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ABSTRACT 

Artificial intelligence (AI)-driven discovery of antimicrobial peptides (AMPs) is yet to fully utilise 

their three-dimensional (3D) structural characteristics, microbial specie-specific antimicrobial 

activities and mechanisms. Here, we constructed a QLAPD database comprising the sequence, 

structures and antimicrobial properties of 12,914 AMPs. QLAPD underlies a multimodal, multitask, 25 

multilabel, and conditionally controlled AMP discovery (M3-CAD) pipeline, which is proposed for 

the de novo design of multi-mechanism AMPs to combat multidrug-resistant organisms (MDROs). 

This pipeline integrates the generation, regression, and classification modules, using a innovative 3D 

voxel coloring method to capture the nuanced physicochemical context of amino acids, significantly 

enhancing structural characterizations. QL-AMP-1, discovered by M3-CAD, which possesses four 30 

antimicrobial mechanisms, exhibited low toxicity and significant activity against MDROs. The skin 

wound infection model demonstrates its considerable antimicrobial effects and negligible toxicity. 

Altogether, integrating 3D features, specie-specific antimicrobial activities and mechanisms 

enhanced AI-driven AMP discovery, making the M3-CAD pipeline a viable tool for de novo AMP 

design. 35 
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MAIN 

The escalating threat posed by multidrug-resistant organisms (MDROs) to human health necessitates 

an urgent search for new antimicrobial solutions1, 2. As antimicrobial resistance (AMR) pervades all 

clinically used antibiotics, developing substitutes with multiple novel mechanisms is crucial3-6.  

Antimicrobial peptides (AMPs) are key players in innate immunity and provide primary defence 5 

against pathogens7, 8. Their amphiphilic and positively charged nature allows for the selective 

disruption of negative bacterial membranes while sparing the neutral mammalian cell membranes9, 10. 

This nonspecific antibacterial action based on the biophysical interactions reduces the risk of 

inducing AMR11-13, which positions AMPs as potential next-generation antimicrobials and as 

promising alternatives to traditional antibiotics14. However, traditional AMP discovery using wet 10 

experiments is time-consuming and costly15, 16. Consequently, artificial intelligence (AI)-driven 

approaches such as identification17-21, optimization22-24, and generation16, 25-28 have been proposed to 

accelerate AMP discovery. Among these, generative models overcome the limitations of 

identification and optimisation models. Unlike identification models, which screen targets within a 

defined peptide range, and optimisation models, which require manual selection of template 15 

sequences, generative models theoretically yield optimal AMPs that meet the specific target 

conditions. 

All these AI-driven AMP discovery models require large-scale, manually labelled data for 

empowerment. Driven by the significance of training data, the following question arises: What 

human knowledge and peptide features can be used to enhance the inhibitory activity of the AMPs 20 

discovered by AI, particularly generative AI, against superbugs? 

Our literature review revealed the following findings. First, the current AI-driven AMP 

discovery predominantly utilises limited human knowledge, primarily regarding whether a peptide 

exhibits antibacterial properties, often neglecting the varying efficacy of AMPs against distinct 

bacteria, particularly clinically isolated MDROs29. Second, most existing studies assume that the 25 

AMPs function by binding to and disrupting negatively charged bacterial membranes, thereby 

adopting membrane disruption-related features in the AMP discovery frameworks17, 21 and verifying 

the AMPs' membrane permeabilisation and depolarisation abilities through experimental methods16-21, 

24, 27, 28. This resulted in other antimicrobial mechanisms such as the inhibition of biofilm formation, 

DNA replication, and protein synthesis to be overlooked during the design phase. Finally, the 30 

existing studies rely heavily on primary sequence data, neglecting crucial three-dimensional (3D) 

structural information that reflects secondary and tertiary structures, which have major significance 

in peptide function29. However, recent advancements in AI models such as AlphaFold2 and 

RoseTTAFold have improved the precision of peptide and protein structure prediction30, 31, paving 

the way for enhanced peptide characterisation and downstream tasks using 3D structural data. 35 
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We addressed these gaps and curated a comprehensive AMP database (QLAPD) by 

meticulously selecting 12,914 AMP entries from existing knowledge bases32-35 and numerous 

published papers. Each entry recorded eight feature categories, including the predicted 3D structure, 

microbial specie-specific antimicrobial activities, antimicrobial mechanisms, and toxicity. We 

propose a multimodal, multitask, multilabel, and conditionally controlled AMP discovery (M3-CAD) 5 

pipeline to generate and optimise new AMPs with multiple antimicrobial mechanisms, 

broad-spectrum resistance to MDROs, and low host toxicity. We also introduce a 3D voxel coloring 

method and a multilabel rebalancing training strategy to address the challenges in representing 3D 

peptide structures and the long-tail distribution problem in multilabel classification tasks. 

Wet lab validation of the M3-CAD selected candidate sequences demonstrated their inhibitory 10 

abilities against 26 pathogenic bacterial strains. The most effective peptide, QL-AMP-1, displayed 

powerful antimicrobial activity against gram-positive and gram-negative MDROs, low host toxicity, 

and four antimicrobial mechanisms. Unlike clindamycin, QL-AMP-1 did not induce significant 

resistance after 20 passages of bacterial cultivation. QL-AMP-1 significantly reduced the bacterial 

load with no observable in vivo toxicity in full-thickness skin wound models that were infected with 15 

S. aureus and A. baumannii. Comprehensively, incorporating the peptide 3D structural features and 

information on the antimicrobial mechanism enhanced AI-driven AMP discovery, rendering the 

M3-CAD pipeline a promising tool for de novo AMP design. 

 

RESULTS 20 

QLAPD: A database that links the sequences, structures, and properties of AMPs 

QLAPD, an AMP database, reviewed and annotated by clinical doctors and microbiology experts 

from Qilu Hospital, was established to train an AI framework capable of de novo design of AMPs 

that have multiple antimicrobial mechanisms and inhibit MDROs. QLAPD encompasses 12,914 

AMPs and each records its amino acid sequence, predicted 3D structure, and six functional attributes, 25 

namely: (1) inhibitory activity against six drug-resistant pathogenic bacteria; (2) the number of 

drug-resistant bacteria it can inhibit; (3) the number of non-resistant bacteria it can inhibit; (4) four 

antimicrobial mechanisms such as disrupting bacterial membranes; (5) toxicity; and (6) 

nephrotoxicity among the six kinds of organ toxicity (Fig. 1a, Supplementary Fig. 1a-f). The 3D 

structure of the peptide was predicted using the AlphaFold2 model30 and stored in the Protein Data 30 

Bank (PDB)36, which recorded the type of each atom in the peptide, coordinates of the atom in 3D 

space, and the type of amino acid residue to which the atom belongs (Fig. 1a). 

3D Voxel coloring to improve structural characterisation of the peptides 

Inspired by the solutions to 3D visual tasks, a 3D voxel coloring method was proposed to improve 
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the 3D structural representation of the peptides. A peptide was placed in a 3D Cartesian coordinate 

system with its centroid as the origin, and housed within a cube comprising equal 3D voxels. The 

occupied voxels were determined by the spatial location of atoms (predicted by AlphaFold230) and 

their van der Waals radii37. The voxels within the atom-covered area have feature channel-assigned 

values based on the properties of the corresponding atoms, defined here by the atomic mass, 5 

solubility (indicating hydrophobicity), and acidity or alkalinity (indicating charge). The unoccupied 

3D voxels were assigned a value of zero (Fig. 1b, Supplementary Table 1). This paradigm allows us 

to adeptly convert the complex challenge of peptide 3D structural characterization into a tractable 3D 

visual feature extraction task, and solved by introducing 3D convolutional neural network (3D-CNN) 

models (Fig. 1c). 10 

To assess this method, we compared the 3D-CNN performance, based on the 3D voxel coloring 

method (3D Res-Conv Net38, 3D SwinUNETR Net39), against traditionally used Graph Neural 

Networks (GNNs)40, such as GCN41, GAT42, and GraphSage43, for the multilabel classification of 

peptide antimicrobial activity, mechanisms, and toxicity. The five-fold cross-validation results 

suggest that the 3D-CNN models outperformed the GNNs in most metrics across the three 15 

downstream tasks, with 3D Res-Conv Net having the highest overall score. (Fig. 1d and 

Supplementary Tables 2-4). 

