPH/nMB5y
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/wYllc
http://paperpile.com/b/KleEPH/pA8WQ
http://paperpile.com/b/KleEPH/pA8WQ
http://paperpile.com/b/KleEPH/pA8WQ
http://paperpile.com/b/KleEPH/pA8WQ
http://paperpile.com/b/KleEPH/pA8WQ
http://paperpile.com/b/KleEPH/pA8WQ
http://paperpile.com/b/KleEPH/pA8WQ
http://paperpile.com/b/KleEPH/pA8WQ
http://paperpile.com/b/KleEPH/mZI22
http://paperpile.com/b/KleEPH/mZI22
http://paperpile.com/b/KleEPH/mZI22
http://paperpile.com/b/KleEPH/mZI22
http://paperpile.com/b/KleEPH/mZI22
http://paperpile.com/b/KleEPH/mZI22
http://paperpile.com/b/KleEPH/mZI22
http://paperpile.com/b/KleEPH/mZI22
http://paperpile.com/b/KleEPH/rk2pS
http://paperpile.com/b/KleEPH/rk2pS
http://paperpile.com/b/KleEPH/rk2pS
http://paperpile.com/b/KleEPH/rk2pS
http://paperpile.com/b/KleEPH/rk2pS
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/


361, (2018). 

13. Leeper, K. et al. Lineage barcoding in mice with homing CRISPR. Nat. Protoc. 16, 20883

2108 (2021). 

14. Tang, W. & Liu, D. R. Rewritable multi-event analog recording in bacterial and mammalian 

cells. Science 360, (2018). 

15. Hwang, B. et al. Lineage tracing using a Cas9-deaminase barcoding system targeting 

endogenous L1 elements. Nat. Commun. 10, 1234 (2019). 

16. Chen, W. et al. Multiplex genomic recording of enhancer and signal transduction activity in 

mammalian cells. bioRxiv 2021.11.05.467434 (2021) doi:10.1101/2021.11.05.467434. 

17. Loveless, T. B. et al. Molecular recording of sequential cellular events into DNA. bioRxiv 

2021.11.05.467507 (2021) doi:10.1101/2021.11.05.467507. 

18. Choi, J. et al. A time-resolved, multi-symbol molecular recorder via sequential genome 

editing. Nature (2022) doi:10.1038/s41586-022-04922-8. 

19. Gong, W. et al. Benchmarked approaches for reconstruction of in vitro cell lineages and in 

silico models of C. elegans and M. musculus developmental trees. Cell Syst 12, 8103

826.e4 (2021). 

20. Salvador-Martínez, I., Grillo, M., Averof, M. & Telford, M. J. Is it possible to reconstruct an 

accurate cell lineage using CRISPR recorders? Elife 8, (2019). 

21. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single 

cells. Nature 541, 1073111 (2017). 

22. Chow, K.-H. K. et al. Imaging cell lineage with a synthetic digital recording system. Science 

372, (2021). 

23. Askary, A. et al. In situ readout of DNA barcodes and single base edits facilitated by in vitro 

transcription. Nat. Biotechnol. 38, 66375 (2020). 

24. Arbab, M. et al. Determinants of Base Editing Outcomes from Target Library Analysis and 

Machine Learning. Cell 182, 4633480.e30 (2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.573434doi: bioRxiv preprint 

