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Abstract

The central tenet of molecular biology is that a protein’s amino acid sequence deter-
mines its three-dimensional structure, and thus its function. However, proteins with
similar sequences do not always fold into the same shape, and vice-versa, dissimilar
sequences can adopt similar folds. In this work, we explore antibodies, a class
of proteins in the immune system, whose local shapes are highly unpredictable,
even with small variations in their sequence. Inspired by the CLIP method [1], we
propose a multimodal contrastive learning approach, contrastive sequence-structure
pre-training (CSSP), which amalgamates the representations of antibody sequences
and structures in a mutual latent space. Integrating structural information leads both
antibody and protein language models to show better correspondence with struc-
tural similarity and improves accuracy and data efficiency in downstream binding
prediction tasks. We provide an optimised CSSP-trained model, AntiBERTa2-
CSSP, for non-commercial use at https://huggingface.co/alchemab.

1 Introduction

A protein’s amino acid sequence contains all the information that is necessary to fold it into its
three-dimensional structure [2]. The protein’s structure determines its function, meaning that the
protein’s sequence contains almost all the information necessary to understand a protein’s function.
One strategy that has proven to be very powerful at learning the relationship between sequence and
function has been the development of protein language models (PLMs). PLMs process large datasets
of protein sequences (e.g. UniRef50) via self-supervised learning to understand the ties between a
protein’s sequence, structure, and function [3–5]. However, one class of proteins has proven to be
particularly challenging for PLMs due to their extraordinary sequence diversity: antibodies [5–8].

Antibodies are proteins of the immune system. They have a characteristic Y-shape, comprised of two
pairs of two protein chains: a heavy chain and a light chain. The combination of heavy-light chain
pairs, along with diversification mechanisms such as V(D)J recombination and somatic hypermutation,
allow antibodies to reach a theoretical diversity of over 1015 possible variants in humans [9, 10].
Much of this variation is concentrated in local stretches of the amino acid sequence, known as the
complementarity determining regions (CDRs); the CDRs comprise most of the antibody binding site.
In particular, the third CDR of the heavy chain (CDRH3) has the most important role in binding,
and it is also the most polymorphic in terms of sequence and structure [11, 12]. Small changes in
the CDRH3 sequence can dramatically alter its shape and thus binding specificity; vice-versa, two
antibodies with distant sequences can bind the same region on a target protein [13]. This complexity
is challenging to learn from antibody sequences alone, and structural data can play an integral role in
understanding antibody function.

As of July 2023, there are only 7,463 antibody Protein Data Bank (PDB) entries in SAbDab; 1,085
of these are high-quality human antibody entries with some redundancy (i.e. multiple antibody
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structures per PDB entry) [14]. While structural modelling tools can be used to fill in the gaps of
antibody sequence space, even the fastest prediction tools cannot match the scale of the antibody
repertoire. For instance, a typical human antibody repertoire dataset contains 100,000 sequences per
individual [15]. Even if a structure prediction tool required only one second per antibody structure
[16], this would require more than one day of compute per human repertoire sample. Given this
challenging scale, it would be advantageous to have a foundation model that combines both sequence
and structural information to capture the nuances of antibody sequence-structure variation, while
achieving the inference scalability of a language model.

In this work, we exploit the Contrastive Language-Image Pre-training (CLIP) architecture to update an-
tibody sequence representations with structural information [1]. Our Contrastive Sequence-Structure
Pre-training (CSSP) approach involves updating a sequence encoder, while using a frozen, pre-trained
structure encoder. Previous approaches in protein multimodal learning have updated both sequence
and structure encoders, often investigating how sequence encoders can enrich structure encoders
[17–19]. These protein multimodal models have relied on having both sequence and structure data as
input during inference. Given the sparsity of available structures, this would likely necessitate using a
predicted protein structure [20]. In contrast, we detach the updated sequence encoder for stand-alone
use in fine-tuning and inference. We find that our CSSP approach leads to sequence representations
that better correspond with antibody structural similarity, and improve accuracy and data efficiency in
downstream prediction tasks.