M3-CAD pipeline design 

We proposed an M3-CAD pipeline that consists of sequential generation, regression, and 

classification modules (Fig. 2a-c). Compared to previous studies, the greatest advantage of M3-CAD 20 

is that it uses the antimicrobial mechanism data and inhibitory activity data of the AMPs against 

MDROs during training, thereby learning the potential relationship between the sequence and 

structure of peptides and the functional attributes, such as four antimicrobial mechanisms and 

inhibitory ability against six types of drug-resistant bacteria.  

The training and cross-validation data for M3-CAD included 9,392 AMPs with lengths of 10-50 25 

amino acid residues selected from the QLAPD database, and 22,411 non-AMPs of the same length 

range collected from the Uniport database44. The six functional attributes of these peptides were 

defined as multilabel one-hot encoding (activity against six drug-resistant bacteria, toxicity to six 

types of organs) or multiclass labels (number of drug-resistant bacteria inhibited, number of 

non-drug-resistant bacteria inhibited, and toxicity) for generation, regression, and classification tasks 30 

(Figs. 2a and c). In practice, generating 200,000 new candidate AMPs (c_AMPs) and further 

screening of high-priority AMPs, using the trained M3-CAD pipeline, required approximately 2 h, 

greatly accelerating the discovery of AMPs. 

Generating AMPs that satisfy the given properties based on a multimodal VAE 
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The centerpiece of M3-CAD is a generative model based on a multi-modal, condition-controlled 

variational autoencoder45 (cVAE) designed to generate new peptides that meet the specified attributes 

(Fig. 2a). Unlike previous VAEs, this cVAE incorporates two encoders and decoders for the sequence 

and 3D structure modalities. For sequence features, peptides up to 50 residues long were encoded 

into a 1×50 dimensional tensor and feature extraction was performed using a multi-layer perceptron 5 

(MLP). The 3D structural features employed the 3D voxel coloring method and 3D Res-Conv Net. 

To integrate sequence and structural information with functional attribute information, the four 

functional attributes of the peptide were represented as a 1×9 dimensional tensor, feature-extracted 

using MLP, and compressed to a 1×1 tensor. This tensor was multiplied by the sequence and 

structural features to input into the encoder, and concatenated with the latent feature between the 10 

encoder and decoder, allowing the cVAE to learn the relationship between peptide sequences, 

structural features, and controlled conditions. During the inference phase, the trained decoder 

sampled peptides that met the conditions from the latent-space probability distribution by inputting 

the corresponding conditions (Fig. 2a). 

In practice, using the proposed cVAE, approximately 200,000 novel c_AMPs can be designed 15 

within 1 h, which potentially satisfy various antimicrobial mechanisms and broad-spectrum 

inhibitory conditions against MDROs, thereby greatly expanding the combinatorial molecular space 

for AMP searches. 

Ranking the generated peptides using an MLP regression model 

Given the time-intensive nature of predicting the 3D structures of numerous peptides, we 20 

incorporated a sequence-based MLP as the second component of M3-CAD for the initial screening 

of the generated sequences (Fig. 2b). The MLP is trained to rank peptides based on their ability to 

broadly inhibit drug-resistant bacteria, and a higher priority is given to broad-spectrum inhibitory 

peptides. In practice, this stage of M3-CAD selects 3,000 high-priority c_AMPs for 3D prediction 

using AlphaFold2, progressing them to the final stage of the pipeline. A comparison between the 25 

predicted antimicrobial activity of the 3,000 MLP-selected c_AMPs and 3,000 randomly sampled 

peptides from cVAE confirmed the superior performance of the MLP-selected c_AMPs in a broader 

spectrum of antimicrobial activity (Supplementary Fig. 2a).  

Identifying the attributes of AMPs using a multilabel classification model trained by the 

rebalancing loss function 30 

The final component of M3-CAD is a multimodal, multitask, and multilabel classifier designed to 

identify AMPs with diverse antimicrobial mechanisms, broad-spectrum inhibition against 

drug-resistant bacteria, and low toxicity. This classifier employs an MLP and a 3D Res-Conv Net for 

feature extraction from the peptide sequences and 3D structures in parallel with the previously 
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mentioned cVAE. The extracted features were fused and dispatched to the three classification heads 

for multilabel classification (Fig. 2c). We evaluated the performance of the multilabel classifier on 

antimicrobial activity, mechanism, and toxicity prediction tasks, which demonstrated the superior 

performance of the multimodal model compared to models using only sequence or 3D structure 

modalities (Fig. 2d and Supplementary Table 5). 5 

During classifier training, we encountered severe label imbalances across the three multilabel 

classification tasks (Supplementary Fig. 1b-e), which could hamper the performance of the deep 

neural network model46. This prompted us to propose a multilabel rebalancing loss function, by 

extending the "Softmax + Cross Entropy" scheme to multilabel classification scenarios with multiple 

target classes. This method ensured that the score of each target class was not lower than that of the 10 

non-target class, thereby providing a balanced loss function to handle the imbalanced data 

distribution47. Ablation studies show that the rebalancing learning strategy improved the performance 

across all three multilabel classification tasks (Fig. 2e). 

In this application, 3,000 c-AMPs were ranked based on the predicted antimicrobial activity and 

toxicity confidence levels from the multilabel classifier. The 10 top-ranked peptides were advanced 15 

as the final output of the M3-CAD pipeline for wet lab experiments.  

Confirming the necessity of each component of M3-CAD using wet lab experiments 

To validate the necessity of each individual module in the M3-CAD framework, we systematically 

evaluated the antimicrobial efficacy of the 10 top-ranked peptides that were predicted under varying 

conditions. The generative module (G), combined generative and regression modules (G+R), and 20 

integrated generative, regression, and classification modules (G+R+C) were solely employed for this 

purpose. This comparative analysis targeted the experimental minimum inhibitory concentration 

(MIC) values of the peptides against established strains of S. aureus, E. coli, and A. baumannii, as 

shown in Fig. 3a-c and Supplemental Table 6. The investigation yielded compelling insights. The 

generative module on its own, devoid of any ranking capability intrinsic to its design, produced 25 

peptides that lacked significant antimicrobial properties and had MIC values exceeding 256 µg/ml 

across a random sample of 10 peptides from a pool of 200,000 generated by the cVAE algorithm. 

