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Abstract 27 

Most eukaryotic genes are expressed in multiple RNA isoforms representing variants of the respective genes. 28 

Full-length RNA sequencing techniques have uncovered an extreme diversity of RNA isoforms, but a subset 29 

of them might be generated by noise in the splicing machinery. For some genes, it has been shown that 30 

environmental influences can lead to isoform switching, implying that isoform diversity could also be 31 

subject to plastic changes in response to environmental conditions. Further, it has been suggested that 32 

isoform diversity could be a basis for adaptive evolutionary novelty. However, explicit tests of all three of 33 

these assumptions are missing. To address these questions, we have analyzed here the variation of full-34 

length brain RNA transcripts from natural populations and subspecies of Mus musculus, as well as the 35 

outgroup species Mus spretus and Mus spicilegus. We find a substantial influence of splicing noise in 36 

generating rare isoform variants. However, after filtering these out, we reliably identify more than 117,000 37 

distinct isoforms in the dataset, about doubling the number of the currently annotated set. Comparisons with 38 

individuals raised under different environmental conditions show a very strong plasticity effect in shaping 39 

isoform expression, including major isoform switching in proteins that bind to splice site enhancers. Using 40 

site frequency spectra tests in comparison to SNP data from the same individuals, we find no evidence for 41 

lineage-specific isoforms to become frequently fixed. We conclude that lineage-specific isoforms do not 42 

contribute much to novel adaptations, either because they are generated mainly through noise in the splicing 43 

machinery or are subject to negative selection. However, isoform diversity is strongly shaped by 44 

environmental conditions, both for lineage-specific isoforms, as well as conserved ones. Therefore, the 45 

functional role of isoform diversity may mostly be related to trigger plastic responses to environmental 46 

changes. 47 

Key words: Alternative isoforms, house mouse, natural population, full-length RNA sequencing, plasticity, 48 

splicing noise, site-frequency spectra, natural selection 49 

 50 

Introduction 51 

The ability to generate multiple RNA isoforms (or transcripts) from the same gene increases vastly the 52 

complexity of eukaryotic transcriptomes and it has been suggested that this may give rise to the evolution 53 

of phenotypic diversity and environmental adaptations 1-4. Isoform switching can also be triggered through 54 

environmental temperature changes, for example in genes involved in sex-determination in reptiles 5 or 55 

flowering time and stress in plants 6,7. Also, homoiotherm mammals can regulate splicing of some genes in 56 
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response to small changes in body temperature 8,9. There are also a number of well-studied cases where the 57 

emergence of isoforms could be linked to evolutionary changes (see 4 for the most recent review).  58 

The recent development of long-read single-molecule sequencing technologies has enabled the capture of 59 

the full-length isoform diversity 10, further facilitating the comparative analysis of alternative isoforms at 60 

the global transcript level in different species 11,12.  This has revealed a very high diversity of isoforms but 61 

it remains open how much of this is due to noise in the splicing machinery. Further, given that there are 62 

well-studied cases where environmental effects, such as temperature, can functionally regulate alternative 63 

splicing 9,13, a systematic assessment of the role of environment on isoform diversity is nonetheless missing. 64 

Noise and plasticity impact also our understanding of the evolutionary dynamics of recently emerged 65 

alternative isoforms, especially at the very early evolutionary stage when they are polymorphic within 66 

populations. It has been suggested that most of these isoforms may be neutral 4, but direct tests of this 67 

assumption are missing so far. We are addressing these questions here on the basis of samples from the 68 

natural diversity of house mouse populations, subspecies and species. 69 

Owing to its well-defined evolutionary history 14,15, the house mouse (Mus musculus) has been shown as a 70 

particularly suitable model system for studying the evolutionary dynamics of polymorphisms and recently 71 

originated genetic elements in natural populations. Currently, three major lineages of the house mouse, 72 

which diverged roughly half a million years ago, are distinguished as subspecies 16: the Western European 73 

house mouse Mus musculus domesticus, the Eastern European house mouse Mus musculus musculus, and 74 

the Southeast Asian house mouse Mus musculus castaneus. With a divergence time of fewer than 2 million 75 

years, closely related outgroup species (e.g., Mus spretus) are also available to this model system 16. The 76 

populations are subject to fast adaptations, as evidenced by the detection of high frequencies of selective 77 

sweeps and adaptative introgression 17,18. We have also previously used the house mouse system to study 78 

the evolutionary pattern of gene retrocopy variants 19,20, which has shown that new retrocopies of genes are 79 

usually subject to negative selection. 80 

Here we use brain as the source tissue for the transcriptome analysis, given that fact that it harbors the largest 81 

diversity of cell types with an overall transcript diversity comparable to testis 21, but with many more of 82 

these transcripts being likely to be functional in the brain compared to the testis, where there is a lot of 83 

expression due to a transcriptionally permissive chromatin environment, especially in late spermatogenic 84 

cell types 22. We used an optimized protocol to capture predominantly full-length transcripts and validated 85 

them with existing data. The sequencing depth was chosen to ensure that the diversity of all transcripts and 86 

isoforms was captured in each individual when excluding all singletons that are likely to be generated by 87 

noise. A comparison with mice raised under different environmental conditions indicates that plasticity can 88 
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indeed substantially shape the isoform pattern. Using comparisons with SNP frequency distributions from 89 

Illumina RNA-Seq dataset of the same individuals, we show that the distribution of species-specific 90 

isoforms is strongly skewed towards being rarer among individuals than neutral SNPs. This indicates that 91 

they are either mostly generated by noise effects, or are subject to negative selection. Hence, while the 92 

population-level analysis does not support the notion that alternative splicing is a major contributor to the 93 

generation of adaptive novelty at the population level, it turns out as a major player in plastic responses to 94 

environmental conditions. 95 

 96 

Results 97 

An optimized approach to accurately detect full-length transcript transcriptome 98 

We analyzed the alternative isoform landscape in the whole brain transcriptomes for forty-eight unrelated 99 

outbred wild-type mice individuals raised under tightly controlled laboratory conditions (Supplementary 100 

Dataset S1A and Dataset S2). They included forty house mouse (Mus musculus) individuals derived from 101 

five natural populations in the three major subspecies (M. m. domesticus, M. m. musculus, and M. m. 102 

castaneus), as well as eight individuals from two closely related outgroup species (Mus spicilegus and Mus 103 

spretus) (Figure 1A). Given that the implementation of 59cap selection can significantly improve the 104 

enrichment of genuine full-length transcripts 23,24, we developed an optimized cDNA enrichment protocol 105 

with 59cap selection for PacBio Iso-Seq library construction (Supplementary Text on Methods). To define 106 

high-quality transcriptomes, we performed both PacBio Iso-Seq and Illumina RNA-Seq for each brain 107 

sample (Figure 1C). Ten additional animals reared under different environmental conditions were sequenced 108 

with the same technique for the analysis of the role of plasticity (see below). Since we found a major 109 

influence of environmental conditions on the isoform pattern (see below), we used only the data from the 110 

48 individuals that were raised under controlled laboratory conditions for the main comparative part of the 111 

analysis. The data for the ten additional individuals were only used for the plasticity comparisons. 112 

An overview of the methodology to generate the high-quality transcriptome is given in Supplementary 113 

Figure S1 (see Methods). In brief, the raw PacBio Iso-Seq subreads were processed to produce circular 114 

consensus sequences (CCSs), and further refined to generate full-length non-chimeric (FLNC) reads. The 115 

