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Abstract

Research and medical genomics require comprehensive and scalable solutions to drive the
discovery of novel disease targets, evolutionary drivers, and genetic markers with clinical
significance. This necessitates a framework to identify all types of variants independent of their
size (e.g., SNV/SV) or location (e.g., repeats). Here we present DRAGEN that utilizes novel
methods based on multigenomes, hardware acceleration, and machine learning based variant
detection to provide novel insights into individual genomes with ~30min computation time (from
raw reads to variant detection). DRAGEN outperforms all other state-of-the-art methods in
speed and accuracy across all variant types (SNV, indel, STR, SV, CNV) and further
incorporates specialized methods to obtain key insights in medically relevant genes (e.g., HLA,
SMN, GBA). We showcase DRAGEN across 3,202 genomes and demonstrate its scalability,
accuracy, and innovations to further advance the integration of comprehensive genomics for
research and medical applications.

Introduction

Over the last decade, the advent of genomic sequencing as a common methodology in
genomics, genetics, and medical applications has enabled multiple discoveries and insights for
diseases, population diversity, evolutionary mechanisms, and personalized medicine
strategies’™. This was in large part possible due to improvements in next-generation
sequencing (NGS) (i.e., lllumina) in terms of costs, high data quality, and scalability*. Highly
accurate methods for the detection of single nucleotide variations (SNV) and smaller (<50bp)
insertions or deletions (indel) have been at the forefront of variant detection and interpretation.
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Despite the amount of attention SNV have garnered, they are not the only variant type that
differentiates two genomes®®. Recently, an increasing number of studies incorporate structural
variation (SV)"? into their analysis. SVs are often defined to be 50bp or larger and lead to
deletions, insertions, amplifications, or rearrangements of a genome’. Copy number variation
(CNV) is another genomic variation that arises from deletions (loss of copies) or duplications
(gain of copies) of a specific DNA segment’. Another understudied variant type are tandem
repeat expansions that are mainly defined by their low sequence entropy/complexity'®**. These
types of variants have been associated with many diseases, diversity, and evolutionary
patterns. The detection and interpretation of them remain challenging, but multiple specialized
methods have been proposed®’. While all these variant types are present across genomes,
many studies often focus on only SNV or subsets of variant types independently due to the
challenges of joint detection and accurate reporting of these variant classes. Additional
challenges arise from highly diverse and repetitive regions of the genome that further
complicate the analysis®*2. While these variant types likely interact together, these relations are
lost when analyzed independently. Thus, more comprehensive approaches that can scale are
required.

One proposed way to unify variant discovery is via specialized sequencing technologies, i.e.,
long reads, that have been reported to improve certain aspects such as SV detection (e.g.,
Oxford Nanopore Technologies (ONT) or PacBio)*’. These technologies have matured
significantly over the past few years and are becoming more commonly available®. However,
long read technologies are still often limited by their costs, data quality, and scalability and more
often by their sample requirements in terms of quantity and quality®. This often hinders their
application across larger populations or even legacy samples. Interestingly what these
sequencing technologies have demonstrated is that the alleles that are identifiable using their
long reads are indeed also often present and identifiable in short reads™. This has been most
successfully shown in SV genotyping using graph genomes™**. Recent improvements including
graph genome approaches have been shown to improve SV genotyping and the mapping of
short reads™. Nonetheless, these methods often pose challenges to apply them at scale or
generate comprehensively and thus have often been applied to only re-identify certain alleles
(i.e., genotyping)'® making their utility so far very limited®. Single improvements need to act
together to fully detangle the complex genomic landscape of an individual, even more so on a
population scale.

The current trend is often not only to identify and interpret variants in only the coding regions of
the genome, but as well investigate the impact of variants across the entire genome using whole
genome sequencing, which further adds to the complexity of the challenges due to
repetitiveness (e.g., segmental duplications) complex polymorphisms and annotations®*’. The
central question to addressing these challenges is what is needed to improve the interpretation
of all variant types in order to identify novel candidate disease alleles or genes. To tackle this,
the typical approach is to increase the number of samples that are analyzed to obtain robust
population allele estimations. This motivates multiple large scale studies (e.g. Centers for
Common Disease Genomics (CCDG)*®, Trans-Omics for Precision Medicine (TOPMed)*, All of
US (AoU), UK Biobank (UKBB)) focusing on lllumina sequencing which substantiates short
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reads’ role as the workhorse of genomics and genetics. It also requires a scalable and unified
software framework to comprehensively identify all variant types (SNV, indel, SV, and repeat
expansion), which has not been realized so far®. A framework capable of this would not only
scale the identification of the variation landscape from a single genome to millions of genomes,
but would enable us to obtain novel and key insights into multiple adult diseases that are
currently poorly understood due to a sole focus on SNV?°4*,

Here we present new developments of Dynamic Read Analysis for GENomics (DRAGEN) and
its optimization in SNV and indel calling as well as its ability to detect the entire landscape of
variations (CNV, SV, repeat expansions, specialized methodologies for certain regions: HLA,
SMN1&2, etc.). These developments bring together advancements in genomic algorithm
development to address longstanding issues of scalability, accuracy, and comprehensiveness of
variant detection across all sizes and types of alleles and thus fully resolve individual genomes
at scale and cost. The accuracy of DRAGEN is boosted by the first multigenome (graph)
implementation that scales and enables the detection of variant types beyond just SNV. In this
study, we introduce and benchmark DRAGEN's 14 sub components (SNV, SV, STR, CNV,
nine targeted callers including four new callers, and gVCF genotyper) and illustrate their ability
to scale across large cohorts by analyzing the 1000 genome project (1kGP)?%. We reveal new
insights into the diversity of genome across population with a special focus on medically
relevant genes to demonstrate the genomic and medical utility of DRAGEN. We introduce novel
methods to compare and merge the variants produced to further emphasize DRAGEN's ability
to analyze multiple variant classes together. This includes novel SNV and indel merging
strategy to scale and produce fully genotyped population variant call format (VCF) files.
Similarly, we provide novel solutions to combine STR, SV, and CNV into one population VCF
file. Both methods allow, for the first time, the handling of all variant types together and promote
the assessment of large variants for cohort studies. We demonstrate this across 3,202 whole
genome samples from the 1kGP cohort. This work demonstrates DRAGEN'’s capability to solve
the current issues and limitations of research and clinical genomics to further the discovery of
novel disease targets ranging from common to rare disease studies and novel insights into the
diversity of genomes all together.

Results
Novel algorithms to enable comprehensive genomics at scale and accuracy

In this manuscript, we present a novel framework (DRAGEN version 4.2.4) to identify all types
of genomic variations at scale and cost. Figure 1 gives a brief overview of DRAGEN’s main
components. First, each sample is mapped to a multigenome (graph) consisting of a reference
and several assemblies e.g., GRCh38 in addition to 64 haplotypes (32 samples) together with
reference corrections previously reported® to overcome errors on the human genome. The
multigenome (graph) includes variants from multiple genome assemblies to better represent
sequence diversity between individuals throughout the human population. In brief, the seed
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Figure 1: Overview of DRAGEN variant calling pipeline. DRAGEN improves the variant
identification from single bp up to multiple Mbp of alleles. This is achieved by implementing
multiple optimized novel concepts: i) Mapping utilizes a multigenome (graph) including 64
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haplotypes; ii) SV calling is significantly improved over local assemblies based on breakpoint
graphs; iii) SNV calling is improved using multiple novelties including machine learning based
scoring and filtering; iv) CNV calling utilizes the multigenome (graph) and the SV calling
information to make informed decisions; vi) Additional nine tools targeting specific difficult
regions of the genome are included, four of them not reported before; vi) STR calling is
integrated based on Expansion Hunter?®; and vii) A gVCF genotyper implementation to provide
a population level fully genotyped VCF file.

based mapping considers both primary (e.g., GRCh38) and secondary contigs (phased
haplotypes from other populations) throughout the multigenome. The alignment is controlled
over established relationships of primary and secondary contigs and is adjusted accordingly for
mapping quality and scoring (see methods for details). DRAGEN’s mapping process for a 35x
whole genome sequence (WGS) paired end data set, requires approximately 8 minutes of
computation time using an onsite DRAGEN server (Supplementary Table S1 has details of
time taken in each step for both AWS F1 instance and onsite Phase4 server). The multigenome
can be updated with advancements (e.g., T2T-CHM13 or HPRC pan-genome reference) and
can enable a more precise and comprehensive alignment of the short reads. These improved
alignments are leveraged for variant calling.

