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Abstract

Most eukaryotic genes are expressed in multiple RNA isoforms representing variants of the respective genes.
Full-length RNA sequencing techniques have uncovered an extreme diversity of RNA isoforms, but a subset
of them might be generated by noise in the splicing machinery. For some genes, it has been shown that
environmental influences can lead to isoform switching, implying that isoform diversity could also be
subject to plastic changes in response to environmental conditions. Further, it has been suggested that
isoform diversity could be a basis for adaptive evolutionary novelty. However, explicit tests of all three of
these assumptions are missing. To address these questions, we have analyzed here the variation of full-
length brain RNA transcripts from natural populations and subspecies of Mus musculus, as well as the
outgroup species Mus spretus and Mus spicilegus. We find a substantial influence of splicing noise in
generating rare isoform variants. However, after filtering these out, we reliably identify more than 117,000
distinct isoforms in the dataset, about doubling the number of the currently annotated set. Comparisons with
individuals raised under different environmental conditions show a very strong plasticity effect in shaping
isoform expression, including major isoform switching in proteins that bind to splice site enhancers. Using
site frequency spectra tests in comparison to SNP data from the same individuals, we find no evidence for
lineage-specific isoforms to become frequently fixed. We conclude that lineage-specific isoforms do not
contribute much to novel adaptations, either because they are generated mainly through noise in the splicing
machinery or are subject to negative selection. However, isoform diversity is strongly shaped by
environmental conditions, both for lineage-specific isoforms, as well as conserved ones. Therefore, the
functional role of isoform diversity may mostly be related to trigger plastic responses to environmental

changes.

Key words: Alternative isoforms, house mouse, natural population, full-length RNA sequencing, plasticity,

splicing noise, site-frequency spectra, natural selection

Introduction

The ability to generate multiple RNA isoforms (or transcripts) from the same gene increases vastly the
complexity of eukaryotic transcriptomes and it has been suggested that this may give rise to the evolution
of phenotypic diversity and environmental adaptations . Isoform switching can also be triggered through
environmental temperature changes, for example in genes involved in sex-determination in reptiles > or

flowering time and stress in plants ’. Also, homoiotherm mammals can regulate splicing of some genes in
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response to small changes in body temperature ®°. There are also a number of well-studied cases where the

emergence of isoforms could be linked to evolutionary changes (see * for the most recent review).

The recent development of long-read single-molecule sequencing technologies has enabled the capture of
the full-length isoform diversity '°, further facilitating the comparative analysis of alternative isoforms at
the global transcript level in different species '''2. This has revealed a very high diversity of isoforms but
it remains open how much of this is due to noise in the splicing machinery. Further, given that there are
well-studied cases where environmental effects, such as temperature, can functionally regulate alternative
splicing *'*, a systematic assessment of the role of environment on isoform diversity is nonetheless missing.
Noise and plasticity impact also our understanding of the evolutionary dynamics of recently emerged
alternative isoforms, especially at the very early evolutionary stage when they are polymorphic within
populations. It has been suggested that most of these isoforms may be neutral *, but direct tests of this
assumption are missing so far. We are addressing these questions here on the basis of samples from the

natural diversity of house mouse populations, subspecies and species.

Owing to its well-defined evolutionary history '*!°

, the house mouse (Mus musculus) has been shown as a
particularly suitable model system for studying the evolutionary dynamics of polymorphisms and recently
originated genetic elements in natural populations. Currently, three major lineages of the house mouse,
which diverged roughly half a million years ago, are distinguished as subspecies '®: the Western European
house mouse Mus musculus domesticus, the Eastern European house mouse Mus musculus musculus, and
the Southeast Asian house mouse Mus musculus castaneus. With a divergence time of fewer than 2 million
years, closely related outgroup species (e.g., Mus spretus) are also available to this model system '°. The
populations are subject to fast adaptations, as evidenced by the detection of high frequencies of selective
sweeps and adaptative introgression '"'®. We have also previously used the house mouse system to study

the evolutionary pattern of gene retrocopy variants '**°, which has shown that new retrocopies of genes are

usually subject to negative selection.

Here we use brain as the source tissue for the transcriptome analysis, given that fact that it harbors the largest
diversity of cell types with an overall transcript diversity comparable to testis 2!, but with many more of
these transcripts being likely to be functional in the brain compared to the testis, where there is a lot of
expression due to a transcriptionally permissive chromatin environment, especially in late spermatogenic
cell types **. We used an optimized protocol to capture predominantly full-length transcripts and validated
them with existing data. The sequencing depth was chosen to ensure that the diversity of all transcripts and
isoforms was captured in each individual when excluding all singletons that are likely to be generated by

noise. A comparison with mice raised under different environmental conditions indicates that plasticity can

3
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89  indeed substantially shape the isoform pattern. Using comparisons with SNP frequency distributions from
90 Illumina RNA-Seq dataset of the same individuals, we show that the distribution of species-specific
91  isoforms is strongly skewed towards being rarer among individuals than neutral SNPs. This indicates that
92  they are either mostly generated by noise effects, or are subject to negative selection. Hence, while the
93  population-level analysis does not support the notion that alternative splicing is a major contributor to the
94  generation of adaptive novelty at the population level, it turns out as a major player in plastic responses to

95 environmental conditions.
96
97  Results

98  An optimized approach to accurately detect full-length transcript transcriptome

99  We analyzed the alternative isoform landscape in the whole brain transcriptomes for forty-eight unrelated
100  outbred wild-type mice individuals raised under tightly controlled laboratory conditions (Supplementary
101  Dataset S1A and Dataset S2). They included forty house mouse (Mus musculus) individuals derived from
102  five natural populations in the three major subspecies (M. m. domesticus, M. m. musculus, and M. m.
103  castaneus), as well as eight individuals from two closely related outgroup species (Mus spicilegus and Mus
104  spretus) (Figure 1A). Given that the implementation of 5’cap selection can significantly improve the

105  enrichment of genuine full-length transcripts >

, we developed an optimized cDNA enrichment protocol
106  with 5’cap selection for PacBio Iso-Seq library construction (Supplementary Text on Methods). To define
107  high-quality transcriptomes, we performed both PacBio Iso-Seq and Illumina RNA-Seq for each brain
108  sample (Figure 1C). Ten additional animals reared under different environmental conditions were sequenced
109  with the same technique for the analysis of the role of plasticity (see below). Since we found a major
110  influence of environmental conditions on the isoform pattern (see below), we used only the data from the
111 48 individuals that were raised under controlled laboratory conditions for the main comparative part of the

112 analysis. The data for the ten additional individuals were only used for the plasticity comparisons.

113  An overview of the methodology to generate the high-quality transcriptome is given in Supplementary
114  Figure S1 (see Methods). In brief, the raw PacBio Iso-Seq subreads were processed to produce circular
115  consensus sequences (CCSs), and further refined to generate full-length non-chimeric (FLNC) reads. The
116  FLNC reads were subject to de novo clustering to generate non-redundant isoforms. We implemented
117  optimized parameters to align the unique isoforms of each sample to the GRCm39/mm39 reference genome,

118  and to collapse and merge the transcript models across all 48 samples in the main experiment into a single
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non-redundant transcriptome. We further refined a computational pipeline to filter out low-quality

transcripts and those of potential artifacts (see Methods).
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Figure 1 Overview of the study system. (A) Phylogenetic relationships among the house mouse populations and

outgroup species (branch lengths not scaled). Abbreviation for population labels: 1, Germany (GE); 2, France (FR); 3,
Iran (IR); 4, Kazakhstan (KA); 5, Taiwan (TA), I, Slovakia (SL), and R, Spain (SP). Judged from the evolutionary
distances at the overall level of nucleotide difference, the distance of the Mus musculus subspecies is at the level of the

human-chimpanzee divergence and the distance of the Mus species used here corresponds to the human-gibbon

divergence '>>2°, (B) Depiction of the environmental conditions of mouse breeding. The 48 sampled mice from all

seven populations in the main experiment were raised under tightly controlled laboratory conditions, and additional 10

sampled mice derived from GE population were under semi-natural environment. (C) Sequencing scheme in this study.