FLNC reads were subject to de novo clustering to generate non-redundant isoforms. We implemented 116 

optimized parameters to align the unique isoforms of each sample to the GRCm39/mm39 reference genome, 117 

and to collapse and merge the transcript models across all 48 samples in the main experiment into a single 118 
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non-redundant transcriptome. We further refined a computational pipeline to filter out low-quality 119 

transcripts and those of potential artifacts (see Methods). 120 

 121 

Figure 1 Overview of the study system. (A) Phylogenetic relationships among the house mouse populations and 122 

outgroup species (branch lengths not scaled). Abbreviation for population labels: 1, Germany (GE); 2, France (FR); 3, 123 

Iran (IR); 4, Kazakhstan (KA); 5, Taiwan (TA), I, Slovakia (SL), and R, Spain (SP). Judged from the evolutionary 124 

distances at the overall level of nucleotide difference, the distance of the Mus musculus subspecies is at the level of the 125 

human-chimpanzee divergence and the distance of the Mus species used here corresponds to the human-gibbon 126 

divergence 19,25,26. (B) Depiction of the environmental conditions of mouse breeding. The 48 sampled mice from all 127 

seven populations in the main experiment were raised under tightly controlled laboratory conditions, and additional 10 128 

sampled mice derived from GE population were under semi-natural environment. (C) Sequencing scheme in this study. 129 

Both PacBio Iso-Seq and Illumina RNA-Seq data were generated for each mouse brain sample. (D) and (E) show the 130 

relative fractions of detected isoforms supported with singleton FLNC read and two or more FLNC reads with 131 

increasing random resampling Iso-Seq sequencing depth, respectively. The resampling sequencing depths were 132 

selected from 0.05 to 1, with a step size 0.05. The blue area shows the prediction after doubling the current Iso-Seq 133 

sequencing depth. The illustration is based on one randomly selected individual (GE3) in the GE population, and the 134 

results for individuals from other populations can be found in Supplementary Figure S11 and S12. (F) Relative 135 
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fractions of detected isoforms with increasing random resampling sample sizes of individuals in the main experiment. 136 

The resampling sequencing sizes were selected from 2 to 48, with a step size of 2. The blue area shows the prediction 137 

after doubling the current sampling of mice individuals. The bar plots in the above panels from (D) to (F) show the 138 

standard deviation (SD) of each resampling analysis. 139 

 140 

Estimating the influence of noise on isoform diversity 141 

Since biochemical systems are never perfect, one should expect a certain number of errors in the splice 142 

reactions 27,28. This could be considered as noise, rather than being regulated through genetic polymorphisms. 143 

We used two tests to assess the impact of such splicing errors to isoform diversity. 144 

For the first test, we compared isoforms represented by singleton FLNC reads with those represented by 145 

two or more FLNC reads (called <high-confidence= in the following). In our data we find 324,960 singleton 146 

FLNC reads supported isoforms (Supplementary Dataset S4) versus 117,728 supported by two or more 147 

FLNC reads across all 48 individuals (Supplementary Datasets S5). Random resampling analysis of the 148 

sequencing depth at the individual level shows that the number of singletons does not reach saturation 149 

(Figure 1D), in contrast to those with two or more reads (Figure 1E). Because of this difference in saturation 150 

behavior, we conclude that singletons are mostly the product of splicing errors, which is consistent with the 151 

conclusion in previous studies 27,29. Interestingly, random resampling analysis of individuals9 subsamples 152 

shows that the number of detectable high-confidence transcripts remained unsaturated with the number of 153 

sampled individuals in our dataset (Figure 1F). That is to say, many more new isoforms are expected to 154 

show up when more individuals are analyzed, suggesting that they are more likely generated by genetic 155 

polymorphisms between the individuals than by noise. 156 

In the second test, we asked whether genes that express one dominant isoform produce on average more 157 

additional isoforms when they are higher expressed in a given individual, with a special focus on the high-158 

confidence isoforms. To test this, we selected a subset of genes with more than 10 isoforms where the 159 

average expression level for the top expressed transcript (T) is at least five times higher than the cumulative 160 

expression level for the other (O) isoforms from the same locus: (T / S (O) g 5). We find 448 genes that 161 

fulfill this condition, with isoform numbers ranging from 11 to 59 (Supplementary Dataset S6). Among 162 

them, 48% (214) show a significant positive correlation between isoform number and the top expression 163 

level between individuals (one-sided Kendall´s tau test, p-value < 0.05). This could suggest an influence of 164 

splicing error noise, but this proportion is actually lower than the corresponding values for the whole dataset. 165 

When including all the 3,450 genes with more than 10 isoforms in the correlation analysis, we find 63% 166 

(2,165) with significant positive correlation (one-sided Kendall´s tau test, p-value < 0.05). This analysis 167 
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suggests therefore that isoform diversity tends to rise with expression level (see also below for an extended 168 

analysis of this point). But it does not support that this effect is driven by noise, given that it is lower for 169 

genes with the highest expression level contrasts. 170 

Based on these two tests, we suggest that by excluding the singleton reads from our further analysis, we are 171 

excluding most of the effects of splicing noise. Evidently, it is still possible that reads that occur more than 172 

once are generated through noise effects due to the chromatin context in which they are transcribed or special 173 

structures of their RNAs. However, in view of our saturation analysis and the analysis of the genes with 174 

highly contrasting expression alleles, we consider the set of high-confidence isoforms to be at least highly 175 

enriched in variants that are not simply generated by errors in the splicing machinery.  176 

With the filter of calling only isoforms that were found at least twice in a given individual, we find a total 177 

of 117,728 high-confidence distinct transcripts derived from 15,012 distinct loci (Supplementary Dataset 178 

S5), which were used for the following analyses. The reliability of these high-confidence isoforms was 179 

further validated on the basis of reference annotation and empirical information (Supplementary Figure S6). 180 

 181 

Comparison to the reference annotation 182 

Among the 117,728 high-confidence transcripts, 55.4% (65,201) are lineage-specific for the house mouse 183 

and 33.6% (39,537) are conserved in both the house mouse and the outgroups (the remainder are specific to 184 

the outgroups only, Supplementary Dataset S5). Given that only the conserved isoforms are likely to have 185 

a functional role (see further analysis below), we restrict the comparison to the reference annotation to the 186 

set of conserved isoforms (Figure 2). A comparison to the full set of high-confidence isoforms is presented 187 

in Supplementary Analysis Results SAR1.  188 

To further characterize the features of the conserved transcripts, we compared them with those annotated in 189 

the GRCm39/mm39 reference genome from Ensembl v103 30, which was built largely based on a single 190 

C57BL/6 lab mouse inbred strain. On the basis of their alignment status to the Ensembl mouse transcriptome 191 

annotation, these transcripts were classified into eight distinct structural categories using SQANTI3 31 192 

(Figure 2A): i) full splice match (FSM); ii) incomplete splice match (ISM); iii) novel in category (NIC); iv) 193 

novel not in category (NNC); v) Fusion (F); vi) genic (G); vii) antisense (A); viii) intergenic(I). In total, we 194 

found 69.4% of the 39,537 distinct isoforms matching perfectly to a whole (FSM, 54.9%) or subsection 195 

(ISM, 14.5%) of a reference annotated transcript, designated as known transcripts following the convention 196 

in 11,32. The remaining 30.6% of the identified isoforms are novel transcripts, currently not annotated in the 197 

Ensembl transcriptome (Figure 2B).  198 
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 199 

Figure 2 Characterization of the detected conserved isoforms. The conserved isoforms are defined as those detected 200 

in both the house mouse and outgroups. (A) Types and illustrations of identified isoforms. (B) Fraction distribution of 201 

isoform structural categories. (C)-(H) show the distributions of isoform types with respect to distinct features. 202 

