

1 Novel metagenomics analysis suggests a *Vibrio* species is
2 associated with stony coral tissue loss disease

3 Jakob M. Heinz^{1,2*‡}, Markus Sommer^{1,2}, Stephanie M. Rosales^{3,4}, Jennifer Lu^{1,2,5}, Lindsay K.
4 Huebner⁶, Steven L. Salzberg^{1,2,7,8}

5

6 **Affiliations:**

7 ¹Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21218, United
8 States

9 ²Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School
10 of Engineering; Baltimore, MD 21218, United States

11 ³Cooperative Institute for Marine and Atmospheric Studies, University of Miami; Miami, FL
12 33149, United States

13 ⁴Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and
14 Atmospheric Administration, Miami, FL 33149, United States

15 ⁵Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21218, United
16 States

17 ⁶Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission; St.
18 Petersburg, FL 33701, United States

19 ⁷Department of Computer Science, Johns Hopkins University; Baltimore, MD 21211, United
20 States

21 ⁸Department of Biostatistics, Johns Hopkins University; Baltimore, MD 21211, United States

22
23 [‡] Present address: Department of Biomedical Informatics, Harvard Medical School, Boston, MA
24 02115, United States

25

26 **Corresponding Author:**

27 *Jakob Heinz. Email: jheinz@g.harvard.edu

28

29 **Running head:**

30 Vibrio species associated with SCTLD

31

32 **Keywords:**

33 Bioinformatics, Metagenomics, SCTLD, Coral reef, Epidemic

34 **Abstract**

35 Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and
36 continues to spread throughout the Caribbean. Although a number of bacterial taxa have
37 consistently been associated with SCTLD, no pathogen has been definitively implicated in the
38 etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community
39 through 16S rRNA sequencing of healthy and infected tissues. Here, we provide a different
40 analytical approach by applying a bioinformatics pipeline to publicly available whole genome
41 sequencing samples of SCTLD lesions and healthy tissues from four stony coral species. To
42 compensate for the lack of coral reference genomes, we used data from apparently healthy coral
43 samples to approximate a host genome and healthy microbiome reference. The healthy reference
44 reads were then used to filter the reads from diseased lesion tissue samples, and the remaining
45 data were taxonomically classified at the DNA and protein levels. For DNA classifications, we
46 used a pathogen identification protocol originally designed to identify pathogens in human tissue
47 samples, and for protein classifications, we used a fast protein sequence aligner. Although these
48 data were previously analyzed, our approach revealed unique patterns that were not identified in
49 the previous work. We found a relatively high abundance of the *Vibrio* genus across diseased
50 samples as well as a number of enriched *Vibrio* phages that further support the presence of this
51 genus in diseased samples, suggesting that a member of the *Vibrio* genus may be involved in the
52 visual lesion formation stage of SCTLD.

53

54 **Article Summary**

55 Studies of stony coral tissue loss disease (SCTLD), a devastating coral disease, have primarily
56 used 16S rRNA sequencing approaches to identify putative pathogens. This study applied human
57 tissue pathogen identification protocols to SCTLD whole genome DNA samples. A k-mer based
58 filtering method for diseased samples was utilized to compensate for the lack of host reference
59 genomes. DNA and protein level classifications revealed a relatively abundant member of the
60 *Vibrio* genus associated with SCTLD across four stony coral species.

61 Introduction

62 Stony coral tissue loss disease (SCTLD) was discovered off the coast of Miami, FL in 2014 and
63 has since had negative consequences on the function of coral reefs across Florida and the
64 Caribbean (Walton *et al.* 2018; Alvarez-Filip *et al.* 2022). To date, despite many efforts, no
65 pathogen has been definitively identified as the causative agent of SCTLD. The stony coral
66 (order Scleractinia) microbiome is a complex system of interactions between the host, bacteria,
67 viruses, fungi, archaea, and algal symbionts (Bourne *et al.* 2009); thus a disturbance in any
68 number of these symbiotic relationships could be involved in SCTLD progression. Multiple
69 studies have explored viruses that may infect stony coral symbionts, notably *Symbiodiniaceae*,
70 but no causative relationships have been detected (Work *et al.* 2021; Veglia *et al.* 2022; Beavers
71 *et al.* 2023; Howe-Kerr *et al.* 2023). Bacterial species are particularly under scrutiny for their
72 potential involvement in SCTLD, due to the effectiveness of antibiotics in halting lesion
73 progression in multiple affected coral species (Neely *et al.* 2020; Shilling *et al.* 2021; Studivan *et*
74 *al.* 2023). Consequently, SCTLD studies have predominantly focused on understanding changes
75 in the bacterial community between apparently healthy and SCTLD-affected corals.

76
77 Studies to identify bacterial pathogens have relied primarily on small subunit 16S ribosomal
78 RNA (rRNA) sequencing, followed by computational analysis (Callahan *et al.* 2016) typically
79 using the Silva database (Quast *et al.* 2013) to assign and classify Amplicon Sequence Variants
80 (ASVs) into taxa. ASVs found in diseased lesion samples are then compared to samples from
81 apparently healthy colonies to determine which ASVs are associated with the tissue loss lesions
82 (Meyer *et al.* 2019; Rosales *et al.* 2020; Clark *et al.* 2021). These methods have characterized
83 many notable shifts in coral bacterial communities due to SCTLD and identified a number of
84 bacterial taxa have been associated with SCTLD, including *Rhizobiales*, *Clostridiales*,
85 *Peptostreptococcales-Tissierellales*, *Rhodobacteraceae*, *Flavobacteriaceae*, and *Vibrionaceae*
86 (Rosales *et al.* 2023). However, because of the difficulty in determining whether an associated
87 bacterial taxon is a harmless commensal, an opportunistic secondary infection, or the primary
88 pathogen, none of the bacterial taxa associated with SCTLD have been identified as the causative
89 agent.

90
91 An alternative approach to understanding disease dynamics is the use of metagenomic whole-
92 genome sequencing (WGS), in which all of the DNA from a source is sequenced, including not
93 only the host, but also viruses, bacteria, and eukaryotic species living on or within the host tissue.
94 For example, by analyzing WGS data of human tissue samples taken from the site of infection,
95 researchers have identified pathogenic agents in brain infections (Salzberg *et al.* 2016; Wilson *et*
96 *al.* 2019), corneal infections (Eberhart *et al.* 2017), and other diseases (Kostic *et al.* 2012). The
97 sensitivity of this approach relies on first, sequencing the source DNA deeply enough to capture
98 the pathogen of interest, and second, the existence of closely related host genomes with sequence
99 similarity to the pathogen in the public databases. While the number of complete genomes has

100 grown enormously over the past two decades, databases still contain few or no genomes for non-
101 model organisms, including scleractinian corals.

102

103 Currently, only one SCTLD metagenome study with WGS data is publicly available. While the
104 authors of that study (Rosales *et al.* 2022) were able to assemble and annotate genomes for
105 SCTLD-associated bacterial taxa such as *Rhodobacterales*, *Rhizobiales*, and *Flavobacteriales*,
106 the results were focused on only five of the twenty diseased lesion tissue samples, and the
107 majority of samples were dominated by host sequences. In metagenomic studies, host sequences
108 can confound results, so they are typically removed by aligning the reads to a host reference
109 genome. Currently, the GenBank database has 53 genome assemblies from scleractinian corals,
110 of which only seven are at the chromosome level (NCBI 2023). Of these 53 genomes, none are
111 from the species of corals previously investigated for SCTLD (Rosales *et al.* 2023), emphasizing
112 the additional challenges associated with using metagenomics in non-model organisms.

113 Additionally, given the complex symbiotic microbiome (i.e., algal symbiont, viruses, and
114 prokaryotic community) of stony corals (Bourne *et al.* 2009), the host DNA is only one of the
115 hurdles.

116

117 In this study, we applied new classification methods to understand this devastating coral disease.
118 We used a method to filter host reads from metagenome data by using data collected from
119 apparently healthy corals of the same species to approximate a species-specific healthy host coral
120 genome and microbiome. We then applied the Kraken software suite for pathogen identification
121 (Lu *et al.* 2022) using KrakenUniq (Breitwieser *et al.* 2018) with the goal of identifying putative
122 pathogens present in diseased samples and not present in healthy ones. Using these methods, we
123 identified a number of taxa that have previously been associated with SCTLD, providing further
124 support for their involvement in SCTLD pathogenesis. In addition, in diseased samples from all
125 four coral species investigated here, we found an elevated abundance of species from the *Vibrio*
126 genus, suggesting the *Vibrio* genus is associated with the visual lesion formation stage in
127 SCTLD.

128

129 **Methods**

130 **Data acquisition**

131 We downloaded 58 WGS datasets from NCBI Bioproject PRJNA576217 (Benson *et al.* 2017),
132 previously generated by Rosales *et al.* (Rosales *et al.* 2020, 2022). Sample SRR15960000, an
133 apparently healthy *Diploria labyrinthiformis* sample, was removed due to data quality problems,
134 leaving 57 sets of paired-end samples for analysis. These were 20 diseased colony lesion (DL)
135 samples, 20 diseased colony unaffected (DU) samples, and 17 apparently healthy colony (AH)
136 samples from the coral species *D. labyrinthiformis*, *Dichocoenia stokesii*, *Meandrina meandrites*,
137 and *Stephanocoenia intersepta*. DU samples were taken from apparently unaffected tissue from

138 the diseased corals also sampled for DL. All samples were from corals within reefs with an
139 ongoing SCTLD outbreak in the Florida Keys. Consequently, it is possible that a primary
140 pathogen of SCTLD could be present in low abundance in at least one of the AH samples or that
141 the AH microbiome was different from that of corals in reefs where SCTLD had yet to arrive.
142 Therefore, in this study, our findings represent microbial communities enriched in the observable
143 surface tissue loss formation stage of SCTLD (hereafter visual tissue loss) compared to corals
144 with no visual signs of disease (i.e., AH).

145
146 The tissue samples from the four coral species were pooled by each of the three disease states,
147 resulting in twelve pooled read files (AH, DU, and DL for each of the four coral species). It was
148 assumed that a putative pathogen involved in visual tissue loss would likely show different
149 abundances in DL samples during different stages of lesion progression, so pooling the samples
150 was thought to increase the likelihood of observing a putative agent. All subsequent analyses
151 were based on these data, focusing primarily on the DL and AH samples. The reads from the DU
152 samples were explored in the preliminary analysis, but were not considered in the final analysis.
153 Due to the proximity of the DU samples to lesion tissue, DU samples were considered likely to
154 represent early stages of surface tissue loss, and therefore poor choices for our methods.

155 **Filtering reads with a healthy coral reference database**

156 Because no sequenced genome was available for any of the four coral species, we created a
157 customized database to identify reads that likely originated from either the host genome or the
158 healthy host microbiome. To do this, we used reads from all AH samples to create a KrakenUniq
159 (Breitwieser *et al.* 2018) database for each coral species. We then used this database along with
160 KrakenUniq to classify reads from DL samples, thereby removing any reads in DL samples that
161 matched any read in the AH samples. This filtering step produced a subset of diseased reads that
162 we considered unique to the DL samples, and greatly reduced the number of reads analyzed in
163 subsequent steps (Figure 1A).

164
165 The k-mer size for databases was set to 29bp, lower than the default of 31bp because we wanted
166 to filter more aggressively. For all other parameters, the default values of KrakenUniq were used.
167 For each coral species, the pooled DL reads were then classified with KrakenUniq against the
168 AH reads database corresponding to that species. The original DL files were parsed to extract all
169 reads that were unclassified by KrakenUniq, providing us with the files used in the subsequent
170 analysis (Figure 1A). With this aggressive filtration approach, we may have lost information
171 about changes in relative abundances between the AH and DL samples, but we were left with
172 reads that were truly unique to the DL samples. This set would likely provide the clearest signal
173 of microbes associated with visual lesion formation, which was the primary goal of this study.