Both PacBio Iso-Seq and Illumina RNA-Seq data were generated for each mouse brain sample. (D) and (E) show the

relative fractions of detected isoforms supported with singleton FLNC read and two or more FLNC reads with

increasing random resampling Iso-Seq sequencing depth, respectively. The resampling sequencing depths were

selected from 0.05 to 1, with a step size 0.05. The blue area shows the prediction after doubling the current Iso-Seq

sequencing depth. The illustration is based on one randomly selected individual (GE3) in the GE population, and the

results for individuals from other populations can be found in Supplementary Figure S11 and S12. (F) Relative
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136  fractions of detected isoforms with increasing random resampling sample sizes of individuals in the main experiment.
137  The resampling sequencing sizes were selected from 2 to 48, with a step size of 2. The blue area shows the prediction
138  after doubling the current sampling of mice individuals. The bar plots in the above panels from (D) to (F) show the
139 standard deviation (SD) of each resampling analysis.

140
141  Estimating the influence of noise on isoform diversity

142  Since biochemical systems are never perfect, one should expect a certain number of errors in the splice
143 reactions *"**, This could be considered as noise, rather than being regulated through genetic polymorphisms.

144  We used two tests to assess the impact of such splicing errors to isoform diversity.

145  For the first test, we compared isoforms represented by singleton FLNC reads with those represented by
146 two or more FLNC reads (called “high-confidence” in the following). In our data we find 324,960 singleton
147  FLNC reads supported isoforms (Supplementary Dataset S4) versus 117,728 supported by two or more
148  FLNC reads across all 48 individuals (Supplementary Datasets S5). Random resampling analysis of the
149  sequencing depth at the individual level shows that the number of singletons does not reach saturation
150  (Figure 1D), in contrast to those with two or more reads (Figure 1E). Because of this difference in saturation
151  behavior, we conclude that singletons are mostly the product of splicing errors, which is consistent with the
152 conclusion in previous studies *’*°. Interestingly, random resampling analysis of individuals’ subsamples
153  shows that the number of detectable high-confidence transcripts remained unsaturated with the number of
154  sampled individuals in our dataset (Figure 1F). That is to say, many more new isoforms are expected to
155  show up when more individuals are analyzed, suggesting that they are more likely generated by genetic

156  polymorphisms between the individuals than by noise.

157  In the second test, we asked whether genes that express one dominant isoform produce on average more
158  additional isoforms when they are higher expressed in a given individual, with a special focus on the high-
159  confidence isoforms. To test this, we selected a subset of genes with more than 10 isoforms where the
160  average expression level for the top expressed transcript (T) is at least five times higher than the cumulative
161  expression level for the other (O) isoforms from the same locus: (T /X (O) = 5). We find 448 genes that
162  fulfill this condition, with isoform numbers ranging from 11 to 59 (Supplementary Dataset S6). Among
163  them, 48% (214) show a significant positive correlation between isoform number and the top expression
164  level between individuals (one-sided Kendall's tau test, p-value < 0.05). This could suggest an influence of
165  splicing error noise, but this proportion is actually lower than the corresponding values for the whole dataset.
166  When including all the 3,450 genes with more than 10 isoforms in the correlation analysis, we find 63%
167  (2,165) with significant positive correlation (one-sided Kendall's tau test, p-value < 0.05). This analysis

6
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168  suggests therefore that isoform diversity tends to rise with expression level (see also below for an extended
169  analysis of this point). But it does not support that this effect is driven by noise, given that it is lower for

170  genes with the highest expression level contrasts.

171  Based on these two tests, we suggest that by excluding the singleton reads from our further analysis, we are
172 excluding most of the effects of splicing noise. Evidently, it is still possible that reads that occur more than
173 once are generated through noise effects due to the chromatin context in which they are transcribed or special
174  structures of their RNAs. However, in view of our saturation analysis and the analysis of the genes with
175  highly contrasting expression alleles, we consider the set of high-confidence isoforms to be at least highly

176  enriched in variants that are not simply generated by errors in the splicing machinery.

177  With the filter of calling only isoforms that were found at least twice in a given individual, we find a total
178  of 117,728 high-confidence distinct transcripts derived from 15,012 distinct loci (Supplementary Dataset
179  S5), which were used for the following analyses. The reliability of these high-confidence isoforms was

180 further validated on the basis of reference annotation and empirical information (Supplementary Figure S6).
181
182  Comparison to the reference annotation

183  Among the 117,728 high-confidence transcripts, 55.4% (65,201) are lineage-specific for the house mouse
184  and 33.6% (39,537) are conserved in both the house mouse and the outgroups (the remainder are specific to
185  the outgroups only, Supplementary Dataset S5). Given that only the conserved isoforms are likely to have
186  a functional role (see further analysis below), we restrict the comparison to the reference annotation to the
187  set of conserved isoforms (Figure 2). A comparison to the full set of high-confidence isoforms is presented

188  in Supplementary Analysis Results SAR1.

189  To further characterize the features of the conserved transcripts, we compared them with those annotated in
190  the GRCm39/mm39 reference genome from Ensembl v103 *°, which was built largely based on a single
191  C57BL/6 lab mouse inbred strain. On the basis of their alignment status to the Ensembl mouse transcriptome
192  annotation, these transcripts were classified into eight distinct structural categories using SQANTI3 !
193  (Figure 2A): 1) full splice match (FSM); ii) incomplete splice match (ISM); iii) novel in category (NIC); iv)
194  novel not in category (NNC); v) Fusion (F); vi) genic (G); vii) antisense (A); viii) intergenic(I). In total, we
195  found 69.4% of the 39,537 distinct isoforms matching perfectly to a whole (FSM, 54.9%) or subsection
196  (ISM, 14.5%) of a reference annotated transcript, designated as known transcripts following the convention
197  in '"*% The remaining 30.6% of the identified isoforms are novel transcripts, currently not annotated in the

198  Ensembl transcriptome (Figure 2B).
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200  Figure 2 Characterization of the detected conserved isoforms. The conserved isoforms are defined as those detected
201 in both the house mouse and outgroups. (A) Types and illustrations of identified isoforms. (B) Fraction distribution of
202 isoform structural categories. (C)-(H) show the distributions of isoform types with respect to distinct features.
203 Transcripts with expression were defined as the ones with non-zero TPM values, and the expression levels were
204  computed on the basis of the number of supported FLNC reads using SQANTI3 3'. Boxes represent the interquartile
205 range (IQR, distance between the first and third quartiles), with white dots (or black lines) in the middle to denote the
206 median. The boundaries of the whiskers (also the ranges of violins for panels C-E) are based on the 1.5 IQR values for
207  both sides; black dots in G and H represent outliers.