Conversely, incorporating the regression module to prioritise the synthetic candidates resulted in a 

marked improvement. 70% of the peptides manifested bacteriostatic activity against S. aureus and a 

substantial fraction (60%) exhibited MICs at or below 64 µg/ml. Integrating a multimodal classifier 30 

within the M3-CAD paradigm further elevated the performance benchmark and culminated in 

identifying peptides with consistent inhibitory effects against S. aureus in the entire cohort of the 10 

peptides that were tested. Remarkably, among these, four peptides showed significant antimicrobial 

activity with MICs registering at 8 µg/ml, underscoring the enhanced predictive power and potential 

therapeutic applicability of the M3-CAD system. 35 
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Properties of the AMPs designed by M3-CAD pipeline 

We compared the sequence similarity and key molecular features (such as amino acid composition, 

charge count, hydrophobicity, and hydrophobic moment) of the top 1,000 c_AMPs, produced by the 

M3-CAD pipeline in a single run, with the AMPs in the training set. Compared to the AMPs in the 

training set, the peptides designed by M3-CAD exhibit low sequence similarity and display enhanced 5 

hydrophobicity and aromaticity, coupled with reduced positive charge, charge density, and a lower 

aliphatic index. These physicochemical property differences may be attributed to the objective of 

M3-CAD to design AMPs with multiple mechanisms, as opposed to the AMPs in the training set, 

which predominantly operate through the membrane disruption mechanism (Fig. 3d-f, 

Supplementary Table 7). 10 

In vitro evaluation of the leading AMPs designed by M3-CAD 

The 10 top-ranked peptides output by the M3-CAD pipeline in a single run were synthesised and 

tested for their MICs against standard strains of S. aureus, E. coli, and A. baumannii. All peptides 

inhibited at least one strain at less than 256 μg/mL (Fig. 3c), supporting the AMP design capabilities 

of M3-CAD. The most efficacious, QL-AMP-1, demonstrated MICs less than or equal to 16 μg/mL 15 

against all tested standard strains (Fig. 3c). QL-AMP-1 shared less than 30% sequence similarity 

with known AMPs, indicating its novelty (Supplementary Table 8). Subsequently, wet lab 

experiments were performed to explore the antimicrobial activity of QL-AMP-1 against MDROs, 

off-target toxicity, induced resistance, and antimicrobial mechanism. 

Antimicrobial activities against MDROs 20 

The antimicrobial activity of QL-AMP-1 against 26 strains of clinically isolated ESKAPE MDROs 

(E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter species)48 was 

evaluated and the MICs and minimum bactericidal concentrations (MBCs) were calculated. The MIC 

experiment showed that QL-AMP-1 exhibited strong growth-inhibitory activity against 20 out of the 

26 superbugs (MIC ≤ 64 μg/mL), significantly exceeding LL-37 and offering comparable or superior 25 

efficacy to SAAP-14811 (an improved AMP derived from human LL-37 through extensive wet lab 

experiments) against 15 strains of MDROs (Table 1). Typically, an antimicrobial agent is considered 

bactericidal if its MBC is less than or equal to 4x its MIC49. The MBC experiments further confirmed 

that QL-AMP-1 killed all tested strains except 2 strains at doses not exceeding 4x the MIC, which 

suggests that QL-AMP-1 is an effective bactericidal agent against MDRO (Table 1). 30 

Off-target toxicity 

Off-target toxicity of the AMPs largely determines their potential for clinical application14. 

Cytotoxicity and haemolytic assays to human kidney cell line HEK-293T and human erythrocytes 
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were performed to evaluate the safety of QL-AMP-1 and compared them with those of SAAP-148 

(Fig. 4a-d and Supplementary Fig. 3a-d). We calculated the cytotoxic concentrations at which 50% of 

the HEK-293T cells remained viable (CC50) and the haemolytic concentrations at which 50% of the 

erythrocytes were lysed (HC50) for QL-AMP-1 and SAAP-148, and computed their therapeutic 

windows for 26 bacterial strains. The results showed that the HC50 and CC50 of QL-AMP-1 (HC50 5 

= 767.75 μg/mL; CC50 = 234.01 μg/mL) were much larger than that of SAAP-148 (HC50 = 86.08 

μg/mL; CC50 = 36.39 μg/mL) , and revealed that QL-AMP-1 had a larger safe therapeutic window 

than SAAP-148 against all 26 strains tested, demonstrating the excellent safety profile of QL-AMP-1 

(Fig. 4e and Supplementary Table 9). 

Development of microbial resistance 10 

Subsequently, we assessed the ability of S. aureus to develop a resistance to QL-AMP-1, using the 

classical antibiotics clindamycin and vancomycin as references. As shown in Fig. 4f, S. aureus 

cultured at sub-inhibitory concentrations did not exhibit significant resistance to QL-AMP-1 after 20 

passages. In contrast, S. aureus developed a resistance to clindamycin and vancomycin after 15 and 

18 passages, respectively, with their susceptibility decreasing by factors of 8,189 and 64, respectively, 15 

by the 20 passages. These results, combined with the data obtained from antibacterial testing against 

clinically derived MDROs, suggest that QL-AMP-1 holds promise in addressing the rapidly 

emerging problem of AMR. 

Antimicrobial mechanism 

To demonstrate the ability of the M3-CAD pipeline to design novel de novo AMPs with multiple 20 

bactericidal mechanisms, we examined whether QL-AMP-1 simultaneously possessed four 

bactericidal mechanisms, namely, bacterial membrane disruption, biofilm formation inhibition, DNA 

replication suppression, and protein synthesis inhibition. 

The mechanism by which most cationic amphipathic AMPs inhibit bacteria is believed to 

involve electrostatic interactions with bacterial membranes that leads to pore formation and leakage 25 

of cell contents9, 10. The cationic, amphipathic properties of QL-AMP-1 and the predicted 

alpha-helical structure suggested bactericidal permeability (Fig. 5a and Supplementary Table 8). 

Circular dichroism confirmed that QL-AMP-1 exhibited stronger alpha helicity in hydrophobic 

environments, which simulated the cell membrane (50% TFE), than in aqueous environments (PBS) 

(Fig. 5b and c, Supplementary Table 10). Confocal fluorescence microscopy of S. aureus cells treated 30 

with QL-AMP-1 and stained with SYTO 9/PI was used to confirm membrane disruption. SYTO 9 

and PI are green and red fluorescent dyes, respectively, which mark cells with intact bacterial 

membranes and those with membrane pore formation. As shown in Fig. 5d, significant red 

fluorescence was visible in the group treated with 1×MIC of QL-AMP-1 (64 μg/ml) in contrast to the 
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vehicle, confirming the membrane-disrupting mechanism of QL-AMP-1. 

Biofilms enhance bacterial resistance, anti-phagocytic properties, and adherence and are 

considered a significant factor in the emergence of bacterial AMR50. Inhibition of biofilm formation 

in S. aureus and A. baumannii were assessed using crystal violet staining. As shown in Fig. 5e and f, 

QL-AMP-1 inhibited S. aureus CMCC26003 and A. baumannii ATCC19606 biofilm formation in a 5 

dose-dependent manner, and reduced the biofilm mass of both strains by approximately 50% at 

0.5×MIC (8 μg/mL). Surprisingly, QL-AMP-1 did not fully inhibit both strains at concentrations of 4 

and 8 μg/mL, suggesting that the inhibition of biofilm formation at these concentrations is not due to 

inhibited bacterial growth. 

Next, we examined the potential of QL-AMP-1 to inhibit bacterial DNA replication and 10 

transcription through a DNA-binding affinity experiment, in which the binding of AMPs to the 

bacterial genomic DNA hindered the migration of DNA in agarose gel. As shown in Fig. 5g, 

QL-AMP-1 started binding to S. aureus ATCC33592 genomic DNA at 2×MIC, fully binding at 

greater than or equal to 4×MIC, suggesting DNA replication and transcription inhibition. 

Finally, cell-free protein synthesis inhibition assays demonstrated the impact of QL-AMP-1 on 15 

Renilla luciferase protein expression in E. coli at 512 μg/mL (Fig. 5h). These results suggested that 

QL-AMP-1 exhibited multiple bactericidal mechanisms. 