174 KrakenUniq read classification

175 The unique DL reads were first classified with KrakenUniq (Breitwieser *et al.* 2018) using
176 default parameters and the default k-mer size of 31 bps against a microbial database (Figure 1A).
177 The database used for classification was built in August 2020 using all NCBI RefSeq complete
178 bacterial, viral, and archaeal genomes, the GRCh38 human genome, the NCBI UniVec database,
179 and a curated set of sequences from EuPathDB (Lu and Salzberg 2018; Amos *et al.* 2022). If
180 there are novel species associated with SCTLD, then their genomes will not be present in public
181 databases; however, if closely related species from the same genera are available, then we might
182 find DNA sequence-level matches to those genomes. For this reason, the unique k-mers are
183 reported at the genus level. Additionally, the relative abundances of the genera are calculated by
184 the unique k-mer count rather than the read count. In general, using the unique k-mer count (i.e.,
185 sequences of length k are counted just once per taxon, no matter how many times they occur in
186 the raw data) rather than read count reduces the bias introduced from using amplification-based
187 sequencing workflows. Using the unique k-mer count also reduces false positives that may arise
188 from reads that contain low-complexity k-mers (Breitwieser *et al.* 2018).
189

190 The report files were initially visualized and explored with Pavian (Breitwieser and Salzberg
191 2020). The read classifications were verified by randomly sampling classified reads, aligning
192 them with megablast (Altschul *et al.* 1990) to standard databases, and ensuring they had the same
193 or similar classifications as with KrakenUniq. The unique k-mers-per-read statistic served as a
194 confidence flag. For a species that was truly present in the sample, even with amplified WGS
195 data, we expected a high number of unique k-mers per read. A 150 bp read may contain up to
196 120 unique 31-mers, although repetitive k-mers will reduce the unique count. There is also an
197 upper bound to unique k-mers found in a genome, which may be reached when the genome is
198 small or when the sampling depth is high. In this study, we considered a value of less than five
199 unique k-mers per read as a flag that the taxon might be a false positive. The unique k-mer-per-
200 read count for every classified genus is reported in Supp. Table S1.

201 MMseqs2 read classification

202 Because protein sequences are more conserved than DNA across distant species, we ran
203 translated searches using MMseqs2 easy-taxonomy workflow (Steinegger and Söding 2017)
204 with the UniRef50 protein database (Suzek *et al.* 2015) to determine if this would identify more
205 of the microbial reads than DNA sequences alone (Figure 1A). The protein database used was
206 UniRef50 (Suzek *et al.* 2015), which allows for faster alignment given that we aligned our
207 protein sequences to clusters of similar protein sequences rather than all protein sequences. The
208 paired reads had to be classified separately because MMseqs2 easy-taxonomy does not allow for
209 both paired reads to be processed together.
210

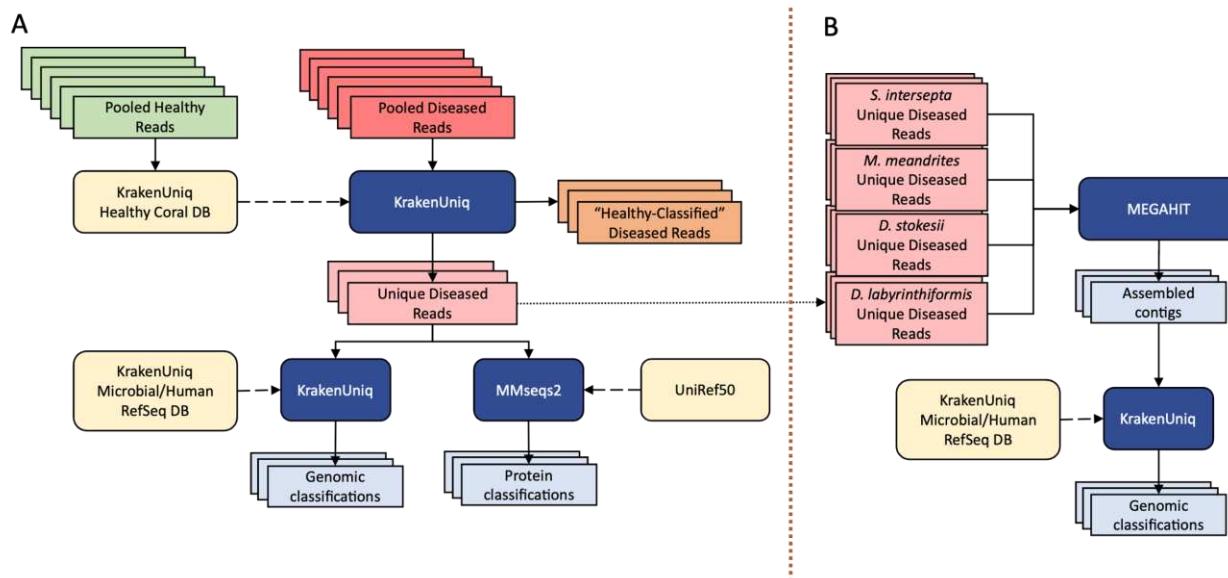
211 To identify reads belonging to members of the algal symbiont family *Symbiodiniaceae*, the
212 MMseqs2 output was parsed to extract all protein cluster identifiers that had at least one
213 alignment at the “f_Symbiodiniaceae” level or below for each coral species. The UniRef50
214 cluster identifiers were mapped to the full UniProtKB (UniProt Consortium, 2021). Their
215 functions, if known, are reported in Supp. Table S2 as output by the UniProt ID mapping service
216 (Huang *et al.* 2011). Supp. Table S2 was produced by inserting the number of alignments from
217 the original MMseqs2 “tophit_report” files into the outputs of the UniProtKB ID mapping.

218 **MEGAHIT contig assembly and classification**

219 Due to the high genomic diversity of viruses (Aiewsakun *et al.* 2018), a viral agent might have
220 been missed in our previous analyses because it was too divergent from available DNA and
221 protein sequences. This problem could be mitigated if the query sequences were longer, and
222 therefore we assembled the raw reads to see if any long viral contigs were assembled.

223
224 The filtered unique diseased reads from all four coral species were pooled to form a fasta file of
225 all filtered unique diseased reads and were then assembled with MEGAHIT v1.2.9 (Li *et al.*
226 2016) using default parameters (Figure 1B). The contigs were classified with KrakenUniq using
227 the same database of complete bacterial and viral genomes used above. The viral classifications
228 from the report file were extracted to search for any viruses of interest. These steps were
229 repeated with pooling just the filtered unique diseased reads excluding *S. intersepta* because
230 samples from this species represented a majority of the reads (89.8%) in our study and
231 dominated the previous assembly (Rosales *et al.* 2022).

232
233 To investigate virulence factors associated with *Vibrio*, a genus implicated in other coral diseases
234 as well as SCTLD (Munn 2015; Meyer *et al.* 2019), and found in high abundance in this study
235 (see Results), the 9,427 contigs classified as *Vibrio* from the MEGAHIT assembly with all four
236 coral species were extracted. These contigs were then aligned with megablast (Altschul *et al.*
237 1990) to the Virulence Factor Database (VFDB) DNA sequences core dataset (Liu *et al.* 2022),
238 downloaded on May 12th, 2023.


239 **Comparison to cultured *Vibrio* assemblies from a prior SCTLD 240 study**

241 The reads that were classified at or below the *Vibrio* genus level by KrakenUniq were extracted
242 from the original sequence files for *S. intersepta* and *D. labyrinthiformis* only, because they
243 contributed the majority of the *Vibrio* genus reads. The draft genomes from an SCTLD study that
244 cultured *V. coralliilyticus* (Ushijima *et al.* 2020) were downloaded from NCBI Bioproject
245 PRJNA625269 (Benson *et al.* 2017) and a Bowtie2 index was built for each one. The extracted

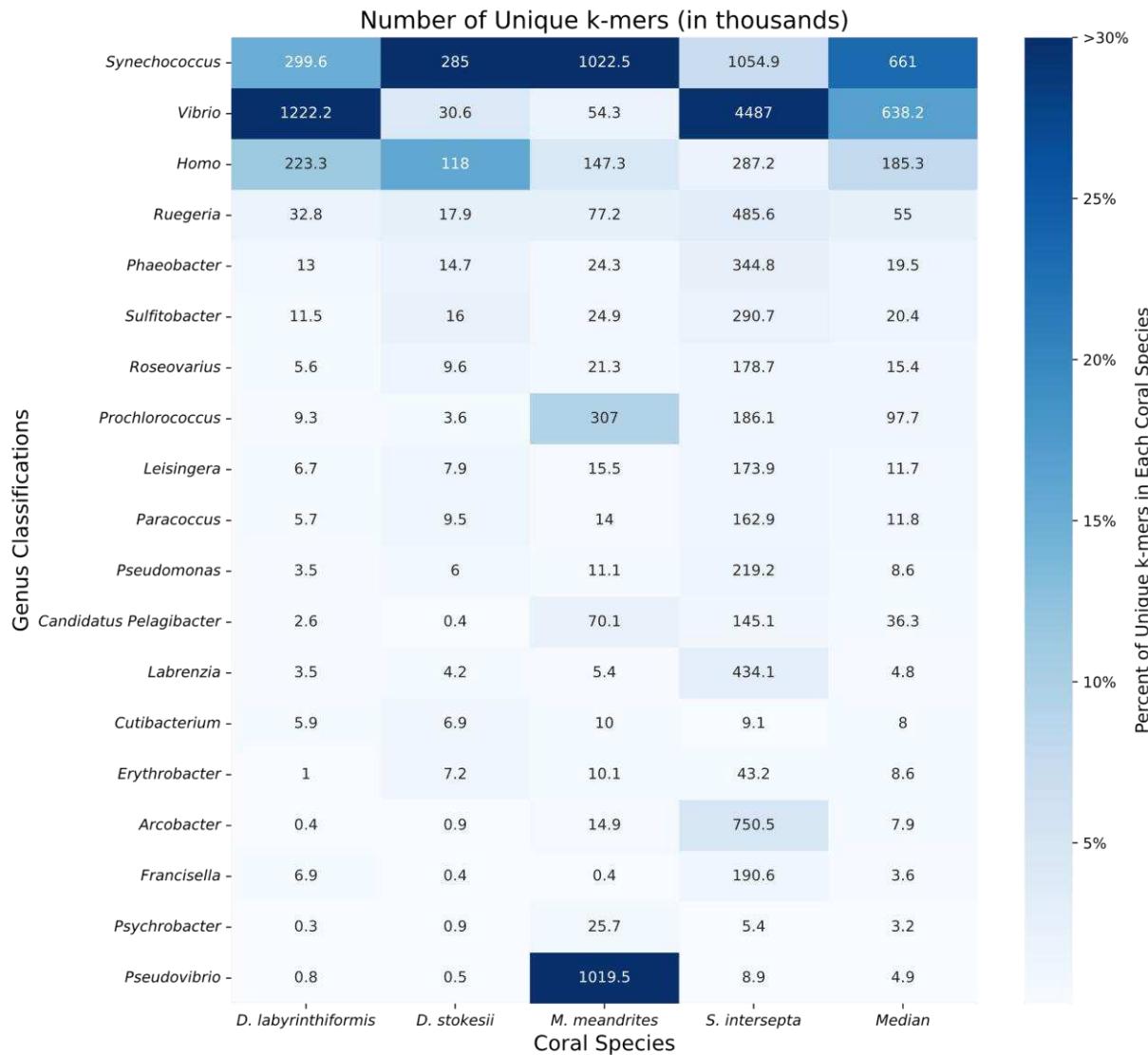
246 *Vibrio* reads were aligned with Bowtie2 (Langmead and Salzberg 2012) to each of the eight draft
247 genomes. The Bowtie2 alignment rates to each draft genome are reported in Supp. Table S4.

248 ***Vibrio* species analysis**

249 Given the interest in the *Vibrio* genus, the reads that were classified at the species level were
250 investigated in further detail. The KrakenUniq report files of the unique diseased reads for every
251 coral species were parsed to extract the number of unique k-mers assigned to each *Vibrio*
252 species. The k-mer counts were normalized by dividing them by the total number of k-mers
253 assigned to the genus. The contribution of *Vibrio* species reads from each sample was then found
254 by parsing the KrakenUniq output to determine the sample ID number from the read identifier. It
255 was not possible to determine the number of unique k-mers that were contributed by each sample
256 with these methods.