208

209  In comparison to known transcripts (FSM, ISM - see Figure 2A for acronyms), novel transcripts deriving
210  from annotated exonic regions (NIC, NNC, F - which constitute the bulk of the new transcripts) show
211  comparable exon numbers (Figure 2C), transcript length (Figure 2D), and CDS length (Figure 2E). The
212 novel transcripts from intronic (G) and unannotated gene loci (A, I) show generally lower values for all
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213  these features. Notably, all the novel transcripts with coding potential have a significantly higher probability
214  to become degraded via the nonsense-mediated decay (NMD) process *> due to premature translation-
215  termination codons (PTCs - detected by SQANTI3) than known transcripts (Figure 2F, mean 0.17 vs. 0.02,
216  Fisher’s exact test, p-value < 2.2 x 107'®). Most novel transcripts were found to be more restrictively
217  expressed in a smaller number of individuals, with the exception of NIC, which are comparable to ISM in
218  this respect (Figure 2G). The general expression levels of the novel transcripts are at a similar level as the

219  known ISM transcripts (Figure 2H).
220
221 Local alternative splicing events contribute to isoform diversity

222 The full-length isoforms appear as a combination of different types of local alternative splicing (AS) events,
223 and thus it is useful to disentangle the relative contribution of each variety of AS event to the overall isoform
224 diversity. For this purpose, we used the SUPPA2 program ** to identify different types of splicing events in
225  the full set of high-confidence transcripts, including skipped exon (SE), retained intron (RI), alternative 5’
226  splice site (AS), alternative 3’ splice site (A3), mutually exclusive exon (MX), alternative first exon (AFE),
227  and alternative last exon (ALE) (Figure 3A).

228  Among all the 94,581 splicing events detected in the merged transcripts (Figure 3B), AFE events contribute
229  most to the overall isoform diversity (31.7%), followed by SE events (19.8%), RI events (14.1%), AS
230 (11.6%), A3 (10.1%), ALE (9.4%), and with MX as the least contributor (3.3%). This finding is in line with
231  the previous report on the AFE as the most prevalent splicing event for the overall transcriptome in the

232 inbred laboratory mouse cerebral cortex '

, suggesting the dominant role of using AFE to generate
233 alternative isoforms in mice brain transcriptomes. The "alternative first exon" transcripts originate evidently
234  from new promotors, suggesting that these can easily develop upstream of existing genes. This is in line

235  with the realization that enhancers as regulatory elements can also assume promotor functions *°.

236  AFEs would not necessarily impact the coding sequences **. To address this issue, we performed an
237  additional analysis by collapsing the transcripts with the same coding sequence (i.e., only transcripts with
238  predicted ORFs were considered) into a single unique ORF. We indeed observed a much lower number (less
239  than two-thirds) of unique ORFs than transcripts in each mouse individual (Supplementary Figure S14).
240  Based on the landing position of the start codon in relation to local AS events (Figure 3C), we further
241  enumerated the number of local AS events causing the change of the respective coding sequences. We found
242  that only 46.5% (43,978) of all the local splicing events had an impact on the ORF structures (Figure 3D).
243  Compared to AFE, SE and RI events are more prevalent among all the local AS types to contribute to ORF

9
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244 diversity. The majority of AFE events (55%) would cause no change in the coding sequences, while acting
245  as amajor source to generate isoform diversity due to the emergence of alternative promoters *’. These data
246  illustrate the distinct roles of local AS events in contributing to isoform and ORF diversity in wild mice

247  brain transcriptomes.
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249  Figure 3 Distribution of different types of local AS events. (A) Types and illustration of AS local events. (B) The
250  distribution of all types of local AS events. (C) An example of AFE events that change ORF structures, and similar
251 situations for other types of local AS events. The dashed red lines indicate the in-frame start codon positions. (D) The
252 distribution of all types of local AS events that impact respective ORF structures. The value above each bar in (B) and
253 (D) indicates the number of respective type of AS events.
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254
255 Plasticity of isoform diversity

256  Plasticity is a general term for epigenetic effects on the phenotype of individuals. It becomes evident when
257  individuals are subjected to different environmental conditions, where metabolism including gene regulation
258 is adjusted. In mouse experiments, one is therefore striving to maintain the individuals under constant

259  conditions as much as possible and to sample them at the same time of the diurnal cycle. We have done this
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260  also for the animals used for the main experiment here, hence we would expect only a minor role for

261  plasticity in isoform generation.

262  To specifically test for the role of plasticity, we have generated data from ten animals that were part of a
263  behavioral study that was done under different environmental conditions (Supplementary Dataset S1B).
264  These mice were derived from the GE population and kept for five generations in semi-natural enclosures
265 %, ie., under natural temperature, humidity, and daylight cycles (Figure 1B). The data were merged with
266  the data described above which resulted in an additional 16,171 isoforms (Supplementary Dataset S8), due
267  to the addition of new individuals, as predicted by the rarefaction analysis above (Figure 1F). We have used
268  these data to compare their overall transcriptome differences at the level of presence/absence of isoforms.
269  We find that they deviate substantially from the transcriptomes obtained for the GE animals raised under
270  laboratory-controlled conditions (Figure 4A). While the SNP spectrum of the GE animals has only very
271 slightly changed under the breeding conditions of the semi-natural enclosure (Figure 4B), the transcriptomes
272 diverge strongly with respect to isoform diversity, also in comparison to the other taxa in the study (Figure
273 4A). The GE animals harbor 25,220 isoforms that are absent in the NE animals, 8,679 (34.4%) of which are
274  also found in animals of the outgroup species. On the other hand, the NE animals harbor 23,714 isoforms
275  that are absent in GE, 3,093 (13%) of which are also found in animals of the outgroups. Hence, while the
276  majority of changes in isoforms between the environmental conditions concerns lineage-specific isoforms
277  there are also substantial numbers that are conserved and can therefore be expected to be functional (see

278  discussion).

279  Linear modelling of the PC-scores for the most important PC-axes for these data show that the difference is
280  most pronounced in PC1 (Supplementary Figure S15), and a significant distance was observed between NE
281  and GE animals based on isoform landscape, but not on SNPs (Supplementary Table S3). We further used
282  the presence of isoforms fixed within each population to build an overall phylogeny (Figure 4C), which has
283  again a distinct topology as a phylogeny based on the SNP variants (Figure 4D), further confirming the
284  strong impact of plasticity induced by environmental factors on isoform diversity. The overall findings
285  remain valid when focusing only on the isoforms that have not changed their general expression levels
286  (FDR >0.05) between NE and GE individuals (Supplementary Figure S18), and when controlling for the
287  sequencing depth in all the sampled individuals (Supplementary Figure S19). Note that the isoform sharing
288  patterns from the animals kept under constant laboratory conditions allow to generate a phylogeny that
289  conforms to the expected relationships of the populations (Supplementary Analysis Results SAR4). This
290  implies that the slight environmental differences that might still exist between them even under laboratory

291  conditions should indeed have no major overall impact on the comparative analysis.
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293 Figure 4 The plasticity influence on isoform diversity. (A) and (B) show the projection of the top two PCs based on
294  isoform and SNP variants, separately. The SNP variants were called from matched Illumina RNA-Seq dataset.
295 Extended results for the populations that cannot be well distinguished in the main figure are presented in

296 Supplementary Figure S16. (C) and (D) show phylogenetic trees built on the basis of isoform and SNP variants fixed
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297 within each population, respectively. The fixation is defined as presence in all the individuals with the give population,
298  and the results for a relaxed fixation criteria (present in at least 80% of the individuals) are shown in Supplementary
299 Figure S17. Split nodes marked in yellow are the ones with bootstrap support value >70%. Abbreviations for
300  geographic regions follow Figure 1, and NE indicates the mice individuals derived from GE population but reared
301 under natural environment. (E) Difference in the expression levels for isoforms of Srfs genes. The expression level
302 differences (log2-based) were calculated by subtracting the average expression level in GE individuals under
303  laboratory condition from the average of those under semi-natural environment. Only isoforms with significant
304 expression level differences after multiple testing correction (FDR < 0.05) and conserved in the outgroups are shown.

