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Abstract

Knowing the ancestral states and lineage relationships of individual cells could unravel the
dynamic programs underlying development. Engineering cells to actively record information
within their own genomic DNA could reveal these histories, but existing recording systems have
limited information capacity or disrupt spatial context. Here, we introduce baseMEMOIR, which
combines base editing, sequential hybridization imaging, and Bayesian inference to allow
reconstruction of high-resolution cell lineage trees and cell state dynamics while preserving
spatial organization. BaseMEMOIR stochastically and irreversibly edits engineered
dinucleotides to one of three alternative image-readable states. By genomically integrating
arrays of editable dinucleotides, we constructed an embryonic stem cell line with 792 bits of
recordable, image-readable memory, a 50-fold increase over the state of the art. Simulations
showed that this memory size was sufficient for accurate reconstruction of deep lineage trees.
Experimentally, baseMEMOIR allowed precise reconstruction of lineage trees 6 or more
generations deep in embryonic stem cell colonies. Further, it also allowed inference of ancestral
cell states and their quantitative cell state transition rates, all from endpoint images.
baseMEMOIR thus provides a scalable framework for reconstructing single cell histories in
spatially organized multicellular systems.
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Introduction

Cells divide, differentiate, and move to form exquisitely organized structures. Reconstructing the
dynamic histories of individual cells, particularly their lineage relationships, could enable
researchers to understand how tissues form, analyze the roles of intrinsic and extrinsic
determinants of cell fate decisions, and reveal how processes are dysregulated in disease”.
Recent advances in single cell sequencing and spatial genomics now allow us to capture single
cell states at specific moments in time?. However, with a few exceptions®, the histories of those
cells have largely remained hidden.

Researchers have sought to address this challenge through engineered recording systems,
which progressively introduce stochastic edits in genomically integrated barcode sequences as
cells proliferate. Systems such as GESTALT®®, CARLIN®, LINNAEUS', SMALT", and the
homing CRISPR barcoded mouse'?'®, use CRISPR/Cas9 or recombinases to edit designed
target sequences, relying on next generation sequencing to read out edited barcodes.
Alternative systems, including CAMERA, leverage CRISPR base editors to generate more
specific types of barcode diversity.'*'® Further, prime editors introduced an additional paradigm
for phylogenetic recording, sequentially inserting short nucleotide motifs for genomic information
storage.'®'8 In all of these systems, lineage relationships between individual cells are
reconstructed from each cell's unique pattern of target site edits, in a manner analogous to
sequence-based phylogenetic reconstruction.’®?

These techniques can be powerful in their ability to recover lineage but disrupt spatial
organization. A parallel set of methods were developed to allow barcode editing in ways that
allow readout of edits and cell states by imaging?'?2. For example, previous MEMOIR (Memory
by Engineered Mutagenesis with Optical In situ Readout) systems showed that it is possible to
stochastically and irreversibly edit engineered DNA barcodes, or ‘scratchpads,’ using
CRISPR/Cas9?' or an integrase??, and then read out those edits by imaging. However, these
methods were limited in accuracy by relatively low numbers of mutable target sites, which serve
as memory in the genome. For example, existing image-readable systems have demonstrated
only ~16 bits of information storage??.

Recently, we showed that in situ T7 transcription can amplify genomic DNA into localized RNA
clusters, which can then be competitively probed to discriminate single base edits?. In this
strategy, termed “Zombie,” a genomic DNA of interest can be maintained without transcription in
live cells, transcribed after fixation with the addition of T7 polymerase, and finally detected by
RNA-FISH. Zombie transcription avoids silencing problems that occur when barcodes must be
continuously transcribed in live cells, generates large quantities of RNA that spatially localize
around the active site of transcription, can detect mutations at single nucleotide resolution, and
is compatible with subsequent sequential rounds of FISH to detect endogenous gene
transcripts. Zombie enables readout of dense editable memory arrays, expanding the capacity
of MEMOIR approaches.

Here, we introduce “baseMEMOIR”, a multiplexed phylogenetic recording system which enables
detailed recording of lineage relationships over time in a manner compatible with recovery of
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spatial position and gene expression patterns (Figure 1a). We distributed mutable synthetic
DNA sequences at high copy number randomly across the genome of mouse embryonic stem
cells. These targets can be edited by the CRISPR A-to-G base editor (ABE), which complexes
with guide RNAs to specifically mutate target sites within our synthetic sequences. For tight
control of editing, we used two inducible systems to control the base editor (the TRE3G Tet-On
system) and guide RNAs (controlled by a Wnt responsive promoter) respectively. On induction,
mutations occur at a rate commensurate with cell division and are passed down from parent
cells to their progeny through DNA replication, creating lasting marks that link related cells to
one another. We then recovered mutation states through microscopic imaging, and applied
Bayesian phylogenetic tools to infer lineage relationships as well as transcriptional state
dynamics and spatiotemporal histories in a unified manner. By comparing the distinct pattern of
mutations in each cell after a series of divisions, we were able to reconstruct phylogenies and
estimate uncertainty in both tree topology and the timing of past cell divisions.

To demonstrate the capabilities of baseMEMOIR, we applied this system to estimate state
switching rates and probable past cell states along lineages of dividing mESCs grown in serum-
LIF conditions in the presence of a Wnt agonist. We find that mESCs grown in these conditions
undergo reversible transitions between formative and 2C-like states, with an intermediate naive
state that can be broken up into three distinct subclusters. Each state and subcluster, in addition
to being transcriptionally distinct, is further distinguished by a set of allowed state transitions.
The baseMEMOIR cell lines and platform can be applied, and further scaled, in any model
system that permits genetic engineering, opening up spatially resolved analysis of embryonic
development and other processes.

Results
Base editing can enable lineage recording with spatial readout

To ultimately capture detailed lineage relationships between cells while maintaining spatial
context, we first sought to design an image-readable stochastic base editing system. One
possible system would use designed target sequences that would be editable at a single base.
For example, the A-to-G base editor ABE could target a set of defined sequences to
stochastically edit each target site. However, this scheme is susceptible to convergent edits in
unrelated cells, i.e. homoplasy. In the limit of complete editing, every editable A would be
converted to a G in all cells, and no lineage information could be recovered.

To circumvent this issue, we used a modified design which takes advantage of the ability of the
ABE to stochastically edit target sequences into one of multiple stable outcomes?*. In our case,
AA dinucleotide sequences in the target window are converted to any of three edited end-point
states (GA, AG, or GG) (Figure 1b). Critically, because the GA and AG states each disrupt
binding to the base editor gRNA, they are not expected to undergo further editing to GG. This
dinucleotide editing scheme in principle reduces the likelihood of convergent editing, and
prevents the effective “erasure” of recorded information at long times.
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Based on this principle, we designed a library of barcoded, editable target arrays that could be
integrated into the genome (Figure 1c¢). Each target array contained 6 tandem editable target
sites, with unique protospacer sequences outside of the AA dinucleotide, so that each of the 6
target sites required a distinct gRNA sequence for editing (Figure 1c¢). The arrays were flanked
with piggyBac inverted terminal repeats, to enable high-copy-number genomic integration. To
distinguish different integrations from one another, we also incorporated two static (non-
editable) random barcodes: first, a 10bp barcode (10° variants), for compact readout by
sequencing; second, a pair of static 80bp image-readable barcode sequences, each of which
could take on one of 200 possible sequences, for a total diversity of 2002 = ~10* unique
barcodes (see Methods for construction of plasmid libraries). Finally, to enable imaging-based
“Zombie” readout of edits, the arrays incorporated a T7 promoter upstream of the editable array
(Figure 1¢)=.