257
258 **Figure 1:** (A) Filtering the diseased reads consisted of building a KrakenUniq database from all
259 healthy reads for every coral species and classifying the corresponding pooled diseased reads
260 against this database. Reads that were unclassified by the database were considered unique to the
261 diseased samples. This subset was classified at the DNA level with KrakenUniq and at the
262 protein level with MMseqs2. (B) The unique diseased reads from all coral species were
263 combined and assembled with MEGAHIT. The assembled contigs were then classified with
264 KrakenUniq.

265


266 **Results**

267 We initially analyzed whole-genome sequencing reads from *D. labyrinthiformis*, *D. stokesii*, *M.*
268 *meandrites*, and *S. intersepta* from three different tissue sample types: diseased colony lesion
269 (DL), diseased colony unaffected (DU), and apparently healthy colony (AH). The total number
270 of reads from each species and sample type is shown in Table 1.

Table 1: Summary of total DNA sequencing reads from each coral species and tissue type. Rows labeled “Filtered” report the unique reads remaining after filtering out reads that overlapped with those found in apparently healthy samples, as described in the text. M=millions of reads.

Coral Species	Tissue Type (# of samples)	Read Counts (M)
<i>Diploria labyrinthiformis</i>	Apparently Healthy (4)	151.125
	Diseased Unaffected (5)	211.401
	Diseased Lesion (5)	198.816
	Filtered Diseased Lesion	0.955
<i>Dichocoenia stokesii</i>	Apparently Healthy (5)	179.831
	Diseased Unaffected (5)	202.168
	Diseased Lesion (5)	257.031
	Filtered Diseased Lesion	0.562
<i>Meandrina meandrites</i>	Apparently Healthy (3)	126.223
	Diseased Unaffected (5)	206.423
	Diseased Lesion (5)	185.556
	Filtered Diseased Lesion	4.159
<i>Stephanocoenia intersepta</i>	Apparently Healthy (5)	197.367
	Diseased Unaffected (5)	190.251
	Diseased Lesion (5)	190.304
	Filtered Diseased Lesion	50.028

293 Genus level classification with KrakenUniq

294

295 **Figure 2:** Unique k-mer counts from KrakenUniq genus-level classifications of unique diseased
296 reads for every coral species. The intensity of the shading represents the percent of total unique
297 k-mers assigned to the genus. Each box is annotated with the number of unique k-mers (in
298 thousands) assigned to the genus.

299

300 When the KrakenUniq reports were sorted by unique k-mer count within coral species, the six
301 genera *Synechococcus*, *Vibrio*, *Homo*, *Ruegeria*, *Phaeobacter*, and *Sulfitobacter* were among the
302 ten most differentially abundant in all coral species, with the genera *Vibrio*, *Synechococcus*, and
303 *Ruegeria* being particularly abundant across all coral species (Figure 2). *Synechococcus* was the
304 most or second most abundant in all coral species. In *D. labyrinthiformis*, *Vibrio* was the most
305 abundant, with 4.1 times more unique k-mers than the second most abundant genus,
306 *Synechococcus*. In *D. stokesii*, *Synechococcus* was the most abundant with *Homo* and *Vibrio*

307 being second and third most abundant, respectively (note that *Homo* is due to human
308 contaminants). In *M. meandrites*, the *Synechococcus* genus was again the most abundant. The
309 *Pseudovibrio* genus was the second most abundant in *M. meandrites*, but only appeared as
310 substantially differentially abundant in this coral species. *Vibrio* had the seventh highest relative
311 abundance in *M. meandrites*, which, though lower than observed in the other coral species, still
312 represented a high k-mer-to-read ratio of 52.0 (Supp. Table S1). In *S. intersepta*, the *Vibrio*
313 genus was again clearly the most abundant, having 4.3 times the amount of unique k-mers
314 compared to the second place *Synechococcus*. Due to their high abundances across all coral
315 species in this analysis, *Vibrio*, *Synechococcus*, and the *Rhodobacteraceae* family (to which
316 *Ruegeria*, *Phaeobacter*, and *Sulfitobacter* belong) appear to be associated with visual tissue loss
317 and may represent important agents of pathogenesis in SCTLD.

318 **Protein-level classification with MMseqs2**

319 The number of microbial reads classified for each coral species at the protein-level using
320 MMseqs2 (Steinegger and Söding 2017) increased approximately six-fold compared to the
321 DNA-based searches (Supp. Figure S1). Because we were primarily interested in whether any
322 new candidate taxa emerged, we did not consider the relative abundances of different taxa
323 classified by the protein-based search compared to the DNA-based search.

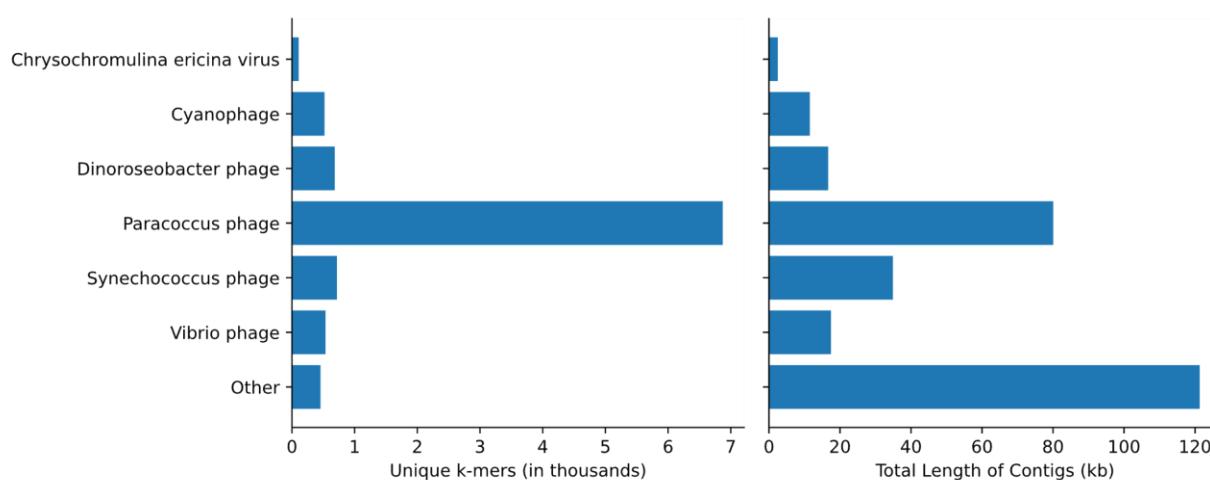
324 These results are shown in Figure 3. Note that MMSeqs2 does not handle paired reads as a unit,
325 so the paired-end reads were classified separately. As expected, the read counts were similar
326 between the paired reads for every coral species. Additionally, MMSeq2 does not report k-mer
327 counts, only read counts, a metric which is subject to more bias from PCR amplification
328 protocols, as explained above. Due to the decreased specificity of a protein search, MMseqs2
329 classified many reads as “unclassified [family level]”; thus, the results are presented at the family
330 level rather than the genus level in Figure 3.

332

333 **Figure 3.** Classifications from MMseqs2 at the family-level for forward (“1”) and reverse reads
334 (“2”) from unique diseased reads from each coral species. The intensity of the shading represents
335 the proportion of total reads from the coral species that were assigned to the family. The boxes
336 are annotated with the number of reads (in thousands) assigned to each family.

337

338 MMseqs2 was able to classify a higher percentage of bacterial and eukaryotic reads,
339 predominantly from coral algal symbionts such as *Symbiodiniaceae*, yet we saw similar abundant
340 taxa as in the KrakenUniq analysis. *Symbiodiniaceae* was among the top families in all coral
341 species and particularly abundant (~48% of all classified reads) in *M. meandrites*. Due to
342 particular interest in the role of *Symbiodiniaceae* in SCTLD progression (Beavers *et al.* 2023),
343 the functions of the proteins in the *Symbiodiniaceae* protein clusters identified are provided in
344 Supp. Table S2.

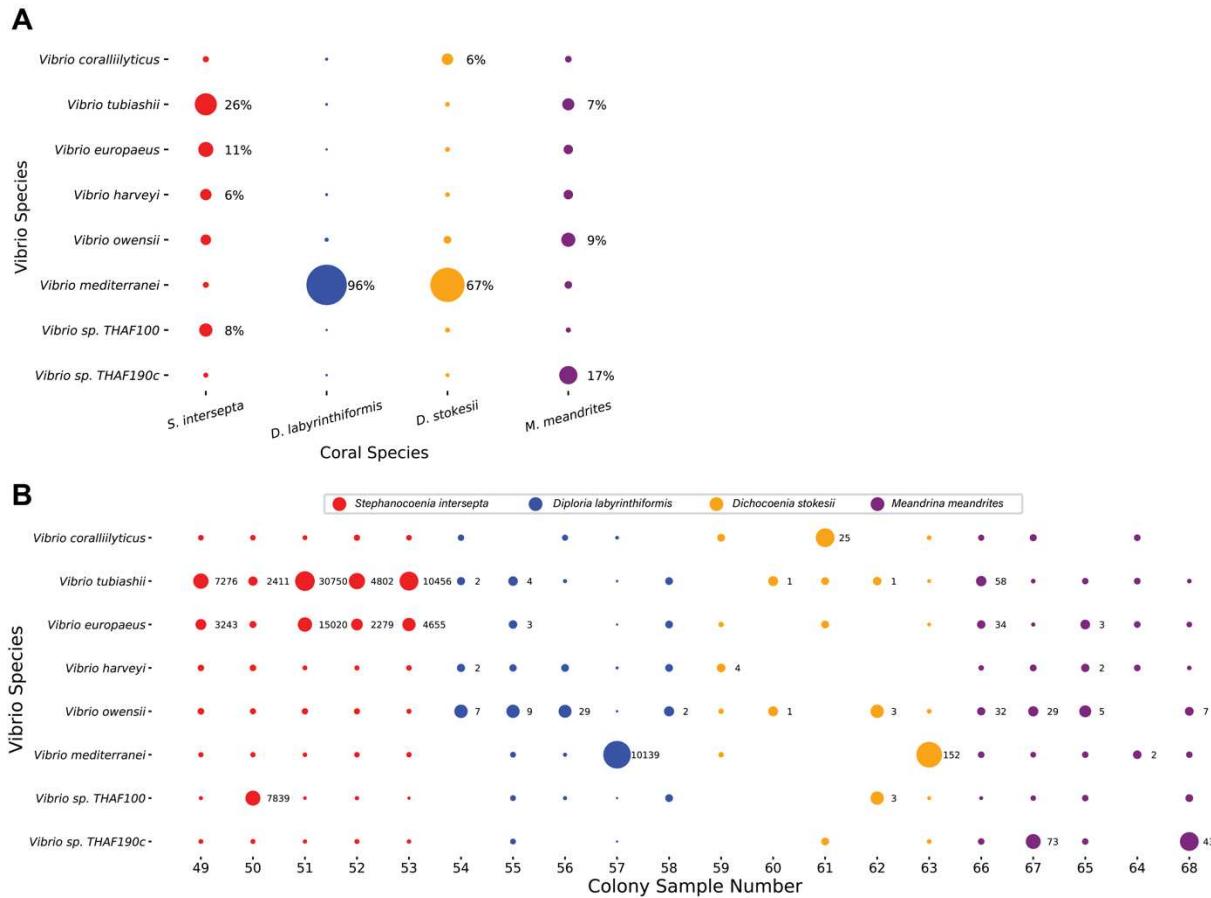

345

346 The families *Flavobacteriaceae*, *Roseobacteraceae*, and *Paracoccaceae* were among the most
347 abundant families in all coral species. In this database, *Roseobacteraceae* and *Paracoccaceae* are
348 homotypic synonyms of the family *Rhodobacteraceae* in the database used for DNA-level
349 classifications (Göker 2022). So, we observed *Rhodobacteraceae* as before in the DNA analysis,
350 but *Flavobacteriaceae* emerged as another family of interest in this protein-level analysis.