http://paperpile.com/b/KleEPH/rk2pS
http://paperpile.com/b/KleEPH/rk2pS
http://paperpile.com/b/KleEPH/niirt
http://paperpile.com/b/KleEPH/niirt
http://paperpile.com/b/KleEPH/niirt
http://paperpile.com/b/KleEPH/niirt
http://paperpile.com/b/KleEPH/niirt
http://paperpile.com/b/KleEPH/niirt
http://paperpile.com/b/KleEPH/niirt
http://paperpile.com/b/KleEPH/niirt
http://paperpile.com/b/KleEPH/FlcUC
http://paperpile.com/b/KleEPH/FlcUC
http://paperpile.com/b/KleEPH/FlcUC
http://paperpile.com/b/KleEPH/FlcUC
http://paperpile.com/b/KleEPH/FlcUC
http://paperpile.com/b/KleEPH/FlcUC
http://paperpile.com/b/KleEPH/cEpoN
http://paperpile.com/b/KleEPH/cEpoN
http://paperpile.com/b/KleEPH/cEpoN
http://paperpile.com/b/KleEPH/cEpoN
http://paperpile.com/b/KleEPH/cEpoN
http://paperpile.com/b/KleEPH/cEpoN
http://paperpile.com/b/KleEPH/cEpoN
http://paperpile.com/b/KleEPH/cEpoN
http://paperpile.com/b/KleEPH/srKCJ
http://paperpile.com/b/KleEPH/srKCJ
http://paperpile.com/b/KleEPH/srKCJ
http://paperpile.com/b/KleEPH/srKCJ
http://paperpile.com/b/KleEPH/srKCJ
http://paperpile.com/b/KleEPH/srKCJ
http://dx.doi.org/10.1101/2021.11.05.467434
http://paperpile.com/b/KleEPH/srKCJ
http://paperpile.com/b/KleEPH/toRyq
http://paperpile.com/b/KleEPH/toRyq
http://paperpile.com/b/KleEPH/toRyq
http://paperpile.com/b/KleEPH/toRyq
http://paperpile.com/b/KleEPH/toRyq
http://paperpile.com/b/KleEPH/toRyq
http://dx.doi.org/10.1101/2021.11.05.467507
http://paperpile.com/b/KleEPH/toRyq
http://paperpile.com/b/KleEPH/tfQ9D
http://paperpile.com/b/KleEPH/tfQ9D
http://paperpile.com/b/KleEPH/tfQ9D
http://paperpile.com/b/KleEPH/tfQ9D
http://paperpile.com/b/KleEPH/tfQ9D
http://paperpile.com/b/KleEPH/tfQ9D
http://dx.doi.org/10.1038/s41586-022-04922-8
http://paperpile.com/b/KleEPH/tfQ9D
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/TVWpR
http://paperpile.com/b/KleEPH/xlU9o
http://paperpile.com/b/KleEPH/xlU9o
http://paperpile.com/b/KleEPH/xlU9o
http://paperpile.com/b/KleEPH/xlU9o
http://paperpile.com/b/KleEPH/xlU9o
http://paperpile.com/b/KleEPH/xlU9o
http://paperpile.com/b/KleEPH/ib4qT
http://paperpile.com/b/KleEPH/ib4qT
http://paperpile.com/b/KleEPH/ib4qT
http://paperpile.com/b/KleEPH/ib4qT
http://paperpile.com/b/KleEPH/ib4qT
http://paperpile.com/b/KleEPH/ib4qT
http://paperpile.com/b/KleEPH/ib4qT
http://paperpile.com/b/KleEPH/ib4qT
http://paperpile.com/b/KleEPH/Y760s
http://paperpile.com/b/KleEPH/Y760s
http://paperpile.com/b/KleEPH/Y760s
http://paperpile.com/b/KleEPH/Y760s
http://paperpile.com/b/KleEPH/Y760s
http://paperpile.com/b/KleEPH/Y760s
http://paperpile.com/b/KleEPH/Y760s
http://paperpile.com/b/KleEPH/Y760s
http://paperpile.com/b/KleEPH/dKQ9d
http://paperpile.com/b/KleEPH/dKQ9d
http://paperpile.com/b/KleEPH/dKQ9d
http://paperpile.com/b/KleEPH/dKQ9d
http://paperpile.com/b/KleEPH/dKQ9d
http://paperpile.com/b/KleEPH/dKQ9d
http://paperpile.com/b/KleEPH/dKQ9d
http://paperpile.com/b/KleEPH/dKQ9d
http://paperpile.com/b/KleEPH/Trt2j
http://paperpile.com/b/KleEPH/Trt2j
http://paperpile.com/b/KleEPH/Trt2j
http://paperpile.com/b/KleEPH/Trt2j
http://paperpile.com/b/KleEPH/Trt2j
http://paperpile.com/b/KleEPH/Trt2j
http://paperpile.com/b/KleEPH/Trt2j
http://paperpile.com/b/KleEPH/Trt2j
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/