To identify single nucleotide variants and indels (<50bp), DRAGEN pre-assembles regions of
variants using a de Bruijn graph, which is then input to a Hidden Markov Model (HMM) with
previously estimated noise and error levels per sample. The output is a (g)VCF file. The SNV
caller has key innovations to deal with noise or sequencing errors including i) sample-specific
Polymerase Chain Reaction (PCR) noise estimation; ii) correlated pileup errors estimation; iii)
consideration of overlapping candidate events; and iv) local assembly failures and incomplete
haplotype candidates. After the initial variant calling, a machine learning (ML) framework
rescores calls to further reduce false positive small variants (both SNV and indel) and recover
wrongly discarded false negatives (see Figure 1 and methods for details).

Simultaneously, DRAGEN identifies Structural Variations (SV) (>=50bp genomic alterations) as
well as copy number events (>=1kbp genomic alterations) using two methods (see Figure 1 and
methods for details). For SV calling, DRAGEN extends Manta® by introducing key concepts
that significantly improve SV calling: i) new mobile element insertion detector for large insertion
calling; ii) optimization of proper pair parameters for large deletion calling; iii) improved
assembled contig alignment for large insertion discovery; iv) refinements to the assembly step;
v) refinements in read likelihood calculations step; vi) improved handling of overlapping mates;
vii) improved handling of clipped bases; and viii) filtering and precision improvements (see
Figure 1 and methods for details). For CNV calling, DRAGEN targets 1kbp and larger variants
that cause an amplification or deletion of genomic segments. This CNV caller utilizes a modified
Shifting Levels Model, which identifies the most likely state of input intervals through the Viterbi
algorithm (see Figure 1 and methods for details). The CNV caller was also designed to take
into consideration the discordant and split read signals from the SV calling to be able to detect
events down to 1kbp. Furthermore, DRAGEN identifies short tandem repeat mutations and
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analyzes known pathogenic genomic regions using a method primarily based on
ExpansionHunter®.

Some important genes are challenging to genotype due to their high sequence similarity to
pseudogenes, repetitive regions, and polymorphic nature. To overcome these challenges,
DRAGEN integrates nine targeted callers for accurate genotyping of clinically relevant genes
(CYP2B6, CYP2D6, CYP21A2, GBA, HBA, LPA, RH, SMN, and HLA), of which six of the callers
are described here for the first time?*?. In general, DRAGEN utilizes common SNV in the
population to distinguish gene targets from their paralogous copies to provide copy number
estimation for each haplotype. Furthermore, DRAGEN identifies reads that do not follow the
general phasing patterns and reports the recombination events that lead to these reads per
sample (See methods for details on each caller). The CYP2D6 and CYP2B6 genes are
important for pharmacogenomics and encode an enzyme that is responsible for metabolizing
most of the commonly used drugs*’. The recombination of gene and pseudogene can lead to
deletions of part of each copy, generating gene-pseudogene fusions. The variants across
CYP21A2 can lead to Congenital Adrenal Hyperplasia *. GBA is an important target gene due
to variants that increase risk for Parkinson’s and Gaucher’s disease and Lewy body
dementia®**®. The gene resides in a segmental duplication of 10kbp with a pseudogene GBAP1.
The high sequence homology in GBA/GBAP1 drives homologous recombination and can result
in pathogenic gene conversions or copy number variants. The HLA genes encode proteins
crucial for immune regulation and response, holding immense importance in research related to
autoimmune diseases, organ transplantation, and cancer vaccines and immunotherapy®*3°.
DRAGEN includes a specialized caller to identify the HLA class | (HLA-A, -B and -C) and class
Il (HLA-DQAL, -DQB1, -DRB1) alleles. Mutations in the HBA genes (HBA1 and HBA2) cause
alpha thalassemia, an inherited blood disorder characterized by lowered levels of alpha globin,
a fundamental building block of hemoglobin®. Recurrent homologous recombination can result
in 3.8kbp deletions that create a hybrid copy of HBA1 and HBA2, 4.2kbp deletions that delete
regions that include the HBA2 gene, or complete deletion of both. Small pathogenic variants
also can be detected within HBA. The LPA gene includes a 5.5 kbp region (KIV-2) whose copy
numbers (between 5 to 50+) are inversely related to the cardiovascular risk®”. DRAGEN can
report phased copy number for this region®®. For RHD/RHCE (RH blood type), copy number
predictions can be used to assess the risk of Rh allosensitization®. Another integrated caller
identifies copy number variants across SMN1&2 which can indicate Spinal Muscular Atrophy .

The genome wide simultaneous assessment for SNV, indel, STR, SV, and CNV together with
reporting the results from these specialized callers takes ~30 minutes of computation time with
an onsite DRAGEN server for a 35x WGS sample. This results in a gVCF file for SNV and
indels, a VCF file for each STR, CNV, and SV calls, and tabular formats for the specialized gene
callers (Figure 1).

Thus, the DRAGEN pipeline is able to capture the entire range from single variants to larger
variations across the entire genome at scale and reports them in standardized VCF files. The
algorithms are described in detail in the methods section. This pipeline produces the most
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comprehensive collection of accurate variations across a human genome and has the ability to
scale.

Resolving the complete variant spectrum at scale and accuracy

We applied DRAGEN to the HG002 sample, for which multiple benchmarks are available®®*2,
We identified variants using DRAGEN across a 35x coverage HG002 Illumina NovaSeq 6000
2x151bp paired-end read data set (see methods). Figure 2A shows the distribution of all small
and large variants across the HG002 sample and highlights the ability of DRAGEN to capture
the entire variant spectrum. This resulted in ~4.96M small variant calls that includes 4,003,042
single-nucleotide variants (SNVs) with a transition-to-transversion (Ti/Tv) ratio of 1.98 and an
SNV heterozygous to homozygous (HET/HOM) ratio of 1.57. A total of 967,735 small insertions
or deletions (indel) were discovered with an insertions to deletion) ratio of 1.00 and HET/HOM
ratio of 1.855. For structural variants (SVs), 14,506 variants (>=50bp) were identified with 5,901
deletions (DEL), 7,174 insertions (INS), 42 duplications (DUP), 153 inversions (INV), and 616
translocations (TRA). Additionally, 1,156 copy number variants (CNVs) were identified ranging
from 1kbp to 445kbp with a deletion-to-duplication ratio of 4.25. DRAGEN detects short tandem
repeat (STR) expansions in 50,069 polymorphic loci including 60 pathogenic loci (homozygous
reference 0/0: 37.33%, heterozygous 0/1: 27.36%, homozygous alternate 1/1: 17.8%, and
heterozygous genotype composed of two different ALT alleles 1/2: 17.5%). Relative to GRCh38,
46.66% (14,636) of HG002 STRs have at least one more copy and 53.34% (16,734) have at
least one less copy. Thus highlighting all the variant complexities a single genome represents.

Using these results, all the variants were evaluated against the Genome in a Bottle (GIAB)
benchmarks and compared to other short read based callers (see methods). For SNV and
indel, benchmark version 4.2.1 was used on GRCh38%, but for the SV benchmark (version
0.6)** DRAGEN was run on a GRCh37 version of the multigenome (graph) reference. Later, the
benchmark is expanded across the challenging medically relevant gene catalog ** (see
methods for details). Overall benchmarks DRAGEN demonstrates higher accuracy and
impressive speed up of the analysis from raw reads to finalized variant calls within 30 min total
which is better than any other existing workflow.