305 The statistics on the full dataset are shown in Supplementary Dataset S9.
306

307 Environmentally correlated alternative splicing is likely regulated by proteins binding to splicing enhancers,
308  especially the family of SR proteins. These proteins share a domain rich in serine and arginine residues and
309 they are commonly called Srfs proteins **. The mouse has 11 members in this protein family and we
310  surveyed all of them for changes of expression between the laboratory animals and the animals living under
311  semi-natural conditions (Supplementary Dataset S9). We found indeed major isoform expression changes
312  for most of these genes, including Srfs1, Srfs2, Srfs3, Srfs4, Srfs5, Srfs7, Srfs10, Srfs11 and Srfs12 (Figure
313  4E). Each of these genes has some isoforms that are more highly expressed under laboratory conditions, and
314  Srfs2 has also one isoform that is more highly expressed in the semi-natural environment. These are

315  candidates for mediating the observed plastic response.
316
317  Fast turnover of alternative isoforms in house mouse natural populations

318  To study the turnover rate of alternative splicing at a microevolutionary scale, we focused on the recently
319  emerged isoforms in the house mouse lineage, i.e., detectable in at least one of the five house mouse natural
320 populations surveyed here but absent in outgroup species samples (Mus spretus and Mus spicilegus). We
321  identified 65,201 house mouse specific isoforms (derived from 13,207 distinct loci) across all the 40
322 surveyed house mouse individuals under laboratory breeding conditions (Supplementary Dataset S10). On
323  average, 4,661 (SD: 808) and 37,291 (SD: 2,741) recently emerged isoforms were found separately in each

324  house mouse individual and each house mouse population.

325  Our population-level analysis allows to apply a frequency-spectrum test to distinguish the effects of
326  selection (positive or negative) and drift on polymorphic characters. The general assumption is that the

327  number of individuals carrying a polymorphic variant depends only on the mutation rate and the fixation
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328 rate in an ideal population. The expected allele frequency spectrum under neutral conditions can be
329  calculated by coalescent or diffusion approaches, but this is affected by the demographic history of the
330 populations, as well as the effects of positive or negative selection on the variants. To avoid simulations
331  with more or less realistic assumptions, we use here a comparison with the SNP variants from the same
332  populations to assess whether isoforms might have a higher or lower rate of fixation. We have previously

333 used the same approach to estimate selection effects on newly arisen retrogenes '°.

334  We first focused on the SNP variants that were called based on the Illumina RNA-seq dataset from the same
335  set of individuals (see Methods). Among the 871,512 house mouse specific SNP variants, around 22.4% are
336  found in all three house mouse subspecies (Figure 5A), about 20.8% segregate in all five populations (Figure
337  5B), and 17.5% are found in all 40 analyzed house mouse individuals (Figure 5C). In contrast, of the 65,201
338  house mouse specific isoforms, only 8.1% are found in all the three subspecies, 3.6% in all the five
339  populations, and 0.07% in all the 40 tested house mouse individuals. Hence the fixation rate of newly

340  emerged isoforms is more than 200 times lower than that for SNPs in the same populations.

341  For neutrally segregating variants, one can expect that a fraction becomes fixed in a population-specific
342  manner. This is indeed observed for the SNP variants. We find accentuated frequency peaks at the intervals
343  ofindividuals’ numbers of 8 (each of the five populations), 24 (subspecies-level: M. m. domesticus), and 40
344  (species-level: Mus musculus) (Figure 5C). In contrast, such a pattern is not observed for the isoforms,
345  implying that most are not neutral. Instead, these recently derived transcripts show a more skewed pattern
346  (Figure 5C), with a surprisingly high fraction of them being individual private (Fraction 0.55 vs. 0.11;
347  Fisher’s exact test, p-value < 2.2 x 10™'®). Given that at our sequencing level, the number of detected isoforms
348  had reached saturation for each individual (Figure 1E), it is unlikely that the absences in other individuals
349  are due to failure of detection. Note that this pattern still holds when variants only found in more than two

350  animals were analyzed (Supplementary Figure S20).

351  Toavoid possible bias introduced by SNP variants from highly transcribed regions, as they were called from
352 the Illumina RNA-seq dataset *°, we retrieved another SNP dataset called from genomic sequencing data of
353  the same populations (equal number of individuals for each population, but different individuals) '°. We
354  analyzed this new SNP dataset in the same manner aforementioned, and found that the overall distribution
355  pattern of house mouse specific transcripts is robust to the choices of SNP datasets (Supplementary Figure
356  S21). A similar pattern is observed when focusing only on the ORF level via collapsing the isoforms forming

357  the identical ORFs (Supplementary Figure S21).
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359  Figure 5 Frequency distribution of house mouse specific transcripts and SNPs. Distribution of the frequency of
360 transcripts and RNA-Seq data-based SNPs across different house mouse (A) subspecies, (B) populations, and (C)
361 individuals. Inset in (C) represents an enlargement with a focus on the frequencies of transcripts and SNPs present in
362 larger numbers of individuals.

363

364  In a further analysis, we compared the transcript site frequency spectra with the corresponding frequency
365  spectra of different SNP categories (Supplementary Figure S22). On the basis of the functional effects
366  predicted using the Ensembl Variant Effect Predictor *', the SNP variants were classified into four distinct
367  groups: i) high-effect SNPs changing the coding gene structure (stop codons or splice sites), ii) moderate-
368  effect SNPs with nonsynonymous changes, iii) low-effect SNPs with synonymous changes, and iv)
369  modifier-effect SNPs occurring in noncoding regions. We used two-sided Kolmogorov—Smirnov tests to
370  compare the overall similarity of the distributions, and found the most similar distribution between
371  transcripts and the most constrained high-effect SNP category (Kolmogorov’s D statistic for transcripts vs.
372 high-effect SNPs: D = (.27; transcripts vs. moderate-effect SNPs: D = 0.42; transcripts vs. low-effect SNPs:
373 D =0.56; transcripts vs. modifier-effect SNPs: D = 0.54).
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374  This overall pattern is very different when one compares the frequency distribution of transcript variants
375  shared with at least one of the outgroup species. These are found on average in 21.4 individuals across the
376  populations, while the house mouse specific ones are found on average in 3.4 individuals (after
377  normalization on the numbers of assayed individuals in two groups, two-sided Wilcoxon rank sum test, p-
378  value < 2.2 x 107, Supplementary Analysis Results SAR3A). This suggests that isoforms shared across
379 larger evolutionary distances are subject to purifying selection and are therefore more likely to be retained

380 in the populations over time.