Transcripts with expression were defined as the ones with non-zero TPM values, and the expression levels were 203 

computed on the basis of the number of supported FLNC reads using SQANTI3 31. Boxes represent the interquartile 204 

range (IQR, distance between the first and third quartiles), with white dots (or black lines) in the middle to denote the 205 

median. The boundaries of the whiskers (also the ranges of violins for panels C-E) are based on the 1.5 IQR values for 206 

both sides; black dots in G and H represent outliers. 207 

 208 

In comparison to known transcripts (FSM, ISM - see Figure 2A for acronyms), novel transcripts deriving 209 

from annotated exonic regions (NIC, NNC, F - which constitute the bulk of the new transcripts) show 210 

comparable exon numbers (Figure 2C), transcript length (Figure 2D), and CDS length (Figure 2E). The 211 

novel transcripts from intronic (G) and unannotated gene loci (A, I) show generally lower values for all 212 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.03.573993doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.03.573993
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

these features. Notably, all the novel transcripts with coding potential have a significantly higher probability 213 

to become degraded via the nonsense-mediated decay (NMD) process 33 due to premature translation-214 

termination codons (PTCs - detected by SQANTI3) than known transcripts (Figure 2F, mean 0.17 vs. 0.02, 215 

Fisher9s exact test, p-value < 2.2 x 10-16). Most novel transcripts were found to be more restrictively 216 

expressed in a smaller number of individuals, with the exception of NIC, which are comparable to ISM in 217 

this respect (Figure 2G). The general expression levels of the novel transcripts are at a similar level as the 218 

known ISM transcripts (Figure 2H). 219 

 220 

Local alternative splicing events contribute to isoform diversity 221 

The full-length isoforms appear as a combination of different types of local alternative splicing (AS) events, 222 

and thus it is useful to disentangle the relative contribution of each variety of AS event to the overall isoform 223 

diversity. For this purpose, we used the SUPPA2 program 34 to identify different types of splicing events in 224 

the full set of high-confidence transcripts, including skipped exon (SE), retained intron (RI), alternative 59 225 

splice site (A5), alternative 39 splice site (A3), mutually exclusive exon (MX), alternative first exon (AFE), 226 

and alternative last exon (ALE) (Figure 3A).  227 

Among all the 94,581 splicing events detected in the merged transcripts (Figure 3B), AFE events contribute 228 

most to the overall isoform diversity (31.7%), followed by SE events (19.8%), RI events (14.1%), A5 229 

(11.6%), A3 (10.1%), ALE (9.4%), and with MX as the least contributor (3.3%). This finding is in line with 230 

the previous report on the AFE as the most prevalent splicing event for the overall transcriptome in the 231 

inbred laboratory mouse cerebral cortex 11, suggesting the dominant role of using AFE to generate 232 

alternative isoforms in mice brain transcriptomes. The "alternative first exon" transcripts originate evidently 233 

from new promotors, suggesting that these can easily develop upstream of existing genes. This is in line 234 

with the realization that enhancers as regulatory elements can also assume promotor functions 35. 235 

AFEs would not necessarily impact the coding sequences 36. To address this issue, we performed an 236 

additional analysis by collapsing the transcripts with the same coding sequence (i.e., only transcripts with 237 

predicted ORFs were considered) into a single unique ORF. We indeed observed a much lower number (less 238 

than two-thirds) of unique ORFs than transcripts in each mouse individual (Supplementary Figure S14). 239 

Based on the landing position of the start codon in relation to local AS events (Figure 3C), we further 240 

enumerated the number of local AS events causing the change of the respective coding sequences. We found 241 

that only 46.5% (43,978) of all the local splicing events had an impact on the ORF structures (Figure 3D). 242 

Compared to AFE, SE and RI events are more prevalent among all the local AS types to contribute to ORF 243 
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diversity. The majority of AFE events (55%) would cause no change in the coding sequences, while acting 244 

as a major source to generate isoform diversity due to the emergence of alternative promoters 37. These data 245 

illustrate the distinct roles of local AS events in contributing to isoform and ORF diversity in wild mice 246 

brain transcriptomes. 247 

 248 

Figure 3 Distribution of different types of local AS events. (A) Types and illustration of AS local events. (B) The 249 

distribution of all types of local AS events. (C) An example of AFE events that change ORF structures, and similar 250 

situations for other types of local AS events. The dashed red lines indicate the in-frame start codon positions. (D) The 251 

distribution of all types of local AS events that impact respective ORF structures. The value above each bar in (B) and 252 

(D) indicates the number of respective type of AS events.  253 

 254 

Plasticity of isoform diversity 255 

Plasticity is a general term for epigenetic effects on the phenotype of individuals. It becomes evident when 256 

individuals are subjected to different environmental conditions, where metabolism including gene regulation 257 

is adjusted. In mouse experiments, one is therefore striving to maintain the individuals under constant 258 

conditions as much as possible and to sample them at the same time of the diurnal cycle. We have done this 259 
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also for the animals used for the main experiment here, hence we would expect only a minor role for 260 

plasticity in isoform generation.  261 

To specifically test for the role of plasticity, we have generated data from ten animals that were part of a 262 

behavioral study that was done under different environmental conditions (Supplementary Dataset S1B). 263 

These mice were derived from the GE population and kept for five generations in semi-natural enclosures 264 

38, i.e., under natural temperature, humidity, and daylight cycles (Figure 1B). The data were merged with 265 

the data described above which resulted in an additional 16,171 isoforms (Supplementary Dataset S8), due 266 

to the addition of new individuals, as predicted by the rarefaction analysis above (Figure 1F). We have used 267 

these data to compare their overall transcriptome differences at the level of presence/absence of isoforms. 268 

We find that they deviate substantially from the transcriptomes obtained for the GE animals raised under 269 

laboratory-controlled conditions (Figure 4A). While the SNP spectrum of the GE animals has only very 270 

slightly changed under the breeding conditions of the semi-natural enclosure (Figure 4B), the transcriptomes 271 

diverge strongly with respect to isoform diversity, also in comparison to the other taxa in the study (Figure 272 

4A). The GE animals harbor 25,220 isoforms that are absent in the NE animals, 8,679 (34.4%) of which are 273 

also found in animals of the outgroup species. On the other hand, the NE animals harbor 23,714 isoforms 274 

that are absent in GE, 3,093 (13%) of which are also found in animals of the outgroups. Hence, while the 275 

majority of changes in isoforms between the environmental conditions concerns lineage-specific isoforms 276 

there are also substantial numbers that are conserved and can therefore be expected to be functional (see 277 

discussion). 278 

Linear modelling of the PC-scores for the most important PC-axes for these data show that the difference is 279 

most pronounced in PC1 (Supplementary Figure S15), and a significant distance was observed between NE 280 

and GE animals based on isoform landscape, but not on SNPs (Supplementary Table S3). We further used 281 

the presence of isoforms fixed within each population to build an overall phylogeny (Figure 4C), which has 282 

again a distinct topology as a phylogeny based on the SNP variants (Figure 4D), further confirming the 283 

strong impact of plasticity induced by environmental factors on isoform diversity. The overall findings 284 

remain valid when focusing only on the isoforms that have not changed their general expression levels 285 

(FDR >0.05) between NE and GE individuals (Supplementary Figure S18), and when controlling for the 286 

sequencing depth in all the sampled individuals (Supplementary Figure S19). Note that the isoform sharing 287 

patterns from the animals kept under constant laboratory conditions allow to generate a phylogeny that 288 

conforms to the expected relationships of the populations (Supplementary Analysis Results SAR4). This 289 

implies that the slight environmental differences that might still exist between them even under laboratory 290 

conditions should indeed have no major overall impact on the comparative analysis. 291 
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 292 

Figure 4 The plasticity influence on isoform diversity. (A) and (B) show the projection of the top two PCs based on 293 

isoform and SNP variants, separately. The SNP variants were called from matched Illumina RNA-Seq dataset. 294 

Extended results for the populations that cannot be well distinguished in the main figure are presented in 295 