We first focused on SNV and indel calling for HG002 and compared its performance to other
short read based methods® (GATK*, DeepVariant® with BWA*®). We further benchmarked the
recent pan genome approach: Giraffe'®. Figure 2B shows the F-measures across SNV and
indel results (Supplementary Table S2 for details). Overall, we observed a clear advantage
of DRAGEN SNV identification accuracy relative to other methods. For the overall genome-wide
small variant calls, DRAGEN achieved a F-measure of 99.85% vyielding a total of 11,116 errors
(2,735 FPs and 8,722 FNs). Compared to DRAGEN, we observe 2.42 times more errors for
DeepVariant+BWA calls (F-measure: 99.64%, 3,695 FPs, and 24,090 FNs), 1.74 times more
errors for DeepVariant+Giraffe calls (F-measure: 99.74%, 4,980 FPs, and 15,021 FNs), and
5.91 times more errors for GATK+BWA calls (F-measure: 99.13%, 38,622 FPs, and 29,163
FNs) with the same lllumina sample. This is in part due to the novel methodologies implemented
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in the SNV calling and in the subsequent machine learning filtering (see methods). We observed
improvements for substitutions and indel (2-50bp) variant types. DRAGEN achieved a higher F-
measure of 99.86% (substitutions) and 99.80% (indel) compared to GATK+BWA,
DeepVariant+BWA, and DeepVariant+Giraffe (Supplementary Table S2). Thus clearly,
DRAGEN shows an improved performance on SNV and indel across the entire spectrum,
improving the characterization across samples at scale.
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Figure 2: Performance overview of DRAGEN based on GIAB benchmarks. A) length
distribution of small and large variants discovered by DRAGEN (bin sizes used for the plot (from
left to right) are: 500, 250,150,50, 150, 250, 500), B) SNV comparison based on GIAB SNV
4.2.1, C) SNV call comparisons based on CMRG v1.0, D) Comparison of SV call performance
(INS and DEL types) based on GIAB SV v0.6, E) Comparison of CMRG SV call performance
(INS and DEL types) based on GIAB CMRG SV v1.0, F) CNV caller comparison of DRAGEN
compared to CNVnator across different sizes of deletions based on GIAB SV v0.6, and G) The
benchmarking of short tandem repeats using GIAB v1.0. The recall and F-measure was
calculated using GIAB catalog and the recall* and F-measure* were calculated using the
catalogs of DRAGEN and GangSTR.
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Next, we assessed the performance of variant calling in the challenging medically relevant
genes (CMRG) catalog. This GIAB benchmark spans 273 medically relevant genes that are
highly repetitive and diverse and were therefore excluded from the genome wide benchmark™?.
Many of these medically relevant genes overlap segmental duplications and other challenging
properties. There is interest to see if short read sequencing can effectively be used for detecting
variants in these repetitive regions. Moreover, several of these medically relevant genes (e.qg.,
KCNE1, CBS, CRYAA, KCNJ18, MAP2K3, KMT2C, etc.) are wrongly represented in the
GRCh38 reference due to false duplication and collapsed sequence errors®. Corrections to
these errors have been incorporated into DRAGEN variant calling. Figure 2C shows the results
of the individual SNV callers with respect to F-measure (see Supplementary Table S2 for detail
evaluations). For both SNV and indel calls, DRAGEN (F-measure: 98.64%) was better than
GATK (95.84%), DeepVariant+BWA (97.32%), and Deepvariant+Giraffe (98.10%). These
improvements are present in both substitutions and indels (Supplementary Table S2). Thus
outperforming the other methods with 13,931 variants genomewide and 509 variants in CMRG
regions which are only identifiable by DRAGEN. We further investigated if this performance
differed between exonic and intronic regions. For the exonic regions, DRAGEN achieved an F-
scores of 99.78%. For intronic and intergenic regions, the achieved F-scores were 99.87% and
99.85%, respectively. Similarly, the variant calling performance was evaluated on exon and
intron regions using the GIAB CMRG benchmark set. DRAGEN achieved F-scores of 98.97%
and 98.66% on exon and intron regions, respectively.

In addition to the clear improvements of DRAGEN for SNV (Figure 2B-C), its performance
across SV (>50bp) was also improved. The DRAGEN results were compared with SV calls
reported by Manta®, Delly*’, and Lumpy*® (Figure 2D-E) (see methods for details). For
insertions, which are often the hardest for SV callers’, DRAGEN achieved an F-score of
76.90%, which more than doubled the performance of Manta (34.90%) and Delly (4.70%)
(Lumpy didn’t report any insertions). This is due to multiple algorithmic innovations in DRAGEN
(see Methods). Similarly, DRAGEN achieved a better F-score (82.60%) for deletion (50bp+)
compared to Manta (70.80%), Delly (68.30%), and Lumpy (66.80%). Supplementary Table S3
contains details across the SV variant types. DRAGEN performance was also compared for SV
detection on the challenging medically relevant gene (CMRG) regions. DRAGEN again
outperformed the other variant callers with F-measures of 63.50% and 68.00% for INS (Figure
2D) and DEL (Figure 2E) types, respectively. This showcases the ability of short reads to detect
SV with high accuracy even in repetitive regions.

DRAGEN also reports copy number variations (CNV), which includes larger deletions and
duplications (see methods). Here CNV are adjusted for the called SV to improve breakpoint
accuracy where possible (see Methods). The performance was compared against CNVnator®?
copy number discovery tool and benchmarked using the >1kbp DEL SV records from GIAB SV
benchmark set (shown in Figure 2F). For CNVs with length in the range of 1-5kbp and 5-10kbp,
DRAGEN performed significantly better with F-measures of 92.60% (vs 39.20% CNVnator) and
96.60% (vs 61.80% CNVnator), respectively. For CNVs with lengths in the range 10-20kbp, 20-
50kbp and >50kbp, similar performance by DRAGEN (F-measures 94.10%, 95.20%, 100.00%
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respectively) and CNVnator (97.60%, 94.90% and 99.00% respectively) was observed.
Supplementary Table S4 contains all the benchmarking results.

Similar to SV, short tandem repeats (STR) are often challenging to resolve due to their
repetitiveness and complexity*®. The accuracy of STR detection by DRAGEN was evaluated
using the GIAB tandem repeat benchmark dataset (GIABTR) v1.0*® and Truvari®®. We assessed
two catalogs that are available in DRAGEN that differ in the number of STR loci analyzed. The
first catalog consists of 50,069 regions where the F-measure (19.68%) was largely driven by the
small size of the catalog compared to the 1.7 million regions represented in GIABTR, which
impacts the recall. Nevertheless, the precision was high at 95.47%. When utilizing the larger
STR catalogs available in DRAGEN which include 174,300 regions, the F-measure improved to
55.13% with the same precision. To provide context to these results, we benchmarked another
short-read caller, GangSTR*, and compared its performance to DRAGEN’s. Since GangSTR is
optimized for a different set of 832,380 regions, we evaluated performance on the intersection of
both methods’ analyzed regions against GIABTR (~174K regions, see methods). When
restricting the benchmark to the intersection between the two catalogs, DRAGEN achieved a
better F-measure of 96.72% (vs 69.86% by GangSTR). When we extended the benchmark to
cover all GIABTR regions, DRAGEN's F-measure for ~50K and ~174K catalogs was 94.56%
and 94.47%, respectively, whereas GangSTR achieved a F-measure of 62.55% (Figure 2G,
Supplementary Table S5).