351 *Flavobacteriaceae* was also found as a top family in the DNA-level classification, however, no
352 top genus was identified that belongs to this family. Additionally, the average number of unique
353 k-mers stemming from reads classified at or below the *Flavobacteriaceae* family at the DNA-
354 level was relatively low. For example, in *S. intersepta*, there were 794,258 unique k-mers from
355 489,794 reads, or ~1.6 k-mers per read. In *D. stokesii* there were 38,333 unique k-mers from
356 3,802 reads, or ~10 k-mers per read. Across all coral species, the *Flavobacteriaceae* family had
357 one of the lowest average k-mer-per-read counts of all bacterial families identified. For example,
358 the *Vibrionaceae* family, which has similar sized genomes to *Flavobacteriaceae* (Lin *et al.* 2018;
359 Gavriilidou *et al.* 2020), had 25 k-mers-per-read and 88 k-mers-per-read in *S. intersepta* and *D.*
360 *stokesii*, respectively.

361 Contig Assembly and Classification

362 In addition to characterizing the bacterial community, using metagenomic WGS data made it
363 possible to explore DNA viruses found in the unique DL reads. To account for the genomic
364 diversity of viruses, which may not share many conserved sequences with genomes in public
365 databases, we assembled contigs from the unique DL reads and classified them with KrakenUniq
366 to identify any viral contigs that may be of interest in SCTLD etiology. This resulted in
367 1,014,402 assembled contigs. KrakenUniq classified 168,829 (16.6%) contigs, of which only 227
368 (0.02%) were viruses. The viral contig classifications are shown in Figure 4. *Paracoccus* phages
369 were the most abundant, with *Vibrio* phages, *Synechococcus* phages, *Dinoroseobacter* phages,
370 and *Cyanophage* being abundant as well. Five contigs with 108 unique k-mers were classified
371 as *Chrysochromulina ericina* virus, a virus that infects the microalga *Chrysochromulina ericina*
372 (also known as *Haptolina ericina*) (Gallot-Lavallée *et al.* 2017).
373


374
375 **Figure 4:** Classifications of assembled viral contigs showing the number of unique k-mers (in
376 thousands) and the total sequence length (in kb) assembled for every genus.
377

378 When combining the filtered diseased reads from every coral species for assembly, the reads
379 originating from *S. intersepta* samples represented a majority of the reads (89.8%). Therefore,
380 we repeated the previous steps without *S. intersepta* reads and assembled the reads from the
381 other three coral species. This resulted in 27,759 assembled contigs, of which 2,010 (7.2%) were
382 classified by KrakenUniq, and only six matched viruses (five *Pseudoalteromonas* phages and
383 one *Synechococcus* phage).

384
385 The contig assembly results indicate that there is likely not an abundant DNA virus of interest in
386 the diseased samples. A virus that infects the microalga *Chrysochromulina ericina* was detected,
387 however with few unique k-mers (108) and with only 2.5 kb assembled of a 473.6 kb genome
388 (Gallot-Lavallée *et al.* 2015). The five *C. ericina* virus contigs were aligned with BLASTN
389 (Altschul *et al.* 1990) to standard databases, which revealed that while two contigs aligned best
390 to *C. ericina* virus, the other three aligned best to Eukarya, possibly indicating false positives and
391 leading us to be skeptical of any significant implications of this finding for SCTLD progression.
392 Primarily, this analysis detected phages of bacteria that were found in high abundances in the
393 results above. The detection of these phages provided support that the high abundances of the
394 associated bacteria previously observed were representative of the true metagenomic
395 compositions of the samples.

396 ***Vibrio* Species Classifications**

397 The results presented above identified the *Vibrio* genus as a strong candidate agent of surface
398 tissue loss. Given that a number of *Vibrio* species have been associated with other coral
399 pathogens (Munn 2015), we were particularly interested in this genus. We also found that
400 various assembled *Vibrio* contigs contained virulence factors (locations and functions in Supp.
401 Table S3). This indicated that the *Vibrio* identified had the genetic potential to be pathogenic in
402 the visual tissue loss stage. Therefore, we investigated the *Vibrio* classifications at the species
403 level. The proportion of all *Vibrio* genus unique k-mers contributed by each *Vibrio* species are
404 displayed in Figure 5A and the proportion of all *Vibrio* genus reads contributed by each sample
405 is shown in Figure 5B.

406

407 **Figure 5.** Species-level KrakenUniq classifications of *Vibrio* genus reads in SCTLD lesions. **(A)**
408 The proportion of unique k-mers of all *Vibrio* species pooled from each coral species. The size of
409 the dots is relative to the proportion of unique k-mers assigned to the *Vibrio* species in each coral
410 species. Those with over 5% are annotated with their proportion. **(B)** The species level
411 proportions of the *Vibrio* genus reads for every sample. The x-axis is labeled with the colony
412 sample number, which corresponds to those assigned in the original analysis of this dataset
413 (Rosales *et al.* 2020). *Vibrio* species classifications that represent at least 5% of the *Vibrio*
414 species in the sample are annotated with the number of reads.

415

416 *V. europaeus* and *V. tubiashii*, two closely related species, represented a large portion (37%
417 combined) of the *Vibrio* k-mers in *S. intersepta* (Figure 5A). *V. mediterranei* dominated in *D.*
418 *labyrinthiformis* (96%) and *D. stokesii* (67%) but was muted in the other coral species (Figure
419 5A); however, one colony per species appeared to be responsible for these high proportions:
420 colony 57 in *D. labyrinthiformis* and colony 63 in *D. stokesii* (Figure 5B). *V. sp. THAF190c* was
421 the predominant species (17%) in *M. meandrites*. Other species like *V. coralliilyticus*, *V. harveyi*,
422 *V. owensii*, and *V. sp. THAF100* appeared consistently in all coral species, but never in high
423 proportions. As seen in Figure 5B, *V. tubiashii* and *V. owensii* contributed more than 5% of the
424 reads in 10 samples each.

425 **Comparison to cultured *Vibrio* assemblies from a prior SCTLD 426 study**

427 Eight draft genomes from *V. coralliiolyticus* strains isolated from a previous SCTLD study
428 (Ushijima *et al.* 2020) allowed us to compare whether we identified the same *Vibrio* species.
429 *Vibrio* genus reads classified by KrakenUniq in *S. intersepta* and *D. labyrinthiformis* were
430 extracted and aligned to the Ushijima *et al.* draft genomes. Between 3.76% to 4.02% of the reads
431 mapped to the *V. coralliiolyticus* strains, while 7.54% of reads mapped to the McD22-P3 strain,
432 which was the control strain, and not *V. coralliiolyticus* (Supp. Table S4). As would be expected,
433 the proportions of reads that aligned are similar to the proportions of reads that were classified as
434 *V. coralliiolyticus* by KrakenUniq (See Figure 5).

435

436 **Discussion**

437 In this study we used previously published sequencing data from coral affected by SCTLD and
438 developed a novel metagenomic analysis pipeline to explore the microbial communities present
439 in those data. The data consisted of samples from four coral species collected from Florida's
440 coral reefs during a SCTLD outbreak. To investigate the microbial taxonomy of these samples,
441 the previous study used small subunit rRNA gene assemblies and metagenome-assembled
442 genomes. Our investigation differed by focusing on whole-genome shotgun data which we used
443 along with the Kraken software suite for potential pathogen identification. Our analysis provides
444 new insights that point to *Vibrio* as being associated with SCTLD. Previous work also did not
445 filter out host sequences, but here we applied a novel technique to filter host reads from
446 metagenomic data by using data derived from apparently healthy samples as a surrogate for a
447 reference genome. This allowed us to examine unique sequences from DL samples by
448 approximating a species-specific host coral genome. In addition, in this study, we investigated
449 the SCTLD DNA virome, which has not been previously reported.

450

451 In our protein analysis, the families *Rhodobacteraceae* and *Flavobacteriaceae* were found to be
452 associated with SCTLD, consistent with previous SCTLD studies. *Rhodobacteraceae* is one of
453 the most common bacterial families associated with coral diseases (Gignoux-Wolfsohn *et al.*
454 2017) in diverse geographic locations, but no member has been identified as a causative coral
455 disease agent (Mouchka *et al.* 2010), likely indicating their ability to opportunistically infect
456 diseased coral. In addition to SCTLD (Rosales *et al.* 2023), *Flavobacteriaceae* has been enriched
457 in White Band Disease in the scleractinian staghorn coral *Acropora cervicornis* (Gignoux-
458 Wolfsohn and Vollmer 2015), but has never been identified as a causative agent in coral tissue
459 loss. Additionally, our methods did not detect a single highly abundant genus belonging to
460 *Flavobacteriaceae* in the unique diseased reads. For these reasons, members of
461 *Flavobacteriaceae* within SCTLD DL tissue also most likely represent opportunistic infections.
462 Although *Vibrionaceae* and *Synechococcaceae* were not among the most abundant families
463 within the unique DL reads in the MMSeqs2 protein analysis (also the case for *Vibrionaceae* in

464 the DNA-level classifications at the family level read counts), we were primarily interested in
465 whether new candidates emerged from the MMSeqs2 analysis, not the relative abundance of the
466 candidates. Therefore, the two genera within these two families that were abundant in the DNA-
467 level analysis remained strong candidates for putative pathogens, which are assumed to have a
468 high abundance at the genus level. In contrast, a family that appeared as highly abundant in the
469 unique DL reads, without a single highly abundant genus, as we observed with
470 *Flavobacteriaceae* and *Rhodobacteraceae*, may be more likely to represent a microbial group
471 with multiple members capable of opportunistic infection of already-diseased coral tissue.
472

473 In our k-mer analysis, the genera *Synechococcus* and *Vibrio* were identified as taxa of interest,
474 but interestingly were not detected in the previous analysis of this data. *Synechococcus*, the most
475 or second most abundant genus across all four coral species, belongs to the phylum
476 *Cyanobacteria*, which are photosynthetic picoplankton (Kim *et al.* 2018). Although not likely
477 involved in pathogenesis, *Synechococcus* have been enriched in other SCTLD studies, and it has
478 been hypothesized that their increase in abundance is a response to disease stress (Rosales *et al.*
479 2023). The high differential abundance of *Synechococcus* in this study supports the suggestion
480 that *Synechococcus* may have some role in microbial community interactions during SCTLD. In
481 contrast to *Synechococcus*, *Vibrio* have been associated with other coral tissue loss diseases, and
482 have been found to cause coral bleaching (Munn 2015) unlike the other abundant bacterial taxa
483 in this study. In three coral species, *Vibrio* was either the most abundant (two species) or third
484 most abundant (one species) genus, making it a strong candidate for an agent involved in SCTLD
485 visual tissue loss; In the fourth species, *M. meandrites*, *Vibrio* was only the seventh most
486 abundant genus, however, this coral species had the fewest AH reads to create the database used
487 for filtering the DL reads (Table 1), which may have led to more noise in the *M. meandrites*
488 results compared to other coral species. Species belonging to the *Vibrio* genus are not always
489 pathogenic, but we found various virulence factors, such as motility, adherence, and effector
490 delivery systems, that further suggest the *Vibrio* from this study have the capacity to be
491 pathogenic.
492

493 Within the *Vibrio* genus, many reads were classified to the species level, with matches to *V.*
494 *coralliilyticus*, *V. harveyi*, and *V. owensii*, which are known coral pathogens associated with
495 bleaching and tissue loss (Munn 2015). *V. mediterranei*, which comprised a majority of the
496 classified *Vibrio* species in *D. labyrinthiformis* and *D. stokesii*, is 97% identical to *V. shilonii*,
497 resulting in them now being considered the same species (Tarazona *et al.* 2014). *V.*
498 *mediterranei/shilonii* were found to be responsible for the annual bleaching of the scleractinian
499 coral *Oculina patagonica* off the Israeli coast from 1993-2003. Additionally, a more recent
500 analysis of *O. patagonica* bleaching in the Spanish Mediterranean found that while *Vibrio*
501 species were always present in healthy corals, *V. coralliilyticus* and *V. mediterranei/shilonii* were
502 only identified in diseased corals. Although rarely identified together in wild samples,
503 experiments found that introducing *V. coralliilyticus* and *V. mediterranei/shilonii* together to

504 healthy corals was substantially more detrimental to their health than either of the species
505 introduced alone (Rubio-Portillo *et al.* 2014). *V. mediterranei/shilonii*, therefore, may be of
506 particular interest in future SCTLD studies, given its association with bleaching events and its
507 high abundance in two coral species investigated in our study, paired with co-occurrence with *V.*
508 *coralliiilyticus* (although in differing proportions; Figure 5).