To mutate targets at a tunable rate, and create the potential for signal recording, we built
constructs that allow inducible expression of the ABE and gRNAs. ABE expression was placed
under doxycycline (dox) control using the Tet-ON system, by stably integrating the reverse
tetracycline-controlled transactivator (tTA) (Methods)?*. gRNAs were also made Wnt-
inducible by expressing them from the 3’ UTR of an mTurquoise reporter gene under the control
of a Wnt-responsive element?"? (WRE). This promoter is active only in the presence of Wnt
signaling ligands, and can be driven by the small molecule GSK-3 inhibitor CHIR99021
(CHIR)?"?8, To generate fully functional gRNAs after expression, we flanked each gRNA with
previously described ribozyme sequences?’. After stable co-integration in mESCs using
piggyBac transposition, we identified a clone, termed baseMEM-01, which contained 66
genomically-dispersed array copies with diverse static barcodes (Figure 1d, Supplemental
Figure 1). This cell line, which allowed recording in live cells with imaging-based readout of
barcode base edits, static barcode sequences, and endogenous gene expression using multiple
rounds of hybridization and imaging®* (Figure 1e), was used for all subsequent experiments.

Induction drives editing into diverse mutational states

Since lineage recording depends on edits being accumulated on the timescale of cell division,
we next sought to analyze inducible base editing using the system. We exposed baseMEM-01
mESC cultures to the inducers CHIR, doxycycline, or both, over an 8-day period, a timescale
long enough to allow multiple stem cell generations and, in an embryonic context, approach
gastrulation. We collected samples at multiple time-points (Figure 2a). We then analyzed the
editable barcodes by next generation sequencing.

Edits accumulated at all 6 target sites (Figure 2b). Without induction and in the absence of dox,
some editing was observed. However, the fraction of such background edited sites generally
remained constant during the time course, consistent with transient background editing during
cell line construction, but minimal basal editing in stable clones. By contrast, in the presence of
both CHIR and dox, edits accumulated rapidly at a rate that was well-fit by a model of editing
with distinct edit rates at each site (Figure 2b, solid lines). Interestingly, in the presence of dox
alone, editing still occurred, albeit at an attenuated rate. This non-zero edit rate could be due to
basal transcriptional activity of the WRE promoter or to activation of gRNA expression by low
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levels of endogenous Wnt signaling in the mESCs. However, these results showed that
doxycycline, with or without CHIR, could provide tight control of edit rate, making the line
sufficient for lineage recording.

Next, we analyzed the distribution of edit outcomes at each site. Different sites exhibited distinct
ratios of edit outcomes (Figure 2c¢). For example, site 6 exhibited a strong bias towards GA, and
relatively little editing to AG. By contrast, sites 1 and 4 were more uniform in their outcomes.
These differences in outcome bias across target sites are likely driven by differences in the
sequences surrounding the dinucleotide for each target, which is known to impact CRISPR-
Cas9 cleavage? and base editing?*. Regardless of how edits were biased, however, all target
sites exhibited constant biases over time, consistent with the notion that bias is an intrinsic
feature of the sequence context (Figure 2¢). Most importantly, this consistency indicates that
the GA and AG edit outcomes are stable for at least 8 days and do not become further edited to
GG over the timescales of these experiments. These results thus validate the design goal of
using inducible base editors to produce multiple distinct, individually stable states.

Imaging recovers edited barcode sequences

We next turned from editing to imaging readout. In situ barcode readout creates the opportunity
to assay lineage relationships without disrupting spatial relationships among cells. We
developed an assay to readout barcode sequences through multiple rounds of single molecule
RNA FISH (smFISH). We cultured BaseMEM-01 cells for 3 days — long enough for several cell
generations — under editing conditions (3 yM CHIR, 1 ug/mL dox). We then fixed cells and
performed in situ T7 transcription of barcodes using the previously described “Zombie”
approach? (Figure 3a, upper and lower left panels). Next, we hybridized pools of 24 primary
probes designed to bind to one of the 4 possible dinucleotide states in each of the 6 target sites
(Figure 3a,b). During hybridization, we also included 3 primary probes for each of the 400
different 80bp potential static barcode sequences, for a total of 1200 probes altogether (Figures
1c, 3a,b). We also included additional primary probe sets to analyze 12 different endogenous
mRNAs, known to distinguish mESC pluripotency states in serum-LIF media®?® (Figures 3a,c)
(Methods).

After hybridizing all primary probes, we sequentially added sets of fluorescently-labeled
secondary probes, designed to hybridize to corresponding “overhang” sequences engineered in
the primary probes (Figure 3a, lower panels). For each set of secondary probes, we imaged
cells in all channels, and then stripped secondary probes to enable the next round of secondary
hybridization and imaging. We used two orthogonal fluorescent channels to halve the number of
rounds of hybridization required (Methods). We also labeled membranes with dye-conjugated
wheat germ agglutinin to enable cell segmentation. All imaging was performed on a wide-field
fluorescence microscope equipped with an automated fluid handling system similar to those
described previously?™. This procedure, similar to that used for seqFISH and related
approaches?#21-2330-33 gllowed us to systematically probe dynamic barcodes, static barcodes,
and endogenous genes over a total of 50 rounds of hybridization and imaging.
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In the resulting image sets, individual target arrays could be identified as bright spots across
multiple rounds of imaging. Most dynamic barcodes and static barcodes could be uniquely
identified by a pseudocolor or set of pseudocolors (rows in image grids, Figure 3b). We
developed a computational pipeline to detect target array spots and classify the barcode states
within each target array (Supplementary Figure 2). Across 8 mESC colonies, we were able to
detect roughly 50-80% of the 66 uniquely integrated target arrays in any given cell (Figure 3d).
One colony had many fewer arrays detected than the others and was excluded from
subsequent lineage analysis. The fractional detection of each unique barcode integration among
all cells was broad but unimodally distributed, consistent with noisy detection efficiency in the
absence of strong systematic differences among integration sites (Figure 3e). Overall, after
applying quality controls, we detect roughly 200 high confidence dynamic characters, i.e.
editable dinucleotides, per cell (Figure 3f). Of most direct relevance for lineage reconstruction,
with these detection statistics, ~100 shared characters could be confidently recovered in both
members of any cell pair.

Simulations show that baseMEMOIR can accurately reconstruct detailed lineage trees

We next asked how the depth of tree reconstruction depends on the distribution of shared
characters between cell pairs, as well as other parameters, such as the rate and uniformity of
cell divisions, the rate of editing, and the duration of recording. To address these questions, we
simulated barcode recording and recovery. During the recording phase, we simulated editing
within a single initial cell and its progeny for up to 12 cell generations (Figure 4a, left), setting
barcode edit rates based on our time course editing dataset (Figure 2b,c). To simulate
incomplete recovery of edit patterns, we stochastically subsampled the resulting barcode
sequences corresponding to the observed empirical recovery distribution after hybridization and
imaging (Figure 3f). As a result, different cell pairs shared different fractions of recovered
barcodes (Figure 4a, middle right). Finally, we explored a filtering strategy to improve
reconstruction accuracy (at the cost of reduced numbers of cells per tree) by restricting analysis
to cell pairs with a minimum number of shared recovered barcodes (Figure 4a, right).