Supplementary Figure S16. (C) and (D) show phylogenetic trees built on the basis of isoform and SNP variants fixed 296 
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within each population, respectively. The fixation is defined as presence in all the individuals with the give population, 297 

and the results for a relaxed fixation criteria (present in at least 80% of the individuals) are shown in Supplementary 298 

Figure S17. Split nodes marked in yellow are the ones with bootstrap support value >70%. Abbreviations for 299 

geographic regions follow Figure 1, and NE indicates the mice individuals derived from GE population but reared 300 

under natural environment. (E) Difference in the expression levels for isoforms of Srfs genes. The expression level 301 

differences (log2-based) were calculated by subtracting the average expression level in GE individuals under 302 

laboratory condition from the average of those under semi-natural environment. Only isoforms with significant 303 

expression level differences after multiple testing correction (FDR < 0.05) and conserved in the outgroups are shown. 304 

The statistics on the full dataset are shown in Supplementary Dataset S9. 305 

 306 

Environmentally correlated alternative splicing is likely regulated by proteins binding to splicing enhancers, 307 

especially the family of SR proteins. These proteins share a domain rich in serine and arginine residues and 308 

they are commonly called Srfs proteins 39. The mouse has 11 members in this protein family and we 309 

surveyed all of them for changes of expression between the laboratory animals and the animals living under 310 

semi-natural conditions (Supplementary Dataset S9). We found indeed major isoform expression changes 311 

for most of these genes, including Srfs1, Srfs2, Srfs3, Srfs4, Srfs5, Srfs7, Srfs10, Srfs11 and Srfs12 (Figure 312 

4E). Each of these genes has some isoforms that are more highly expressed under laboratory conditions, and 313 

Srfs2 has also one isoform that is more highly expressed in the semi-natural environment. These are 314 

candidates for mediating the observed plastic response. 315 

 316 

Fast turnover of alternative isoforms in house mouse natural populations 317 

To study the turnover rate of alternative splicing at a microevolutionary scale, we focused on the recently 318 

emerged isoforms in the house mouse lineage, i.e., detectable in at least one of the five house mouse natural 319 

populations surveyed here but absent in outgroup species samples (Mus spretus and Mus spicilegus). We 320 

identified 65,201 house mouse specific isoforms (derived from 13,207 distinct loci) across all the 40 321 

surveyed house mouse individuals under laboratory breeding conditions (Supplementary Dataset S10). On 322 

average, 4,661 (SD: 808) and 37,291 (SD: 2,741) recently emerged isoforms were found separately in each 323 

house mouse individual and each house mouse population. 324 

Our population-level analysis allows to apply a frequency-spectrum test to distinguish the effects of 325 

selection (positive or negative) and drift on polymorphic characters. The general assumption is that the 326 

number of individuals carrying a polymorphic variant depends only on the mutation rate and the fixation 327 
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rate in an ideal population. The expected allele frequency spectrum under neutral conditions can be 328 

calculated by coalescent or diffusion approaches, but this is affected by the demographic history of the 329 

populations, as well as the effects of positive or negative selection on the variants. To avoid simulations 330 

with more or less realistic assumptions, we use here a comparison with the SNP variants from the same 331 

populations to assess whether isoforms might have a higher or lower rate of fixation. We have previously 332 

used the same approach to estimate selection effects on newly arisen retrogenes 19. 333 

We first focused on the SNP variants that were called based on the Illumina RNA-seq dataset from the same 334 

set of individuals (see Methods). Among the 871,512 house mouse specific SNP variants, around 22.4% are 335 

found in all three house mouse subspecies (Figure 5A), about 20.8% segregate in all five populations (Figure 336 

5B), and 17.5% are found in all 40 analyzed house mouse individuals (Figure 5C). In contrast, of the 65,201 337 

house mouse specific isoforms, only 8.1% are found in all the three subspecies, 3.6% in all the five 338 

populations, and 0.07% in all the 40 tested house mouse individuals. Hence the fixation rate of newly 339 

emerged isoforms is more than 200 times lower than that for SNPs in the same populations. 340 

For neutrally segregating variants, one can expect that a fraction becomes fixed in a population-specific 341 

manner. This is indeed observed for the SNP variants. We find accentuated frequency peaks at the intervals 342 

of individuals9 numbers of 8 (each of the five populations), 24 (subspecies-level: M. m. domesticus), and 40 343 

(species-level: Mus musculus) (Figure 5C). In contrast, such a pattern is not observed for the isoforms, 344 

implying that most are not neutral. Instead, these recently derived transcripts show a more skewed pattern 345 

(Figure 5C), with a surprisingly high fraction of them being individual private (Fraction 0.55 vs. 0.11; 346 

Fisher9s exact test, p-value < 2.2 x 10-16). Given that at our sequencing level, the number of detected isoforms 347 

had reached saturation for each individual (Figure 1E), it is unlikely that the absences in other individuals 348 

are due to failure of detection. Note that this pattern still holds when variants only found in more than two 349 

animals were analyzed (Supplementary Figure S20). 350 

To avoid possible bias introduced by SNP variants from highly transcribed regions, as they were called from 351 

the Illumina RNA-seq dataset 40, we retrieved another SNP dataset called from genomic sequencing data of 352 

the same populations (equal number of individuals for each population, but different individuals) 19. We 353 

analyzed this new SNP dataset in the same manner aforementioned, and found that the overall distribution 354 

pattern of house mouse specific transcripts is robust to the choices of SNP datasets (Supplementary Figure 355 

S21). A similar pattern is observed when focusing only on the ORF level via collapsing the isoforms forming 356 

the identical ORFs (Supplementary Figure S21).  357 
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 358 

Figure 5 Frequency distribution of house mouse specific transcripts and SNPs. Distribution of the frequency of 359 

transcripts and RNA-Seq data-based SNPs across different house mouse (A) subspecies, (B) populations, and (C) 360 

individuals. Inset in (C) represents an enlargement with a focus on the frequencies of transcripts and SNPs present in 361 

larger numbers of individuals. 362 

 363 

In a further analysis, we compared the transcript site frequency spectra with the corresponding frequency 364 

spectra of different SNP categories (Supplementary Figure S22). On the basis of the functional effects 365 

predicted using the Ensembl Variant Effect Predictor 41, the SNP variants were classified into four distinct 366 

groups: i) high-effect SNPs changing the coding gene structure (stop codons or splice sites), ii) moderate-367 

effect SNPs with nonsynonymous changes, iii) low-effect SNPs with synonymous changes, and iv) 368 

modifier-effect SNPs occurring in noncoding regions. We used two-sided Kolmogorov3Smirnov tests to 369 

compare the overall similarity of the distributions, and found the most similar distribution between 370 

transcripts and the most constrained high-effect SNP category (Kolmogorov9s D statistic for transcripts vs. 371 

high-effect SNPs: D = 0.27; transcripts vs. moderate-effect SNPs: D = 0.42; transcripts vs. low-effect SNPs: 372 

D = 0.56; transcripts vs. modifier-effect SNPs: D = 0.54).  373 
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This overall pattern is very different when one compares the frequency distribution of transcript variants 374 

shared with at least one of the outgroup species. These are found on average in 21.4 individuals across the 375 

populations, while the house mouse specific ones are found on average in 3.4 individuals (after 376 

normalization on the numbers of assayed individuals in two groups, two-sided Wilcoxon rank sum test, p-377 

value < 2.2 x 10-16, Supplementary Analysis Results SAR3A). This suggests that isoforms shared across 378 

larger evolutionary distances are subject to purifying selection and are therefore more likely to be retained 379 

in the populations over time. 380 

An in-depth analysis of expression levels of house mouse specific isoforms across different categories 381 

showed that the isoforms that are found in few individuals only tend to be lowly expressed, with a trend that 382 

isoforms with higher frequencies in the populations are expressed at a higher level (Supplementary Analysis 383 