In vivo therapeutic efficacy of QL-AMP-1 

Potential adverse reactions to local application of QL-AMP-1 in mice were evaluated 

(Supplementary Fig. 4a). Treatment of both shaved intact and abraded skin with 5× the therapeutic 20 

dose (1.5 mg) of QL-AMP-1 showed no primary irritation at 72 h post-treatment. No significant 

behavioural or body-weight changes were observed, and no signs of systemic toxicity were detected. 

Histological examination revealed histopathological findings comparable to those of the untreated, 

control-treated, and QL-AMP-1 solution-treated skin (Fig. 6a-c and Supplementary Fig. 4b-d). 

Next, we evaluated the in vivo therapeutic effects of QL-AMP-1 in a model of full-thickness 25 

skin wounds in mice which were locally infected with S. aureus or A. baumannii. As shown in Fig. 

6d, after removing the hair from the back of the mouse, two full-thickness skin pieces with a 

diameter of 5 mm were removed from the centre of the back using a tissue biopsy device to establish 

a full-thickness skin wound model. Each of the two wounds on each mouse was injected with 5 ul of 

108 CFU/mL bacterial solution. After 6 hours, the treatment group was given 0.3 mg QL-AMP-1. 24 30 

hours post-modelling, the skin from the infected area of the animal was aseptically collected, and 

live bacteria were detected and counted. The results revealed that, compared to the vehicle, 

QL-AMP-1 significantly reduced the bacterial load of S. aureus and A. baumannii in the 

full-thickness skin wound model by approximately 79.96% and 86.77%, respectively (Fig. 6e and f). 
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DISCUSSION 

Remarkable progress has been made in the discovery of AI-driven AMPs in recent years16-28. 

Regardless of the task (that is, identification, optimisation, or generation) and the underlying network 

used, existing AI models inherently link the primary sequence of peptides and/or their 5 

sequence-derived physicochemical properties to their bactericidal activity. Consequently, the 

information scope provided by the primary sequence inherently caps the potential of all methods that 

utilise these features for modelling. In this study, we sought to address a critical scientific query. 

Could there be undiscovered features and functional properties that could bolster the AI-driven 

discovery of novel AMPs beyond the conventional sequence features and antimicrobial activity 10 

properties? 

By leveraging computational methods such as AlphaFold230 and RoseTTAFold31, we are now 

capable of predicting 3D protein structures with near-experimental accuracy and atomic-level 

precision. We postulated that integrating the 3D structural features of peptides could enhance the 

performance of the AI in AMP design. Ablation studies supported our multimodal model, which 15 

combines peptide primary sequence features with AlphaFold2-predicted 3D structural features, and 

outperformed models relying solely on primary sequences or 3D structures in multilabel 

classification tasks concerning AMPs' antimicrobial activity, inhibition mechanisms, and host toxicity. 

As for the Functional properties of AMPs, we hypothesised that AMPs featuring multiple 

antimicrobial mechanisms may exhibit enhanced bacterial inhibition efficacy, particularly against 20 

resistant superbugs. To investigate this, we reviewed the literature and manually annotated four 

known inhibitory mechanisms across 12,914 AMPs that served as training data for the M3-CAD 

pipeline, and enabled us to design and screen AMPs that embody all four antimicrobial mechanisms. 

Moreover, we integrated variations in the inhibitory activities of the AMPs against different bacterial 

types into the model, hypothesising that this could facilitate broad-spectrum AMP design. Wet lab 25 

evidence on QL-AMP-1 confirmed that the M3-CAD pipeline, trained with AMPs' antimicrobial 

mechanism and inhibitory activity data against six types of resistant bacteria, was able to generate 

multi-mechanism AMPs that inhibited both gram-positive and gram-negative MDROs. 

During the construction and training of the M3-CAD pipeline, two critical technical queries 

were confronted: the representation of polypeptide 3D structures with a long-tail length distribution 30 

and the imbalance of functional labels of AMPs in multilabel classification tasks. For the first query, 

GNNs were proposed for representing the 3D structures of proteins predicted by AlphaFold2. The 

dimensions of the GNN's adjacency matrices equalled the number of amino acids in the longest 

protein in the training set51. However, GNNs seem unsuitable for representing polypeptide 3D 

structures in AMP discovery because the lengths of the available AMPs for training show a long-tail 35 
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distribution. With an increase in sequence length, the number of polypeptides continued to decrease, 

which led to an overly sparse GNN adjacency matrix. Moreover, because of the sequential 

connection of amino acids within a polypeptide, relying on a single path for feature transformation 

may hinder feature transmission between distant amino acids. Therefore, we proposed a 3D 

voxel-coloring method that transforms the problem into a 3D visual feature extraction task, 5 

addressed using a 3D-CNN model that outperformed traditional GNNs for AMP discovery tasks. 

Regarding the second query, we introduced a multilabel rebalancing loss function to improve the 

performance in all three multilabel tasks. 

The speed and accuracy of M3-CAD in AMP discovery are noteworthy. In a single run, it can 

generate and rank 200,000 peptides in approximately two hours. Wet lab validation confirmed in 10 

vitro antimicrobial capabilities of all ten high-priority peptides. QL-AMP-1, the most promising 

candidate, exhibited multiple antimicrobial mechanisms, broad-spectrum activity against MDROs, 

low host toxicity, and reduced resistance-inducing propensity. With further modifications, such as 

N-terminal acetylation or D-amino acid substitution14, 52 it holds promise for advancing clinical trials, 

thereby highlighting the potential of M3-CAD to expedite future AMP research and translational 15 

efforts. 

To summarize, from the perspective of AI-driven AMP design problems, we have demonstrated 

that the introduction of polypeptide 3D structures led to a significant performance boost in 

multimodal models beyond models that solely utilise primary sequences or 3D structures. The 

proposed 3D voxel-coloring method aids in enhancing the representation of polypeptide 3D 20 

structural features, which further improved the downstream task performance. Including 

antimicrobial mechanism information and differential inhibitory activity data of AMPs against 

various bacteria as training data enabled the AI to discover AMPs with multiple antimicrobial 

mechanisms and broad-spectrum antimicrobial activity. These discoveries will foster future 

automated AMP design research with potential generalisable methodological implications for 25 

AI-driven therapeutic peptide discovery. 
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METHODS 

Collection and annotation of training data 

We compiled an AMP database, named QLAPD, which encompasses 12,914 AMP and 22,411 

non-AMP entries. Each AMP recording its amino acid sequence, 3D structure, and six functional 

attributes, including: (1) Inhibitory activity against six drug resistant bacteria, including E. faecium, S. 5 

aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter; (2) Number of types of 

non-resistant bacteria it can inhibit (ranging from 0 to 6); (3) Number of types of drug resistant 

bacteria it can inhibit (ranging from 0 to 6); (4) Four antimicrobial mechanisms: lipid bilayer 

disruption, cytoplasmic protein inhibition, DNA/RNA binding, and biofilm inhibition; (5) Toxicity; 

(6) Six kinds of organ toxicity: cardiotoxin, enterotoxin, neurotoxin, hemostasis impairing toxin, 10 

myotoxin, and others. Below we provide details of the functional attributes and 3D structure feature:  

Details of AMP/non-AMP annotation: The sequences of AMPs were primarily obtained from 

DBAASP32, dbAMP33, and DRAMP34 repositories, with a few sourced from literature and patent 

databases such as PubMed and Google Scholar. We manually screened and binarized the inhibitory 

activity data of each AMP against six types of bacteria: E. faecium, S. aureus, K. pneumoniae, A. 15 

baumannii, P. aeruginosa, and Enterobacter. Specifically, if an AMP has a MIC of ≤ 256 μg/ml 

against any resistant strain of a certain type of bacteria, the AMP is considered active against that 

resistant bacteria type, and vice versa. The same principle applies to non-resistant strains. The 

non-AMP instances with lengths of 10-50 amino acid residues were collected from the UniPort 

database44, after discarding sequences that were annotated as AMP, membrane, toxic, secretory, 20 

defensive, antibiotic, anticancer, antiviral, and antifungal and were used in this study as well.  