Next, we reconstructed lineage trees and compared them to the ground truth trees from the
forward simulations (Figure 4b). As a metric of reconstruction accuracy, we used the
normalized Robinson-Foulds distance, which quantifies the fraction of unmatched branches
between the ground truth and reconstructed trees. For reconstruction, we adapted the Bayesian
BEAST2 phylogenetic reconstruction framework, by incorporating a custom base editing
model** (Methods). BEAST2 uses Markov Chain Monte Carlo (MCMC) sampling to estimate
the posterior probability distribution over different tree topologies and other system parameters.
Briefly, it samples a forest of possible trees in proportion to their probability density (Figure 4b).
As a Bayesian method, it allows for model-based inference, explicitly incorporates prior
knowledge, and quantifies uncertainty in reconstruction.

In the ideal case of full recovery of all barcode edits in all cells, we obtained near perfect
recovery of full lineage relationships for trees up to 12 cell divisions deep (Figure 4c). When
~50% of barcodes were lost, error rates for the same 12 generation tree increased to ~10%.
However, this error rate could be reduced by restricting analysis to cells sharing at least 75
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jointly measured barcode positions (Figure 4c¢). In contrast to the simulations, the experimental
system could introduce additional factors such as errors in barcode readout, variability in mean
edit rates between cells, and pre-existing edits in the ancestral (root) cell. Nevertheless, these
simulations suggest that baseMEMOIR, with empirically observed error and edit rates, should
be capable of reconstructing multi-generation lineage trees with cell cycle resolution at ~90%
accuracy.

BaseMEMOIR reconstructs lineage trees in mESC colonies

mMESCs are known to undergo spontaneous reversible transitions among a set of molecularly
and functionally distinct cell states, ranging from 2C-like to formative and primed epiblast-like
states, in serum-LIF conditions?2%3%-40, A fundamental question about the mESC state-switching
process is the structure of the transition graph, i.e. which transitions occur and at what rates,
and how those rates are influenced by input signals. In particular, CHIR, a Wnt pathway agonist
that is often used to maintain pluripotent cells, could impact the observed cell states and their
transitions. Although CHIR is known to promote expression of key pluripotency genes and self-
renewal in this system3¢-374147 the effects of CHIR on single cell state transition dynamics
remain unknown.

To study these dynamics, we grew mESC colonies over a 3-day period in the presence of CHIR
and Dox, which also serve to induce editing (Figure 5a). After 3 days, we imaged the colonies
as described above and recovered barcode states for 7 colonies out of 8 total measured
(Figure 3d). In addition to reading out barcode states, we also recovered gene expression
levels for 12 pluripotency state markers, then clustered to identify 5 gene expression states
(Figure 5b,c and Supplemental Figure 4). We identified 3 major cell states comprising: 2C-
like cells with high expression of Zscan4C; naive cells expressing transcription factors Nanog,
Esrrb, and Zfp42; and formative cells that express Otx2 and Dnmt3b in the absence of naive
pluripotency factors and Zscan4C (Figure 5b). Naive cells exhibited a distribution of gene
expression levels that varied from more 2C-like to more formative (Figure 5b,c and
Supplemental Figure 4).These states largely correspond to those described in previous
work?2°40 although we observed high and relatively homogeneous Tbx3 expression across all
cell states, in contrast to observations of cells grown in serum/LIF without CHIR?2?°. This
difference is consistent with previous work showing that Tbx3 is significantly regulated by CHIR
in the observed direction*.

We next applied the BEAST2 system described above to reconstruct lineage trees for cells in
these colonies. To incorporate information of cell state and spatial position, we extended the
underlying editing model (Figure 4) to represent these additional cellular properties, and
thereby allowed simultaneous inference of cell state transitions and spatial movement alongside
cell lineage (Methods). Applied to the mESC colonies, this approach reconstructed lineage
relationships and division times with relatively low uncertainty in most cases, as indicated by the
limited “fuzziness” of the reconstructed trees (Fig. 5d and Supplemental Figure 5). However,
there were some ambiguities in reconstruction. For example, in Figure 5D, cell 23 is roughly
equally likely to be a sister of cell 22 or cell 24. This illustrates the way in which uncertainties in
the Bayesian reconstruction still provide specific alternative hypotheses rather than numerical
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confidence values. Additionally, in some cases, we did not capture all neighboring cells, which
may introduce branch lengths longer than a single cell division (for example, see clades A and B
of colony 7, Supplemental Figure 5). Together, these results demonstrate that the recording
system allows precise lineage reconstruction of 3-day clonal mouse ESC colonies, with tree
sizes of 30-50 cells.

The reconstructions also allowed estimation of cell state transition dynamics. To constrain the
transition model, we treated transitions as a reversible, symmetric, continuous time Markov
process (see Methods for discussion of these assumptions). Of the 10 possible symmetric
interactions, posterior estimates suggested that ~5 occurred at appreciable rates during the
growth of these colonies (Figure 5f,g). A sixth transition, between 2C-like and formative states,
was suggested by a single event in colony 7 (Supplemental Figure 5). This event is
unexpected given previous inference of chainlike dynamics, with these two states at opposite
ends?®, however it could be a result of CHIR exposure, which was not present in previous work.
Further, a substantial amount of posterior probability indicates a negligible rate for this
transition; more data would be needed to clarify this result (Figure 5f, Supplemental Figure 5).
Overall, these reconstructions suggest frequent (median of 0.15 transitions per day across all
colonies) transitions among Naive/2C-like, Naive, and Naive/Formative states, and frequent
conversion between Naive/2C-like and 2C-like states (Supplemental Figure 5). Interestingly,
the inferred transitions correlate with expectations based on transcriptional similarity among
states, even though this information was not provided to the model (Figure 5b,c and
Supplemental Figure 4).

BaseMEMOIR recovers lineage relationships, cell states, and spatial relationships in
mESC colonies

By mapping lineage trees back onto the original images, we were able to simultaneously
observe spatial and lineage organization of colonies (Figure 5d, lower panels). This analysis
revealed correlations between lineage history, spatial position, and cell fate. For example, in
Figure 5d, the related D and E clades contain Naive and Naive/Formative cells, and were
located towards the interior of the colony, while cells in clades A,B, and C were largely in the
Formative state and located around the periphery. Individual cell morphologies also varied
systematically, with cells in the periphery exhibiting larger sizes. Other colonies were less
radially structured, but still showed strong correlations between spatial positions and lineage
relationships within each colony (Figure 5e, Supplemental Figure 5). These results show that
it is possible to impose lineage relationships on spatial colonies with cell state information.

Lineage motifs provide a complementary approach to analyzing cell state transitions*. They are
defined as statistically over-represented patterns of cell fates on lineage trees, which reflect
features of underlying stochastic cell fate control programs*. As a simple example, asymmetric
division, in which sister cells acquire opposite fates, would be reflected in the enrichment of
opposite fates among sibling pairs (“doublets”). In contrast to the inference of transition rates
described above, lineage motifs can be identified with no assumptions about an underlying
model. Applying Lineage Motif Analysis*® (LMA) to 1000 samples from the Bayesian posterior
tree distribution, we identified 4 overrepresented doublet pairs with an adjusted p-value less
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than 0.05 for a majority of the posterior samples (Figure 5h). These cases involve siblings in
the same state, consistent with infrequent state transitions. Siblings in the formative state were
the most overrepresented, mirroring results from the Bayesian Markov model, which predicts
the slowest transitions to and from the formative state (Figure 5f,h).