Results SAR3B-D). 384 

 385 

Discussion 386 

The huge diversity of transcriptomes that is created by alternative splicing has long been recognized. But a 387 

systematic comparative analysis in a natural population context has only now become possible through full-388 

length RNA sequencing techniques. We used here PacBio Iso-Seq to characterize the full-length isoform 389 

diversity of the brain transcriptomes in house mouse natural populations, resulting in the first and most 390 

comprehensive full-length isoform category representation at a comparative population level to date. Via 391 

implementation of a separate 59cap selection step 23,24, our optimized approach improved the performance 392 

to enrich genuine full-length transcripts. Most importantly, we applied a sequencing depth at which 393 

saturation of different isoforms was achieved at the individual level. 394 

Our overall results confirm the conclusions from previous studies that the diversity of alternatively spliced 395 

transcripts surpasses the current annotation level, even of exceptionally well-curated genomes, such as the 396 

one from the house mouse 11. We have detected double as many transcripts as are currently annotated and 397 

we showed that this number keeps increasing when more individuals are sampled from the populations. 398 

This unique dataset allowed us to tackle very general questions that arise in the context of the observation 399 

of an exuberant isoform diversity that has been found in many studies. How much is caused by noise in the 400 

splicing machinery? Can environmental conditions significantly change the isoform diversity? How does 401 

the diversity translate into adaptive novelty? 402 

 403 
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The role of splicing noise 404 

The saturation analysis via a rarefaction approach shows a strong contrast between isoforms that are detected 405 

only as single reads, versus isoforms that are detected as at least two reads in a given individual. For the 406 

former we reach by far no saturation, for the latter we see complete saturation at our sequencing depth. We 407 

conclude from this that at least a large fraction of singleton reads reflect aberrant splicing that is not 408 

repeatable. Given this clear distinction pattern, it is easy to simply remove the singleton fraction from the 409 

further analysis - and we recommend that this should become a standard procedure in comparable studies. 410 

Noise should be particularly evident for highly expressed transcripts and we see also an overall correlation 411 

between expression level and isoform diversity. Intriguingly, however, our direct test for the role of 412 

expression level on noise patterns within a given locus does not show a strong tendency that the highest 413 

expressed alleles have more isoforms in the same individual, as it would be expected for a noise effect. 414 

Instead, highly expressed alleles have actually relatively fewer additional isoforms than one would expect 415 

at that expression level, indicating a rather strict control of splicing efficiency. Hence, highly expressed loci, 416 

which are often also evolutionary old genes, appear to be less sensitive to the influence of noise, probably 417 

because their trans-regulation has been optimized 42. This would also explain why they can maintain on 418 

average more splice variants than low expressed, evolutionarily younger genes. 419 

 420 

The role of plasticity 421 

While it is well known that environmental conditions can influence splicing patterns (reviewed in 4), we 422 

were surprised to see that the simple shift of a given population from constant laboratory conditions to more 423 

natural environmental conditions results already in a major change in isoform expression, including roughly 424 

a third that are conserved across the taxa and are therefore likely to be functional (see below). 425 

The factors that had changed between the environments were the ambient living temperature, the natural 426 

day-light cycles and natural humidity. One would probably have considered these as relatively minor 427 

changes. Interestingly, it has previously been shown that already small body temperature changes associated 428 

with diurnal cycles can also cause alternative splicing patterns for thousands of transcripts 8. It appears that 429 

splicing regulating proteins play a major role in this and we find indeed changes in transcript abundances 430 

for most of these genes. Among the best studied regulators in this context are Srsf2 and Srsf10 8,43,44. We 431 

found major expression changes for both Srsf2 and Srfs10 (Figure 4E), with Srfs2 showing the previously 432 

described alternative splice patterns associated with temperature changes. However, it is known that the 433 
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functions of Srfs2 are also broader, including regulating genomic stability, gene transcription, mRNA 434 

stability, and translation 45.  435 

We conclude from our data that there can indeed be a strong influence of environmental conditions on 436 

isoform diversity, supporting the notion that environmental conditions need to be fully controlled to allow 437 

a detailed comparison of isoform diversity between different taxa. 438 

 439 

No signal for adaptive evolution 440 

Another strength of our dataset lies in the possibility of systematic comparisons of fixation probabilities 441 

between natural populations, subspecies, and species. Within such a framework, one can make inferences 442 

on microevolutionary patterns that were not possible in previous comparative studies on alternative splicing 443 

in more or less distantly related species 11,12,46-52. In particular, our data allow us to directly assess whether 444 

the large isoform diversity generated through alternative splicing could be a major mechanism to create 445 

adaptive genetic novelty 2-4. Our data do not support such a model.  446 

Although we found a vast number of newly arisen alternatively spliced transcripts, most of them occur only 447 

in one or few individuals. Such a pattern is typical for polymorphic markers that evolve neutrally, or are 448 

under negative selection. In the case of isoform diversity, they could also include variants generated by the 449 

noise effects which would evidently not contribute to fixation patterns. We cannot fully exclude this 450 

possibility, but given that we have restricted our analysis to high-confidence isoforms we consider the noise 451 

component as small. 452 

A direct comparison with the frequency distributions of different functional classes of SNPs from the same 453 

individuals showed that the isoform distribution is closest to the distribution of highly constrained SNPs. 454 

This implies that many novel isoforms are not even neutrally segregating, but are under negative selection. 455 

This inference is also supported by the second observation in the comparison with the SNPs. For SNPs we 456 

find patterns of random fixation for each population, typical for neutral markers over time, while such 457 

patterns are absent for the isoform frequency distributions. Their overall fixation probability is at least a 458 

factor of 200 lower than the one for the SNPs, implying that the negative selection is actually relatively 459 

strong for most of them. This is also in line with the observation that they are usually only lowly expressed. 460 

Only 45 out of 65,201 Mus musculus specific isoforms are fixed in all populations analyzed (Supplementary 461 

Dataset S10). These could be rare adaptive fixations, but could also represent random fixations of slightly 462 

deleterious variants. 463 
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Most interestingly, there is a strong contrast in the frequency distribution of isoforms shared with at least 464 

one outgroup species. They are shared by many more individuals, and the largest fraction is shared by all of 465 

them. This indicates that they serve active functions for the individuals, i.e., are under stabilizing selection. 466 

This observation also fits the findings of Leung et al. 11 of some shared overall patterns of alternative splicing 467 

between the mouse and the human cortex.  468 

We note that more than half of the isoforms annotated in Ensembl are lineage-specific isoforms in our 469 

analysis and therefore less likely to be broadly functional. It could be useful to annotate them as a different 470 

class for future comparisons with other species. 471 

Ferrandez-Peral et al. 12 found a correlation between fast-evolving immune genes and high isoform diversity 472 

in their analysis of isoform diversity in lymphoblastoid cell lines from primates. They suggested that this 473 

could point to an adaptive role for isoforms, but this inference is too indirect to provide a direct link. Hence, 474 

while this may still be true for the particular gene class of immune genes, it does not invalidate our findings. 475 

Wright et al. 4 listed several examples of alternative splicing of individual genes that may have had a role 476 

in adaptation or speciation events. But such individual cases cannot be used to support a model of frequent 477 

adaptive evolution through alternative splicing.  478 

Overall, each individual harbors around 4,600 private isoforms. When most of them have a negative 479 

selection coefficient, this could substantially impact the overall genetic load of the individual 29. In humans, 480 

mis-splicing events are causative for many disease phenotypes, including cancer, neurodegenerative 481 

diseases, and muscular dystrophies 53-55. In a recent GWAS for human brain-related complex traits, Qi et al. 482 