25. Das, A. T., Tenenbaum, L. & Berkhout, B. Tet-On Systems For Doxycycline-inducible Gene 

Expression. Curr. Gene Ther. 16, 1563167 (2016). 

26. Molenaar, M. et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation 

in Xenopus embryos. Cell 86, 3913399 (1996). 

27. Gao, Y. & Zhao, Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and 

in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 56, 3433349 (2014). 

28. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target 

effects of CRISPR-Cas9. Nat. Biotechnol. 34, 1843191 (2016). 

29. Hormoz, S. et al. Inferring Cell-State Transition Dynamics from Lineage Trees and Endpoint 

Single-Cell Measurements. Cell Syst 3, 4193433.e8 (2016). 

30. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially 

resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015). 

31. Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed 

error-robust fluorescence in situ hybridization. Proc. Natl. Acad. Sci. U. S. A. 113, 110463

11051 (2016). 

32. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging 

individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 8773879 

(2008). 

33. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA 

profiling by sequential hybridization. Nature methods vol. 11 3603361 (2014). 

34. Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary 

analysis. PLoS Comput. Biol. 15, e1006650 (2019). 

35. Singer, Z. S. et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. 

Mol. Cell 55, 3193331 (2014). 

36. Kolodziejczyk, A. A. et al. Single Cell RNA-Sequencing of Pluripotent States Unlocks 

Modular Transcriptional Variation. Cell Stem Cell 17, 4713485 (2015). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.573434doi: bioRxiv preprint 