We also observe two statistically underrepresented heterogeneous sibling pairs (Figure 5h).
The most underrepresented pair, containing naive and formative cells, was also qualitatively
consistent with predictions of the Bayesian Markov model, which identified a negligible transition
rate between these states. Additionally, the naive and naive/formative sibling pair was also
significantly underrepresented. This corresponds to the most rapid inferred transition rate in the
dataset (Figure 5f), consistent with high rates of independent transitions out of either the naive
or formative states. Together, these results demonstrate how baseMEMOIR’s lineage
reconstruction ability allows inference of lineage motifs.

Finally, we combined the lineage reconstruction with spatial and cell state dynamics to infer a
property that would be difficult to analyze from sequencing-based readout or static snapshots
alone: the relative spatial mobilities of different cell states. The inferred histories of cell state and
spatial position can be visualized (Supplemental Movies). These movies represent one
possible history based on a simple model of cell diffusion, taking the highest credibility inference
from BEAST2. Together, these results show how spatial position, cell state, and lineage can be
analyzed and reconstructed together, and used to infer features of cell histories.

Discussion

A long-standing dream in biology is to image a tissue or organism and visualize not only its
current state, but also its past history. Previous work has approached this ideal in different
ways, including lineage recording by accumulation of irreversible recombination events and
reconstruction of small trees, however these efforts were limited in the amount and scalability of
memory storage?'-23. Here, we introduce a new approach, baseMEMOIR, which provides much
larger memory sizes and allows for deeper, more accurate lineage tree reconstruction, while
preserving spatial structure.

To achieve this, baseMEMOIR introduces several key innovations. First, it uses base editors to
introduce stochastic, but precise, edits at dense target arrays (Figure 1c). Second, it uses
dinucleotide editable target sites, each of which can be edited to any of three permanent end
states (Figures 1b, 2¢). Third, to discriminate between those states we expanded the Zombie
readout system? to allow 4-way probe competition (Figure 3a,b). Fourth, baseMEMOIR
massively expands the amount of memory accessible in single cells by incorporating 66 unique
statically barcoded target arrays, collectively providing 792 bits of editable information in the
baseMEM-01 cell line. Theoretically, this number could be readily increased with additional
target array integrations without modifying other components of the system. Fifth, baseMEMOIR
achieves high density recording, while maintaining compatibility with FISH-based readout of
endogenous genes (Figure 3c). Finally, to address the challenge of lineage reconstruction from
stochastic edits, we adapted the BEAST2 framework for Bayesian tree inference, both by
adding a new mutation model and taking advantage of its phylogeographical and discrete trait
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models3*4° (Methods). We anticipate that this probabilistic framework should be applicable for a
broad variety of lineage recording methods.

To demonstrate these capabilities, we applied baseMEMOIR to stem cells undergoing
interconversion among transcriptional states?2%35-3847_ This allowed us to reconstruct lineage
trees for 7 colonies totaling 197 cells, with as many as 4-7 cell generations per colony (Figures
5d, Supplemental Figure 5). Further, we were able to infer transition rates for specific pairs of
states. These rates were consistent with a role for Wnt (through CHIR) in influencing state
dynamics relative to similar cultures in the absence of Wnt?2°47 (Figure 5f,g). Future work could
use baseMEMOIR to systematically compare the effects of different signals and perturbations
on cell state dynamics. While probabilistic inference is not equivalent to direct time-lapse
observation, it nevertheless is beginning to yield related insights that would ordinarily be
concealed from any static endpoint measurements (Supplemental Movies). Extrapolating from
the capabilities of this system to future implementations, such as those containing either more
memory or linking signaling pathway activity to recording machinery'®2', it should become
possible to infer increasingly detailed views of earlier dynamic events in complex multicellular
settings, effectively “decorating” lineage trees with events, such as changes in cell state or
even movements in space. BaseMEMOIR should also allow one to infer state-switching
dynamics and developmental programs using approaches such as Kin Correlation Analysis and
Lineage Motif Analysis that exploit lineage tree information?°48,

While powerful, baseMEMOIR has some limitations. Because it does not directly probe the
states of cells at earlier time points, it cannot directly detect earlier states that do not appear in
the endpoint measurement. Analyzing systems at multiple timepoints could help to avoid
missing transient states. Additionally, cells that die or migrate away prior to measurement will be
omitted from the tree and could confound estimates of variation in cell cycle durations in
different lineages. Similarly, failure to recover sufficient barcodes from an individual cell could
make it difficult to classify. This issue may be addressed by further technical improvement to
barcode imaging.

baseMEM-01 can immediately be used to explore stem cell differentiation and early mouse
embryogenesis, among other phenomena. Looking ahead, baseMEMOIR should be readily
adaptable to diverse developmental and physiological processes. The constructs and system
can be transplanted to additional cell types using standard methods, and potentially combined
with readout of additional “multi-omics” information such as chromatin accessibility?>. One can
therefore anticipate augmenting spatial cell atlases with lineage information?, and using
baseMEMOIR to investigate the role of lineage, signaling, and differentiation in disease
progression.
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Methods
Dynamic barcoding strategy.

Dynamic barcode sequences consist of 20bp CRISPR target sites with 3bp downstream NGG
PAM sequences. These were chosen by designing sequences with AA nucleotides at the
location predicted to be edited by the ABE (positions 5-6 in the protospacer sequence)®, then
screening them for significant, varied editing of the AA sites. 6 unique target sites are arrayed
sequentially downstream of a T7 promoter sequence to enable imaging-based readout as
described below (Figure 1c).

Static barcoding strategy.

Static barcodes consist of two variable 80bp sequences downstream of the 6 dynamic barcode
targets (Figure 1c¢). A pooled plasmid library was formed by generating constructs with 200
variants at each of the two 80bp regions, for a total of 40,000 unique sequences (Supplemental
Data). Each sequence contains three unique primary probe binding sites for signal amplification
during FISH readout (Supplemental Data).

Plasmid construction.

Plasmids were constructed in piggyBac backbones for later transposase mediated integration
into the genome. The inducible ABE plasmid was made by integrating a tet-responsive promoter
(TRE3G, Takara Bio) and ABE 7.10%° (Addgene #102919) into a piggyBac plasmid®' with
neomycin resistance. The Tet-On 3G protein gene used to activate the ABE in a doxycycline
dependent fashion was supplied as a piggyBac plasmid with a pEF promoter and puromycin
resistance.

The dynamic and static barcode arrays were constructed in a piggyBac vector containing
hygromycin resistance and double T7-T3 promoter sites followed by the dynamic barcode array,
which was synthesized by Integrated DNA Technologies (IDT). The static barcode was then
integrated 3’ of the dynamic barcode array. The static barcode was composed of two sites of 80
bp each, with 200 possible sequences for each of the two sites to give an overall possible
barcode diversity of up to 40,000 unique sequences. The static barcode sequences were
synthesized by Twist Bioscience and amplified with the appropriate cloning ends by PCR. The
5’ primer for the first static barcode site had a set of 10 random nucleotides to provide a further
NGS-readable ID to each barcode. A mix of Gibson and sticky end cloning were used for
plasmid construction.