There are two pharmacogenomics related methods that assess CYP2D6 and CYP2B6 alleles.
For HGO002, the caller reported a *1/*U1;*2/*5 star alleles for CYP2B6 and *2/*4 for CYP2D6.
The *1 and *U1 alleles in the first genotype represent the reference allele and specific variant in
the gene that has reduced enzyme activity, respectively. Similarly, the second genotype, *2/*5,
indicates the HG002 sample may carry two different variants of the CYP2B6 gene which
reduces the enzyme activities of the gene. The CYP2D6 caller for HG002 generated *2/*4 star
alleles which indicate the sample carries two haplotype variants that are also associated with
enzyme reduction of the gene. The methods for HBA 1/2 (Alpha-thalassemia) reported no
detected target variants. DRAGEN HLA typing on sample HGO002 reveals A*01:01, A*26:01,
B*35:08, B*38:01, C*04:01, and C*12:03 class | alleles and DQA1*01:05, DQA1*03:01,
DQB1*03:02, DQB1*05:01, DRB1*10:01, and DRB1*04:03 class Il alleles. Class | genotyping
results are concordant with HLA-LA®®, another WGS based HLA caller. For SMN caller, HG002
has “negative” affected status and carrier status, zero copy numbers of SMN2A7-8 (deletion of
exon 7 and 8), 3.77 estimated total copy humber i.e. indicates four haplotypes across the two
genes. DRAGEN also includes two methods that have been previously published. One method
assesses GBA and GBAP1 interactions that can be important for neurological diseases®® and
reports whether the sample is bi-allelic or not, the total copy number, the carrier status, etc.. For
the HG002 sample, DRAGEN reported four total copy numbers and False for both “is_bi-allelic”
and “is_carrier” fields. The other method assesses the LPA copy number status which provides
important information on cardiovascular disease risk®. Interestingly this method provides
phasing information for ~50% of the samples. HG002 has 39 KIV-2 LPA repeats with allele
specific (allelel and allele2) copy numbers of 25 and 14. These methods are highly specialized
for their individual targeted regions of the genome and report important allelic information rather
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than variants (e.g., single SNV). Supplementary Table S6 contains the descriptions about
callers and results for the HG002 sample.

Since STR, SV, and CNV calls each cover a broad range of variant lengths, it is possible for a
single variant to be present in more than one result. Therefore, we developed a procedure to
combine DRAGEN STR, SV, and CNV calls together to form a comprehensive deduplicated
large variant VCF file using Truvari®*. The merge procedure analyzed a total of 55,414 variants
for HG002 and identified 993 redundant variant representations. To establish the accuracy of
the merging, the variants that are labeled SV were extracted from the merged file and
benchmarking performed using GIAB SV (v0.6) callset. The benchmarking results of the original
SV calls were compared with the benchmarking results after merging and found to be nearly
identical with only 36 variant representations altered enough to change their benchmarking
status (Supplementary Figure S1).

Benchmarking the DRAGEN pipeline shows it produces accurate results that improve variant
performance across all variant types and lengths. The pipeline generates the first fully
comprehensive representation of a human genome including all variant types at scale and cost.

DRAGEN improves the identification of variants across human populations

With the performance of DRAGEN on HG002 characterized, we next applied the pipeline to
other standard GIAB reference samples to assess the accuracy and comprehensiveness of
DRAGEN across multiple ethnicities. These samples include the HG0O01 (NA12878) sample, the
parent samples of AshkenazimTrio (HG0O03 and HG004) and the ChineseTrio samples (HG0O5,
HGO006 and HG0O7). Figure 3A shows an overview of results across variant types and size
regimes. An average of 4,934,765 SNV were detected per sample (substitutions: 3,987,380,
small insertions: 461,743, and small deletions: 463,072). A balance (ratio: 0.999) between small
insertions and deletions was observed. The mean SNV transition/transversion ratio was
observed to be 1.98 and total HET/HOM ratio to be 1.49. For structural variants (SV: >=50bp),
the mean SV count per sample was 14,734 with a range between 14,093 and 15,224 per
individual. Across samples insertions (mean: 48.78%) were the most frequently occurring SV
type, followed by deletions (mean: 39.10%), translocations (mean: 5.20%), inversions (mean:
1.37%), and tandem duplications (mean: 0.36%) (Supplementary Table S7). This follows the
expected distributions of insertions being the most frequent variant type, which is typically not
observed by other lllumina based methods’. DRAGEN calls other variants such as copy
numbers, short-tandem repeats, as well as variants for some complex and medically relevant
genes. On average, 632 CNVs per sample (range between 583 and 718) were detected with
lengths between 1kbp and 500Kbp (Supplementary Table S7). The STRs were detected
across 50,069 loci including 62 known pathogenic loci for each sample. Across the samples an
average of 13,690 heterozygous and 8,901 homozygous STR variant calls were identified.

DRAGEN performance was then evaluated against the GIAB v4.2.1 benchmarks for HG001-7
samples for SNV and indel*. The recall for genome-wide calls were in the range of 99.96% and
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99.88% with precision between 99.90% and 99.93% (Supplementary Table S7). For SNV and
indel, the mean F-measures were 99.87% and 99.79%, respectively (Figure 3B). This shows a
remarkably high consistency across all samples in the performance to identify SNV and indel.
DRAGEN SNV call performance was then compared against GATK and DeepVariant (DV) calls
with BWA and Giraffe’® mapper using the GIAB benchmark for all these samples (Figure 3C
and D and also see methods). Across all callers and samples the F-measure was below
DRAGEN's: GATK 99.10% to 99.28%; DV-BWA: 99.61% to 99.71%. The higher F-measure is
largely attributable to improved detection of substitutions and indels (Supplementary Table
S7). The benchmarking across all seven samples (HG001-7) allows further assessment of the
ability of DRAGEN to utilize a multi genome (graph) reference. Figure 3C shows the accuracy
of DRAGEN compared to the accuracy obtained by aligning on the HPRC reference
pangenome with Giraffe™ and variant calling with DeepVariant (DV) *°, the BWA >* with DV
pipeline, and the GATK pipeline. When compared to GATK+BWA, DRAGEN shows an average
error reduction of 82.45% on combined SNV and indel, with an average reduction of 83.49% on
SNV and 75.91% on indel. When compared to DeepVariant+BWA, DRAGEN shows an average
error reduction of 59.06% on combined SNV and indel, with an average reduction of 61.31%
and 45.87% on SNV and indels, respectively, confirming the trend observed in the previously
reportedprecisionFDA V2 samples®®. When compared to Giraffe-DV, DRAGEN reports an
average error reduction of 42.91% on combined SNV and indel, with an average of 44.00% on
SNV and 38.52% on indel.

Since these samples are trios (Ashkenazi (HG002, HG003, HG004), Chinese (HG005, HGO0O06,
and HGO007)), the variant calling was further validated based on Mendelian inconsistencies. The
percent of genotypes at which a trio had no missingness and no Mendelian error was found to
be 97.70% and 96.58% for Ashkenazim trio and Chinese trio, respectively. The genotypes’
assigned by DRAGEN were found to have low Mendelian error at 2.30% and 3.42% for
Ashkenazim trio and Chinese trio, respectively (Supplementary Table S7).

Comprehensive variant detection at population scale analysis using
DRAGEN

We next applied DRAGEN to discover variants in the well-studied high coverage 1000 genome
project (1kGP) #?* samples and analyze the catalog of genomic variation at population and
cohort levels. The 1kGP samples consist of a total of 3,202 samples from 26 different
populations of five different ancestry (i.e., super-population) groups: African (AFR), European
(EUR), South Asian (SAS), East Asian (EAS), and American (AMR). This collection of samples
contains 1,598 (49.91%) males and 1,604 (50.09%) females. The AFR samples have the
highest number of samples (n=893, 27.89%), followed by EUR (n=633, 21.64%), EAS (n=601,
18.77%), SAS (n=585, 18.27%), and AMR (n=490, 15.30%). Recently, the low-coverage (7.4x)
WGS datasets? of 2,504 samples in 1kGP has been expanded to 3,202 high-coverage (35x)
dataset>®. We analyzed the 1kGP with DRAGEN in order to compare with the recently published
SNV callset®® with GATK and SV callset with a combination of three tools (GATK-SV*’,
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svtools®, Absinthe®). The analysis with DRAGEN showed an improved performance of variant
callings in terms of novel small as well as structural variants °.
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Figure 3: Performance overview of DRAGEN for HG001-07 samples A) Length distribution
of different variants for all samples (bin sizes used for the plot from left to right are: 500,
250,150,50300,150, 250, 500); B) The recall, precision, and F-measure of DRAGEN for HG001-
07 samples; C) The comparison of False negative (FN) and False positive numbers among
DeepVariant with BWA, DeepVariant with Giraffe, and DRAGEN for HG001-07 SNV calls; and
D) Comparison of recall, precision and F-measure of these samples for four different tools i.e.,
DRAGEN, GATK, and DeepVariant-BWA, DeepVariant-Giraffe. E) The average F-measures,
and errors (false positives and false negatives) for different tools.