http://paperpile.com/b/KleEPH/U6wFq
http://paperpile.com/b/KleEPH/U6wFq
http://paperpile.com/b/KleEPH/U6wFq
http://paperpile.com/b/KleEPH/U6wFq
http://paperpile.com/b/KleEPH/U6wFq
http://paperpile.com/b/KleEPH/U6wFq
http://paperpile.com/b/KleEPH/nD1sK
http://paperpile.com/b/KleEPH/nD1sK
http://paperpile.com/b/KleEPH/nD1sK
http://paperpile.com/b/KleEPH/nD1sK
http://paperpile.com/b/KleEPH/nD1sK
http://paperpile.com/b/KleEPH/nD1sK
http://paperpile.com/b/KleEPH/nD1sK
http://paperpile.com/b/KleEPH/nD1sK
http://paperpile.com/b/KleEPH/JxdTw
http://paperpile.com/b/KleEPH/JxdTw
http://paperpile.com/b/KleEPH/JxdTw
http://paperpile.com/b/KleEPH/JxdTw
http://paperpile.com/b/KleEPH/JxdTw
http://paperpile.com/b/KleEPH/JxdTw
http://paperpile.com/b/KleEPH/pfZoC
http://paperpile.com/b/KleEPH/pfZoC
http://paperpile.com/b/KleEPH/pfZoC
http://paperpile.com/b/KleEPH/pfZoC
http://paperpile.com/b/KleEPH/pfZoC
http://paperpile.com/b/KleEPH/pfZoC
http://paperpile.com/b/KleEPH/pfZoC
http://paperpile.com/b/KleEPH/pfZoC
http://paperpile.com/b/KleEPH/iLlT8
http://paperpile.com/b/KleEPH/iLlT8
http://paperpile.com/b/KleEPH/iLlT8
http://paperpile.com/b/KleEPH/iLlT8
http://paperpile.com/b/KleEPH/iLlT8
http://paperpile.com/b/KleEPH/iLlT8
http://paperpile.com/b/KleEPH/iLlT8
http://paperpile.com/b/KleEPH/iLlT8
http://paperpile.com/b/KleEPH/sfvQL
http://paperpile.com/b/KleEPH/sfvQL
http://paperpile.com/b/KleEPH/sfvQL
http://paperpile.com/b/KleEPH/sfvQL
http://paperpile.com/b/KleEPH/sfvQL
http://paperpile.com/b/KleEPH/sfvQL
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/nMfCq
http://paperpile.com/b/KleEPH/ubkVq
http://paperpile.com/b/KleEPH/ubkVq
http://paperpile.com/b/KleEPH/ubkVq
http://paperpile.com/b/KleEPH/ubkVq
http://paperpile.com/b/KleEPH/ubkVq
http://paperpile.com/b/KleEPH/ubkVq
http://paperpile.com/b/KleEPH/ubkVq
http://paperpile.com/b/KleEPH/dYuX
http://paperpile.com/b/KleEPH/dYuX
http://paperpile.com/b/KleEPH/dYuX
http://paperpile.com/b/KleEPH/dYuX
http://paperpile.com/b/KleEPH/j14wc
http://paperpile.com/b/KleEPH/j14wc
http://paperpile.com/b/KleEPH/j14wc
http://paperpile.com/b/KleEPH/j14wc
http://paperpile.com/b/KleEPH/j14wc
http://paperpile.com/b/KleEPH/j14wc
http://paperpile.com/b/KleEPH/j14wc
http://paperpile.com/b/KleEPH/j14wc
http://paperpile.com/b/KleEPH/TSF1I
http://paperpile.com/b/KleEPH/TSF1I
http://paperpile.com/b/KleEPH/TSF1I
http://paperpile.com/b/KleEPH/TSF1I
http://paperpile.com/b/KleEPH/TSF1I
http://paperpile.com/b/KleEPH/TSF1I
http://paperpile.com/b/KleEPH/TSF1I
http://paperpile.com/b/KleEPH/TSF1I
http://paperpile.com/b/KleEPH/GWeOV
http://paperpile.com/b/KleEPH/GWeOV
http://paperpile.com/b/KleEPH/GWeOV
http://paperpile.com/b/KleEPH/GWeOV
http://paperpile.com/b/KleEPH/GWeOV
http://paperpile.com/b/KleEPH/GWeOV
http://paperpile.com/b/KleEPH/GWeOV
http://paperpile.com/b/KleEPH/GWeOV
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/


37. Kumar, R. M. et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. 

Nature 516, 56361 (2014). 

38. Rodriguez-Terrones, D. et al. A molecular roadmap for the emergence of early-embryonic-

like cells in culture. Nat. Genet. 50, 1063119 (2018). 

39. Eckersley-Maslin, M. A. et al. MERVL/Zscan4 Network Activation Results in Transient 

Genome-wide DNA Demethylation of mESCs. Cell Rep. 17, 1793192 (2016). 

40. Smith, A. Formative pluripotency: the executive phase in a developmental continuum. 

Development 144, 3653373 (2017). 

41. Sim, Y.-J. et al. 2i Maintains a Naive Ground State in ESCs through Two Distinct Epigenetic 

Mechanisms. Stem Cell Reports 8, 131231328 (2017). 

42. Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 5193

523 (2008). 

43. ten Berge, D. et al. Embryonic stem cells require Wnt proteins to prevent differentiation to 

epiblast stem cells. Nat. Cell Biol. 13, 107031075 (2011). 

44. Qiu, D. et al. Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce 

and Maintain Naive Pluripotency. Stem Cell Reports 5, 3143322 (2015). 

45. Ye, S., Li, P., Tong, C. & Ying, Q.-L. Embryonic stem cell self-renewal pathways converge 

on the transcription factor Tfcp2l1. EMBO J. 32, 254832560 (2013). 