Details of toxic/non-toxic annotation: Sequences with toxicity labels were curated from 

DBAASP32 database. Sequences with IC50/HC50 ≤ 256 µg/ml in DBAASP were considered as 

Toxic instances. Sequences of 10-50 amino acid residues in the Uniport database were defined as 

nontoxic after excluding sequences that have been defined as toxic in the DBAASP and UniPort 25 

databases. For other mechanism-based toxic, we use the label from the uniport database. For the 

organ-based toxic, if an AMP has the toxin to one type of the organ, then we regard the AMP has the 

organ toxicity. 

Details of antimicrobial mechanism annotation: We annotated the lipid bilayer disruption, 

cytoplasmic protein inhibition, DNA/RNA binding, and biofilm inhibition mechanisms of the AMP 30 

by directly using the properties from the DBAASP database32.  

Details of peptide’s 3D structure: The 3D structure of the peptide was predicted by the 

AlphaFold2 model30, and stored in the format of the PDB36, which records the type of each atom in 

the peptide, the coordinates of the atom in 3D space, and the type of amino acid residue to which the 
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atom belongs.  

The 3D voxel coloring method 

Based on the three-dimensional coordinates, van der Waals radii of each atom, atomic mass, amino 

acid solubility, amino acid equipotential, and other known information, we constructed a 

multi-channel polypeptide structure coloring method. Specifically, the method uses the spatial 5 

structure of the atoms in the polypeptide sequence to determine the space occupied by the 

polypeptide. Taking the center of gravity of the polypeptide as the reference point, the x-axis, y-axis, 

and z-axis are constructed, with a unit distance of 1 angstrom on each axis. The method treats this 

unit distance as a voxel in a 3D grid. It is assumed that only atoms within a range of L angstroms in 

the positive and negative directions of each coordinate axis are considered. The entire 3D voxel is 10 

represented as a cube with dimensions L*2 in length, width, and height, where L is any positive 

integer and is typically set as a multiple of 8 to facilitate subsequent feature extraction. The van der 

Waals radius of each atom, rounded to angstroms (with the rounding for each atom as follows: 'H': 1, 

'C': 1.5, 'N': 1.5, 'O': 1.5, 'S': 2)37, determines the space it occupies in the cube. 

To leverage the inherent properties of atoms and various amino acids, the method innovatively 15 

presents a multi-channel polypeptide coloring approach inspired by the RGB multi-channel visual 

imaging concept. Specifically, the properties of the atom (atomic mass), the solubility of the amino 

acid it constitutes, and the amino acid's acidity or basicity are treated as three distinct channels for 

coloring the peptides. In the first channel, the atomic mass is rounded and used directly as the voxel 

value. In the second and third channels, related to amino acid properties, the spatial positions of 20 

multiple atoms can represent the position of a single amino acid. Therefore, for the second solubility 

channel, the solubility of different amino acids is categorized into hydrophobic and hydrophilic 

amino acids. To differentiate these two types, and with a background voxel value of 0, the method 

assigns a value of 128 to hydrophobic amino acids and a value of 255 to each atom of hydrophilic 

amino acids. Similarly, for the third pH channel, the voxel values for acidic, neutral, and basic amino 25 

acids are assigned as 86, 168, and 255, respectively. 

Multi-modal conditional varitional auto-encoder for peptide generation 

The variational auto-encoder has been a powerful tool to generate the anitbiotic peptide recently. It is 

mainly based on learning the meaningful lantent data embedding from the training data with a 

reconstruction loss and a regulation loss. The training process on sampling the data could be 30 

formulated as:  
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To enable the conditional generation of the target data, conditional VAE was proposed with an 

additional category supervision loss term, enables the feature embedding could be directly applied to 

other situations. This process could be formulated as follows: 

))(||)|(()]|([log),( )|( zpxzqDzxpL KLxzqVAE φθφθ φ −Ε=
               (2)

 

However, all the above mentioned autoencodes only task the toy cases into account. The 5 

ignorance of the structure could do harm to the learning process of the peptide generation. Moreover, 

there is another question on how to embed the condition information into the training process of the 

multi-modal cVAE. Thus, in this work we propose use a novel Unlike the previous VAE that only 

takes the sequence as the input, our multi-modal cVAE has two encoders and two decoders, which 

are used to encode/decode structure input and sequence input, respectively. In order to generate the 10 

AMPs with the excepted attributes, we need to inject the conditional information (e.g., 

broad-spectrum drug-resistant, non-toxin) into the autoencoder.  

Multi-label multi-modal rebalancing learning for attribute identification 

To further identify the MDR AMPs from the generated sequences, we proposed a efficient 

multi-modal multi-label model to take advantage of both sequence information and structure 15 

information. Specifically, we use a 3D-ResNet structf  to capture the structure information structx  

based on the abovementioned structure coloring features. To extract the sequence feature seqx  of 

AMPs, we use a multi-layer neural network seqf  to capture its feature. After that, the extracted 

high-level features are concatenated and sent to a classification head for multi-label classification. 

The classification head headf  is a multi-layer neural network that takes the fused feature as the input 20 

and the label number of the target task as the output. Let y  be the prediction result in the form of 

logiest function, this process is formulated as:  
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Considering that the imbalance data distribution will hard the learning process of the deep 25 

neural network model, we adopt a re-balancing loss to handle the imbalanced multi-label 

classification task. Unlike unbalanced multi-class classification that can simply increase the number 

of the samples on the minority categories, in multi-label classification task, increase the number of 

the minority category may lead to worse imbalance as the samples within minor category may also 

have the majority category. The above mentioned phenomenon motivates us to propose a 30 

re-balancing loss for the unbalanced multi-label classification task. Specifically, we extend the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2024. ; https://doi.org/10.1101/2024.01.02.573846doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.02.573846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

“softmax + cross entropy” scheme to a multi-label classification scene with multiple target classes. 

The method is based on the consideration that “the score of each target class is not less than that of 

each non-target class”. The balance loss function is obtained to handle the imbalance data 

distribution.  

),11log(),1log( >−<++><+= − ss
zlpr eyeyL

                     (3)
 5 

Method for calculating the physicochemical properties and sequence similarity of the peptides 

Physicochemical properties such as hydrophobicity, hydrophobic moment, aliphatic index, 

aromaticity, instability index, alpha-helix, beta-sheet, turns, charge, isoelectric point, charge density, 

and flexibility were estimated using the ProteinAnalysis function of the BioPython library53. 