509
510 Our results are not the first to identify *Vibrio* associated with SCTLD (Ushijima *et al.* 2020;
511 Rosales *et al.* 2023). Previous work has shown that *Vibrio* are enriched in SCTLD samples, but
512 these studies did not find them as prevalent across samples, including in this dataset (Rosales *et*
513 *al.* 2020). A study that cultured *V. coralliiilyticus* from SCTLD lesions concluded that isolates did
514 not cause disease, but if the *V. coralliiilyticus* zinc-metalloprotease was detected, it was correlated
515 with higher rates of both mortality and disease progression (Ushijima *et al.* 2020). The lack of
516 similarity between those cultured *V. coralliiilyticus* sequences and our *Vibrio* sequences leads us
517 to believe that multiple *Vibrio* species may be involved in SCTLD lesion development.
518 However, it is important to note that our picture of the SCTLD microbiome is restricted by the
519 genomes in the databases used. The *Vibrio* genus has been found to have a large degree of
520 genomic flexibility (Heidelberg *et al.* 2000), so while the classifications to different *Vibrio*
521 species may truly represent the presence of an array of *Vibrio* species, it may instead be the result
522 of various reads from a novel *Vibrio* species matching different *Vibrio* species based on closest
523 genomic similarity. Therefore, while matches to different *Vibrio* species and their potential role
524 in SCTLD may offer some insights, a more robust interpretation is to consider the implications
525 of disease association by *Vibrio* at the genus level.

526
527 Some work has suggested that the etiology of SCTLD has been hypothesized to be viral
528 (Robertson *et al.* 2023), and gene expression data show that there is an increase in coral viral
529 immune response in corals with SCTLD (Beavers *et al.* 2023). Researchers have explored the
530 potential role of RNA viruses in SCTLD, but no RNA viruses have been found enriched in corals
531 with SCTLD (Veglia *et al.* 2022) and these viruses are likely ubiquitous in corals without any
532 potential relationship to SCTLD (Howe-Kerr *et al.* 2023). To further investigate the involvement
533 of viruses in SCTLD, we analyzed the presence of DNA viruses. Our data show the majority of
534 DNA viruses in diseased samples represent phages. Not surprisingly, phage sequences
535 correspond with some of the most abundant bacteria identified in this study, such as
536 *Rhodobacteraceae*, *Vibrionaceae*, and *Synechococcaceae*. The *Paracoccus* phage, which infects
537 *Rhodobacteraceae*, and the *Vibrio* phage would be interesting to further explore as potential
538 avenues for disease mitigation. In addition to phages, sequences were found with similarities to
539 the *Chrysochromulina ericina* virus. However, with only two contigs and little coverage of its
540 genome, we do not believe this virus plays a role in SCTLD. Thus, we did not find any DNA
541 viruses with definitive association with SCTLD. Future studies may consider viral enrichment
542 protocols prior to sequencing to help better characterize the SCTLD DNA virome.

543

544 In addition to differences in the bacterial and viral communities, members of *Symbiodiniaceae*
545 were differentially abundant in diseased samples compared to healthy samples. SCTLD disrupts
546 the relationship between the host coral and its *Symbiodiniaceae* through symbiont necrosis and
547 peripheral nuclear chromatin condensation, among other physiological changes (Landsberg *et al.*
548 2020). This may result from an increase in *rab7* expression among the *Symbiodiniaceae*, which
549 may be signaling for degradation of dead and dysfunctional cells through endocytic phagosomes
550 (Beavers *et al.* 2023). The increased *Symbiodiniaceae* DNA identified in diseased samples in this
551 study may be a byproduct of this necrosis and degradation of the symbiont. This was especially
552 notable in *M. meandrites*, which was the coral in this study most susceptible to acute tissue loss
553 and mortality from SCTLD (Precht *et al.* 2016); this accelerated tissue loss may lead to higher
554 levels of dead and dysfunctional symbionts being produced during visual lesion progression in
555 *M. meandrites* than in other coral species.
556

557 **Conclusions**

558 The novel method employed in this study sheds new light on the microbial dynamics in SCTLD-
559 affected corals and highlights the potential role of *Vibrio* species within the tissue of progressing
560 surface lesions. These findings pave the way for more focused investigations into the role of
561 *Vibrio* and other microbes in SCTLD, which could eventually lead to effective strategies for
562 disease prevention and control. However, the observed associations between certain microbial
563 taxa and SCTLD could be either a cause or a consequence of visual tissue loss. Understanding
564 these dynamics is a crucial aspect of coral disease research that warrants further investigation,
565 along with an understanding of what represents a truly healthy coral microbiome. Apparently
566 healthy corals exposed to SCTLD can experience shifts in their microbiome even in the absence
567 of tissue loss (Huntley *et al.* 2022) and may even be in the early stages of infection with
568 developing subsurface SCTLD lesions (Landsberg *et al.* 2020) emphasizing the need for
569 additional genomic resources for non-model organisms. The lack of comprehensive genomic
570 databases for corals can impede the progress of metagenomic analysis and the identification of
571 potential pathogens. We believe that the continued efforts to sequence and assemble more coral
572 genomes, particularly those affected by SCTLD, would greatly contribute to our understanding
573 of this devastating disease.
574

575 **Data availability**

576 Supplemental materials are available at FigShare. Table S1 contains the average k-mers per read
577 for every genus across all coral species. Table S2 contains the *Symbiodinaceae* protein
578 classifications. Table S3 contains the virulence factors identified in the *Vibrio* contigs. Table S4
579 contains the alignment rates of reads classified as *Vibrio* to eight draft assemblies of *Vibrio*
580 species previously isolated from SCTLD infected corals. The IDs of the unique diseased reads
581 remaining after filtering for each coral species and the assembled contigs are also available at

582 FigShare. The report files from the KrakenUniq and MMseqs2 analyses have been made
583 available at the following repository: https://github.com/jheinz27/coral_results/tree/main.

584

585 **Conflicts of interest**

586 The authors declare that there is no conflict of interest.

587

588 **Acknowledgements**

589 We thank Dr. Martin Steinegger and Dr. Christopher Pockrandt for their helpful advice and
590 exploratory work on pathogen identification in Mariana crows, which helped inform the methods
591 development here. We also thank Dr. Alaina Shumate for her valuable advice and guidance. The
592 samples were collected under permits #FKNMS-2018-057 and #FKNMS-2017-100. This work
593 was supported in part by NIH grant R35-GM130151 to SLS.

594

595 **References**

596 Aiewsakun, P., E. M. Adriaenssens, R. Lavigne, A. M. Kropinski, and P. Simmonds, 2018
597 Evaluation of the genomic diversity of viruses infecting bacteria, archaea and eukaryotes
598 using a common bioinformatic platform: steps towards a unified taxonomy. *J. Gen. Virol.*
599 99: 1331–1343. <https://doi.org/10.1099/jgv.0.001110>

600 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 1990 Basic local alignment
601 search tool. *J. Mol. Biol.* 215: 403–410. [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)

602 Alvarez-Filip, L., F. J. González-Barrios, E. Pérez-Cervantes, A. Molina-Hernández, and N.
603 Estrada-Saldívar, 2022 Stony coral tissue loss disease decimated Caribbean coral
604 populations and reshaped reef functionality. *Commun Biol* 5: 440.
605 <https://doi.org/10.1038/s42003-022-03398-6>

606 Amos, B., C. Aurrecoechea, M. Barba, A. Barreto, E. Y. Basenko *et al.*, 2022 VEuPathDB: the
607 eukaryotic pathogen, vector and host bioinformatics resource center. *Nucleic Acids Res.* 50:
608 D898–D911. <https://doi.org/10.1093/nar/gkab929>

609 Beavers, K. M., E. W. Van Buren, A. M. Rossin, M. A. Emery, A. J. Veglia *et al.*, 2023 Stony

610 coral tissue loss disease induces transcriptional signatures of in situ degradation of
611 dysfunctional Symbiodiniaceae. *Nat. Commun.* 14: 2915. <https://doi.org/10.1038/s41467-023-38612-4>

613 Benson, D. A., M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman *et al.*, 2017 GenBank.
614 *Nucleic Acids Res.* 45: D37–D42. <https://doi.org/10.1093/nar/gkw1070>

615 Bourne, D. G., M. Garren, T. M. Work, E. Rosenberg, G. W. Smith *et al.*, 2009 Microbial
616 disease and the coral holobiont. *Trends Microbiol.* 17: 554–562.
617 <https://doi.org/10.1016/j.tim.2009.09.004>

618 Breitwieser, F. P., D. N. Baker, and S. L. Salzberg, 2018 KrakenUniq: confident and fast
619 metagenomics classification using unique k-mer counts. *Genome Biol.* 19: 198.
620 <https://doi.org/10.1186/s13059-018-1568-0>

621 Breitwieser, F. P., and S. L. Salzberg, 2020 Pavian: interactive analysis of metagenomics data for
622 microbiome studies and pathogen identification. *Bioinformatics* 36: 1303–1304.
623 <https://doi.org/10.1093/bioinformatics/btz715>

624 Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson *et al.*, 2016 DADA2:
625 High-resolution sample inference from Illumina amplicon data. *Nat. Methods* 13: 581–583.
626 <https://doi.org/10.1038/nmeth.3869>

627 Clark, A. S., S. D. Williams, K. Maxwell, S. M. Rosales, L. K. Huebner *et al.*, 2021
628 Characterization of the Microbiome of Corals with Stony Coral Tissue Loss Disease along
629 Florida's Coral Reef. *Microorganisms* 9.: <https://doi.org/10.3390/microorganisms9112181>

630 Eberhart, C., Li, Z., Breitwieser, F. P., Lu, J., Jun, A. S. *et al.*, 2017 Diagnosing corneal
631 infections in formalin fixed specimens using next generation sequencing. *Investigative
632 Ophthalmology & Visual Science.*

633 Gallot-Lavallée, L., G. Blanc, and J.-M. Claverie, 2017 Comparative Genomics of
634 Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses
635 Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae
636 Family. *J. Virol.* 91.: <https://doi.org/10.1128/JVI.00230-17>

637 Gallot-Lavallée, L., A. Pagarete, M. Legendre, S. Santini, R.-A. Sandaa *et al.*, 2015 The 474-
638 Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting Haptolina
639 (Chrysochromulina) ericina (Prymnesiophyceae). *Genome Announc.* 3.:
640 <https://doi.org/10.1128/genomeA.01413-15>

641 Gavriilidou, A., J. Gutleben, D. Versluis, F. Forgiarini, M. W. J. van Passel *et al.*, 2020
642 Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism,
643 gliding motility and secondary metabolite biosynthesis. *BMC Genomics* 21:
644 569. <https://doi.org/10.1186/s12864-020-06971-7>

645 Gignoux-Wolfsohn, S. A., F. M. Aronson, and S. V. Vollmer, 2017 Complex interactions
646 between potentially pathogenic, opportunistic, and resident bacteria emerge during infection
647 on a reef-building coral. *FEMS Microbiol. Ecol.* 93.: <https://doi.org/10.1093/femsec/fix080>.