For this analysis, it is important to have accurate single sample calling methodologies but also
to have methods that combine VCF files from multiple individuals and be able to annotate the
variants rapidly and accurately. To accomplish this, a new gVCF merge method for SNV was
implemented (see methods) and we utilized Truvari to combine STR, SV, and CNV together.
This results in two population merged VCF files, one for SNV and indel and one for larger
variant classes.

For small variants (<50bp), the DRAGEN Iterative gVCF Genotyper (IGG) can efficiently
aggregate hundreds of thousands to millions of gVCFs to perform joint calling and genotyping.
This generates a fully genotyped population VCF file, which is needed for any genome wide
association studies, rare variant studies, phasing and imputation, and ancestry studies. The
output population VCF file also contains cohort level variant statistics (including allele frequency,
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sample genotype rate, and coverage rate) and QC metrics (such as Hardy Weinberg test p-
value and inbreeding coefficient) that can be used for downstream variant filtering (See
methods for details). Prior to the aggregation, variants with DRAGEN machine learning quality
score below threshold QUAL=3 are filtered. The joint call set has an average per sample SNV
recall of 99.92%, precision of 99.78%, and F1-measure of 99.85%, and indel recall of 99.84%,
precision of 99.71%, and F1-measure of 99.77%, as evaluated based on GIAB samples. The
aggregation over 3,202 samples took almost 2 hours on Illumina phase4 server with
concurrency of 200 jobs.

For STR, SV and CNV, the variants were first combined on a per individual level to remove
redundant variant representations across types using Truvari®. Truvari compares the alleles
and sizes together with the location and the type of variant event (e.g., deletion vs. insertions).
Supplementary Figure S1 shows this across HG002 with remarkably similar performance
values on SV only and merged STR, SV, and CNV results. After this first step per individual,
individuals at population level were merged.

Population level SNV and indel identification across 3,202 individuals

We applied DRAGEN across 3,202 high coverage (35x) 3,202 1kGP samples to perform the
comprehensive variant calls (SNV, indel, SV, STR, CNV) to demonstrate the scalability. The
variants were analyzed and the results were compared with the published results®®. At cohort
level, DRAGEN identified 118,210,374 SNVs and 25,161,418 indel. The Principal Component
Analysis (PCA) plot (Figure 4A) for the small variants at the cohort level shows distinct clusters
for different populations, which demonstrates shared genetic ancestry among samples. The
distribution of SNVs and indel at population level shows that the AFR super-population has the
highest number of SNVs and indel (Figure 4B & C), due to the higher diversity of AFR but also
likely impacted by the high number of AFR samples in the cohort (Supplementary Table S8).
The average SNVs per sample ranged from 3,762,359 (EAS) to 4,640,044 (AFR) and followed
expected diversity>®. The number of small insertions (<50bp) for EAS (601,678) was lowest and
for AFR (833,407) was the highest. This was interestingly inverted when the small deletions
(<50bp) were assessed. The highest proportion of singletons (28.7%) was observed in the AFR
population, which also follows previous findings. However, EAS has the highest mean
singletons (i.e., ratio of total singleton for a population and number of samples) compared to
other populations.

The allele frequency based analysis on 2,504 unrelated samples shows that DRAGEN
generated 56,327,924 (52.03%) singleton, 38,676,117 (35.73%) rare (AF <= 1%), and
13,246,064 (12,24%) common (AF > 1%) SNVs. As compared to previous GATK callset on
these samples, it generated 2.95% more singletons and also slightly more rare and common
SNVs (Figure 4D-E). For indel variants, DRAGEN generated 7,103,047 singleton, 8,272,115
rare, and 4,226,537 common indel while GATK callset had ~56% fewer singleton (3,129,240),
~31% fewer rare (5,727,021), and slightly lower common indel variants (4,023,422). Using the
lllumina Connected Annotations (ICA) ® pipeline (also see methods), the variants detected by
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Figure 4. DRAGEN SNV calls for 1kGP sample: A) PCA plot of principal component 1
and 2 for SNVs across the population B) Distribution of SNV counts and C) Distribution of
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indel counts at super-population level D) Singleton (allele count=1), rare (allele frequency
<= 1%) and common variant (allele frequency > 1%) counts of GATK v4.1 and DRAGEN
v4.0.3 callsets of SNV and E) indel across the cohort level. The Known and Novel variants
based on dbSNP 155 database F) The distribution of SNVs based on their functional
annotations shown in the upper plot and the lower plot showing the fraction of Known and
Novel variants G) The distribution of small insertion and deletions based on their functional
annotations.

both DRAGEN and GATK callsets were compared with known SNV (dbSNP build 155) to
determine which variants were previously observed (i.e. known) or novel. The majority of SNV
(93.98%) from DRAGEN were known and 87.86% of indel were known variants. The singleton
rate of known variants was ~50% of SNV and ~30% of indels (Supplementary Table S9).

While most SNV and indel were rare, the novel rate of indel with functional impact was between
9%-15% across samples, while the SNVs novel rate was between 1%-3%. Specifically, among
SNVs with functional impact, DRAGEN called 712,630 missense SNVs (94% rare, 2% novel),
441,434 synonymous SNVs (89% rare, 1% novel), and 62,273 SNVs with higher functional
impact, including stop/start-gain/lost and splice mutations, (92% rare, 3% novel). For indel with
functional impact, DRAGEN called 24,649 frameshift indel (95% rare, 15% novel), 13,185 in-
frame indel (91% rare, 9% novel), and 7,707 indel with higher function impact, including
stop/start-gain/lost and splice mutations, (81% rare, 9% novel) (Figure 4F-G; Supplementary
Table S10). We compared the functional annotations of the DRAGEN call set with that of the
GATK call set (Figure 4F-G). In the intronic, intergenic and regulatory regions, more SNVs and
indels were called by DRAGEN than by GATK. In these annotation categories, the percentage
of rare and novel variants (in particular indels) was higher in DRAGEN than in GATK. In
annotation categories with low to high functional impact, DRAGEN called fewer missense,
synonymous, and functional impact SNVs. The percentage of rare SNVs was higher and the
novel SNVs was lower in the DRAGEN call set. Frameshift and functional impacting indels were
higher in DRAGEN and found to have a lower allele frequency than GATK. The novel rate was
similar between the two call sets, but varied between categories, due to overall lower number of
indel in these categories.

The larger number of singletons and novel small variants (<50bp) could highlight DRAGEN’s
increased ability to assess repetitive regions of the genome, which is enabled due to the
multigenome (graph) implementation (see methods). To answer this, we first focused on the
challenging medically relevant gene (CMRG) gene regions that are important for clinical
analysis. We analyzed the variants identified by DRAGEN in 389 challenging gene regions and
compared them to the previous GATK based results. DRAGEN identified 1,134,340 (0.79% of
total) variants in those regions. This is similar to the GATK results of 1,146,580. Next, we
investigated if DRAGEN accurately captures the variants in 12 medically important genes that
are ill represented on GRCh38%. These 12 genes comprise nine which are wrongly duplicated
and three that are wrongly collapsed (e.g., 2 instead of 3 copies). These regions include the
genes KMT2C, H19, MAP2K3, KCNJ18, KCNE1, CBS, U2AF1, CRYAA, TRAPPC10, DNMT3L,
DGCR6 and PRODH. For the nine genes that are wrongly duplicated, DRAGEN was able to
circumvent this bias and reported 35,504 variants. This is in stark contrast to the GATK call set
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which reports almost 30% fewer (24,249) variants. As an example, for CBS, related to
cystathionine beta-synthase deficiency®, only 221 variants were reported across 1kGP in the
previous study®® . DRAGEN reported 1,297 variants in its’ call set due to the use of multigenome
(graph). For the H19 gene, related to skeletal muscle disease)®’, DRAGEN found 341 variants,
but GATK found no variants. For genes that were impacted due to collapsed errors, we
expected a inflated number of variants due to multiple haplotypes collapsing on top of each
other?. For these three genes, we observed fewer (20,047) variants from DRAGEN than GATK
(24,322). For MAP2K3, related to skin and liver diseases®®, and KCNJ18,related to some rare
disease®, GATK discovered 1,631 more variants than DRAGEN, which are likely false
positives®® (Supplementary Table S11).