2 Methods

2.1 Datasets

A total of 779.4 million human antibody sequences were used for pre-training an antibody-specific
sequence encoder model, AntiBERTa2. Further details on data processing are described in Ap-
pendix A.1.

For multimodal pre-training, we used 1,554 of the human antibody structures downloaded from
SAbDab on July 18th, 2023, split into 1,237 training, 155 validation, and 162 test structures [14].
We also used 1.33M model antibody structures, predicted by ABodyBuilder2, to complement the
experimental data [21]. For each prediction, ABodyBuilder2 estimates the prediction error per residue.
Additional details of structural data filtering and processing are described in Appendix A.1.

All unimodal and multimodal models in this work were benchmarked on an antibody-antigen binding
dataset comprised of trastuzumab variants screened for binding to human epidermal growth factor
receptor 2 (HER2) [22]. The sizes and stratification details are described in Appendix A.1.

2.2 AntiBERTa2 unimodal pre-training

AntiBERTa2 is based on the RoFormer architecture, a bi-directional transformer encoder model
with rotary position embeddings [3, 23]. AntiBERTa2 can accept either unpaired (i.e. heavy chain
only or light chain only) or paired antibody sequences, where chains are separated by a [SEP] token.
AntiBERTa2 was pre-trained on NVIDIA’s DGX SuperCloud (Cambridge-1) using 48 A100 GPUs via
masked language modelling. Hyperparameters for AntiBERTa2 are described in Appendix Table A1.

2.3 Contrastive sequence-structure pre-training

Our contrastive pre-training approach follows the CLIP procedure [1]. In brief, CLIP minimises

LCLIP =
LImage + LText

2
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Here, f(zIk, z
T
k ) represents the cosine similarity between the kth text embedding, zTk , and the kth

image embedding zIk , scaled by a learnable temperature parameter τ . For CSSP, we analogised
sequence embeddings as text embeddings, and structure embeddings as image embeddings.

CSSP was performed with three different PLMs as antibody sequence encoders: AntiBERTa2, ESM2-
650M, and AntiBERTy [3, 6]. For each unimodal language model, [CLS] pooling was used to
generate the sequence embedding. In all cases, ESM-IF1 was used as the structure encoder [24].
Briefly, ESM-IF1 is a pre-trained geometric vector perceptron model that is linked to a 12-layer
transformer encoder-decoder model (6 encoder layers, 6 decoder layers). For our work, we froze
the ESM-IF1 model, and average pooled the antibody structure embeddings from the transformer
encoder, following the procedure used in the public ESM Google Colab notebook. Hyperparameters
for CSSP are described in Appendix Table A2.

2.4 Prediction of structural similarity

Structural similarity between two antibody variable regions (Fv) was defined as the root-mean square
deviation (RMSD) between backbone atoms (N, Cα, C, and O). To align antibodies with different
sequence lengths, we aligned antibodies based on their IMGT numbering. CDRH3 loop structure
similarity was defined as the RMSD between backbone atoms in the IMGT-defined CDRH3 loops.
We implemented the dynamic time warp algorithm for length-independent CDRH3 loop alignment,
as previously described [25]. Z-score normalization was then applied to the RMSDs.

The latent structural information in pre- and post-CSSP language model embeddings was quantified by
predicting pairwise structural similarities using a regression head applied to the [CLS] embeddings of
antibody sequences. Specifically, the [CLS] token embeddings of both sequences were concatenated,
along with the difference between them, i.e. concat(zj , zk, |zk − zj |), in a manner similar to SBERT
[26].

2.5 Benchmarking on antigen binding

Pre- and post-CSSP PLMs were benchmarked using HER2 binding prediction as a binary classifi-
cation task. To enable a robust comparison of the resulting sequence embeddings, we froze each
model’s sequence encoder weights and only allowed weight updates in the classification head.