381  An in-depth analysis of expression levels of house mouse specific isoforms across different categories
382  showed that the isoforms that are found in few individuals only tend to be lowly expressed, with a trend that
383  isoforms with higher frequencies in the populations are expressed at a higher level (Supplementary Analysis

384  Results SAR3B-D).
385
386  Discussion

387  The huge diversity of transcriptomes that is created by alternative splicing has long been recognized. But a
388  systematic comparative analysis in a natural population context has only now become possible through full-
389 length RNA sequencing techniques. We used here PacBio Iso-Seq to characterize the full-length isoform
390  diversity of the brain transcriptomes in house mouse natural populations, resulting in the first and most
391  comprehensive full-length isoform category representation at a comparative population level to date. Via

224 our optimized approach improved the performance

392  implementation of a separate 5’cap selection step
393  to enrich genuine full-length transcripts. Most importantly, we applied a sequencing depth at which

394 saturation of different isoforms was achieved at the individual level.

395  Our overall results confirm the conclusions from previous studies that the diversity of alternatively spliced
396 transcripts surpasses the current annotation level, even of exceptionally well-curated genomes, such as the
397  one from the house mouse ''. We have detected double as many transcripts as are currently annotated and

398  we showed that this number keeps increasing when more individuals are sampled from the populations.

399  This unique dataset allowed us to tackle very general questions that arise in the context of the observation
400  ofan exuberant isoform diversity that has been found in many studies. How much is caused by noise in the
401  splicing machinery? Can environmental conditions significantly change the isoform diversity? How does

402  the diversity translate into adaptive novelty?

403
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404  The role of splicing noise

405  The saturation analysis via a rarefaction approach shows a strong contrast between isoforms that are detected
406  only as single reads, versus isoforms that are detected as at least two reads in a given individual. For the
407  former we reach by far no saturation, for the latter we see complete saturation at our sequencing depth. We
408  conclude from this that at least a large fraction of singleton reads reflect aberrant splicing that is not
409  repeatable. Given this clear distinction pattern, it is easy to simply remove the singleton fraction from the

410  further analysis - and we recommend that this should become a standard procedure in comparable studies.

411  Noise should be particularly evident for highly expressed transcripts and we see also an overall correlation
412  between expression level and isoform diversity. Intriguingly, however, our direct test for the role of
413  expression level on noise patterns within a given locus does not show a strong tendency that the highest
414  expressed alleles have more isoforms in the same individual, as it would be expected for a noise effect.
415  Instead, highly expressed alleles have actually relatively fewer additional isoforms than one would expect
416  atthat expression level, indicating a rather strict control of splicing efficiency. Hence, highly expressed loci,
417  which are often also evolutionary old genes, appear to be less sensitive to the influence of noise, probably
418  because their trans-regulation has been optimized **. This would also explain why they can maintain on

419  average more splice variants than low expressed, evolutionarily younger genes.
420
421  The role of plasticity

422 While it is well known that environmental conditions can influence splicing patterns (reviewed in %), we
423  were surprised to see that the simple shift of a given population from constant laboratory conditions to more
424  natural environmental conditions results already in a major change in isoform expression, including roughly

425  athird that are conserved across the taxa and are therefore likely to be functional (see below).

426  The factors that had changed between the environments were the ambient living temperature, the natural
427  day-light cycles and natural humidity. One would probably have considered these as relatively minor
428  changes. Interestingly, it has previously been shown that already small body temperature changes associated
429  with diurnal cycles can also cause alternative splicing patterns for thousands of transcripts ®. It appears that
430  splicing regulating proteins play a major role in this and we find indeed changes in transcript abundances
431  for most of these genes. Among the best studied regulators in this context are Srsf2 and Srsf10 84* We
432  found major expression changes for both Srsf2 and Srfs10 (Figure 4E), with Srfs2 showing the previously

433  described alternative splice patterns associated with temperature changes. However, it is known that the
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434  functions of Srfs2 are also broader, including regulating genomic stability, gene transcription, mRNA

435  stability, and translation *°.

436  We conclude from our data that there can indeed be a strong influence of environmental conditions on
437  isoform diversity, supporting the notion that environmental conditions need to be fully controlled to allow

438  adetailed comparison of isoform diversity between different taxa.
439
440  No signal for adaptive evolution

441  Another strength of our dataset lies in the possibility of systematic comparisons of fixation probabilities
442  between natural populations, subspecies, and species. Within such a framework, one can make inferences
443 on microevolutionary patterns that were not possible in previous comparative studies on alternative splicing
444  in more or less distantly related species '"'>**2, In particular, our data allow us to directly assess whether
445  the large isoform diversity generated through alternative splicing could be a major mechanism to create

446  adaptive genetic novelty **. Our data do not support such a model.

447  Although we found a vast number of newly arisen alternatively spliced transcripts, most of them occur only
448  in one or few individuals. Such a pattern is typical for polymorphic markers that evolve neutrally, or are
449  under negative selection. In the case of isoform diversity, they could also include variants generated by the
450 noise effects which would evidently not contribute to fixation patterns. We cannot fully exclude this
451  possibility, but given that we have restricted our analysis to high-confidence isoforms we consider the noise

452 component as small.

453 A direct comparison with the frequency distributions of different functional classes of SNPs from the same
454  individuals showed that the isoform distribution is closest to the distribution of highly constrained SNPs.
455  This implies that many novel isoforms are not even neutrally segregating, but are under negative selection.
456  This inference is also supported by the second observation in the comparison with the SNPs. For SNPs we
457  find patterns of random fixation for each population, typical for neutral markers over time, while such
458  patterns are absent for the isoform frequency distributions. Their overall fixation probability is at least a
459  factor of 200 lower than the one for the SNPs, implying that the negative selection is actually relatively
460  strong for most of them. This is also in line with the observation that they are usually only lowly expressed.
461  Only 45 out of 65,201 Mus musculus specific isoforms are fixed in all populations analyzed (Supplementary
462  Dataset S10). These could be rare adaptive fixations, but could also represent random fixations of slightly

463 deleterious variants.
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464  Most interestingly, there is a strong contrast in the frequency distribution of isoforms shared with at least
465  one outgroup species. They are shared by many more individuals, and the largest fraction is shared by all of
466  them. This indicates that they serve active functions for the individuals, i.e., are under stabilizing selection.
467  This observation also fits the findings of Leung et al. '' of some shared overall patterns of alternative splicing

468 between the mouse and the human cortex.

469  We note that more than half of the isoforms annotated in Ensembl are lineage-specific isoforms in our
470 analysis and therefore less likely to be broadly functional. It could be useful to annotate them as a different

471  class for future comparisons with other species.

472 Ferrandez-Peral et al. '* found a correlation between fast-evolving immune genes and high isoform diversity
473  in their analysis of isoform diversity in lymphoblastoid cell lines from primates. They suggested that this
474  could point to an adaptive role for isoforms, but this inference is too indirect to provide a direct link. Hence,

475  while this may still be true for the particular gene class of immune genes, it does not invalidate our findings.

476  Wright et al. * listed several examples of alternative splicing of individual genes that may have had a role
477  in adaptation or speciation events. But such individual cases cannot be used to support a model of frequent

478  adaptive evolution through alternative splicing.