648 Gignoux-Wolfsohn, S. A., and S. V. Vollmer, 2015 Identification of Candidate Coral Pathogens
649 on White Band Disease-Infected Staghorn Coral. *PLoS One* 10: e0134416.
650 <https://doi.org/10.1371/journal.pone.0134416>

651 Göker, M., 2022 Filling the gaps: missing taxon names at the ranks of class, order and family.
652 *Int. J. Syst. Evol. Microbiol.* 72.: <https://doi.org/10.1099/ijsem.0.005638>

653 Heidelberg, J. F., J. A. Eisen, W. C. Nelson, R. A. Clayton, M. L. Gwinn *et al.*, 2000 DNA
654 sequence of both chromosomes of the cholera pathogen *Vibrio cholerae*. *Nature* 406: 477–
655 483. <https://doi.org/10.1038/35020000>

656 Howe-Kerr, L. I., A. M. Knochel, M. D. Meyer, J. A. Sims, C. E. Karrick *et al.*, 2023

657 Filamentous virus-like particles are present in coral dinoflagellates across genera and ocean
658 basins. ISME J. <https://doi.org/10.1038/s41396-023-01526-6>

659 Huang, H., P. B. McGarvey, B. E. Suzek, R. Mazumder, J. Zhang *et al.*, 2011 A comprehensive
660 protein-centric ID mapping service for molecular data integration. Bioinformatics 27: 1190–
661 1191. <https://doi.org/10.1093/bioinformatics/btr101>

662 Huntley, N., M. E. Brandt, C. C. Becker, C. A. Miller, S. S. Meiling *et al.*, 2022 Experimental
663 transmission of Stony Coral Tissue Loss Disease results in differential microbial responses
664 within coral mucus and tissue. ISME Communications 2: 1–11.
665 <https://doi.org/10.1038/s43705-022-00126-3>

666 Kim, Y., J. Jeon, M. S. Kwak, G. H. Kim, I. Koh *et al.*, 2018 Photosynthetic functions of
667 Synechococcus in the ocean microbiomes of diverse salinity and seasons. PLoS One 13:
668 e0190266. <https://doi.org/10.1371/journal.pone.0190266>

669 Kostic, A. D., D. Gevers, C. S. Pedamallu, M. Michaud, F. Duke *et al.*, 2012 Genomic analysis
670 identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22: 292–
671 298. <https://doi.org/10.1101/gr.126573.111>

672 Landsberg, J. H., Y. Kiryu, E. C. Peters, P. W. Wilson, N. Perry *et al.*, 2020 Stony coral tissue
673 loss disease in Florida is associated with disruption of host–zooxanthellae physiology.
674 Front. Mar. Sci. 7.: <https://doi.org/10.3389/fmars.2020.576013>

675 Langmead, B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2. Nat.
676 Methods 9: 357–359. <https://doi.org/10.1038/nmeth.1923>

677 Li, D., R. Luo, C.-M. Liu, C.-M. Leung, H.-F. Ting *et al.*, 2016 MEGAHIT v1.0: A fast and
678 scalable metagenome assembler driven by advanced methodologies and community

679 practices. Methods 102: 3–11. <https://doi.org/10.1016/j.ymeth.2016.02.020>

680 Lin, H., M. Yu, X. Wang, and X.-H. Zhang, 2018 Comparative genomic analysis reveals the
681 evolution and environmental adaptation strategies of vibrios. BMC Genomics 19: 135.
682 <https://doi.org/10.1186/s12864-018-4531-2>

683 Liu, B., D. Zheng, S. Zhou, L. Chen, and J. Yang, 2022 VFDB 2022: a general classification
684 scheme for bacterial virulence factors. Nucleic Acids Res. 50: D912–D917.
685 <https://doi.org/10.1093/nar/gkab1107>

686 Lu, J., N. Rincon, D. E. Wood, F. P. Breitwieser, C. Pockrandt *et al.*, 2022 Metagenome analysis
687 using the Kraken software suite. Nat. Protoc. 17: 2815–2839.
688 <https://doi.org/10.1038/s41596-022-00738-y>

689 Lu, J., and S. L. Salzberg, 2018 Removing contaminants from databases of draft genomes. PLoS
690 Comput. Biol. 14: e1006277. <https://doi.org/10.1371/journal.pcbi.1006277>

691 Meyer, J. L., J. Castellanos-Gell, G. S. Aeby, C. C. Häse, B. Ushijima *et al.*, 2019 Microbial
692 Community Shifts Associated With the Ongoing Stony Coral Tissue Loss Disease Outbreak
693 on the Florida Reef Tract. Front. Microbiol. 10: 2244.
694 <https://doi.org/10.3389/fmicb.2019.02244>

695 Mouchka, M. E., I. Hewson, and C. D. Harvell, 2010 Coral-associated bacterial assemblages:
696 current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50:
697 662–674. <https://doi.org/10.1093/icb/icq061>

698 Munn, C. B., 2015 The Role of Vibrios in Diseases of Corals. Microbiol Spectr 3.:
699 <https://doi.org/10.1128/microbiolspec.VE-0006-2014>

700 National Center for Biotechnology Information (NCBI) Scleractinia [Internet]. Bethesda (MD):
701 National Library of Medicine (US), National Center for Biotechnology Information;

702 [1988] [cited 2023 Nov 26]. Available from:
703 <https://www.ncbi.nlm.nih.gov/datasets/taxonomy/6125/>

704 Neely, K. L., K. A. Macaulay, E. K. Hower, and M. A. Dobler, 2020 Effectiveness of topical
705 antibiotics in treating corals affected by Stony Coral Tissue Loss Disease. PeerJ 8: e9289.
706 <https://doi.org/10.7717/peerj.9289>

707 Precht, W. F., B. E. Gintert, M. L. Robbart, R. Fura, and R. van Woesik, 2016 Unprecedented
708 Disease-Related Coral Mortality in Southeastern Florida. Sci. Rep. 6: 31374.
709 <https://doi.org/10.1038/srep31374>

710 Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer *et al.*, 2013 The SILVA ribosomal RNA
711 gene database project: improved data processing and web-based tools. Nucleic Acids Res.
712 41: D590–6. <https://doi.org/10.1093/nar/gks1219>

713 Robertson, E. P., D. P. Walsh, J. Martin, T. M. Work, C. A. Kellogg *et al.*, 2023 Rapid
714 prototyping for quantifying belief weights of competing hypotheses about emergent
715 diseases. J. Environ. Manage. 337: 117668. <https://doi.org/10.1016/j.jenvman.2023.117668>

716 Rosales, S. M., A. S. Clark, L. K. Huebner, R. R. Ruzicka, and E. M. Muller, 2020
717 Rhodobacterales and Rhizobiales Are Associated With Stony Coral Tissue Loss Disease
718 and Its Suspected Sources of Transmission. Front. Microbiol. 11: 681.
719 <https://doi.org/10.3389/fmicb.2020.00681>

720 Rosales, S. M., L. K. Huebner, A. S. Clark, R. McMinds, R. R. Ruzicka *et al.*, 2022 Bacterial
721 Metabolic Potential and Micro-Eukaryotes Enriched in Stony Coral Tissue Loss Disease
722 Lesions. Frontiers in Marine Science 8.: <https://doi.org/10.3389/fmars.2021.776859>

723 Rosales, S. M., L. K. Huebner, J. S. Evans, A. Apprill, A. C. Baker *et al.*, 2023 A meta-analysis
724 of the stony coral tissue loss disease microbiome finds key bacteria in unaffected and lesion

725 tissue in diseased colonies. ISME Commun 3: 19. <https://doi.org/10.1038/s43705-023-00220-0>

726

727 Rubio-Portillo, E., P. Yarza, C. Peñalver, A. A. Ramos-Esplá, and J. Antón, 2014 New insights
728 into *Oculina patagonica* coral diseases and their associated *Vibrio* spp. communities. ISME
729 J. 8: 1794–1807. <https://doi.org/10.1038/ismej.2014.33>

730 Salzberg, S. L., F. P. Breitwieser, A. Kumar, H. Hao, P. Burger *et al.*, 2016 Next-generation
731 sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol
732 Neuroimmunol Neuroinflamm 3: e251. <https://doi.org/10.1212/NXI.0000000000000251>

733 Shilling, E. N., I. R. Combs, and J. D. Voss, 2021 Assessing the effectiveness of two intervention
734 methods for stony coral tissue loss disease on *Montastraea cavernosa*. Sci. Rep. 11: 8566.
735 <https://doi.org/10.1038/s41598-021-86926-4>

736 Steinegger, M., and J. Söding, 2017 MMseqs2 enables sensitive protein sequence searching for
737 the analysis of massive data sets. Nat. Biotechnol. 35: 1026–1028.
738 <https://doi.org/10.1038/nbt.3988>

739 Studivan, M. S., R. J. Eckert, E. Shilling, N. Soderberg, I. C. Enochs *et al.*, 2023 Stony coral
740 tissue loss disease intervention with amoxicillin leads to a reversal of disease-modulated
741 gene expression pathways. Mol. Ecol. 32: 5394–5413. <https://doi.org/10.1111/mec.17110>

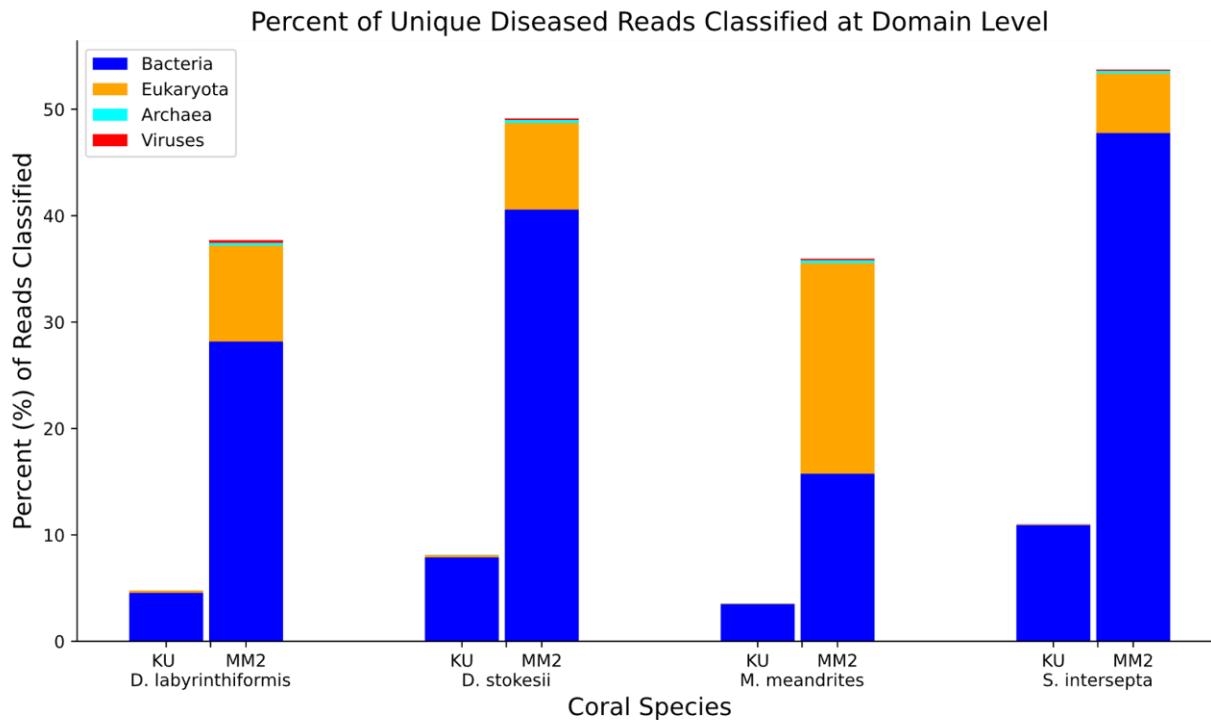
742 Suzek, B. E., Y. Wang, H. Huang, P. B. McGarvey, C. H. Wu *et al.*, 2015 UniRef clusters: a
743 comprehensive and scalable alternative for improving sequence similarity searches.
744 Bioinformatics 31: 926–932. <https://doi.org/10.1093/bioinformatics/btu739>

745 Tarazona, E., T. Lucena, D. R. Arahal, M. C. Macián, M. A. Ruvira *et al.*, 2014 Multilocus
746 sequence analysis of putative *Vibrio mediterranei* strains and description of *Vibrio thalassae*
747 sp. nov. Syst. Appl. Microbiol. 37: 320–328. <https://doi.org/10.1016/j.syapm.2014.05.005>

748 UniProt: the universal protein knowledgebase in 2021, 2021 Nucleic Acids Res. 49: D480–
749 D489. <https://doi.org/10.1093/nar/gkaa1100>

750 Ushijima, B., J. L. Meyer, S. Thompson, K. Pitts, M. F. Marusich *et al.*, 2020 Disease
751 Diagnostics and Potential Coinfections by *Vibrio coralliilyticus* During an Ongoing Coral
752 Disease Outbreak in Florida. Front. Microbiol. 11: 569354.
753 <https://doi.org/10.3389/fmicb.2020.569354>

754 Veglia, A. J., K. Beavers, E. W. Van Buren, S. S. Meiling, E. M. Muller *et al.*, 2022
755 Alphaflexivirus Genomes in Stony Coral Tissue Loss Disease-Affected, Disease-Exposed,
756 and Disease-Unexposed Coral Colonies in the U.S. Virgin Islands. Microbiol Resour
757 Announc 11: e0119921. <https://doi.org/10.1128/mra.01199-21>


758 Walton, C. J., N. K. Hayes, and D. S. Gilliam, 2018 Impacts of a regional, multi-year, multi-
759 species coral disease outbreak in southeast Florida. Front. Mar. Sci. 5.:
760 <https://doi.org/10.3389/fmars.2018.00323>

761 Wilson, M. R., H. A. Sample, K. C. Zorn, S. Arevalo, G. Yu *et al.*, 2019 Clinical Metagenomic
762 Sequencing for Diagnosis of Meningitis and Encephalitis. N. Engl. J. Med. 380: 2327–2340.
763 <https://doi.org/10.1056/NEJMoa1803396>

764 Work, T. M., T. M. Weatherby, J. H. Landsberg, Y. Kiryu, S. M. Cook *et al.*, 2021 Viral-like
765 particles are associated with Endosymbiont pathology in Florida corals affected by stony
766 coral tissue loss disease. Front. Mar. Sci. 8.: <https://doi.org/10.3389/fmars.2021.750658>

767 Supplemental Materials

768

769

770 **Figure S1:** Proportions of unique diseased reads classified by KrakenUniq (KU) and MMseqs2
771 (MM2) subdivided by the superkingdom they belong to for each coral species.