56 discovered cis QTLs affecting splicing in more than 12,000 genes, with a subset of them related to disease 483 

phenotypes. This corroborates our conclusion that most reproduceable splicing variants are genetically 484 

controlled and that they can have negative effects on the phenotype. But given our finding that isoform 485 

diversity in populations is strongly influenced by environmental conditions, the main effect of the observed 486 

high level of alternative splicing may be in conveying plastic responses of populations to changing 487 

environments. 488 

 489 

  490 
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Methods 491 

Sample collection and RNA extraction 492 

A total of 58 adult male mice individuals were sampled in this study (Supplementary Dataset S1), and all 493 

these mice were derived from previously wild-caught founder mice, maintained in an outbreeding scheme 494 

16. For the main experiment, eight adult individuals were chosen for each of the following populations 495 

covering all three major subspecies of the house mouse (Mus musculus): Germany, France, and Iran 496 

populations from Mus musculus domesticus, Kazakhstan population from Mus musculus musculus, and 497 

Taiwan population from Mus musculus castaneus. We also included four adult individuals from each of the 498 

two outgroup species, Mus spretus and Mus spicilegus. These mice were reared under standard lab 499 

conditions, with well-controlled environmental factors: temperature 22#, humidity (55-60%) and 12h:12h 500 

light scheme 16. To test the plasticity effects of alternative splicing, we chose another ten adult individuals 501 

derived from the same Mus musculus domesticus (Germany) population that were reared in semi-natural 502 

enclosures, i.e., under fluctuating natural temperature (10-18#), humidity (30-70%), and daylight cycles. 503 

Mice were sacrificed at approximately ten weeks of age by CO2 asphyxiation followed immediately by 504 

cervical dislocation. The whole brain was dissected and immediately frozen in liquid nitrogen within 5 505 

minutes post-mortem. Total RNAs were extracted and purified using RNeasy lipid tissue kits (Qiagen, The 506 

Netherlands). RNA was quantified using Qubit Fluorometers (Invitrogen, Thermo Scientific, USA), and 507 

RNA quality was assessed with 2100 Bioanalyzer (RNA Nanochip, Agilent Technologies, USA). All 508 

samples were with RIN values above 8.5 and then used for both PacBio and Illumina transcriptome 509 

sequencing at the Max Planck-Genome-Centre Cologne. 510 

 511 

PacBio Iso-Seq and Illumina RNA-Seq library preparation and sequencing 512 

Our initial experimental tests showed that the TeloPrime full length cDNA amplification kit, which 513 

selectively synthesizes cDNA molecules from mRNAs carrying a 59 cap, could provide a better solution to 514 

enrich for actual full-length transcripts, compared to the standard PacBio cDNA library preparation protocol 515 

(Supplementary Text of Methods). Hence, the TeloPrime full-length cDNA amplification kit v2 (Lexogen 516 

GmbH) was utilized to construct PacBio IsoSeq cDNA libraries. One µg total RNA from each individual 517 

was used as input, and double-strand cDNA was produced by following the manufacturer9s instructions, 518 

except that an alternative oligo-dT primer from the SMARTer PCR cDNA synthesis kit (Clontech 519 

Laboratories, Inc.), which also included a random 10mer sequence as a unique molecule identifier (UMI) 520 
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after each sequence. The cDNAs were not size-selected, and PacBio libraries were prepared with the 521 

SMRTbell Template Prep Kit 1.0 (Pacific Biosciences). To get a similar number of clustered high-522 

confidence isoforms, each library was sequenced on three 1M-ZMW SMRT cells on the PacBio Sequel I 523 

for the main experiment, and one 8M-ZMW SMRT cell on the PacBio Sequel II platform for the plasticity 524 

effect experiment, respectively (Supplementary Dataset S3A and S3C). 525 

Poly(A) RNA from each sample was enriched from 1 µg total RNA by the NEBNext® Poly(A) mRNA 526 

Magnetic Isolation Module (Catalog #: E7490, New England Biolabs Inc.). RNA-Seq libraries were 527 

prepared using NEBNext Ultra# II Directional RNA Library Prep Kit for Illumina (Catalog #: E7760, New 528 

England Biolabs Inc.), according to manufacturer9s instructions. A total of eleven PCR cycles were applied 529 

to enrich library concentration. Sequencing-by-synthesis was done at the HiSeq3000 system in paired-end 530 

mode 2 x 150bp. Raw sequencing outputs were converted to fastq files with bcl2fastq v2.17.1.14. An 531 

average of 28.2 (SD: 3.3) and 56.7 (SD: 2.7) million raw fastq read pairs were generated for each sample in 532 

the main experiment and the plasticity effect experiment, separately (Supplementary Dataset S3B and S3D).  533 

 534 

Iso-Seq read QC and data processing 535 

We analyzed the raw sub-reads for each SMRT cell separately following the IsoSeq3 pipeline (v3.4.0; 536 

https://github.com/PacificBiosciences/IsoSeq). Circular consensus sequences (CCS) were generated from 537 

sub-reads using the CCS module in polish mode (v6.0.0; --minPasses 3 --minLength 50 --maxLength 538 

1000000 --minPredictedAccuracy 0.99) of the IsoSeq3 pipeline, and the CCS reads generated in three 539 

SMRT cells for the same sample were merged. We trimmed cDNA primers (59 540 

TGGATTGATATGTAATACGACTCACTATAG; 39 GTACTCTGCGTTGATACCACTGCTT) and 541 

orientated the CCS reads using the lima program with the specialized IsoSeq mode (v2.0.0; --isoseq). The 542 

10mer UMI following each CCS read was tagged and removed using the tag module of the IsoSeq3 pipeline 543 

(--design T-10U). Following this, we identified the processed CCS reads as full-length and non-chimeric 544 

(FLNC), based on the presence of a ploy(A) tail and absence of concatemer using the refine module of the 545 

IsoSeq3 pipeline (--require-polya). We further performed PCR deduplication based on the UMI tag 546 

information using the dedup module of the IsoSeq3 pipeline (default parameters). After this deduplication 547 

step, only one consensus FLNC sequence per founder molecule in the sample was kept. We then performed 548 

de novo clustering of the above reads using the cluster module of the IsoSeq3 pipeline, and kept only the 549 

high-confidence isoforms supported by at least 2 FLNC reads for the main analysis. In addition, the isoforms 550 

supporting by singleton FLNC reads were utilized for the part of analysis of the noise influence on isoform 551 

diversity (see below). 552 
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We aligned these isoforms of each sample to the GRCm39/mm39 reference genome sequence using the 553 

minimap2 (v2.24-r1122; -ax splice:hq -uf --secondary=no -C5 -O6,24 -B4) 57, with parameter setting 554 

following the best practice of Cupcake pipeline 58. The alignment bam files were further sorted using the 555 

samtools program v1.9 59. We collapsed redundant transcript models for each sample based on the above 556 

sorted alignment coordinate information using the collapse module of the TAMA program (-d merge_dup -557 

x capped -m 5 -a 1000 -z 30 -sj sj_priority) 60. The rationales for defining redundant transcript models are 558 

shown in Supplementary Text of Methods. Finally, isoforms across all 48 samples in the main experiment 559 

were merged into a single non-redundant transcriptome using the merge module of the TAMA program (-d 560 

merge_dup -m 5 -a 1000 -z 30) 60, with the same parameter setting as the above collapse step. 561 

 562 

RNA-Seq read QC and data processing 563 

We trimmed and filtered the low-quality raw fastq reads for each sample separately using the fastp program 564 

(v0.20.0; --cut_front --average_qual 20 --length_required 50) 61, and only included the paired-end reads with 565 

a minimum length of 50bp and average quality score of 20 for further analysis.  566 