3 Results

3.1 Multimodal training enhances structural awareness of language models

Previous work has shown that PLMs learn aspects of protein structure following pre-training. For
example, self-attention scores of transformer models correlate with inter-residue contacts in experi-
mental protein structures [7, 27–29]. However, it is unclear if language model embeddings capture the
complex dynamics of structural similarity. Thus, we investigated the relationship between sequence
embeddings and antibody structural similarity (Appendix Figure A1).

Before CSSP, we find that embeddings from antibody-specific language models, specifically An-
tiBERTy and AntiBERTa2, contain more information about antibody structural similarity than the
general protein language model ESM2-650M. For all models, applying CSSP increases the struc-
tural information content of the embeddings as measured by the correlation of predicted and actual
structural similarity. Overall, AntiBERTa2-CSSP embeddings contain the most antibody structure
information, with predictions’ Pearson correlation coefficients of 0.706 to Fv similarity, and 0.576 to
CDRH3 similarity. One interesting observation is that CSSP was most beneficial for ESM2-650M;
this is to be expected as ESM2-650M is not antibody-specific to begin with, and thus CSSP with
antibody structures and sequences is effectively making it more of an antibody-specific model.

3.2 Contrastive sequence-structure pre-training improves antigen binding prediction

In antibody discovery, the main property, or ‘function’ of interest is an antibody’s binding to its
cognate antigen. Thus, we benchmarked AntiBERTa2, ESM2-650M, and AntiBERTy for antigen
binding prediction, then compared each model’s performance after CSSP pre-training. We assess
models on a dataset of over 20,000 trastuzumab variants binding HER2 [22] (see Appendix A.1).
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Figure 1: Contrastive sequence-structure pretraining (CSSP) with experimental structural data
improves model performance. The mean area under the receiver operating curve (AUROC) score
improves per epoch, saturating after 5 epochs. Epoch 0 is the original unimodal model prior to CSSP.

The CSSP method improves all three models’ predictions of HER2 binding (Figure 1, Appendix
Table A3). The mean area under the receiver operating curve (AUROC) score improves each epoch
up to 5 epochs of CSSP, after which performance plateaus. Our structural training set contains
no relatives of trastuzumab, suggesting that this result is not an artefact of data leakage. Instead,
structural information appears to refine the model’s representations for improved binding prediction.
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Figure 2: CSSP with experimental structure data improves few-shot binding prediction performance.
Solid lines represent the original unimodal model. Dashed lines represent the same models after
CSSP pre-training. Shaded areas represent standard deviations using five different random seeds.

It is often impractical to gather large volumes of antibody-antigen binding data due to cost and time
constraints. One of the benefits of multimodal models is their capacity to improve data efficiency in
fine-tuning [1, 30]. Thus, we conducted a data ablation study, subsampling the HER2 training set
from 0.1%–100%, while using the same test set (Figure 2, Appendix Table A4). For example, at
0.1% of the data, which represents 19 training sequences, AntiBERTa2 achieves an AUROC=0.590;
after CSSP, its AUROC improves to 0.686. Once 5% of the training data is used (912 antibodies),
AntiBERTa2-CSSP achieves an AUROC of 0.817. For the unimodal AntiBERTa2, this level of
performance is only achieved when 40% of the training data becomes available, indicating an 8-fold
improvement in efficiency. AntiBERTy and ESM2 both show higher AUROC after CSSP pre-training,
with 8-fold and 2-fold efficiency gains respectively. This highlights the flexibility of CSSP approach
to any unimodal PLM.
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Figure 3: Model structures do not contribute novel information to CSSP. Epoch 0 is AntiBERTa2
before CSSP pre-training. (A) AntiBERTa2-CSSP with 1,237 experimental structures (blue) has
higher performance compared to AntiBERTa2-CSSP pre-trained on 1,237 model structures (green)
and 12,370 model structures (orange). (B) Combining predicted structures with experimental struc-
tures (orange) does not provide synergistic benefit. (C) Halving the experimental training data used
in AntiBERTa2-CSSP (green) leads to a performance drop; this is not rescued by models (orange).