Unification of large alleles across 3,202 individuals

Next we investigated the larger variants identified by DRAGEN encompassing STR (50,069
regions), SV and CNV. As described above we merged all large variant types across the
samples into one population VCF file. We identified 410,366 STRs (243,778 expansions i.e.
reference has fewer repeat units and 166,588 contractions i.e. reference has more repeat units),
1,353,805 SVs (with 262,712 DEL, 620,530 INS, 15,087 tandem DUP), and 6,422 CNVs (3,471
DEL and 2,951 DUP) across the entire 1kGP data set (Supplementary Table S12). We first
performed a PCA analysis to investigate if these calls follow the expected population structure.
Figure 5A shows the PCA colored by super populations. Overall, we observe a nice separation
following the population structure in PCA 1 & 2. The large variant PCA has a highly similar
structure to that observed in the small variant PCA. The stratification is likely also driven by the
higher variant numbers we observe across the African population compared to the other
ethnicities, which is also similar structure that was observed in small variant PCA. Figure 5B
and C shows the distribution of insertions and deletions per population. Across all SV types we
see the expected distributions of variant counts with a slight increase of insertions over
deletions. While it remains challenging to identify insertions from short reads, we see the
relatively high numbers of DRAGEN insertions obtained following the general population
structure. Figure 5D shows the average number of SV per individual for each population.
Interestingly, while we observe increases of insertions and deletions for Africans compared to
other populations, the same is not observed on duplications or inversions.

We next investigated how many of these variants have been identified previously'®*°. For this
task we used ICA to annotate variant intersections to 1kGP, gnomAD and TOPMed. Across all
variants we observed 1,410,769 known variants and 12,459,468 novel variants. Supplementary
Table S13 contains the distribution based on allele frequency. To cross check consistency of the
data set we correlated the allele frequency of the call sets for the overlapping variant calls. We
observed a positive correlation (Pearson correlation coefficient: 0.999, p-value=0.0) between allele
frequency and the count of variants from the 1kGP database. Next, we checked for the overlap of
variants with exonic, intronic and intergenic regions. A total of 65,025 SV (24,464 DEL and 14,395
INS) overlapped exonic regions, 717,559 overlapped intronic regions (348,594 INS and 146,161
DEL), and 602,762 overlapped intergenic regions (257,847 DEL and 116,349 DEL).
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Figure 5: DRAGEN SV calls for 1kGP sample: A) PCA of merged STR, SV and CNV for
deletions >5% on chromosome. B) Distribution of insertion and C) deletion type structural
variants (>= 50bp) among populations D) Distribution of SV, STR and CNV variants based
on average count i.e. total variants of a population / population count E) distribution of
variant numbers among all 3,202 samples for the 12 challenging medically relevant gene
(CMRG) regions (in GRCh38) that are impacted due to falsely duplication and falsely
collapsed errors. DRAGEN uses the corrected reference as a part of its multi genome
approach to correctly identify more variants in duplicated and in collapsed regions. F) Class
| HLA allele frequency distributions among all 1kGP populations

Since DRAGEN identifies multiple categories of large variants (SV, STR, CNV) we queried the
total number of base pairs impacted across the genome by these variants compared to the
small variants. The individual number of variants fluctuate per category - however, categories
with fewer variants often contain longer variant alleles. The average number of basepairs
impacted by SNV and indel per individual across the 1kGP cohort was 8,618,694 bp while for
STR, SV and CNV an average of 8,555,084 (6,427,623 for SV, 860,424 for CNV and 1,267,036
for STR) bp. The number of impacted base pairs by large variants (STR, SV, CNV) is observed
to be very close to the number of basepairs impacted by SNV. However, the DRAGEN callset
for SV also include many insertion variants (average ~25% per sample) for which the length of
variant was not resolved. Therefore, including these large insertion variants could substantially
increase the number of impacted base pairs. This confirms previous reports that the impacted
bp from SV are higher than SNV and indel alone and underlines the importance of STR, SV and
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CNV’®°. The AMR population (62,294bp) again showed the highest average bp changes
(Supplementary Table S14).

We further obtained insight into the SV diversity along the medically important genes. As the
1kGP samples represent healthy individuals, their SVs could be used as controls in studies
aiming to identify potentially pathogenic variants. We compared DRAGEN SVs to results that
were recently published® from a joint calling ensemble approach (GATK-SV>, svtools™,
Absinthe®). Across the 5,030 challenging medically relevant gene regions DRAGEN
identified 265,317 variants (197,191 SV; 66,446 STR; 18,038 CNV). The SV callset that
was published in the recent studies reported only 27,166 SV with 8,093 insertions and
13,506 deletions. These can be split in mainly 27,884 more deletions and 87,639 more
insertions that are discovered by DRAGEN. Within these medically relevant genes there are
12 genes that often suffer in the analysis due to reference biases*. As mentioned before,
some genes suffer from wrongly collapsed copies which leads to an increased number of
variants®. On the other side there are several genes that have been wrongly reported
multiple times across the genome which often led to missing variant calls due to their
repetitiveness?. For the duplicated and collapsed regions, a total of 65 and 384 large
variants were identified by DRAGEN and the majority of them are SV (95.38% and 97.14%).
In contrast, the previous study only reported 36 SV in collapsed and 19 SV in duplicated
regions across the entire 1kGP. At the cohort level, on an average each individual has 11
variants that were identified in the erroneous regions. For the AFR population, the average
number of variants was 13 and for other populations it was between 9 to 10 variants per
sample. The distribution of total number of variants by DRAGEN at the duplicated
erroneous regions are higher than the numbers reported in the previous studies and the
numbers are lower in the collapsed regions. This shows the improvement of variant calling
by DRAGEN that incorporates the corrected regions during variant calls (Figure 5E and
Supplementary Table S15). A lower number of variants is expected in the collapsed
erroneous regions if the corrected reference is used as these erroneous regions in the
original GRCh38 reference with more than one copies are collapsed into one.

Insights across medically relevant but complex genes across 3,202 individuals

Lastly, we investigated results from the DRAGEN specialized gene callers (e.g., CYPB26,
CYPD26%, GBA? HLA, SMN1&2%') to obtain deeper insights into potential pre conditions
across the 1kGP data set. Furthermore, this data set can be leveraged as population controls
for these important but complex genes.

For CYP2B6 caller, 2,017 samples had genotypes containing two haplotype specific star alleles
(filter status PASS), 1,174 samples had more than one possible genotypes and 11 samples (10
AFR and 1 EUR) had no calls reported. The metabolizer status reported in these calls shows
that among samples with PASS filter 1,189 with normal metabolizer, 381 with poor, 154 with
rapid, 7 with ultra-rapid, 224 with intermediate and 57 with indeterminate status and 858
samples are with *1/*1 genotype. Among the samples with multiple genotypes, 945 of them are
with genotype “*1/*6;*4/*9”. For CYP2D6 calls across all samples, only two samples (one EUR
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and one SAS) had more than one possible genotype. There were 11 with no calls (2 AFR, 1
SAS, 6 EAS and 3 AMR) and the remaining 3,188 samples had one genotype with two
haplotype specific star alleles. The metabolizer status showed that 1,557 samples had normal
status, 733 intermediate status, 59 poor, 106 ultrarapid and 143 indeterminate status.

For GBA?® caller that detects both recombinant-like and non-recombinant-like variants in the
GBA gene , DRAGEN reported no samples with any presence of a recombinant-like variant on
each chromosome (homozygous variant or compound heterozygous). However, it reported 13
samples (3 AFR, 5, EUR, 1 AMR, 1 SAS and 3 EAS) with presence of a recombinant-like
variant on only one chromosome. The reported total copy number values showed that the
majority of samples (95.47%) had aggregate CN of 4 across gene and pseudogene. Only 16
samples had an aggregate CN of 3, and the remaining 129 samples (111 AFR, 1 EUR, 6 AMR,
11 EAS and 15 SAS) had aggregate CN in the range between 5 and 10. It reported only one
sample (of EAS) that has one deletion breakpoint in GBA gene which indicates if the sample
has one of the recombinant-like deletion variants.