46. Ai, Z. et al. CHIR99021 enhances Klf4 Expression through β-Catenin Signaling and miR-7a 

Regulation in J1 Mouse Embryonic Stem Cells. PLoS One 11, e0150936 (2016). 

47. Wu, Y. et al. CHIR99021 promotes self-renewal of mouse embryonic stem cells by 

modulation of protein-encoding gene and long intergenic non-coding RNA expression. Exp. 

Cell Res. 319, 268432699 (2013). 

48. Tran, M., Askary, A. & Elowitz, M. B. Lineage motifs: developmental modules for control of 

cell type proportions. bioRxiv (2023) doi:10.1101/2023.06.06.543925. 

49. Bouckaert, R. Phylogeography by diffusion on a sphere: whole world phylogeography. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.573434doi: bioRxiv preprint 

http://paperpile.com/b/KleEPH/OWiwu
http://paperpile.com/b/KleEPH/OWiwu
http://paperpile.com/b/KleEPH/OWiwu
http://paperpile.com/b/KleEPH/OWiwu
http://paperpile.com/b/KleEPH/OWiwu
http://paperpile.com/b/KleEPH/OWiwu
http://paperpile.com/b/KleEPH/OWiwu
http://paperpile.com/b/KleEPH/OWiwu
http://paperpile.com/b/KleEPH/0KnD3
http://paperpile.com/b/KleEPH/0KnD3
http://paperpile.com/b/KleEPH/0KnD3
http://paperpile.com/b/KleEPH/0KnD3
http://paperpile.com/b/KleEPH/0KnD3
http://paperpile.com/b/KleEPH/0KnD3
http://paperpile.com/b/KleEPH/0KnD3
http://paperpile.com/b/KleEPH/0KnD3
http://paperpile.com/b/KleEPH/nKv4y
http://paperpile.com/b/KleEPH/nKv4y
http://paperpile.com/b/KleEPH/nKv4y
http://paperpile.com/b/KleEPH/nKv4y
http://paperpile.com/b/KleEPH/nKv4y
http://paperpile.com/b/KleEPH/nKv4y
http://paperpile.com/b/KleEPH/nKv4y
http://paperpile.com/b/KleEPH/nKv4y
http://paperpile.com/b/KleEPH/kXn1S
http://paperpile.com/b/KleEPH/kXn1S
http://paperpile.com/b/KleEPH/kXn1S
http://paperpile.com/b/KleEPH/kXn1S
http://paperpile.com/b/KleEPH/kXn1S
http://paperpile.com/b/KleEPH/kXn1S
http://paperpile.com/b/KleEPH/P0sm4
http://paperpile.com/b/KleEPH/P0sm4
http://paperpile.com/b/KleEPH/P0sm4
http://paperpile.com/b/KleEPH/P0sm4
http://paperpile.com/b/KleEPH/P0sm4
http://paperpile.com/b/KleEPH/P0sm4
http://paperpile.com/b/KleEPH/P0sm4
http://paperpile.com/b/KleEPH/P0sm4
http://paperpile.com/b/KleEPH/maddS
http://paperpile.com/b/KleEPH/maddS
http://paperpile.com/b/KleEPH/maddS
http://paperpile.com/b/KleEPH/maddS
http://paperpile.com/b/KleEPH/maddS
http://paperpile.com/b/KleEPH/maddS
http://paperpile.com/b/KleEPH/maddS
http://paperpile.com/b/KleEPH/maddS
http://paperpile.com/b/KleEPH/YkUWb
http://paperpile.com/b/KleEPH/YkUWb
http://paperpile.com/b/KleEPH/YkUWb
http://paperpile.com/b/KleEPH/YkUWb
http://paperpile.com/b/KleEPH/YkUWb
http://paperpile.com/b/KleEPH/YkUWb
http://paperpile.com/b/KleEPH/YkUWb
http://paperpile.com/b/KleEPH/YkUWb
http://paperpile.com/b/KleEPH/eygC5
http://paperpile.com/b/KleEPH/eygC5
http://paperpile.com/b/KleEPH/eygC5
http://paperpile.com/b/KleEPH/eygC5
http://paperpile.com/b/KleEPH/eygC5
http://paperpile.com/b/KleEPH/eygC5
http://paperpile.com/b/KleEPH/eygC5
http://paperpile.com/b/KleEPH/eygC5
http://paperpile.com/b/KleEPH/w6Son
http://paperpile.com/b/KleEPH/w6Son
http://paperpile.com/b/KleEPH/w6Son
http://paperpile.com/b/KleEPH/w6Son
http://paperpile.com/b/KleEPH/w6Son
http://paperpile.com/b/KleEPH/w6Son
http://paperpile.com/b/KleEPH/DUlhQ
http://paperpile.com/b/KleEPH/DUlhQ
http://paperpile.com/b/KleEPH/DUlhQ
http://paperpile.com/b/KleEPH/DUlhQ
http://paperpile.com/b/KleEPH/DUlhQ
http://paperpile.com/b/KleEPH/DUlhQ
http://paperpile.com/b/KleEPH/DUlhQ
http://paperpile.com/b/KleEPH/DUlhQ
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/E4AZ8
http://paperpile.com/b/KleEPH/egHgv
http://paperpile.com/b/KleEPH/egHgv
http://paperpile.com/b/KleEPH/egHgv
http://paperpile.com/b/KleEPH/egHgv
http://dx.doi.org/10.1101/2023.06.06.543925
http://paperpile.com/b/KleEPH/egHgv
http://paperpile.com/b/KleEPH/66cst
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/