Multimodal models consistently outperform their unimodal counterparts across different data abla-
tions, suggesting that structural pre-training fundamentally changes the representations in a way that
aids binding prediction. In addition, we note that the standard deviations of AUROC scores across
the different data ablations are often reduced after CSSP. These results reflect the value of structural
pre-training in low-data settings that are common in antibody discovery. In effect, CSSP provides a
means to reduce the burden on wet lab scientists and accelerate antibody engineering campaigns.

3.3 Exercise caution when using predicted structures

Due to the relative paucity of publicly available structural data in the PDB, it can be desirable to use
predicted structures to increase training datasets [24]. Our work demonstrates that modelled structures
do not contribute novel information to CSSP. While better than having no structural information,
model structures are not as valuable as crystal structures, even with ten-fold more models (Figure 3A).
We also report that combining models with experimental structures provides no additional benefit in
CSSP (Figure 3B). Finally, when using half the available experimental structural data, this leads to an
expected drop in performance compared to using the full set of 1,237 structures. However, this gap
is not recovered by adding predicted structures (Figure 3C). This indicates that it is not simply the
volume of structural data, but the information content that has a beneficial impact.

4 Conclusion

In this study, we demonstrate how structural information can be imbued into PLMs by using con-
trastive sequence-structre pre-training. We find that CSSP increases the amount of structural infor-
mation encoded in PLM embeddings, leading to stronger correlations to both global and CDRH3
structure variation. An exciting advantage of CSSP is its impact on few-shot antigen binding pre-
diction. Even with a small dataset of experimental structures, CSSP can improve performance
and increase data efficiency, emphasising the importance of structural knowledge in understanding
function. A further benefit of CSSP is its flexibility: in principle, CSSP can be used with any PLM.
Our multimodal learning approach offers a pragmatic solution to antibody engineering, and it can be
especially helpful in resource-limited environments.
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A Appendix

A.1 Dataset preparation

For pre-training AntiBERTa2, we collected 1.47 billion unpaired (i.e. heavy chain or light chain only)
human antibodies from the Observed Antibody Space (OAS) database on 23rd February 2023. We
also included 70 million unpaired human antibodies from a proprietary dataset. We used Linclust to
cluster antibodies at 90% sequence identity, leading to a dataset of 821.2 million unpaired antibodies.

In parallel, we collected 1.5 million paired human antibody sequences [31], and a further 1.4 million
from an in-house experiment. Due to the relative paucity of paired data, we implemented a 99%
sequence identity cut-off, leading to a total of 2.5 million paired antibodies. The ensemble of unpaired
and paired data were stratified into a 95:5 train:evaluation ratio for masked language modelling: 779.4
million sequences were in the training set, and 44.3 million in the evaluation set.

Antibody structures were downloaded from SAbDab on the 18th July 2023. Structures resolved by
either X-ray crystallography or cryo-electron microscopy were filtered for resolution of 2.5Å or
better; structures with missing coordinates in the CDR residues were removed. We also removed
antibodies that were single-chain variable fragments and omitted non-human antibodies. Since
antibodies with identical amino acid sequences can have slight variations in their structure, we
retained a redundant dataset of structures, leading to a final set of 1,554 antibody structures from 995
PDB entries. Structures were stratified by their PDB code in an ∼80:10:10 ratio to train, evaluate,
and test CSSP. In total, we used 1,237 structures in the training, 155 in evaluation, and 162 in
the test set. Modelled structures were predicted using ABodyBuilder2 for paired B cell receptor
sequences [21, 31], and we used a random subset of model structures for our analyses.