The similarity between sequences was calculated using the Needleman-Wunsch algorithm, a 10 

fundamental method for sequence alignment. This algorithm is implemented in the BioPython 

library53, specifically through the pairwise2 module. A function named calculate_similarity was 

created to facilitate this task. It accepts two sequences in string format, seq_gen and seq_tem, and 

converts them into Seq objects, as defined in BioPython. The sequences are then globally aligned 

using the pairwise2.align.globalms method, which stands for "global alignment using the 15 

Needleman-Wunsch algorithm with custom scoring." The scoring system includes a match score of 1, 

a mismatch score of -1, a gap opening penalty of -0.5, and a gap extension penalty of -0.1. The 

function returns the score of the optimal alignment divided by the length of the first sequence 

(seq_gen). This normalized score provides a measure of similarity between the two sequences, taking 

into account differences in their lengths.  20 

Strains and Animals 

Standard strains included E. faecalis CICC24243, E. faecalis ATCC51575, S. aureus ATCC25923, S. 

aureus ATCC33592, A. baumannii ATCC19606, Salmonella enterica ATCC14028, E.coli 

CICC21530, S. aureus CICC25138, K. pneumoniae ATCC BAA-1705 were purchased from China 

Center of Industrial Culture Collection (CICC). Standard strains included E.coli CMCC44102, 25 

Salmonella enterica CMCC50071, S. aureus CMCC26003, P. aeruginosa PAO1 were purchased 

from National Center for Medical Culture Collections (CMCC). Standard strains included S. aureus 

ATCC25923 were purchased from Ningbo Mingzhou Biotechnology Co., LTD. The clinical 

multidrug-resistant strains including K. pneumoniae 826, E.coli 103, E.coli 110, P. aeruginosa 116, E. 

faecalis 152, S. aureus 181, S. aureus 129, A. baumannii 102, A. baumannii 106, A. baumannii 114, 30 

E.coli 162, E.coli 166, P. aeruginosa 119 were obtained from the clinical Laboratory of Qilu Hospital. 

The detection of bacterial resistance to various antibiotics was completed by the clinical Laboratory 

of Qilu Hospital. All strains were streaked on Nutrient Broth (NB) agar medium and incubated at 
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37 °C overnight. 

Female C57BL/6J mice were purchased from Beijing Vital River Laboratory Animal 

Technology Co., Ltd. They were cultured within sterile isolators at the Laboratory Animal Centre of 

Shandong University on a 12 h - 12 h light-dark cycle with ambient temperature of 20-26°C, 

humidity of 40 - 70%, and ad libitum access to food and water. All the animal experiments involved 5 

were approved by the Animal Care and Animal Experiments Committee of Qilu Hospital of 

Shandong University (DWLL-2023-104).  

Antimicrobial activity assays 

Antimicrobial activity of antimicrobial peptides was examined in sterile 96-well plates with the broth 

microdilution according to CLSI standard. Suspended the colonies in saline solution, adjust the 10 

turbidity to McFarland 0.5 to reach the bacteria concentration of 10^8 CFU/ml and then again diluted 

100 times for the inhibition test. 50 μL of bacterial suspension at 1×106 CFU/mL were incubated 

with the same volume of different concentrations of peptide solution [serial 2-fold dilutions in 

Mueller-Hinton Broth (Hopebio)]. After incubation for 18–20 h at 37 °C, the MIC that no obvious 

bacteria could be observed was recorded. 50 μL of the mixture without observed bacteria was added 15 

to MH-agar plates. After incubation for 18 h at 37 °C, the MBC without bacteria growth was 

recorded. All experiments were performed with three independent replicates. 

Analysis of cytotoxicity 

Human embryonic kidney (HEK-293T) cells were obtained from the American Type Culture 

Collection (ATCC) and grown 37 °C in a humidified atmosphere containing 5% CO2 in Dulbecco’s 20 

modified Eagle’s medium (DMEM) supplemented with 1% antibiotics (penicillin and streptomycin) 

and 10% fetal bovine serum (FBS). Cytotoxicity of peptides against 293T cells was determined using 

the CCK8 assay. HEK-293T cells were seeded on 96-well microplates at a density of 8×103 

cells/well in 100 ul above culture medium and cultured at 37� for 24h. Then the culture medium was 

removed and 100 ul culture medium with peptide at the serial 2-fold dilutions concentrations were 25 

added to each well. Wells containing cells without peptides served as controls. The cells were 

cultured for another 24 h, followed by replacement of the media with 10% CCK-8 containing fresh 

DMEM medium and another 1 h incubation at 37 °C. The absorbance of the solution was measured 

at 450 nm by a microplate reader. The cell viability was calculated according to the equation: 

Cell viability(%) = [OD450 nm(peptide)−OD450 nm(blank)]/ [OD450 nm(negative)−OD450 nm(blank)]×100 30 

For haemolysis test, fresh human red blood cells (hRBCs) were washed 3 times with PBS (35 

mM phosphate buffer, 0.15M NaCl, pH 7.4) by centrifu-gation for 5 min at 1000 × g, and 

resuspended in PBS. 50 ul peptide solutions (serial 2-fold dilutions in PBS) were added to 100 ul of 
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hRBC suspension [8%(v/v)in final] in PBS and incubated for 1 h at 37 �. Samples were centrifuged 

at 1000 × g for 5 min, and hemoglobin release was monitored by measuring the supernatant 

absorbance at 570 nm with a flat bottom 96 wells plate (servicebio). hRBCs in PBS or 0.1% Triton 

X-100 were used as the negative and positive controls, respectively. The hemolysis percentage was 

calculated according to the equation: 5 

Hemolysis (%) =[OD570 nm(peptide)-OD570 nm (PBS)]/[OD570nm (0.1% Triton X 100)-OD570nm (PBS)]×100 

We estimated by non-linear regression the peptide dose that led to 50% hemolysis (HC50) and 

50% cytotoxicity (CC50) 

CD Spectroscopy 

CD spectroscopy was used to study the secondary structure of peptides. The peptide was dissolved at 10 

50uM in either 10 mM PBS (pH 7.4) or 50% trifluoroethanol in PBS. TFE is cosolvent known to 

stabilize secondary structures. Added peptide solutions to the cuvette. The optical path of the CD 

spectra was 1 mm, the scan wavelength range was 190 to 260 nm, and the scan rate was 1nm/s. The 

mean residue ellipticity was calculated using the following equation: 

θM=(θobs×1000)/(c×l×n) 15 

where θM is the residue ellipticity (deg cm2 dmol−1), θobs is the measured ellipticity (mdeg), c is 

the peptide concentration (mM), l is the path length (mm), and n is the number of amino acids. 

Drug resistance assay 

For comparison, development of resistance to the clinically relevant antibiotics clindamycin 

(Macklin) and vancomycin (Macklin) was determined. The evolution of resistance by S. aureus 20 

CMCC26003 to either antibiotics or peptide was monitored for 20 days of serial passaging in liquid 

NB. Cells were passaged every 24 h. Briefly, 1ml of bacterial suspension (1×106 CFU/mL) were 

incubated with antibiotics or peptide solution at 1/2 minimal inhibitory concentration at 37�, 200 

rpm. After each incubation period, a new inoculum of 106 cells was prepared for inoculation of the 

following passage containing fresh medium and increased doses of the antimicrobial agent. During 25 

the 20 days of serial passaging, the minimum inhibitory concentration of antibiotics or peptide to 

each generation of cells was determined. MIC determination method was as previously described. 

The development of bacterial resistance was defined as a more than fourfold increase in MICs 

compared to the initial MICs. 