PeerJ 4, e2406 (2016). 

50. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without 

DNA cleavage. Nature 551, 4643471 (2017). 

51. Yusa, K., Zhou, L., Li, M. A., Bradley, A. & Craig, N. L. A hyperactive piggyBac transposase 

for mammalian applications. Proc. Natl. Acad. Sci. U. S. A. 108, 153131536 (2011). 

52. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 

arXiv [q-bio.GN] (2013). 

53. R Core Team, R. & Others. R: A language and environment for statistical computing. 

(2013). 

54. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 

81, 234032361 (1977). 

55. Murphy, J. S., Landsberger, F. R., Kikuchi, T. & Tamm, I. Occurrence of cell division is not 

exponentially distributed: differences in the generation times of sister cells can be derived 

from the theory of survival of populations. Proc. Natl. Acad. Sci. U. S. A. 81, 237932383 

(1984). 

56. Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 5923593 (2011). 

57. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of 

microscopes using µManager. Curr. Protoc. Mol. Biol. Chapter 14, Unit14.20 (2010). 

58. Berg, S. et al. Ilastik: Interactive Machine Learning for (bio)image Analysis. 

(Universitätsbibliothek Heidelberg). 

59. Imbert, A. et al. FISH-quant v2: a scalable and modular analysis tool for smFISH image 

analysis. Preprint at https://doi.org/10.1101/2021.07.20.453024. 

60. Seidel, S. & Stadler, T. TiDeTree: a Bayesian phylogenetic framework to estimate single-

cell trees and population dynamic parameters from genetic lineage tracing data. Proc. Biol. 

Sci. 289, 20221844 (2022). 

61. Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.573434doi: bioRxiv preprint 

http://paperpile.com/b/KleEPH/66cst
http://paperpile.com/b/KleEPH/66cst
http://paperpile.com/b/KleEPH/66cst
http://paperpile.com/b/KleEPH/66cst
http://paperpile.com/b/KleEPH/wenxd
http://paperpile.com/b/KleEPH/wenxd
http://paperpile.com/b/KleEPH/wenxd
http://paperpile.com/b/KleEPH/wenxd
http://paperpile.com/b/KleEPH/wenxd
http://paperpile.com/b/KleEPH/wenxd
http://paperpile.com/b/KleEPH/wenxd
http://paperpile.com/b/KleEPH/wenxd
http://paperpile.com/b/KleEPH/dEVve
http://paperpile.com/b/KleEPH/dEVve
http://paperpile.com/b/KleEPH/dEVve
http://paperpile.com/b/KleEPH/dEVve
http://paperpile.com/b/KleEPH/dEVve
http://paperpile.com/b/KleEPH/dEVve
http://paperpile.com/b/KleEPH/9hI58
http://paperpile.com/b/KleEPH/9hI58
http://paperpile.com/b/KleEPH/9hI58
http://paperpile.com/b/KleEPH/9hI58
http://paperpile.com/b/KleEPH/5u9nm
http://paperpile.com/b/KleEPH/5u9nm
http://paperpile.com/b/KleEPH/cmn9u
http://paperpile.com/b/KleEPH/cmn9u
http://paperpile.com/b/KleEPH/cmn9u
http://paperpile.com/b/KleEPH/cmn9u
http://paperpile.com/b/KleEPH/cmn9u
http://paperpile.com/b/KleEPH/cmn9u
http://paperpile.com/b/KleEPH/q8CPd
http://paperpile.com/b/KleEPH/q8CPd
http://paperpile.com/b/KleEPH/q8CPd
http://paperpile.com/b/KleEPH/q8CPd
http://paperpile.com/b/KleEPH/q8CPd
http://paperpile.com/b/KleEPH/q8CPd
http://paperpile.com/b/KleEPH/q8CPd
http://paperpile.com/b/KleEPH/q8CPd
http://paperpile.com/b/KleEPH/MvrG6
http://paperpile.com/b/KleEPH/MvrG6
http://paperpile.com/b/KleEPH/MvrG6
http://paperpile.com/b/KleEPH/MvrG6
http://paperpile.com/b/KleEPH/MvrG6
http://paperpile.com/b/KleEPH/h0wuD
http://paperpile.com/b/KleEPH/h0wuD
http://paperpile.com/b/KleEPH/h0wuD
http://paperpile.com/b/KleEPH/h0wuD
http://paperpile.com/b/KleEPH/h0wuD
http://paperpile.com/b/KleEPH/h0wuD
http://paperpile.com/b/KleEPH/3ieba
http://paperpile.com/b/KleEPH/3ieba
http://paperpile.com/b/KleEPH/3ieba
http://paperpile.com/b/KleEPH/3ieba
http://paperpile.com/b/KleEPH/3ieba
http://paperpile.com/b/KleEPH/3ieba
http://paperpile.com/b/KleEPH/3MDuM
http://paperpile.com/b/KleEPH/3MDuM
http://paperpile.com/b/KleEPH/3MDuM
http://paperpile.com/b/KleEPH/3MDuM
http://dx.doi.org/10.1101/2021.07.20.453024
http://paperpile.com/b/KleEPH/3MDuM
http://paperpile.com/b/KleEPH/rjdxn
http://paperpile.com/b/KleEPH/rjdxn
http://paperpile.com/b/KleEPH/rjdxn
http://paperpile.com/b/KleEPH/rjdxn
http://paperpile.com/b/KleEPH/rjdxn
http://paperpile.com/b/KleEPH/rjdxn
http://paperpile.com/b/KleEPH/rjdxn
http://paperpile.com/b/KleEPH/gBowD
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/


rates over sites: approximate methods. J. Mol. Evol. 39, 3063314 (1994). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.573434doi: bioRxiv preprint 

http://paperpile.com/b/KleEPH/gBowD
http://paperpile.com/b/KleEPH/gBowD
http://paperpile.com/b/KleEPH/gBowD
http://paperpile.com/b/KleEPH/gBowD
http://paperpile.com/b/KleEPH/gBowD
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/