479  Opverall, each individual harbors around 4,600 private isoforms. When most of them have a negative
480  selection coefficient, this could substantially impact the overall genetic load of the individual %. In humans,
481  mis-splicing events are causative for many disease phenotypes, including cancer, neurodegenerative
482  diseases, and muscular dystrophies >>*°. In a recent GWAS for human brain-related complex traits, Qi et al.
483  *®discovered cis QTLs affecting splicing in more than 12,000 genes, with a subset of them related to disease
484  phenotypes. This corroborates our conclusion that most reproduceable splicing variants are genetically
485  controlled and that they can have negative effects on the phenotype. But given our finding that isoform
486  diversity in populations is strongly influenced by environmental conditions, the main effect of the observed
487  high level of alternative splicing may be in conveying plastic responses of populations to changing

488 environments.
489

490
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491 Methods

492  Sample collection and RNA extraction

493 A total of 58 adult male mice individuals were sampled in this study (Supplementary Dataset S1), and all
494  these mice were derived from previously wild-caught founder mice, maintained in an outbreeding scheme
495 ', For the main experiment, eight adult individuals were chosen for each of the following populations
496  covering all three major subspecies of the house mouse (Mus musculus): Germany, France, and Iran
497  populations from Mus musculus domesticus, Kazakhstan population from Mus musculus musculus, and
498  Taiwan population from Mus musculus castaneus. We also included four adult individuals from each of the
499  two outgroup species, Mus spretus and Mus spicilegus. These mice were reared under standard lab
500 conditions, with well-controlled environmental factors: temperature 22°C, humidity (55-60%) and 12h:12h
501 light scheme '°. To test the plasticity effects of alternative splicing, we chose another ten adult individuals
502  derived from the same Mus musculus domesticus (Germany) population that were reared in semi-natural

503  enclosures, i.e., under fluctuating natural temperature (10-18°C), humidity (30-70%), and daylight cycles.

504  Mice were sacrificed at approximately ten weeks of age by CO, asphyxiation followed immediately by
505  cervical dislocation. The whole brain was dissected and immediately frozen in liquid nitrogen within 5
506  minutes post-mortem. Total RNAs were extracted and purified using RNeasy lipid tissue kits (Qiagen, The
507  Netherlands). RNA was quantified using Qubit Fluorometers (Invitrogen, Thermo Scientific, USA), and
508 RNA quality was assessed with 2100 Bioanalyzer (RNA Nanochip, Agilent Technologies, USA). All
509 samples were with RIN values above 8.5 and then used for both PacBio and Illumina transcriptome

510  sequencing at the Max Planck-Genome-Centre Cologne.
511
512  PacBio Iso-Seq and Illumina RNA-Seq library preparation and sequencing

513  Our initial experimental tests showed that the TeloPrime full length cDNA amplification kit, which
514  selectively synthesizes cDNA molecules from mRNAs carrying a 5° cap, could provide a better solution to
515  enrich for actual full-length transcripts, compared to the standard PacBio cDNA library preparation protocol
516  (Supplementary Text of Methods). Hence, the TeloPrime full-length cDNA amplification kit v2 (Lexogen
517  GmbH) was utilized to construct PacBio IsoSeq cDNA libraries. One pg total RNA from each individual
518  was used as input, and double-strand cDNA was produced by following the manufacturer’s instructions,
519  except that an alternative oligo-dT primer from the SMARTer PCR c¢cDNA synthesis kit (Clontech

520  Laboratories, Inc.), which also included a random 10mer sequence as a unique molecule identifier (UMI)
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521  after each sequence. The cDNAs were not size-selected, and PacBio libraries were prepared with the
522 SMRTbell Template Prep Kit 1.0 (Pacific Biosciences). To get a similar number of clustered high-
523  confidence isoforms, each library was sequenced on three 1IM-ZMW SMRT cells on the PacBio Sequel I
524  for the main experiment, and one 8M-ZMW SMRT cell on the PacBio Sequel II platform for the plasticity
525  effect experiment, respectively (Supplementary Dataset S3A and S3C).

526  Poly(A) RNA from each sample was enriched from 1 pg total RNA by the NEBNext® Poly(A) mRNA
527  Magnetic Isolation Module (Catalog #: E7490, New England Biolabs Inc.). RNA-Seq libraries were
528  prepared using NEBNext Ultra™ II Directional RNA Library Prep Kit for [llumina (Catalog #: E7760, New
529  England Biolabs Inc.), according to manufacturer’s instructions. A total of eleven PCR cycles were applied
530 to enrich library concentration. Sequencing-by-synthesis was done at the HiSeq3000 system in paired-end
531 mode 2 x 150bp. Raw sequencing outputs were converted to fastq files with bcl2fastq v2.17.1.14. An
532  average of 28.2 (SD: 3.3) and 56.7 (SD: 2.7) million raw fastq read pairs were generated for each sample in
533  the main experiment and the plasticity effect experiment, separately (Supplementary Dataset S3B and S3D).

534
535  Iso-Seq read QC and data processing

536  We analyzed the raw sub-reads for each SMRT cell separately following the IsoSeq3 pipeline (v3.4.0;

537  https://github.com/PacificBiosciences/IsoSeq). Circular consensus sequences (CCS) were generated from
538  sub-reads using the CCS module in polish mode (v6.0.0; --minPasses 3 --minLength 50 --maxLength
539 1000000 --minPredictedAccuracy 0.99) of the IsoSeq3 pipeline, and the CCS reads generated in three
540 SMRT cells for the same sample were merged. We trimmed cDNA primers (5’
541 TGGATTGATATGTAATACGACTCACTATAG; 3> GTACTCTGCGTTGATACCACTGCTT) and
542  orientated the CCS reads using the lima program with the specialized IsoSeq mode (v2.0.0; --isoseq). The
543  10mer UMI following each CCS read was tagged and removed using the tag module of the IsoSeq3 pipeline
544  (--design T-10U). Following this, we identified the processed CCS reads as full-length and non-chimeric
545  (FLNC), based on the presence of a ploy(A) tail and absence of concatemer using the refine module of the
546  IsoSeq3 pipeline (--require-polya). We further performed PCR deduplication based on the UMI tag
547  information using the dedup module of the IsoSeq3 pipeline (default parameters). After this deduplication
548  step, only one consensus FLNC sequence per founder molecule in the sample was kept. We then performed
549  de novo clustering of the above reads using the cluster module of the IsoSeq3 pipeline, and kept only the
550 high-confidence isoforms supported by at least 2 FLNC reads for the main analysis. In addition, the isoforms
551  supporting by singleton FLNC reads were utilized for the part of analysis of the noise influence on isoform

552  diversity (see below).
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553  We aligned these isoforms of each sample to the GRCm39/mm39 reference genome sequence using the
554  minimap2 (v2.24-r1122; -ax splice:hq -uf --secondary=no -C5 -06,24 -B4) *’, with parameter setting
555  following the best practice of Cupcake pipeline *®. The alignment bam files were further sorted using the
556  samtools program v1.9 *. We collapsed redundant transcript models for each sample based on the above
557  sorted alignment coordinate information using the collapse module of the TAMA program (-d merge dup -
558  x capped -m 5 -a 1000 -z 30 -sj sj_priority) . The rationales for defining redundant transcript models are
559  shown in Supplementary Text of Methods. Finally, isoforms across all 48 samples in the main experiment
560  were merged into a single non-redundant transcriptome using the merge module of the TAMA program (-d

561  merge dup-m 5 -a 1000 -z 30) *, with the same parameter setting as the above collapse step.
562
563  RNA-Seq read QC and data processing

564  We trimmed and filtered the low-quality raw fastq reads for each sample separately using the fastp program
565  (v0.20.0; --cut_front --average qual 20 --length_required 50) ¢!, and only included the paired-end reads with
566  a minimum length of 50bp and average quality score of 20 for further analysis.