The plasmid library containing static barcodes was generated by transforming high-efficiency
competent cells (NEB C3019), then plating them onto a large surface area of LB-agar (~30 10-
cm petri dishes) to generate a large number of colonies. These were scraped and pooled into a
single liquid culture. Subsequently, plasmid DNA was collected using multiple DNA Miniprep
columns (Qiagen 27104) and pooled.


https://paperpile.com/c/KleEPH/wenxd
https://paperpile.com/c/KleEPH/wenxd
https://paperpile.com/c/KleEPH/dEVve
https://doi.org/10.1101/2024.01.03.573434
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.03.573434; this version posted January 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

An array of six gRNAs targeting the six sites of the dynamic barcode were integrated in the 3’
UTR of an NLS-mTurquoise gene. Each gRNA sequence was flanked by the hammerhead and
HDV ribozyme sequences on upstream and downstream sides, respectively, in order to excise
the gRNA from the transcript. These gRNA-ribozyme sequences were each synthesized as
gBlocks by IDT and combined by assembly of unique sticky end junctions into the piggyBac
plasmid. A Wnt-responsive promoter was integrated to drive expression of the mTurquoise-
gRNAs construct. This plasmid included blasticidin resistance for subsequent mammalian
selection.

Primary probe library construction. Primary probes for dynamic barcode readout were
purchased from IDT as individual sequences. The primary probe library, containing 1200 probes
targeting all static barcode variants across both regions (3 probes per variant, 200 variants per
region, 2 regions), was ordered as an oligoarray pool from Twist Bioscience. Each probe was
assembled with a 35-nucleotide sequence complementary to the static barcode sequence, five
15-nucleotide readout sequences uniquely labeling each variant separated by a 2-nucleotide
spacer, and two flanking primer sequences to allow for PCR amplification of the probe library
(structure 5’-(primer 1)-(readout 1)-(readout 2)-(probe)-(readout 3)-(readout 4)-(readout 5)-
(primer 2)-3’). The probe library was amplified following an established protocol?.

Endogenous marker genes were selected based on previous work.?2?° Probes for non-barcoded
sequential smFISH of gene markers were a kind gift from Long Cai, generated as described
previously?, using a single readout sequence repeated four times in place of a unique barcode
(structure 5’-(primer 1)-(readout 1)-(readout 1)-(probe)-(readout 1)-(readout 1)-(primer 2)-3’).

Readout probe synthesis. Fluorescently conjugated secondary readout probes 15-nt in length
were designed as in previous work?33. Probe sequences were ordered conjugated to AlexaFluor
546 or 647 from IDT as indicated (Supplemental Data).

Coverslip functionalization. 24 x 60 mm coverslips were functionalized prior to cell culture.
Coverslips were first rinsed in 100% ethanol, then dried and functionalized using a plasma
cleaner on the high setting for 5 minutes. Coverslips were subsequently immersed in 1% bind-
silane (GE, 17-1330-13) solution (1% bind silane, 10 mM acetic acid in 90% ethanol) for 1 hr at
room temperature. Coverslips were rinsed in 100% ethanol then heat dried in an oven at 90 C
for 30 minutes before being treated with 100 ug/mL Poly-D-Lysine in water overnight. The
following day, slides were rinsed with nuclease free water and air dried. Slides were stored for
up to 2 weeks at 4 C prior to use.

Just before cell attachment, coverslips were treated with UV in a biosafety cabinet for 5 minutes,
then the surface was treated with 10 ug/mL laminin (Biolaminin 511 LN, Biolamina) at 37 C for
90 minutes. Laminin was removed, then cell suspension was added directly to the surface for
attachment.

Cell culture. E14 mES cells (ATCC cat. No. CRL-1821) were cultured in medium containing
GMEM (Sigma), 15% ES cell qualified FBS (Gibco), 1x MEM non-essential amino acids
(Thermo Fisher Scientific), 1 mM sodium pyruvate (Thermo Fisher Scientific), 100 uM B-
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mercaptoethanol (Thermo Fisher Scientific), 1x penicillin-streptomycin-L-glutamine (Thermo
Fisher Scientific) and 1000 U/mL leukemia inhibitory factor (Millipore). For cell engineering and
standard culture, cells were maintained on polystyrene (Falcon) plates coated with 0.1% gelatin
(Sigma) at 37 C and 5% CO2.

Cell line engineering. Sequences of all integrated constructs are reported as Supplementary
Data. BaseMEMOIR components were integrated over several rounds of transfection and
selection. For all transfection steps, mESCs were cultured in 24 well plates, then cotransfected
with the plasmid(s) to be integrated as well as piggyBac transposase plasmid with HD FUGENE
transfection reagent. First, cells were cotransfected with ABE and Tet3G activator plasmids. The
cells were allowed to recover for a day, passaged, and then underwent selection with 400
ug/mL neomycin followed by 500 ug/mL geneticin. Cells were plated sparsely in a 10 cm dish to
grow monoclonal colonies, and then the monoclones were selected and grown in 96 well plates.
Clones were screened for ABE expression after dox induction by gPCR, then subsequently by
FISH to identify clones with homogenous expression among single cells.

Barcode target plasmids were integrated into the parental line containing inducible ABE by a
second round of transfection, then selected with 100 ng/mL hygromycin as previously
described. Monoclonal colonies were selected as previously, then screened by gPCR for high
relative copy number. Zombie-FISH (described below) was used to screen promising
candidates and select the clone with the highest visible integration number.

Finally, gRNAs and additional ABE plasmid were integrated into the most promising line from
the previous step. Cells were selected with 15 ng/mL blasticidin, then monoclonal lines were
generated as described above. Clones with a clear mTurquoise expression upon addition of 3
MM CHIR, which indicated expression of the gRNA construct, were kept for further analysis.

The best clones were tested for array targeting by adding 1 ug/mL doxycycline and 3 yM CHIR
for multiple days followed by Sanger sequencing. Editing resulted in mixed peaks at the edited
bases. One of the clones (baseMEM-01) was identified to have the most editing via this
approach and was used for all subsequent experiments.

Next generation sequencing. Genomic DNA was extracted from cells using the DNeasy Blood
and Tissue Kit (Qiagen) according to manufacturer instructions. Amplicon libraries containing
the dynamic barcode sequences and short NGS static barcodes were generated with a two-step
PCR protocol to add lllumina adapters and Nextera i5 and i7 combinatorial indices. Indexed
amplicons were pooled and sequenced on the Illlumina MiSeq platform with a 600-cycle, v3
reagent kit (lllumina, MS-102-3003). Raw FASTQ files were aligned to a FASTA-format
reference file containing the expected amplicon sequences. Alignment was performed using the
Burrows-Wheeler alignment tool (bwa-mem?®?). Subsequent analysis and data visualization was
performed in the R statistical computing platform, v 4.1.1° (Supplemental Data).

Edit accumulation model. Edit accumulation at each target site was modeled by fitting
Equation 1:
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=— (f_p) [(1—p)ttd —1] (Equation 1)
Here, edit accumulation, E, is a function of time, t, with parameters p, the probability of editing
per unit time, and d, the duration of time during which edits accumulated prior to the zero time
point, which accounts for empirically observed background edits (Figure 2b). This relation can
be derived by assuming a probability p of a target site being editing per unit time t in a long
string of target sites. After a unit of time t, we expect to see p edited targets and (1 — p)
unedited targets. By the same logic, after another time step we expect p + p(1 — p) edited
targets and (1 — p)? unedited targets. After T time steps we would expect to see

T-1

pZ(l—p)t

edited targets. Taking the limit of a discrete time step dt approaching zero, this sum can be
approximated by the integral

T
N\t
pfo(l ptdt

which simplifies to Equation 1.

Parameters were fit to editing time course data (Figure 2) to determine the empirical edit
accumulation rate for each target using the “nls” function from the “stats” package®® in R
(Supplemental Data).