The filtered fastq reads were aligned to mouse GRCm39/mm39 reference genome sequence with STAR 567 

aligner v2.7.0e 62, taking the mouse gene annotation in Ensembl v103 30 into account at the stage of building 568 

the genome index (--runMode genomeGenerate --sjdbOverhang 149). The STAR mapping procedure was 569 

performed in two-pass mode, and some of the filtering parameters were tweaked (personal communication 570 

with STAR developer; --runMode alignReads 3twopassMode Basic --outFilterMismatchNmax 30 --571 

scoreDelOpen -1 --scoreDelBase -1 --scoreInsOpen -1 --scoreInsBase -1 --seedSearchStartLmax 25 --572 

winAnchorMultimapNmax 100), in order to compensate the sequence divergences of individuals from 573 

various populations and species 19. With this optimized mapping pipeline, a similar alignment rate was 574 

reached for all the samples (Supplementary Dataset S3B and 3D). The alignment bam files were taken for 575 

further analysis. 576 

 577 

SNP variants calling based on RNA-Seq dataset 578 

We followed the general GATK version 4 Best Practices to call genetic variants from Illumina RNA-seq 579 

data. We first sorted the above alignment bam data using samtools v1.9 59, and marked duplicates by using 580 

PICARD v2.8.0 (http://broadinstitute.github.io/picard). Reads with N in the cigar were split into multiple 581 

supplementary alignments and hard clips mismatching overhangs using the SplitNCigarReads function in 582 
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GATK v4.1.9. By using BaseRecalibrator and ApplyBQSR functions in GATK, we further recalibrated 583 

base quality scores with SNP variants that were called with the genomic sequencing dataset of the mice 584 

individuals from the same populations 19 to get analysis-ready reads. Following, we called raw genetic 585 

variants for each individual using the HaplotypeCaller function in GATK, and jointly genotyped genetic 586 

variants for all the individuals using the GenotypeGVCFs function. We only retained genetic variants that 587 

passed the hard filter <QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum < -588 

8.0 || SOR > 3.0= for further analysis 19. 589 

 590 

Iso-Seq transcriptome classification and filtering 591 

We performed the quality control analysis for the above merged non-redundant PacBio Iso-Seq 592 

transcriptome using SQANTI3 v4.2 31, with the input datasets of Ensembl v103 30 GRCm39/mm39 reference 593 

genome and gene annotation, FLNC read counts, Isoform expression levels and STAR output alignment 594 

bam files and splice junction files from RNA-Seq short reads, mouse transcription start sites (TSS) collected 595 

in refTSS database v3.1 63, and curated set of poly(A) sites and poly(A) motifs in PolyASite portal v2.0 64.  596 

We filtered out isoforms of potential artifacts mainly by following 31. Mono-exonic transcripts were 597 

excluded, as they tend more likely to be experimental or technical artifacts 31. Isoforms with unreliable 39end 598 

because of a possible intrapriming event (intrapriming rate above 0.6) were also removed from the dataset. 599 

We kept the remaining isoforms that met both of the following criteria: 1) no junction is not labeled as RT-600 

Switching; 2) all junctions are either canonical (GT/AG; GC/AG; AT/AC) or supported by at least 3 601 

spanning reads based on STAR junction output file. All isoforms that passed the above filters were taken 602 

for further analysis. 603 

Given their matching status to the Ensembl mouse transcriptome v103 30, the above transcripts were 604 

classified into eight distinct categories using SQANTI3 31, as depicted in Figure 2A: i) Full Splice Match 605 

(FSM, matching perfectly to a known transcript); ii) Incomplete Splice Match (ISM, matching to a 606 

subsection of a known transcript); iii) Novel In Category (NIC, with known splice sites but novel splice 607 

junctions); iv) Novel Not in Category (NNC, with at least one unannotated splice site); v) Fusion (F, fusion 608 

of adjacent transcripts); vi) Genic (G, overlapping with intron); vii) Antisense (A, on the antisense strand of 609 

an annotated gene); viii) Intergenic (I, within the intergenic region). The transcripts matching perfectly to a 610 

whole (FSM) or subsection (ISM) of reference annotated transcripts are designated known transcripts, and 611 

the others as novel transcripts. 612 
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We evaluated the reliability of isoforms from each category, on the basis of reference annotation and 613 

empirical information from three distinct aspects separately (Supplementary Text on Methods and Figure 614 

S6): i) Transcription start site (TSS); ii) Transcription Termination Site (TTS); iii) splice junction (SJ). In 615 

comparison to the well-support FSM transcripts, the transcripts from other categories show reduced 616 

confidence levels in terms of TSS (Supplementary Figure S6B), but no reduction for TTS and SJ 617 

(Supplementary Figure S6D and 6E). This might hint at a failure to capture accurate TSS for those 618 

transcripts 31. For instance, it is still possible that some ISM transcripts came from partial fragments, due to 619 

the imperfect targeting of 59-cap or the degradation of transcripts in the later steps. To address this concern, 620 

we further excluded the non-FSM transcripts without support for TSSs (Supplementary Figure S6C).  621 

 622 

Feature characterization of all the transcripts 623 

We characterized the features of all the detected transcripts from seven different aspects: i) exon number; 624 

ii) transcript length; iii) CDS length; iv) fraction of coding transcripts; v) fraction of NMD transcripts; vi) 625 

the number of individuals with expression; vii) transcript expression level. All these feature results were 626 

extracted from the output of SQANTI3 analysis.  627 

In the SQANTI3 pipeline 31, the potential coding capacity and ORFs from the transcript sequences were 628 

predicted using GeneMarkS-T (GMST) algorithm 65. An NMD transcript is designated if there's a predicted 629 

ORF, and the CDS ends at least 50bp before the last junction for the respective transcript. The expression 630 

level of each transcript for each sample was computed, on the basis of the number of supported FLNC reads, 631 

and normalized in the unit of TPM (transcript per million). Transcripts with expression in respective tissues 632 

were defined as the ones with non-zero TPM values. In addition, we quantified the expression of each 633 

transcript using another program named Kallisto v0.46.2 66, for which the expression quantification was 634 

based on the alignment of Illumina RNA-Seq data to the merged isoform dataset derived from PacBio Iso-635 

Seq data, as shown in the above text. 636 

 637 

Analysis of local AS events 638 

We used the SUPPA2 program 34 to identify local alternative splicing (AS) events in the transcriptome. 639 

These local AS events are categorized into seven groups, including skipped exon (SE), retained intron (RI), 640 

alternative 59 splice site (A5), alternative 39 splice site (A3), mutually exclusive exon (MX), alternative first 641 

exon (AFE), and alternative last exon (ALE). 642 
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For the transcripts with predicted ORFs, we analyzed how the local AS events change the ORF structures. 643 

In case the start codon position of the ORF lands in the region of a local AS event (Figure 4C), the focal AS 644 

event is defined to cause a change in the respective coding sequence. On the other hand, in case the start 645 

codon position of the ORF falls downstream of the local AS event, it does not influence the ORF structure. 646 

 647 

Rarefaction and subsampling 648 

We investigated whether the PacBio Iso-Seq data provide sufficient coverage to detect all the isoform 649 

diversity for the given sequencing depth of a single individual and the number of sampled individuals in the 650 

main experiment. Concerning the sequencing depth at the individual level, we randomly selected one sample 651 

from each of the seven assayed populations, and subsampled portions of FLNC reads from each sample 652 

chosen for 100 times, ranging from 5% to 100%, at 5% intervals, and computed the fraction and variance 653 

of detected isoforms for each round of subsampling. Regarding the number of sampled individuals, we 654 

subsampled subsets of all the 48 assayed individuals for 100 times, ranging from 2 to 48, at an interval of 2, 655 

and computed the fraction and variance of detected isoforms for each round of subsampling. 656 