The mechanism experiments of AMPs 30 

Membrane permeabilization assay. The membrane permeability of the peptide was determined by 

using the LIVE/DEAD BacLight Bacterial Viability Kit (Invitrogen). S. aureus ATCC33592 were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2024. ; https://doi.org/10.1101/2024.01.02.573846doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.02.573846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

grown to mid-log-phase, centrifuged (5000 × g for 10 min), washed and re-suspended in PBS to 

1×106 CFU/ml. The peptide solution was added to 100ml of this bacterial suspension so that the final 

concentration of peptide was equal to the minimum inhibitory concentration. bacterial cells were 

incubated with peptides at room temperature for 120 min. Bacterial cells in PBS were used as the 

negative controls. Then, they were centrifuged at 5000 × g for 5 min and resuspend in 50 μl staining 5 

solution. Mix thoroughly and incubate at room temperature in the dark for 15 minutes. Trap 5 μL of 

the stained bacterial suspension between a slide and an 18 mm square coverslip. Observe in confocal 

microscopy (LSM980) equipped with specified filter sets.  

Anti-biofilm formation. The microtiter dish biofilm formation assay was used to detect the 

preventive effect of peptides on biofilm formation. TSBG [tryptic soy broth supplemented with 1% 10 

(wt/vol) glucose] wass used for the growth of bacterial biofilms. In order to prevent the MIC values 

measured in different media are inconsistent, the MIC of S. aureus CMCC26003 and A. baumannii 

ATCC19606 in TSBG was retested and the result was both 16 μg/mL. The method was improved on 

the basis of MIC detection. 50 μL of bacterial suspension at 1×106 CFU/mL were incubated with the 

same volume of peptide solution ranging from 4 to 32 μg/mL in 96-well microplates. As an untreated 15 

control, bacteria were exposed to TSBG medium without peptide. After 24 hours incubation at 37�, 

planktonic bacteria were removed. Gently wash the wells 3 times with PBS, then dry at 37 �. 

Biofilms were stained with 0.3% crystal violet (Sigma-Aldrich) for 15 min, washed, and solubilized 

with 30% acetic acid in water. Quantify absorbance in a plate reader at 550 nm using 30% acetic acid 

in water as the blank. Biofilm mass was calculated according to the equation: 20 

Biofilm mass(%) = [OD550 nm(peptide)−OD550 nm(blank)]/ [OD550 nm(negative)−OD550 nm(blank)]×100 

DNA binding assay. The DNA binding ability of peptides was investigated by gel retardation 

assay. The genomic DNA of S.aureus ATCC33592 was extracted by TIANamp Bacteria DNA Kit. 10 

ul DNA (30ng/ul) was incubated with the same volume of different concentrations of peptide 

solution (1× to 8× MIC in final) dissolve in TE buffer for 30 min. As an untreated control, DNA was 25 

exposed to TE buffer without peptide. Subsequently, 4 ul of loading buffer was added, and a 20 ul 

aliquot subjected to 1% agarose gel. Finally, the migration of DNA bands was observed by 

ultraviolet (UV) illumination with the ImageQuant 300 gel documentation system. 

Cell-free protein synthesis inhibition assay. The reactions were performed using the S30 T7 

High-Yield Protein Expression System (Promega). 3 μl of peptide solution were added to reaction 30 

mixtures to get a final concentration respectively of 32 μg/ml or 512 μg/ml in a final volume of 15 

μL in nuclease-free PCR tubes. Nuclease-free water was added to the reaction instead of the peptides 

as untreated control. Nuclease-free water was added to the reaction instead of peptides and DNA 

template as blank control. Erythromycin was used as positive control. The samples were incubated 

for 1 h at 37� with vigorous mixing (300 rpm), and the reaction was stopped transferring the 35 
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samples on ice. The activity of the Renilla reniformis luciferase, used as a reporter, was quantified 

using the commercial kit Renilla-Glo Luciferase Assay System (Promega). Mixing 2.5 μl of reaction 

mixtures and 97.5 μl of the provided buffer, and waiting 10 min before the measurement. Black 

flat-bottom 96-well plates were used in a luminometer Plate Camaleon (Bioteck). In all the 

luminescence measurements, the relative values were calculated as a percentage of the untreated 5 

control. 

In vivo experiments 

The therapeutic potential of QL-AMP-1 in vivo was tested in a local S. aureus CMCC26003 or A. 

baumannii ATCC19606-infected full-thickness skin wound model. Ten-week-old female C57BL/6J 

mice were anesthetized using isoflurane and administered buprenorphine as an analgesic at 0.1 mg 10 

kg−1 intraperitoneally. Then, we removed the back hair of mice, two pieces of full-layer skin with a 

diameter of 5 mm were removed from the center of the back of mice with a tissue biopsy device. The 

model was successfully established if the wound area of mice in each group was uniform. Mice were 

immediately infected with 5 uL of 108 CFU/mL bacterial solution directly pipetted onto the wound 

bed. The wound is covered with sterile dressing. After 6 h, the treatment and control group were 15 

given 10 uL of 30 mg/ml antimicrobial peptide QL-AMP-1 or 10 uL H2O, respectively. Mice were 

killed at experimental endpoint (24 h postinfection) and wound tissue was collected, homogenized in 

phosphate-buffered saline and plated on solid LB medium. Count the number of colonies on LB 

medium the next day. 

Safety 20 

For the safety study, the intact or abraded skin of the mice was treated once with antimicrobial 

peptides QL-AMP-1 or water. In brief, ten-week-old female C57BL/6J mice were anesthetized using 

isoflurane and administered buprenorphine as an analgesic at 0.1 mg kg−1 intraperitoneally. After 

removing the back hair of the mice, the skin on the back of the mice in the scratch group was snded 

with 60-grit sandpaper until the skin oozed blood. The intact skin group received no additional 25 

treatment except shaving. 50 ul QL-AMP-1 (30 mg/ml) or water was applied uniformly over the 

intact or abraded skin to assess the acute dermal toxicity. Groups without any addition served as 

untreated controls. Histopathological characteristics of treated skin detected by H&E staining on the 

third days. 
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Fig. 1 | Overview of the proposed QLAPD database and 3D voxel coloring method. a, Schematic flow chart of antimicrobial 
peptide collection, data cleaning, label annotation and multi-modal feature construction of QLAPD database. b, Schematic diagram 
of the 3D voxel coloring method, taking the antimicrobial peptide LL-37(16-32) as an example. c, The schematic diagram shows that 
the 3D structural features of polypeptides obtained using the 3D voxel coloring method are used to train three downstream multi-
label classification tasks of the 3D-CNN model. d, The bar plots shows the performance of the 3D voxel coloring + Res-Conv Net 
and three graph neural network methods in the multi-label classification task of antimicrobial activity, mechanism and toxicity of 
antimicrobial peptides. Shown are the means obtained by five-fold cross validation.
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Fig. 2 | Workflow and performance evaluation of the M3-CAD pipeline. a-c, Schematic showing the generation (a), regression (b) 
and classification (c) moudles that make up the M3-CAD pipeline. d, The lollipop plot demonstrates the performance of multi-
modality-based models and models based only on sequence or 3D structural modalities on the multi-label classification task of 
antimicrobial activity, mechanism and toxicity. Shown are the means obtained by five-fold cross validation. e, The table shows the 
performance improvement of three downstream tasks of AMPs by applying the multi-label rebalancing loss function (mm-mlce). 
Shown are the means and standard deviations obtained by five-fold cross validation.
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Fig. 3 | Wet-lab validation of the antimicrobial activity of AMPs discovered by the M3-CAD pipeline and characterization of 
the physicochemical properties. a,  Violin plots showing the distribution of the tested MIC values against S. aureus CMCC26003 
of the top-10 peptides from the complete and partial component pipelines (n = 3 biologically independent replicates). The dashed 
line represents MIC > 256 µg/mL. The dotted lines in each data group represent the first quartile, median and third quartile. b, 
Overview of the antimicrobial activity distribution against S. aureus CMCC26003 of the top-10 peptides from pipelines with different 
modules. The addition of each module improved the antimicrobial activity of the discovered AMPs (n = 3 biologically independent 
replicates). c, Experimental MIC values against S. aureus CMCC26003, E.coli CICC21530 and A. baumannii ATCC19606 (n = 3 
biologically independent replicates) of the top-10 peptides obtained by the complete M3-CAD pipeline. d, Comparison of the amino 
acid compositions of the top-1,000 AMPs discovered by M3-CAD with the AMPs in the QLAPD database (n = 9,392). e, Distribution 
of the highest similarities of the top-1,000 new discovered AMPs by M3-CAD to that of QLAPD. Most of the predicted AMPs have 
less than 32% similarity to the previously known AMPs. f, Comparison of the physicochemical properties of QLAPD-AMPs (n = 
9,392) and newly discovered AMPs (n = 1,000) using the M3-CAD pipeline.
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MIC
 (μg / ml)