For SMN caller, DRAGEN reported SMA affected status as “false” for all samples and SMA
carrier status “true” for 49 (1.53%) samples (3 AFR, 19 EUR, 12 AMR, 7 EAS and 8 SAS). This
is in the range of rates of carriers, which is between 2.50%-1.67% across the population ®®.The
copy number of SMN1 was reported to be 2 for majority of samples (2,428) and it was not
reported for 19 samples (None for SMN1_CN). For SMN2 copy number, 395 samples with O
CN, 1,275 with 1,427 with CN 2, 86 with 3 or 4 and 19 with no reported copy number.

DRAGEN HLA caller reports HLA typing results of six class | alleles (i.e., A-1, A-2, B-1, B-2, C-
1, C-2), it was reported 60 distinct alleles for A-1, 70 for A2, 121 for B-1, 132 for B-2, 43 for C-1
and 57 for C-2. For A-1 type, A*02:02 was reported to be allele with highest allele frequency of
15.8% that followed by A*11:01 with 11.62% and the remaining alleles were within 0.03% and
10.06%. For A-2 type, the allele A*02:01 was reported to be with highest allele frequency of
13.34% and all others were within 0.03% and 9.90%. For B-1 type, the allele B*07:02 was with
highest allele frequency of 6.71% and the remaining alleles were in between 0.03% and 5.78%.
For B-2 type, the B*35:01 allele had highest allele frequency of 6.62% and remaining alleles
were in between 0.03% and 5.68%. For C-1 type, the highest allele frequency of 17.36% was
reported for the allele C*04:01 and the remaining alleles were in the range between 0.03% and
13.46%. Lastly for C-2 type, again the allele C*04:01 reported to have the highest allele
frequency of 12.05% and others were within 0.03% and 8.81%. The allele frequency distribution
of HLA type-1 classes among all 1kGP populations are shown in Figure 5F. Supplementary
Table S16 has details for HLA type counts.

Thus, throughout the paper we have demonstrated the accuracy and scalability of the DRAGEN
framework across all variant types. We have demonstrated this across all different variant
classes across a wide spectrum of human population and with a focus on genome wide as well
as medically relevant genes. This revealed many novel variants (SNV - CNV) that were not
detectable in previous studies of this data set. Furthermore, we are able to provide this more
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comprehensive call set together with the results of the specialized callers as a population
reference for future studies.

Discussions

In this paper, we present a novel method DRAGEN to comprehensively identify all germline
variants at scale. DRAGEN includes 13 novel methods to improve the identification of SNV,
indel, STR, SV and CNV and nine targeted callers, which is further promoted by the utilization of
a multi genome (Graph). As such it represents the first application that can utilize multigenome
(graph) across all types of variants and truly highlights a significant step in the analysis of
lllumina sequencing data. Even more impressively, DRAGEN achieves this high accuracy while
providing a fast and scalable method that is able to process a 35x whole human genome
lllumina fastq within ~30 min of computation time with an onsite DRAGEN server achieving F-
scores from 76.90% (SV) to 99.86% (SNV) across the different variant classes. In addition, we
introduce novel methods to compare and merge the different variant classes across population
data to obtain fully genotyped VCF files for SNV and indel at high precision. Furthermore,
Truvari® can be leveraged to combine STR, SV and CNV together across a set of genomes.
Thus, DRAGEN enables the assessment of variants at unprecedented scale and accuracy,
which will further enable new insights into medical and biological research. As such DRAGEN is
currently already deployed at multiple large scale projects such as UK Biobank (UKBB), All of
Us (AoU) to name only two. This enables comprehensive variant calling but even more
comparability across large scale cohorts to leverage each other's results to improve
personalized medicine and research applications. To further promote this DRAGEN is now
getting directly integrated into the lllumina sequencing machines. To further promote this
DRAGEN is now getting directly integrated into the lllumina sequencing machines.

Over the past decade we and others have highlighted that not only SNV and indel are impacting
important phenotypes (e.g. medical) but also SV and CNV are more and more often reported for
certain diseases®”® such as cancer, rare genetic disorders etc. Furthermore, STR mutations
are often reported with pathogenic alleles (e.g., FMR1) that impact adult diseases such as
neurological disease and many more*®®. In addition, current disease research is often focused
on rare diseases that require a significant amount of probands and controls to decipher
statistically significant signals of mutations impacting certain genes or pathways leading to a
certain disease phenotype. Thus, it is of utmost importance to promote the identification of all
variant types (independent of size and complexity) at scale across thousands or millions of
samples. We showcased the speed and scalability across multiple human populations.
Nevertheless, variant identification especially for STR and SV remains challenging for short
reads. This is due to repeats and the complexity of these alleles’. Despite those challenges, we
demonstrate a significant improvement of SV, CNV and STR discovery compared to other state
of the art methods. This highlights that while the signals of the alleles are present even for
complex alleles in short reads, it requires advanced approaches to decipher and report them
accurately.
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This is in part enabled by leveraging multigenome (graph). This version of DRAGEN includes 64
haplotypes that represent human populations well. Others will be added over the time as they
become available. Using the current set of 64 haplotypes, DRAGEN outperforms existing pan
genome implementation (e.g. Giraffe**) not only in accuracy (SNV: 99.85% vs 99.74% F-score)
but further in scalability and runtime. The advantage of the graph by including multiple
haplotypes is the better representation of common variants (here AF > 1%). In addition, the
DRAGEN multigenome (graph) is already incorporated for SV and CNV calling, something that
is not possible right now with any other graph genome implementations since they focus
primarily on genotyping variants **’°. DRAGEN analyzes variants using the multigenome with
the variant coordinates projected back to either GRCh38 or CHM13 (not shown here). To further
promote the scalability of the method at population level we have presented new approaches to
provide population level VCF files that are required for any subsequent GWAS or otherwise
functional studies. Here we presented IGG to obtain a fully genotyped multi-sample VCF file.
We demonstrated that we identified many novel variants not only genome wide but also in
important medically relevant genes. Furthermore, we overcame the challenge of combining
STR, SV and CNV variants at an individual and population level. This is now implemented over
Truvari, which first merges across variants within an individual and subsequently across
individuals. We have evaluated both merging strategies in this manuscript. This allows more
comprehensive insights per sample and will foster new findings across population studies
across different phenotypes. For the 1kGP cohort dataset, DRAGEN was able to discover more
variants i.e., SNV, indel (2-50bp) and large variants (>=50bp) as compared to the recently
published results on the same cohort. Besides these variants, DRAGEN also discovered short
tandem repeat expansions for ~60,000 loci and the copy number variations (>=1kbp) across the
genomes. Still certain genes/regions of the genome require special attention (e.g., HLA,
CYP2D6, CYP2B6, LPA etc.). For this, DRAGEN includes specialized callers that resolve genes
(e.g., SMN1, LPA) that are of high importance but often escape genome wide analysis. These
nine specialized callers have now been all integrated in the same platform, again promoting the
notion of the most comprehensive genome analysis to date.

Thus overall, DRAGEN represents a significant milestone in the analysis of sequencing data
and will lead to novel insights across many diseases from Mendelian over rare diseases being
the only platform that is highly comprehensive but also scalable.

Methods
DRAGEN Overview

DRAGEN (Dynamic Read Analysis for GENomics) is a bioinformatics platform developed by
lllumina that is designed to accelerate and improve the analysis of genomic sequencing data.
DRAGEN uses field-programmable gate array (FPGA) technology to accelerate sequence
alignment, variant calling, and other computationally intensive tasks that are commonly
performed in the analysis of genomic data.
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DRAGEN supports a wide range of applications, including whole genome sequencing, exome
sequencing, RNA sequencing, oncology, and more. The platform is designed to be highly
scalable, allowing it to process large amounts of data quickly and efficiently, and it is optimized
for use in high-throughput sequencing environments. While DRAGEN can be used in a wide
range of applications, including cancer research, infectious disease studies, and population
genetics, here we focus on demonstrating its capabilities in the whole genome sequencing
(WGS) germline context.