We tested two alternative models to determine whether the number of detected isoforms would continue to 657 

increase or has approached saturation 67: a generalized linear model with logarithmic behavior (ever-658 

increasing) or a self-starting nonlinear regression model (saturating). The best fit was decided based on the 659 

minimum BIC value between the two models, and the saturating model was the best fit for both lines of 660 

analysis. The sequencing depth at the individual level has reached saturation with the given sequencing data, 661 

while the number of sampled individuals has not. All the analyses were performed in R v4.2.3, using the 662 

functions glm, nls, SSasymp, and BI from the <stats= package 68. 663 

 664 

Test on the influence of noise on isoform diversity 665 

We analyzed the influence of noise on isoform diversity using two different tests. For the first test, we 666 

extracted the list of isoforms that were supported by singleton FLNC reads in the de novo clustering step, 667 

and filter out potential artifacts using the same procedure as shown above. We performed the rarefaction 668 

analysis to test whether the number of singleton-supported isoforms has reached saturation with the 669 

sequencing depth at individual level, following the aforementioned pipeline. We further compared the 670 

saturation curves between the isoforms represented by singleton FLNC read and those represented by two 671 

or more FLNC reads. 672 
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For the second test, we tested whether genes that express one dominant isoform produce on average more 673 

additional isoforms when they are higher expressed in a given individual, for the isoform dataset supported 674 

by two or more FLNC reads. We selected 448 genes that fulfil the following criteria: 1) more than 10 675 

isoforms; 2) the average expression level (in the unit of TPM) for the top expressed transcript (T) is at least 676 

five times higher than the cumulative expression level for the other (O) isoforms from the same locus: (T / S 677 

(O) g 5; averaged across all individuals from the ingroup populations, i.e., excluding Mus spretus and Mus 678 

spicilegus, because too many genes show major overall expression changes between the species). For 679 

comparison, we selected a set of 3,450 genes with more than 10 isoforms, without considering their 680 

expression level properties. We exploited one-sided Kendall´s tau tests to calculate the significance levels 681 

on the positive correlation between isoform number and the top expression level between individuals, and 682 

compared the fraction of genes with significant correlation (p-value < 0.05) between the two gene sets. 683 

 684 

Test on the plasticity effect on isoform diversity 685 

Following the above procedure, we generated the list of filtered high-confidence isoform and SNP variants 686 

for all the 58 mice individuals under both laboratory and natural environmental conditions. The SNP variants 687 

were called from the Illumina RNA-Seq dataset generated in this study (shown in the above text), for which 688 

the same set of mice individuals was used. To reduce computation complexity, we performed LD pruning 689 

on the SNP data set by using PLINK v1.90b4.6 69, removing one of a pair of SNPs with LD g0.2 in sliding 690 

window of 500 SNPs and step wise of 100 SNPs. 691 

Firstly, we performed principal component analysis (PCA) on the individual SNP and isoform landscape 692 

using the R package <ggfortify= v0.4.16. The PC-score of the top PCs-axes was extracted and analyzed 693 

according to species/subspecies and population differentiation across all samples. We used linear models 694 

implemented in the R package <stats= for analysis and conducted pair-wise post-hoc comparison with 695 

bonferroni correction for multiple testing in case of significant main effects. 696 

Secondly, we built a phylogenetic tree for all the assayed population using the R package <ape= v5.7-1 70, 697 

based on the presence matrix of fixed (i.e., present in 100% of the individuals) or almost-fixed (i.e., present 698 

in >80% of the individuals) isoform and SNP variants in each population. Euclidean distance was used as 699 

the distance measure between each pair of populations, and the neighbor-joining tree estimation function 700 

was used to build the phylogenetic relations. The boot.phylo function implemented in the same R package 701 

was used to perform 1,000 bootstrap replications, and population split nodes of high confidence were taken 702 

as the ones with at least 70% bootstrap support values.  703 
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We further performed two lines of analysis to bypass the possible bias: 1) excluding the isoforms derived 704 

from loci with significant expression levels (FDR < 0.05) between the GE and NE populations; 2) 705 

controlling the sequencing depth via randomly choosing the same number of PacBio FLNC reads from the 706 

datasets of other individuals in the main experiment as the average in the NE datasets and the same number 707 

of Illumina RNA-Seq reads from the NE datasets as the average in the datasets of main experiment. The 708 

same procedures were applied to call high-confidence isoform and SNP variants and to perform the 709 

population divergence analysis. 710 

 711 

Frequency spectrum analysis of house mouse specific transcripts 712 

We defined house mouse specific transcripts (n = 65,201) as the ones that are detectable in the house mouse 713 

natural populations, but absent in the outgroup species samples. In addition, we defined a set of conserved 714 

transcripts (n = 39,537), i.e., present both in the house mouse and outgroup species samples. We compared 715 

the transcript density with respect to the number of individuals with an expression between two groups of 716 

transcripts. The individual number sizes for two groups of transcripts were normalized on the basis of the 717 

total number of tested individuals (n = 48). 718 

We retrieved two SNP datasets for comparison analysis: one was called based on the Illumina RNA-Seq 719 

datasets generated in this study (same set of individuals for Iso-Seq data to generate transcripts, as shown 720 

above), and the other from genomic sequencing data of the same populations (equal number of individuals 721 

for each population, but different individuals) 19. For both datasets, we only kept the house mouse specific 722 

SNP variants with unambiguous ancestral states in outgroup species (i.e., the same homozygous genotype 723 

for 2 outgroup species), while with alternative alleles in house mouse individuals. In addition, we generated 724 

a house mouse specific ORF dataset, by collapsing the transcripts forming the identical ORFs. For all four 725 

types of variants (Transcripts, two types of SNPs, ORFs), we calculated their frequency distribution at three 726 

different levels (subspecies, population, and individual) by counting individuals with positive evidence of 727 

each variant, without distinguishing the homozygous and heterozygous status. 728 

For the former SNP dataset, we further predicted the functional effects of each SNP by using Ensembl VEP 729 

v103 41, based on the gene annotation data from Ensembl version 103. Consistent with Ensembl variation 730 

annotation 41, we categorized these SNPs into four groups given their predicted impacts: i) High effect - 731 

SNPs causing the gain/loss of start/stop codon or change of the splicing acceptor/donor sites; ii) Moderate 732 

effect - SNPs resulting in a different amino acid sequence; iii) Low effect - SNPs occurring within the region 733 

of the splice site, changing the final codon of an incompletely annotated transcript, changing the bases of 734 
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start/stop codon (while start/terminator remains), or where there is no resulting change to the encoded amino 735 

acid; iv) Modifier effect - SNPs occurring within the genes9 non-coding regions (e.g., UTR and intron). The 736 

frequency spectrum of house mouse specific transcripts was further compared with the site frequency 737 

spectrum of SNPs from the four above-defined categories. We quantified the distances between spectrum 738 

distributions by using two-sided Kolmogorov-Smirnov tests, and calculated the statistical significances of 739 

the fraction of individual private variants by using Fisher9s exact tests. 740 

 741 

Data availability 742 

The raw Illumina RNA-Seq data and PacBio Iso-Seq data generated in this study have been submitted to 743 

the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena) under study accession number 744 

PRJEB54000 and PRJEB53988 (the main experiment), PRJEB67296 and PRJEB67298 (the plasticity test 745 

experiment), and PRJEB54001 (the Iso-Seq protocol optimization experiment). Alignment bam files, GTF 746 

track data, and SNP VCF files, and supplementary datasets are stored at the ftp site: 747 

https://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/mouse_brain_isoform/. All the essential 748 

computing codes, parameters, and related data sets are available at GitLab: 749 

https://gitlab.gwdg.de/wenyu.zhang/mouse_brain_transcriptome/.  750 
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