Stochastic simulations. Barcode editing was simulated in R using the Gillespie method®
(Supplemental Data). Separate propensities were estimated for each editing outcome and
target site by multiplying the edit accumulation parameter p (Equation 1) for each target site by
the observed mean outcome proportion at each target site across time (Figure 2c). This
stochastic simulation method recapitulates both the edit accumulation model fit and the
empirical target state outcome distribution (Supplemental Figure 3).

Cell division was modeled by allowing editing until a predetermined cell division time, after
which barcodes were duplicated before allowing editing to continue. Cell division waiting times
were drawn from a distribution derived from Eyring-Stover survival theory that has been shown
to model cell division times more accurately than the exponential distribution®.

Lineage relationships were reconstructed based on the resulting barcodes using BEAST2
software as described below, considering only barcode data (see BEAST2 XML files for
complete modeling information, available at https://doi.org/10.22002/327t7-ke088).
Reconstructed trees were compared to simulated ground truth trees by computing the
normalized Robinson-Foulds distance as implemented in the “RF.dist” function from the R
package “phangorn”®.
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Zombie preparation. For Zombie and subsequent RNA-FISH, cells were plated on treated
coverslips as described above. After culture and editing, coverslips were washed with 1 mL PBS
with calcium and magnesium (PBS +/+) then fixed with a 1:1 solution of Methanol : Acetic Acid
(MAA) for 20 minutes. RNase-free reagents were used for all subsequent steps to minimize
RNA degradation. MAA was removed, then coverslips were transferred to a 100 mm petri dish
and covered with 70% ethanol. Petri dishes were parafilmed and stored at -20 C to await
imaging.

Immediately prior to imaging, coverslips were removed from cold storage and brought to room
temperature. 70% ethanol was removed and replaced with a fresh solution of MAA, then
incubated for 2 hrs at room temperature. The sample was washed twice with PBS +/+,
incubating for 2-3 min between each wash. The final wash solution was removed and the
sample was dried until all liquid had just evaporated. A custom fluidic cell, built to interface with
a custom designed liquid handling system, was affixed to the coverslip surface?™*. Subsequent
washes took place within the flow cell, manually adding reagents into the inlet of the cell and
removing them from the outlet using a standard micropipette. The cells were washed with
nuclease free water once, then replaced with T7 RNAP mix (New England Biolabs E2040S).
The sample was incubated at 37 C overnight in a humidified tupperware.

The following morning, the T7 RNAP mix was removed and replaced with fresh T7 RNAP mix,
then incubated for 1 hr at 37 C in the humidified tupperware. The mix was removed, then the
sample was immediately fixed with 4% paraformaldehyde for 10 min. This solution was removed
and the sample was washed three times with PBS +/+, then washed with 30% formamide probe
wash buffer (30% formamide in 5x SSC with 9 mM citric acid, 0.1% Tween-20, and 50 pg/mL
heparin, pH 6.0) for an additional 5 min. The wash buffer was replaced with primary probe
hybridization mix, then incubated overnight at 37 C.

FISH imaging. Images were collected across multiple rounds of fluorescence hybridization to
identify barcode and cell states. Formamide wash buffers and secondary probe hybridization
mixes were generated immediately prior to imaging. A custom-built, automated liquid handling
system was used to perform sequential rounds of in situ hybridization as previously described?
4, Briefly, the sample was connected to an automated fluidics system attached to a widefield
fluorescence Nikon Eclipse Ti microscope. The custom-made automated fluid sampler was
used to transfer readout probes in hybridization buffer from a 2.0 mL 96 well plate through a
fluidic valve (IDEX Health & Science EZ1213-820-4) to the custom-made flow cell using a
syringe pump (Hamilton Company 63133-01). Fluidics and imaging were integrated using a
custom script controlling uManager. Eleven fields of view (FOVs), capturing 8 well separated
regions of cell growth, were selected based on the DAPI signal. For each FOV, images were
acquired with 0.5-micron z steps for twenty total slices. Integration of the automated fluidics
system and imaging was controlled by a custom script written in uManager®’.

First, twelve hybridization rounds were imaged to capture all dynamic barcode states. The
hybridization buffer for each round included two unique 15-nucleotide readout probes
(Supplemental Data) conjugated to either Alexa Fluor 647 (50 nM) or Alexa Fluor 546 (50 nM)
in EC buffer (10% ethylene carbonate, 10% low molecular weight dextran sulfate, 4x SSC).
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Probes were allowed to hybridize for 15 minutes. Excess probes were washed away with 10%
wash buffer (10% formamide, 0.1% Triton X-100 in 2x SSC) incubating for 1 minute. Nuclei
were re-stained with DAPI solution (5 ug/mL DAPI in 4xSSC) incubating for 2 minutes. The
sample was washed with 4x SSC then imaged in antibleaching buffer (50 mM Tris-HCI pH 8.0,
300 mM NaCl, 2xSSC, 3 mM trolox, 0.8% D-glucose, 1000-fold diluted catalase, 0.5 mg/mL
glucose oxidase). After imaging, readout probes were stripped off using 35% wash buffer (35%
formamide, 0.1% Triton X-100 in 2x SSC). Although 55% formamide is typical for stripping
readout probes, we used a lower amount to avoid stripping primary probes and losing signal, as
our primary probes are shorter than normal for dynamic barcode rounds (only 20-nucleotides
compared to 28). Images were collected after probe stripping to verify loss of signal. Due to
occasional technical issues such as loss of focus during automated imaging, these twelve
rounds were repeated a second time to collect backup images for each dynamic barcode round.

Static barcode sequences were captured by a similar scheme over twenty additional rounds of
hybridization (see Supplemental Data for probe sequences), except using 55% formamide
wash buffer to strip the readout probes. An additional six rounds of hybridization were used to
capture the twelve gene markers described above. A final round of hybridization with wheat
germ agglutinin (WGA) conjugated to Alexa Fluor 647 was used to stain cell membranes for
downstream segmentation.

Image processing. Images were processed using custom Matlab scripts (Supplemental Data).
DAPI signal was measured in each round of imaging and used to register images across each
hybridization round. After registration, z-stacks were projected by their maximum intensity to
yield one image per channel per hybridization round for each colony.

Transcribed barcodes form dots of variable intensity around the active site of T7 transcription.
Dots were segmented using a combination of Laplacian of Gaussian filtering and watershed,
requiring a maximum eccentricity of 0.8 to reduce noise. Loose parameters were chosen to
detect all real dots at the expense of accepting some background noise. Binary images for each
hybridization/channel were summed together to create a single mask, where pixel values
represent the number of times a pixel was identified across all imaging rounds, termed “analog
mask”.

Since each real dot should appear across all hybridization rounds in at least one channel, we
further reduced noise by thresholding this image. We determined a threshold for each colony
individually based on the elbow method. Frequently, we observed segmentation errors where
the watershed algorithm was unable to separate adjacent dots from one another. We manually
corrected these errors based on the analog mask, yielding a final binary segmentation mask of
all detected barcode dots for each field of view.

We further generated DAPI segmentation masks using llastik to isolate individual cell nuclei®.
Masks were manually corrected using ImagedJ to separate nuclei that were segmented together.
Cells that intersected the border of the image were excluded. Any Zombie dots identified outside
of cell nuclei were filtered. Dots may not be completely captured by the binary mask within any
given round of imaging. A K-nearest neighbors classifier was used to partition all pixels
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belonging to each cell to the nearest dot in the segmentation mask so that intensity values could
be extracted.

Raw images were background subtracted to improve signal to noise. First, a tophat filter was
used to globally reduce background. To further correct for variable intensity across images, local
background correction was applied on a cell-by-cell basis by subtracting the median pixel
intensity, excluding dilated segmented Zombie dots.