567  The filtered fastq reads were aligned to mouse GRCm39/mm39 reference genome sequence with STAR
568 aligner v2.7.0e %, taking the mouse gene annotation in Ensembl v103 *° into account at the stage of building
569  the genome index (--runMode genomeGenerate --sjdbOverhang 149). The STAR mapping procedure was
570  performed in two-pass mode, and some of the filtering parameters were tweaked (personal communication
571  with STAR developer; --runMode alignReads —twopassMode Basic --outFilterMismatchNmax 30 --
572 scoreDelOpen -1 --scoreDelBase -1 --scorelnsOpen -1 --scorelnsBase -1 --seedSearchStartLmax 25 --
573  winAnchorMultimapNmax 100), in order to compensate the sequence divergences of individuals from

574  various populations and species "

. With this optimized mapping pipeline, a similar alignment rate was
575  reached for all the samples (Supplementary Dataset S3B and 3D). The alignment bam files were taken for

576  further analysis.
577
578  SNP variants calling based on RNA-Seq dataset

579  We followed the general GATK version 4 Best Practices to call genetic variants from Illumina RNA-seq
580  data. We first sorted the above alignment bam data using samtools v1.9 *°, and marked duplicates by using

581  PICARD v2.8.0 (http://broadinstitute.github.io/picard). Reads with N in the cigar were split into multiple

582  supplementary alignments and hard clips mismatching overhangs using the SplitNCigarReads function in
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583  GATK v4.1.9. By using BaseRecalibrator and ApplyBQSR functions in GATK, we further recalibrated
584  base quality scores with SNP variants that were called with the genomic sequencing dataset of the mice
585 individuals from the same populations '’ to get analysis-ready reads. Following, we called raw genetic
586  variants for each individual using the HaplotypeCaller function in GATK, and jointly genotyped genetic
587  variants for all the individuals using the GenotypeGVCFs function. We only retained genetic variants that
588  passed the hard filter “QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum < -
589 8.0 SOR > 3.0” for further analysis .

590
591  Iso-Seq transcriptome classification and filtering

592  We performed the quality control analysis for the above merged non-redundant PacBio Iso-Seq
593 transcriptome using SQANTI3 v4.2 ¥ with the input datasets of Ensembl v103 ** GRCm39/mm39 reference
594  genome and gene annotation, FLNC read counts, Isoform expression levels and STAR output alignment
595  bam files and splice junction files from RNA-Seq short reads, mouse transcription start sites (TSS) collected

596  in refTSS database v3.1 , and curated set of poly(A) sites and poly(A) motifs in PolyASite portal v2.0 .

597  We filtered out isoforms of potential artifacts mainly by following *'. Mono-exonic transcripts were
598  excluded, as they tend more likely to be experimental or technical artifacts *'. Isoforms with unreliable 3’end
599  because of a possible intrapriming event (intrapriming rate above 0.6) were also removed from the dataset.
600  We kept the remaining isoforms that met both of the following criteria: 1) no junction is not labeled as RT-
601  Switching; 2) all junctions are either canonical (GT/AG; GC/AG; AT/AC) or supported by at least 3
602  spanning reads based on STAR junction output file. All isoforms that passed the above filters were taken

603  for further analysis.

604  Given their matching status to the Ensembl mouse transcriptome v103 *°, the above transcripts were
605  classified into eight distinct categories using SQANTI3 *', as depicted in Figure 2A: i) Full Splice Match
606  (FSM, matching perfectly to a known transcript); ii) Incomplete Splice Match (ISM, matching to a
607  subsection of a known transcript); iii) Novel In Category (NIC, with known splice sites but novel splice
608  junctions); iv) Novel Not in Category (NNC, with at least one unannotated splice site); v) Fusion (F, fusion
609  of adjacent transcripts); vi) Genic (G, overlapping with intron); vii) Antisense (A, on the antisense strand of
610  an annotated gene); viii) Intergenic (I, within the intergenic region). The transcripts matching perfectly to a
611  whole (FSM) or subsection (ISM) of reference annotated transcripts are designated known transcripts, and

612  the others as novel transcripts.
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613  We evaluated the reliability of isoforms from each category, on the basis of reference annotation and
614  empirical information from three distinct aspects separately (Supplementary Text on Methods and Figure
615  S6): 1) Transcription start site (TSS); ii) Transcription Termination Site (TTS); iii) splice junction (SJ). In
616  comparison to the well-support FSM transcripts, the transcripts from other categories show reduced
617  confidence levels in terms of TSS (Supplementary Figure S6B), but no reduction for TTS and SJ
618  (Supplementary Figure S6D and 6E). This might hint at a failure to capture accurate TSS for those
619 transcripts *'. For instance, it is still possible that some ISM transcripts came from partial fragments, due to
620  the imperfect targeting of 5°-cap or the degradation of transcripts in the later steps. To address this concern,

621  we further excluded the non-FSM transcripts without support for TSSs (Supplementary Figure S6C).
622
623  Feature characterization of all the transcripts

624  We characterized the features of all the detected transcripts from seven different aspects: i) exon number;
625 i) transcript length; iii) CDS length; iv) fraction of coding transcripts; v) fraction of NMD transcripts; vi)
626  the number of individuals with expression; vii) transcript expression level. All these feature results were

627  extracted from the output of SQANTI3 analysis.

628  In the SQANTI3 pipeline *', the potential coding capacity and ORFs from the transcript sequences were
629  predicted using GeneMarkS-T (GMST) algorithm ®°. An NMD transcript is designated if there's a predicted
630  ORF, and the CDS ends at least 50bp before the last junction for the respective transcript. The expression
631  level of each transcript for each sample was computed, on the basis of the number of supported FLNC reads,
632  and normalized in the unit of TPM (transcript per million). Transcripts with expression in respective tissues
633  were defined as the ones with non-zero TPM values. In addition, we quantified the expression of each
634  transcript using another program named Kallisto v0.46.2 ®, for which the expression quantification was
635  based on the alignment of Illumina RNA-Seq data to the merged isoform dataset derived from PacBio Iso-

636  Seq data, as shown in the above text.
637
638  Analysis of local AS events

639  We used the SUPPA2 program ** to identify local alternative splicing (AS) events in the transcriptome.
640  These local AS events are categorized into seven groups, including skipped exon (SE), retained intron (RI),
641  alternative 5’ splice site (AS), alternative 3’ splice site (A3), mutually exclusive exon (MX), alternative first

642  exon (AFE), and alternative last exon (ALE).
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643  For the transcripts with predicted ORFs, we analyzed how the local AS events change the ORF structures.
644  In case the start codon position of the ORF lands in the region of a local AS event (Figure 4C), the focal AS
645  event is defined to cause a change in the respective coding sequence. On the other hand, in case the start

646  codon position of the ORF falls downstream of the local AS event, it does not influence the ORF structure.
647
648  Rarefaction and subsampling

649  We investigated whether the PacBio Iso-Seq data provide sufficient coverage to detect all the isoform
650  diversity for the given sequencing depth of a single individual and the number of sampled individuals in the
651  main experiment. Concerning the sequencing depth at the individual level, we randomly selected one sample
652  from each of the seven assayed populations, and subsampled portions of FLNC reads from each sample
653  chosen for 100 times, ranging from 5% to 100%, at 5% intervals, and computed the fraction and variance
654  of detected isoforms for each round of subsampling. Regarding the number of sampled individuals, we
655  subsampled subsets of all the 48 assayed individuals for 100 times, ranging from 2 to 48, at an interval of 2,

656  and computed the fraction and variance of detected isoforms for each round of subsampling.