772

773 Table S1- Average k-mers per read for every genus across all coral species.

774

775 Table S2- *Symbiodinaceae* proteins that had at least one unique diseased read align to the
776 UniRef50 cluster (paired reads classified separately) for each coral species.

777

778 Table S3- Hits to the Virulence Factor Database by assembled contigs that were classified as
779 *Vibrio* by KrakenUniq.

780

781 Table S4- Alignment rates of reads classified as *Vibrio* to eight draft assemblies of *Vibrio* species
782 isolated from SCTLD infected corals by Ushijima *et al.* 2020

783

784 Supplemental methods

785 Filtering reads with a healthy coral reference database

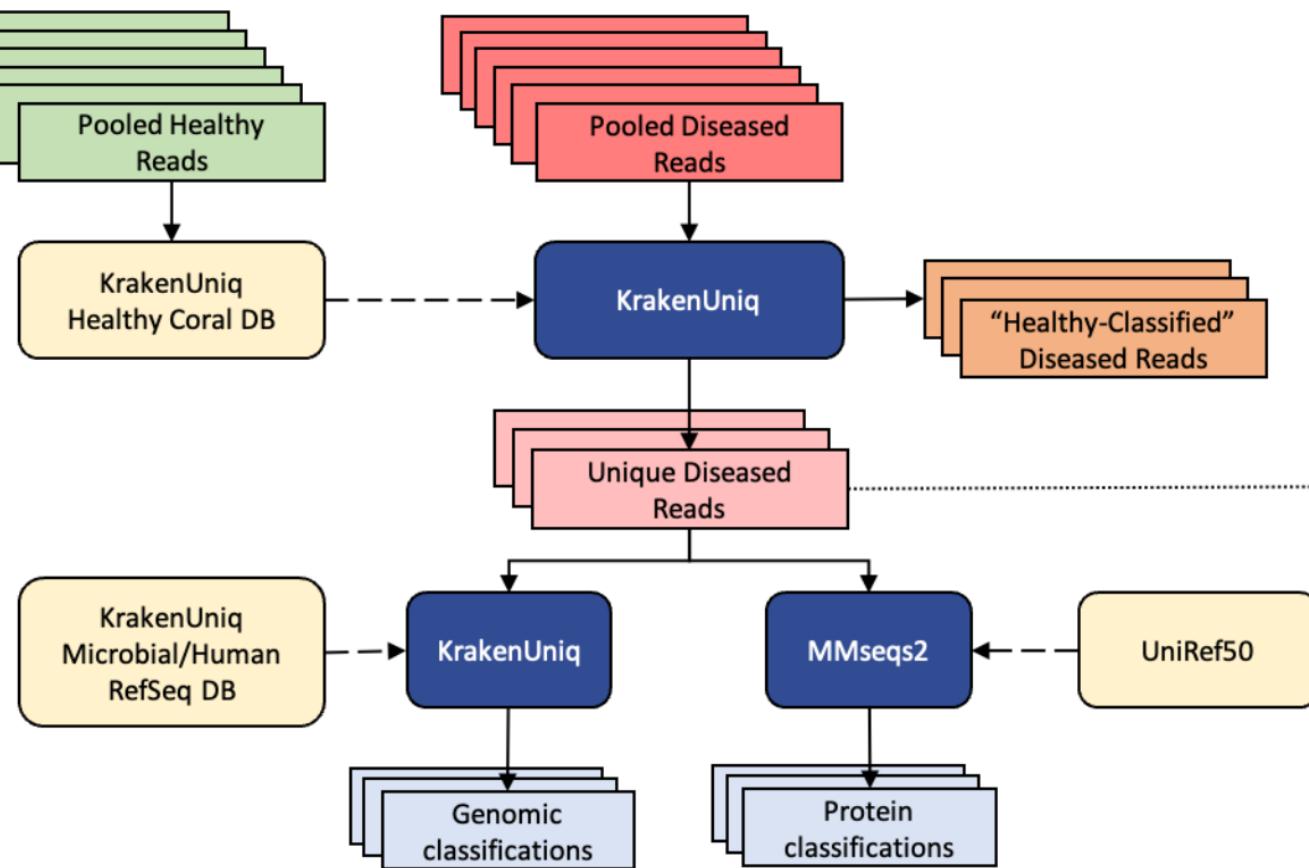
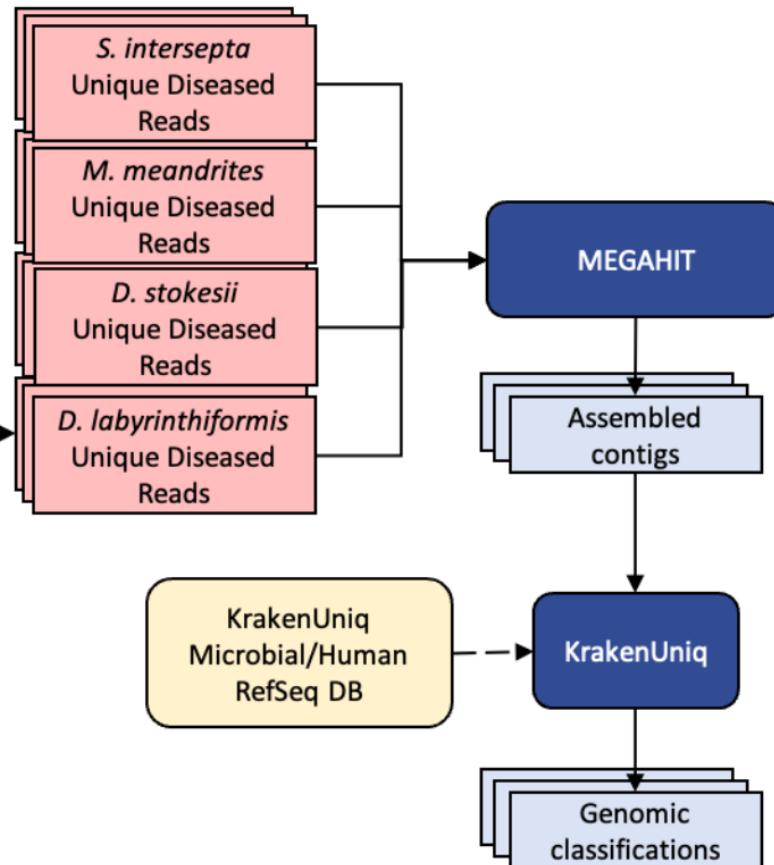
786 A database was for each coral species was created with the command:

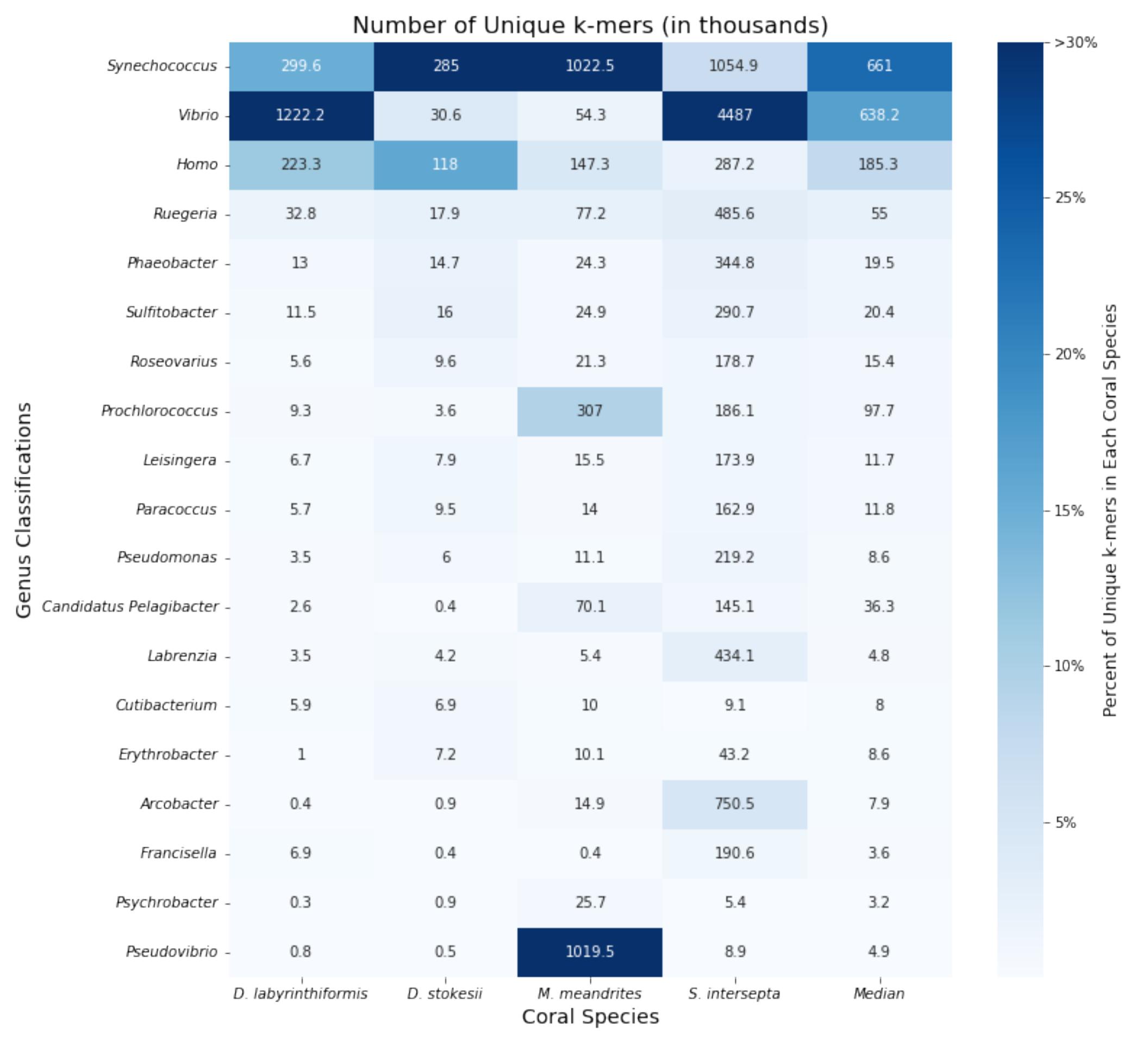
787

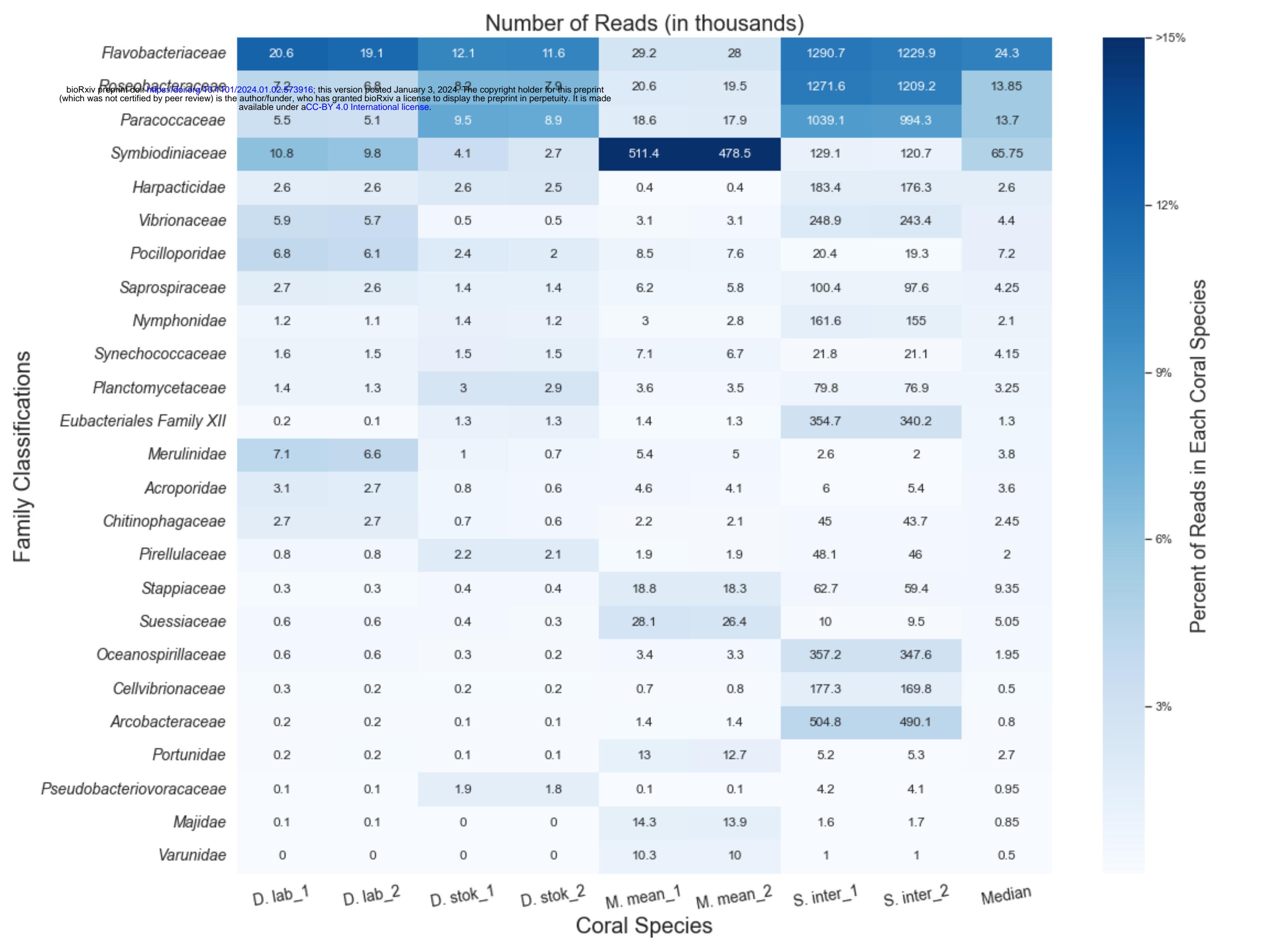
788 krakenuniq-build --db pooled_healthy_reads --threads 32 --kmer-len 29
789
790 Each read k-mer found in the healthy reads was stored under the same taxonomy ID. The
791 diseased lesion reads from the same species were then classified using the created database with
792 the following command:
793
794 krakenuniq --db database_from_healthy_reads --threads 32 --paired --report
795 diseased_against_healthy.kuniqreport pooled_1.fasta pooled_2.fasta >
796 diseased_against_healthy.kuniq
797
798 Only unclassified reads were kept for downstream analysis.

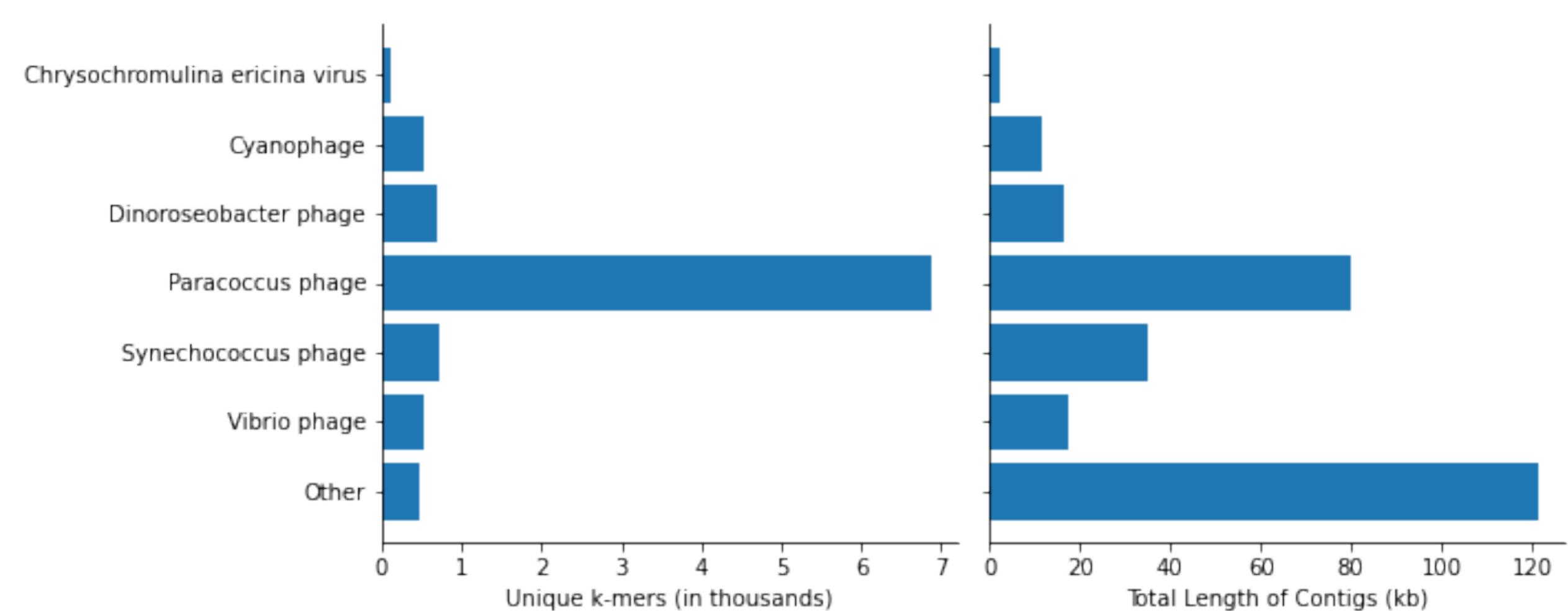
799 **KrakenUniq read classification**

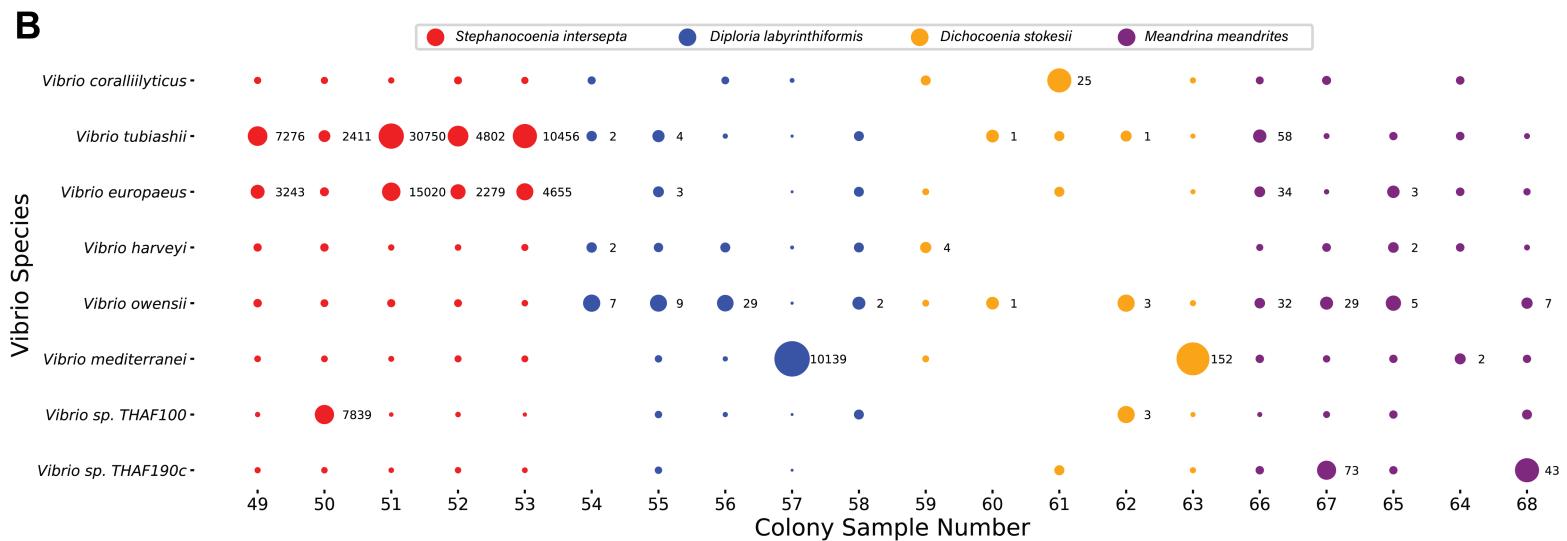
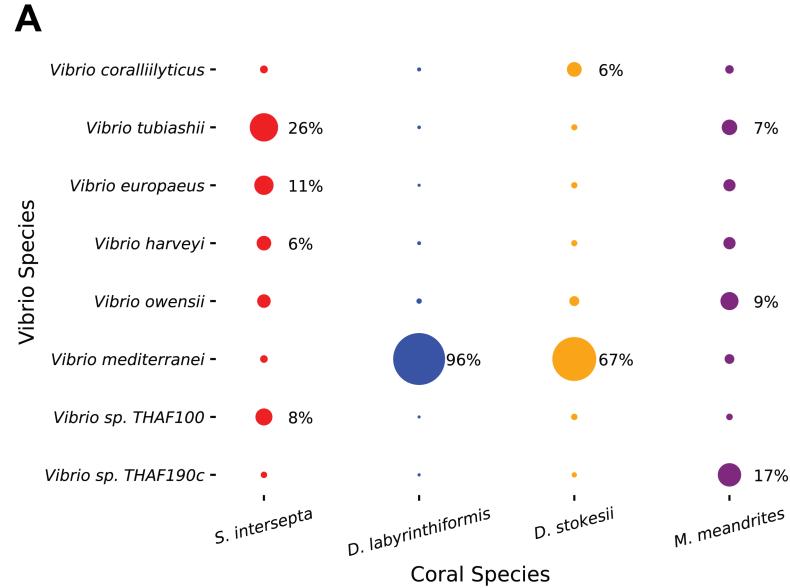
800 This command generated report files which list the number of reads and unique k-mers for all
801 taxa, including counts at the strain, species, genus, and higher levels.
802
803 krakenuniq --db /ccb/salz8-4/data/krakendbs/krakendb-2020-08-16-
804 all_pluseupath/ --threads 16 --paired --report results.kuniqreport
805 filtered_reads_1.fasta filtered_reads_2.fasta > results.kuniq



806 **MMseqs2 read classification**


807 The flowing commands were used to clasify the paired read files individually with the Mmseq2
808 easy-taxonomy workflow against the UniRef50 database.


809 mmseqs easy-taxonomy filtered_reads_1.fasta uniref50_db
810 filtered_reads_results_1 tmp --threads 16
811
812 mmseqs easy-taxonomy filtered_reads_1.fasta uniref50_db
813 filtered_reads_results_1 tmp --threads 16
814


815 The report files were sorted by most abundant families using the command:



816 awk -F'\t' '\$4 == "family" {print \$0}' results_report | sort -nrk2,2

A**B**