We extracted several features for each dot across all channels and hybridization rounds based

on the background-subtracted raw images (total intensity; median intensity; 90" percentile pixel
intensity; pixel count; background median intensity; and intensity variance), taking the log + 1 of
all intensity values.

We used a supervised machine learning approach to classify barcode states across each
hybridization round. The barcode state is reflected in higher intensity fluorescence of probes
that outcompete other possible binders (Figure 3). We manually classified approximately 1000
randomly sampled barcode spots for each image based on their pseudocolor intensities, then
used this sample to train a support vector machine (SVM) classifier in Matlab (Supplemental
Data). Some spots were ambiguous; these were omitted in manual classification. 10-fold cross
validation was used to evaluate model generalization and control for overfitting (Supplemental
Figure 2).

For dynamic barcode sites, we estimated the posterior probability for each spot belonging to
each class under the SVM model. Many barcodes could be classified with high accuracy (>70%
posterior probability, Figure 3f and Supplemental Figure 2b). For static barcode sites, class
assignments were compared to the white list of possible barcode sequences. We filtered out
Zombie spots with a character distance greater than 2 from an expected sequence and those
which did not unambiguously correspond to a white listed static barcode, leaving 79.3% of all
detected spots after filtering.

In many cases, duplicated barcodes were observed, where the same static barcode was
identified multiple times in a single cell. These duplicates tended to be spatially localized and
may be explained by either DNA replication or over-segmentation errors during analysis. For
duplicated barcodes, classification probabilities were averaged at dynamic barcode sites and
the most confident state was used for downstream lineage reconstruction.

Membrane masks were manually generated based on WGA staining images, then gene
markers were identified using the bigFISH package dot detection method.*® Thresholds for dot
detection were manually determined for each gene. Segmented spots, corresponding to mRNA
molecules, were tallied within each cell as defined by the membrane segmentation mask. To
validate the consistency of this method, we plotted the detection frequency for each gene
across all cells that were measured in multiple images (Supplemental Figure 6). The measures
were highly correlated.
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Cell type analysis.

Cell types were determined by using k-means clustering on log transformed mRNA counts with
5 centers to group the most distinct sets of cells in the dataset. Dimensionality reduction by the
tSNE method visualizes three groups as well separated and three of the identified cell states
(Naive/2C-like, Naive, and Naive/Formative) as potentially a continuous distribution, although
we note that dimensionality reduction techniques can obscure the true distances between cells
and clusters in the higher dimensional transcriptome space. Most importantly, we identify unique
allowed and forbidden transitions between each purported cell state through subsequent lineage
analysis that is agnostic to the underlying transcriptional information, bolstering the claim that
these five clusters of cells should be treated as distinct populations.

Lineage reconstruction and Bayesian modeling.

We used a Bayesian model under the BEAST234 v2.7 framework that takes barcode
information, end point cell labels, and cell centroid positions as input to jointly estimate lineage
relationships, cell state transition dynamics, and cell motility. An XML file specifying all modeling
information is provided as supplemental data and modeling choices are briefly described below.

Barcode information for each dinucleotide was extracted using Matlab and R scripts
(Supplemental Data). Each of the four dinucleotide states (AA, AG, GA, and GG) was encoded
in a single character (A, T, C, or G). Characters that were not recovered during imaging were
marked as missing data by the “?” character. Cell division for each tree was modeled as a pure
birth process (the Yule model) with birth rate estimated.

Barcode character mutation in our system is irreversible. With few exceptions®, existing
BEAST2 packages only model reversible character transitions because these make computing
tree likelihoods more computationally efficient. We developed a new irreversible character
substitution model to better capture the evolutionary process that generated our data (available
as the ‘irreversible’ package for BEASTZ2, with source code available from
https://github.com/rbouckaert/irreversible). Under this model, each possible transition (AA to
AG, GA, or GG) can take a unique rate value, which we assume is constant along the tree.
Stationary frequencies, which are used at the root of the tree to calculate the tree likelihood, are
set at 1 for the AA state, and O for the others, reflecting our knowledge that every state is AA at
the root of the tree. Since we know that targets can edit at different rates and into different
outcomes, we allow the rate to vary across sites through the gamma site heterogeneity model,
partitioning the allowable rates into 4 categories®'. This model is shared across all trees.
Furthermore, we use a strict molecular clock since we do not expect significant rate variation
per branch.

Cell state transitions are modeled as a continuous time Markov chain with symmetrical transition
rates possible between each state. These rates are assumed to be constant across time with an
associated strict clock model. Transition rates are shared between all trees, so a single unified
cell state transition model was estimated across all colonies. We assume symmetric transition
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rates based on previous work, which identified most transitions as roughly symmetric in this
system?®. In principle, the assumption can be relaxed, although it greatly increases the number
of parameters in the model, thus increasing susceptibility to overfitting.

Cell motility was modeled as single parameter 2D diffusion along the surface of a sphere as
implemented in previous phylogeographical work*®. Spherical diffusion is a good approximation
of diffusion in a 2D plane for small patches of the surface*® and its implementation is efficient.
Accordingly, cell positions were mapped to geographical coordinates falling within 2 latitude and
longitude degrees. The diffusion parameter describing motility was allowed to take unique
values along each branch of the tree under a relaxed clock model.

Notably, all 7 colonies in this dataset were analyzed simultaneously under a single model. This
allowed us to infer barcode character substitution and cell state transition models that are
shared across all the data, reflecting our belief that all colonies are representative of the same
underlying barcode mutation and cell state transition processes. We think this is reasonable
given that all colonies are generated from a monoclonal culture grown in identical culture
conditions over the same time period.

We chose priors to be uninformative with the exception of the root height, since we have strong
prior information that experiments lasted 3 days. An uninformative but improper uniform
distribution across all possible rates was chosen for barcode mutation rate, although this is not
expected to affect the resulting analysis or MCMC mixing. Detailed prior information is recorded
in the supplemental XML file for Figure 5 specifying all modeling choices.

Supplementary movies were generated by creating inferred still images of the maximum a
posteriori histories of cells over time, incorporating inferred ancestral cell states, positions, and
cell division timings (Supplemental Data). These still images were compiled into movies using
the open-source video editor Shotcut (Meltytech).

Lineage motif analysis.

The posterior baseMEMOIR trees were analyzed using Lineage Motif Analysis (LMA) as
described previously*®, using the resample_trees_doublets, resample_trees_triplets, and
resample_trees quartets functions with 1000 resamples. These functions are available in the
publicly available “linmo” package for Python (https://github.com/labowitz/linmo). To generate a
z-score and adjusted p-value for all cell fate patterns across the entire posterior distribution of
each tree dataset, 1000 synthetic datasets were generated by randomly drawing one tree from
the posterior distribution of each tree dataset. Each synthetic dataset therefore contains 7 total
trees. LMA was then performed on each synthetic dataset, and the distribution of z-scores and
adjusted p-values was plotted for each cell fate pattern.

Data availability.
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Raw image data is available at https://doi.org/10.22002/pmpby-gpj05. All analysis scripts,
amplicon sequencing data, max projected image data, and additional supplementary files are
available at https://doi.org/10.22002/327t7-ke088.
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Figure 1: Multiplexed, genomically dispersed, editable barcodes enable detailed
recording of lineages over many generations with in situ readout.