 MBC
 (μg / ml)

MIC
 (μg / ml)

MIC
 (μg / ml)

S. aureus 
(G+)

ATCC25923 64 256 32 256

181 128 256 32 >256

ATCC33592 64 256 32 >256

CICC25138 64 256 32 >256

129 64 256 32 >256

CMCC26003 8 32 32 64

E. faecalis
(G+)

152 128 256 32 >256

CICC24243 128 256 64 >256

ATCC51575 128 256 32 >256

E.coli
(G-)

CICC21530 16 64 32 64

CMCC44102 16 64 32 32

103 8 32 64 32

110 16 64 32 64

162 16 16 32 16

166 16 64 32 32

A. 
baumannii
(G-)

ATCC19606 16 64 32 16

102 16 64 32 16

106 16 32 32 16

114 32 128 32 16

K. 
pneumoniae
(G-) 

826 16 64 64 128
ATCC BAA-
1705 32 128 32 64

P. 
aeruginosa
 (G-)

116 32 256 32 32

PAO1 128 256 32 32

119 128 128 32 32

Salmonella 
enterica
(G-)

ATCC14028 32 256 64 128

CMCC50071 64 128 32 64

Table 1 | Antimicrobial activities of antimicrobial peptides QL-AMP-1, SAAP-148 and LL-37 against clinically isolated 
antibiotic-resistant bacteria.

Explanatory note: Green, red, and blue boxes represent clinically isolated strains that are susceptible, resistant, and moderately susceptible to 
the corresponding antibiotics, respectively. Gray boxes are shown if the susceptibility to agents in that class is not assessed. For MIC and MBC 
experiments, each result had at least 3 biological replicates.
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HC50 or 
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A.  baumannii
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Hemolysis 
array

 QL-AMP-1 767.75 95.97 95.97 47.98 47.98 23.99 6.00

 SAAP-148 86.08 2.69 1.345 2.69 1.345 2.69 2.69

Cytotoxicity 
array

 QL-AMP-1 234.01 29.25 29.25 14.63 14.63 7.31 1.83

 SAAP-148 36.39 1.14 0.57 1.14 0.57 1.14 1.14
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Fig. 4 | Off-target toxicity and induced drug resistance of QL-AMP-1 in vitro. a-d, Hemolysis and cytotoxicity of QL-AMP-1 
against human red blood cells (a,b) and 293T cells (c,d) at different concentrations. HC50 (b) and CC50 (c) are calculated by 
logistic regression and sigmoid function respectively (n = 6 biologically independent replicates). e, Shown are the antimicrobial 
activities and safe therapeutic window of AMPs QL-AMP-1 and SAAP-148 against several bacteria. HC50 and CC50 
respectively refer to the half hemolytic toxicity concentration of the drug to human red blood cells and the half cytotoxicity 
concentration to the cell line 293T. f, Resistance-acquisition studies of S. aureus CMCC26003 when cultured in the presence of 
sub-MIC (1/2×) levels of clindamycin, vancomycin and QL-AMP-1 (n = 3 biologically independent replicates). All data are mean 
± S.D.. NS not significant. All p-values were calculated and reported using two-tailed Student’s t-test.
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Fig. 5 | Wet-lab experiments verified the four antimicrobial mechanisms of QL-AMP-1. a, Shown are the helical wheel and 
AlphaFold2 predicted-3D structure diagrams of QL-AMP-1, which illustrates the α-helical structure of the peptide. b, CD spectra of 
QL-AMP-1 in PBS or 50% TFE. The area covered in red indicates the wavelength range of 190-210nm. c, Shown are the changes in 
the helix and β-turn structures of QL-AMP-1 in PBS or 50% TFE solution determined by CD spectra at 190-210nm wavelength. d, 
Confocal fluorescence microscopy of S. aureus 33592 cells treated with 64 μg/ml QL-AMP-1 and stained with SYTO 9/PI was used 
to confirm membrane disruption. SYTO 9 and PI are green and red fluorescent dyes, respectively, which mark cells with intact 
bacterial membranes and those with membrane poreformation. e,f, Shown is biofilm inhibition of S. aureus (e) and A. baumannii (f) 
cultured in biofilm-inducing medium (TSBG) with varying concentrations of QL-AMP-1 (n = 12 biologically independent replicates). g, 
DNA binding affinity experiments confirmed that QL-AMP-1 binds to bacterial genomic DNA and blocks DNA migration in agarose 
gels. h, Cell-free protein synthesis inhibition experiments confirmed that the potential of QL-AMP-1 to inhibit bacterial protein 
synthesis. All data are mean ± S.D.. NS not significant. All p-values were calculated and reported using two-tailed Student’s t-test.
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Number of mice

Intact Abraded
Untreated  Vehicle QL-AMP-1 Untreated  Vehicle QL-AMP-1

Skin irritation

    Erythema formation 0 / 3 0 / 3 0 / 3 0 / 3 0 / 3 0 / 3

    Edema formation 0 / 3 0 / 3 0 / 3 0 / 3 0 / 3 0 / 3

Gross pathology findings 0 / 3 0 / 3 0 / 3 3 / 3 3 / 3 3 / 3

Histopathological findings

    Lymphohistiocytic infiltration in the dermis 0 / 3 0 / 3 0 / 3 3 / 3 3 / 3 3 / 3

    Fibrosis in the dermis 0 / 3 0 / 3 0 / 3 0 / 3 0 / 3 0 / 3
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Fig. 6 | Safety and therapeutic efficacy of QL-AMP-1 in treating skin infections. a, Mouse skin tolerance test. Mice with intact or 
abraded skin were treated with 5× the therapeutic dose (1.5 mg) of QL-AMP-1 or vehicle. As controls, untreated mice were included. 
Results are expressed as the number of animals out of the total number of animals within the group (n = 3) that showed signs of skin 
irritation or pathology within 72 hours after treatment. b, Representative microscopic imaging of tissue biopsies of abraded skin 
treated with vehicle or QL-AMP-1 (n = 3 biologically independent replicates). c, Body weight changes in mice treated with QL-AMP-1 
or vehicle with intact or abraded skin (n = 3 biologically independent replicates). d, Schematic representation of bacterial infection 
and QL-AMP-1 treatment experiments in a full-thickness skin wound model. Created with BioRender.com. e,f, Shown is the effect of 
therapeutic doses of QL-AMP-1 (0.3mg) or vehicle on tissue bacterial burden in a full-thickness skin wound model of S. aureus (e, n 
= 6) or A.  baumannii (f, n = 3) infection. All data are mean ± S.D.. NS not significant. All p-values were calculated and reported 
using two-tailed Student’s t-test.
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