For benchmarking, a dataset comprising 39,108 variants of trastuzumab that were screened for binding
to the human epidermal growth factor receptor 2 (HER2) protein were downloaded [22]. Briefly, the
experiment used hybridomas expressing either complementarity determining region (CDR) H3 or
CDRL3 variants, and antigen binding was confirmed via cell sorting. Antibodies that do not bind
the antigen, i.e. negatives, were randomly under-sampled; the remaining antibodies were randomly
split into disjoint train, test, and validation sets as done previously. In total, 18,223, 2,278, and 2,278
sequences, respectively.

Figure A1: Pearson correlation coefficient between predicted and actual structural similarity before
and after CSSP. Structural similarity is predicted from embeddings using a regression head as
described in the methods. The calculation of structural similarity for the CDRH3 loop and the
entire antibody variable domain (Fv) is also described in the methods. CSSP increases the structural
information content of all unimodal language models’ embeddings.
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Table A1: Hyperparameters for pre-training AntiBERTa2

Number of layers 16
Number of attention heads 16
Embedding dimension 1024
Feed-forward dimension 4096
Peak learning rate 8e-5
Learning rate schedule Linear
Number of steps 260k (40k warmup)
Optimizer AdamW
Weight decay 0.01

Table A2: Hyperparameters for CSSP

Embedding dimension 512
Dropout 0.3
Clamp value for Ä 100
Peak learning rate 1e-3
Learning rate schedule Linear
Number of epochs 10
Optimizer AdamW
AdamW parameters ´1 = 0.9, ´2 = 0.98, ϵ = 10

−6

Weight decay 0.25

Table A3: HER2 Binding Prediction Performance

AUROC AUPR F1
Model mean std mean std mean std

AntiBERTy 0.663 0.040 0.641 0.039 0.669 0.002
AntiBERTy-CSSP 0.730 0.005 0.707 0.005 0.700 0.006
ESM2-650M 0.781 0.002 0.739 0.002 0.706 0.031
ESM2-650M-CSSP 0.858 0.001 0.853 0.001 0.781 0.001
AntiBERTa2 0.839 0.002 0.827 0.001 0.754 0.006
AntiBERTa2-CSSP 0.875 0.001 0.869 0.001 0.807 0.001
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Table A4: HER2 Binding Prediction Performance (AUROC)

Model 0.1% n=19 1% n=183 5% n=912 10% n=1823 20% n=3645 30% n=5467 40% n=7290 100% n=18223

AntiBERTy 0.484 ± 0.041 0.485 ± 0.043 0.488 ± 0.043 0.496 ± 0.043 0.516 ± 0.038 0.537 ± 0.032 0.562 ± 0.031 0.663 ± 0.040
AntiBERTy-CSSP 0.514 ± 0.098 0.522 ± 0.101 0.564 ± 0.092 0.611 ± 0.066 0.686 ± 0.013 0.707 ± 0.010 0.715 ± 0.010 0.730 ± 0.005
ESM2-650M 0.592 ± 0.124 0.646 ± 0.079 0.716 ± 0.049 0.761 ± 0.029 0.776 ± 0.013 0.776 ± 0.010 0.777 ± 0.007 0.781 ± 0.002
ESM2-650M-CSSP 0.669 ± 0.054 0.722 ± 0.024 0.758 ± 0.010 0.765 ± 0.008 0.793 ± 0.004 0.815 ± 0.003 0.829 ± 0.004 0.858 ± 0.001
AntiBERTa2 0.590 ± 0.036 0.636 ± 0.053 0.731 ± 0.040 0.752 ± 0.018 0.772 ± 0.008 0.791 ± 0.005 0.805 ± 0.006 0.839 ± 0.002
AntiBERTa2-CSSP 0.686 ± 0.054 0.745 ± 0.045 0.817 ± 0.019 0.841 ± 0.008 0.857 ± 0.004 0.862 ± 0.002 0.866 ± 0.001 0.875 ± 0.001
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