(a) Detailed lineage trees can be measured alongside transcriptional cell states while
maintaining spatial context through phylogenetic barcoding. (b) Predicted stochastic editing of
AA dinucleotides results in one of three terminal outcomes. (¢) An inducible barcode editing
system can be integrated into cells at high copy number via piggyBac transposase. Target
arrays (top) contain 6 AA dinucleotides flanked by unique protospacer sequences as well as
sequencing and imaging-readable static barcodes which serve to uniquely mark different
genomic integrations of the array. Editing is induced by expression of guide RNAs (middle),
controlled by a Wnt-responsive element, and base editor (bottom), controlled by the TRE3G tet-
on promoter. (d) We engineered a monoclonal mESC cell line containing 66 uniquely labeled
target array copies (396 editable dinucleotides, or 792 bits of information) alongside the
inducible editing machinery. (e) This cell line enables genomic lineage recording and recovery
through FISH imaging and phylogenetic tree inference.
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Supplemental Figure 1: 66 unique integrations are detected in the baseMEM-01 cell line.

66 barcode integrations were identified by next generation sequencing of target arrays amplified
from genomic DNA. We quantified the number of reads corresponding to unique sequenceable
(a) and image readable (b) static barcodes, identifying approximately 66 variants in each case.
The top 200 most frequent variants are shown; we separated true variants from noise
heuristically by identifying the “knee of the curve” (dashed vertical lines). Importantly, these 66
variants are all also identified in FISH experiments (Figure 3e).
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Figure 2: Dinucleotide targets accumulate edits over time in engineered mESCs.

(a) Next generation amplicon sequencing quantified editing over time after induction of gRNAs
and ABE. (b) All targets edited over time in the presence of the two inducers together, although
at distinct rates (b, purple). Dox induction alone drives editing at a slower rate (b, blue). In the
absence of dox, editing does not proceed at an appreciable rate (b, red and gold). Three
biological replicates were collected for each time point. The solid purple line shows the fit for a
probabilistic model of editing over time (Methods). (c) Each target has a unique distribution of
editing outcomes that remains constant as editing progresses.
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Figure 3: Multiple rounds of Zombie-FISH recover dynamic and static barcode states.
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(a) Barcode states can be recovered across multiple rounds of microscopic imaging. Ectopic
application of T7 polymerase generates localized RNA clusters. Primary DNA probes are bound
to the dynamic and static barcodes as well as to endogenous transcripts, competing primary
probes against each other for binding to the different possible dynamic barcode variants. Each
primary probe has an overhang sequence allowing for binding of one or more fluorescently
labeled secondary probes, which are hybridized, imaged, and stripped away sequentially to
recover barcoding (b) and transcriptional (c¢) information. (d) Across 8 colonies, we recovered
50-80% of target arrays per cell. One colony had dramatically lower barcode recovery and was
excluded from further analysis (d, colony 1). (e) Each unique target array is recovered in a
similar fraction of cells. (f) We recovered approximately 200 dinucleotide dynamic targets with
high confidence per cell, with around 100 of these measured jointly between any pair of cells.
Scale bars are 20 ym.
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Supplemental Figure 2: A support vector machine classifies barcode states based on
fluorescence measurements.

(a) Manually annotated barcodes are correctly classified by a quadratic kernel support vector
machine (SVM) approximately 94% of the time. (b) Classification probability estimates are very
high within the training dataset (b, left). Outside of the training sample, most classification
probabilities are still high but with a subset of predictions that are less certain (b, right). The
support vector machine predicts classes based on 16 fluorescence measurements
corresponding to each pseudocolor as defined in Figure 3b. (¢) Each class is well separated
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based on these features. (d) After 3 days of editing induction, many dynamic barcodes are
identified as class 2, corresponding to the unedited state (d, left). Static barcode classifications
are more evenly distributed, as anticipated (d, right). (e) Static barcodes decoded by FISH
typically perfectly match the 66 image readable barcode sequences identified by sequencing
(Supplemental Figure 1b), although a fraction of barcodes are recovered with one or more
character differences relative to their closest match.
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Figure 4: Lineage can be accurately reconstructed for at least 12 generations in
simulation.

(a) To estimate the expected accuracy of reconstruction, we simulated cell division and
stochastic editing starting with unedited barcodes, represented as sets of AA dinucleotides (left)
over time to produce heterogeneous edit patterns. We then either retained all sequences or
dropped 50% of the data to represent random FISH detection losses, and filtered out cells that
had few barcode characters overlapping with those measured in other cells (right). (b) Based
on these ground truth simulations, we reconstructed lineage relationships and computed the
Robinson-Foulds distance between the ground truth input (left) and reconstructed output (right)
trees. (¢) Reconstruction accuracy was nearly perfect without barcode dropout (dark blue
dots). With dropout, we observed ~ 10% error rates with tree depths up to 12 cell generations
(c, gray dots). In the presence of dropout, filtering cells with few shared units moderately
improved the reconstructed tree (c, light blue dots).
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Supplemental Figure 3: Stochastic simulations closely recapitulate the empirical editing
process.

(a) We developed a stochastic editing simulator based on the Gillespie algorithm that closely
recapitulates the average edit accumulation model developed in Figure 2b (Methods). (b) The
simulated edit outcome distributions for each target site match the observed distributions from
Figure 2c.
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Figure 5: Joint measurements of lineage, gene expression, and spatial position reveal
cell state transition dynamics.

(a) We recorded lineage relationships in mESC cells cultured in serum-LIF media over a 3 day
period, inducing editing with 3 uM CHIR and 1 uM Dox. (b,c) Cells clustered into 5 states based
on gene expression as measured by smFISH. Two clusters were well separated from the other
groups while three clusters appeared continuously related and expressed different levels of key
marker genes (see Supplementary Figure 4). (d-g) Lineage reconstruction infers topological
lineage tree relationships, cell division timing, ancestral cell states, and transition rates between
those states. Uncertainty in lineage tree measurements is visualized by overlaying trees
sampled from the posterior distribution of trees generated by Markov chain Monte Carlo for
each colony (d, top; Supplemental Figure 5). Cell states and clade groups from the lineage
tree can be mapped to the spatial colony images to qualitatively inspect the relationships
between cell state, lineage, and spatial location (d, bottom; Supplemental Figure 5). (e)
Spatial distance is larger between cells with more distant common ancestors. (f) Several cell
state transitions were inferred to have nonzero median values across all posterior samples. (g)
These state transitions predict a restricted cell state transition graph. One transition (denoted by
*) contained a high fraction of posterior samples with a transition rate of 0. Numbers indicate the
median expected number of transitions per day for cells of the given type. (h) Several doublet
motifs are significantly over or underrepresented across the lineage tree posterior samples. N:
Naive; 2: 2C-like; F: Formative; N2: Naive, trending to 2C-like; NF: Naive, trending to formative;
MRCA: Most recent common ancestor.
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Supplemental Figure 4: mESC gene expression clustering.

(a) Principal component analysis is largely in agreement with nonlinear dimensionality reduction,
with separation between major clusters observed along the first three components. The naive
states also appear continuously related in this view. (b) Clusters have distinct marker gene
expression patterns, with some similarity between the Naive/2C-like, Naive, and
Naive/Formative states.
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Supplemental Figure 5: BaseMEMOIR reveals lineage relationships, cell states, and
spatial positions across multiple colonies.

Posterior tree distributions are visualized and mapped back to illustrations of each colony as in
Figure 5d.
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Supplemental Figure 6: Gene detection is consistent across images.

Gene counts as quantified from FISH images by the bigFISH package® are correlated for cells
that were measured in multiple images.
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