657 We tested two alternative models to determine whether the number of detected isoforms would continue to

658  increase or has approached saturation ¢’

: a generalized linear model with logarithmic behavior (ever-
659  increasing) or a self-starting nonlinear regression model (saturating). The best fit was decided based on the
660  minimum BIC value between the two models, and the saturating model was the best fit for both lines of
661  analysis. The sequencing depth at the individual level has reached saturation with the given sequencing data,
662  while the number of sampled individuals has not. All the analyses were performed in R v4.2.3, using the

663  functions glm, nls, SSasymp, and BI from the “stats” package .
664
665  Test on the influence of noise on isoform diversity

666  We analyzed the influence of noise on isoform diversity using two different tests. For the first test, we
667  extracted the list of isoforms that were supported by singleton FLNC reads in the de novo clustering step,
668  and filter out potential artifacts using the same procedure as shown above. We performed the rarefaction
669  analysis to test whether the number of singleton-supported isoforms has reached saturation with the
670  sequencing depth at individual level, following the aforementioned pipeline. We further compared the
671  saturation curves between the isoforms represented by singleton FLNC read and those represented by two

672 or more FLNC reads.

25


https://doi.org/10.1101/2024.01.03.573993
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.03.573993; this version posted January 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

673  For the second test, we tested whether genes that express one dominant isoform produce on average more
674  additional isoforms when they are higher expressed in a given individual, for the isoform dataset supported
675 by two or more FLNC reads. We selected 448 genes that fulfil the following criteria: 1) more than 10
676  isoforms; 2) the average expression level (in the unit of TPM) for the top expressed transcript (T) is at least
677  five times higher than the cumulative expression level for the other (O) isoforms from the same locus: (T / X
678  (O) = 5; averaged across all individuals from the ingroup populations, i.e., excluding Mus spretus and Mus
679  spicilegus, because too many genes show major overall expression changes between the species). For
680  comparison, we selected a set of 3,450 genes with more than 10 isoforms, without considering their
681  expression level properties. We exploited one-sided Kendall's tau tests to calculate the significance levels
682  on the positive correlation between isoform number and the top expression level between individuals, and

683  compared the fraction of genes with significant correlation (p-value < 0.05) between the two gene sets.
684
685  Test on the plasticity effect on isoform diversity

686  Following the above procedure, we generated the list of filtered high-confidence isoform and SNP variants
687  forall the 58 mice individuals under both laboratory and natural environmental conditions. The SNP variants
688  were called from the [llumina RNA-Seq dataset generated in this study (shown in the above text), for which
689  the same set of mice individuals was used. To reduce computation complexity, we performed LD pruning

690  on the SNP data set by using PLINK v1.90b4.6 ®, removing one of a pair of SNPs with LD =0.2 in sliding
691  window of 500 SNPs and step wise of 100 SNPs.

692  Firstly, we performed principal component analysis (PCA) on the individual SNP and isoform landscape
693  using the R package “ggfortify” v0.4.16. The PC-score of the top PCs-axes was extracted and analyzed
694  according to species/subspecies and population differentiation across all samples. We used linear models
695 implemented in the R package “stats” for analysis and conducted pair-wise post-hoc comparison with

696  bonferroni correction for multiple testing in case of significant main effects.

697  Secondly, we built a phylogenetic tree for all the assayed population using the R package “ape” v5.7-1 7°,
698  Dbased on the presence matrix of fixed (i.e., present in 100% of the individuals) or almost-fixed (i.e., present
699  in >80% of the individuals) isoform and SNP variants in each population. Euclidean distance was used as
700 the distance measure between each pair of populations, and the neighbor-joining tree estimation function
701  was used to build the phylogenetic relations. The boot.phylo function implemented in the same R package
702  was used to perform 1,000 bootstrap replications, and population split nodes of high confidence were taken

703 as the ones with at least 70% bootstrap support values.
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704  We further performed two lines of analysis to bypass the possible bias: 1) excluding the isoforms derived
705  from loci with significant expression levels (FDR < 0.05) between the GE and NE populations; 2)
706  controlling the sequencing depth via randomly choosing the same number of PacBio FLNC reads from the
707  datasets of other individuals in the main experiment as the average in the NE datasets and the same number
708  of Illumina RNA-Seq reads from the NE datasets as the average in the datasets of main experiment. The
709  same procedures were applied to call high-confidence isoform and SNP variants and to perform the

710  population divergence analysis.
711
712 Frequency spectrum analysis of house mouse specific transcripts

713  We defined house mouse specific transcripts (n = 65,201) as the ones that are detectable in the house mouse
714  natural populations, but absent in the outgroup species samples. In addition, we defined a set of conserved
715  transcripts (n = 39,537), i.e., present both in the house mouse and outgroup species samples. We compared
716  the transcript density with respect to the number of individuals with an expression between two groups of
717  transcripts. The individual number sizes for two groups of transcripts were normalized on the basis of the

718  total number of tested individuals (n = 48).

719  We retrieved two SNP datasets for comparison analysis: one was called based on the Illumina RNA-Seq
720  datasets generated in this study (same set of individuals for Iso-Seq data to generate transcripts, as shown
721  above), and the other from genomic sequencing data of the same populations (equal number of individuals
722 for each population, but different individuals) '’. For both datasets, we only kept the house mouse specific
723  SNP variants with unambiguous ancestral states in outgroup species (i.e., the same homozygous genotype
724  for 2 outgroup species), while with alternative alleles in house mouse individuals. In addition, we generated
725  ahouse mouse specific ORF dataset, by collapsing the transcripts forming the identical ORFs. For all four
726  types of variants (Transcripts, two types of SNPs, ORFs), we calculated their frequency distribution at three
727  different levels (subspecies, population, and individual) by counting individuals with positive evidence of

728  each variant, without distinguishing the homozygous and heterozygous status.

729  For the former SNP dataset, we further predicted the functional effects of each SNP by using Ensembl VEP
730  v103 *' based on the gene annotation data from Ensembl version 103. Consistent with Ensembl variation
731  annotation *', we categorized these SNPs into four groups given their predicted impacts: i) High effect -
732 SNPs causing the gain/loss of start/stop codon or change of the splicing acceptor/donor sites; ii) Moderate
733 effect - SNPs resulting in a different amino acid sequence; iii) Low effect - SNPs occurring within the region

734  of the splice site, changing the final codon of an incompletely annotated transcript, changing the bases of
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735  start/stop codon (while start/terminator remains), or where there is no resulting change to the encoded amino
736  acid; iv) Modifier effect - SNPs occurring within the genes’ non-coding regions (e.g., UTR and intron). The
737  frequency spectrum of house mouse specific transcripts was further compared with the site frequency
738  spectrum of SNPs from the four above-defined categories. We quantified the distances between spectrum
739  distributions by using two-sided Kolmogorov-Smirnov tests, and calculated the statistical significances of

740  the fraction of individual private variants by using Fisher’s exact tests.
741
742 Data availability

743  The raw Illumina RNA-Seq data and PacBio Iso-Seq data generated in this study have been submitted to
744  the European Nucleotide Archive (ENA; https:/www.ebi.ac.uk/ena) under study accession number
745  PRJEB54000 and PRJEB53988 (the main experiment), PRIEB67296 and PRIEB67298 (the plasticity test

746  experiment), and PRIEB54001 (the Iso-Seq protocol optimization experiment). Alignment bam files, GTF
747  track data, and SNP VCF files, and supplementary datasets are stored at the ftp site:

748  https://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/mouse_brain_isoform/.  All  the  essential

749  computing codes, parameters, and related data sets are available at GitLab:

750  https://gitlab.gwdg.de/wenyu.zhang/mouse brain_transcriptome/.
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