DRAGEN's capabilities for whole genome germline applications include 1) Fast end to end
analysis due to FPGA hardware acceleration 2) Comprehensive variant calling: DRAGEN
includes methods to detect a wide array of variant types under a single command line, such as
single nucleotide variant (SNV) and insertions/deletions (indel), structural variants (SV), copy
number variants (CNV), short tandem repeat expansions (STR), targeted callers to detect
pathogenic variants and/or gene conversion events in challenging medically relevant genes
(CMRG), and joint/de novo variant calling. 3) Scalability: DRAGEN is designed to be highly
scalable, meaning it can process large amounts of data quickly and efficiently. This is
particularly important for WGS applications, large cohorts analysis for population genomics
studies. 4) Streamlined workflow: DRAGEN offers a complete and automated end-to-end
solution to map and align raw sequencing reads and output variants in VCF files, that can then
be interpreted downstream.

DRAGEN Read Mapping

DRAGEN uses hash-table based seed mapping into the reference genome, with dynamic seed
extension as needed to reduce k-mer match sets to manageable sizes. Rescue scans search
the expected insert-length interval for any missing mate matches, and both gapless scoring and
gapped Smith-Waterman alignment are used to extend to full-read alignments. Split-alignment
possibilities are discovered and scored for each mate, and pair scores are assigned to whole-
template alignment candidates, considering the empirical insert length distribution. MAPQ is
estimated mainly in proportion to the difference between best and second-best pair scores,
separately for each mate. This entire map/align pipeline is executed by FPGA hardware.

For the results presented here, DRAGEN used hg38 reference and hg19 with multigenome
(graph) augmentations encoding population haplotype information to improve mapping
accuracy. GRCh38 is used here as an example, but the DRAGEN multigenome (graph) can be
applied to and constructed for all existing human reference FASTAs (hgl19, hs37d5, hg38,
chm13). 64 population haplotypes in each genomic region were derived from phased SNV and
indel calls for 32 globally distributed samples, with low-confidence variants (under QUAL 30)
excluded unless phased with nearby higher-qual ones, and low-AF variants (occurring in fewer
than 5% of haplotypes in a larger panel) also excluded. Haplotypes were further restricted to
366Mbp of the most difficult-to-map regions in hg38.

Two types of multigenome (graph) augmentations are derived from these population haplotypes
during reference construction. Firstly, isolated SNVs (not phased with other variants within
150bp) are represented as multi-nucleotide IUB codes injected into the hg38 sequences. These
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multi-base codes have two effects: the mapping hash table contains additional k-mers for seed
positions overlapping them, and alignment scoring considers multiple read bases to be
matches.

Secondly, indels and/or phased clusters of SNVs are represented as alternate sequences (alt
contigs) in addition to the hg38 sequences. Each alt contig has a known liftover alignment into
hg38, which is critical to alignment treatment during read mapping. Additional seed k-mers from
alt contigs are populated into the mapping hash table, where they point back to their source alt
contig positions but are organized together with corresponding primary-contig k-mers to encode
their liftover relationship. At each position where an alt-contig k-mers differs from its primary-
contig liftover image, a copy of this alternate k-mers is added pointing to the primary-contig
liftover position, improving seed mapping sensitivity in the primary contig.

Reads thus find seed mappings into both primary and alt contigs. The seeds’ liftover
relationships are imported from the hash table, organizing scored alignments into “liftover
groups”, each typically with one primary-contig member and one or several alt-contig members.
Alignment comparison, winner selection, and MAPQ estimation are then performed at the level
of liftover groups rather than individual alignments, each liftover group using the highest
alignment score among its members. The winning liftover group’s primary-contig member is
always the one reported in SAM/BAM output, which facilitates variant calling in hg38
coordinates.

These graph augmentations improve alignment accuracy by enabling reads to effectively
achieve better alignment scores at hg38 sites where their differences correspond to variants in
the population haplotypes. A particular read may, for example, score equally well in both a gene
and its pseudogene as represented in hg38, but if its differences match population haplotypes
observed to occur only in the gene, then this read is granted an improved score in the gene, and
will map there with positive MAPQ to support calling those variants in the gene.

DRAGEN Germline Small Variant Caller

The DRAGEN Germline Small Variant Caller is a haplotype-based variant caller that takes
mapped, aligned and sorted DNA reads as input, calls single nucleotide variants (SNV) and
indels (insertions and deletions), and outputs as a (g)VCF file (Supplementary Figure S2).
DRAGEN includes a sample-specific characterization step, which takes as input the aligned
BAM, and outputs estimates of indel error rates, which then inform the parameters for the
Hidden Markov model (HMM) that performs the read likelihood calculation inside the germline
variant caller.

The DRAGEN germline variant caller workflow is described in Supplementary Figure S3. The
first step (step 1 in Supplementary Figure S3) looks for sufficient coverage and evidence of
variants in the reads to establish active regions. Since DRAGEN is a haplotype-based variant
caller, the reads covering an active region are then locally assembled via a de Bruijn graph to
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generate a set of candidate haplotypes (Step 2 in Supplementary Figure S3). This step is
similar in concept to GATK4/Mutect2™. Once the haplotypes are assembled, they are aligned
against the human reference to identify candidate variants. It is possible to augment the events
generated by the graph by recruiting events from “column-wise” detection which consists of
counting the number of reads supporting a variant at a given column in a read pileup. The HMM
then computes a likelihood for each read-haplotype pair, considering the indel sample-specific
noise estimates computed upstream of the variant caller (step 3 in Supplementary Figure S3).
In the genotyper (step 4 in Supplementary Figure S3), candidate genotypes are formed from
diploid combinations of variant events (SNV or indel).

Given a set of reads } and a set of haplotypes }, the HMM produces
scores for all combinations of and At a given locus, we have a
set of candidate alleles }. Let indicate that haplotype  contains allele

The goal of genotyping is to calculate the posterior probability ,

For each allele  (including the reference allele), the conditional probability of
observing aread given the event s estimated as the maximum across all
haplotypes supporting the event.

P(r|a;)= max P(r,|h.), i=1...Nz, j=1...N,

&y ]
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These conditional probabilities are combined into the conditional probability

for a genotype (event pair) and multiplied to yield the conditional probability of
observing the whole read pileup. Using Bayes’ formula, the posterior probability of
each diploid genotype is calculated, and the winner is called (based on the maximum posterior
probability). The genotyping matrix is normalized by the sum of all genotypes and the variant
guality score (QUAL) is computed as -10log10 of the posterior probability of the homozygous
reference genotype. The QUAL field is updated when machine learning recalibration is enabled.
This yields better calibrated QUAL values. Finally, a set of simple hard-filtering rules may be
applied to the output VCF to find the best tradeoff between sensitivity and precision (highest F-
measure).

Key Innovations of the DRAGEN Germline Variant Caller

The germline variant caller incorporates advanced methods which provide substantial
improvements in the analytical precision and sensitivity compared to existing third party tools
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(see results). These methods address key variant calling challenges: 1) Sample-specific PCR
noise, 2) Correlated pileup errors, 3) Overlapping candidate events, 4) Local assembly failures
and Incomplete haplotype candidates.

Sample-Specific PCR Error Model

One of the challenges in variant calling is distinguishing indel errors from true variants. To do
so, variant callers often employ a Hidden Markov Model (HMM), which models the statistical
behavior of indel errors, as part of the probability calculation. The HMM typically has input
parameters, Gap Open Penalty (GOP) and Gap Continuation Penalty (GCP), which are directly
related to the indel error rate (ie, indel error rate = f(GOP,GCP)). Indel errors are more likely in
the presence of short tandem repeats (STRs), and the error probability (and thus GOP and
GCP) may depend on both the period and the length of the STR. The error process may differ
significantly from one dataset to another, depending on factors such as PCR amplification. For
accurate detection, it is important to use HMM parameters that accurately model the error
process on a per sample basis. However, typical variant callers often use fixed parameters or
non-sample-specific predetermined functions that fail to accurately model the error process,
resulting in poor detection performance.

The HMM auto calibration implemented in DRAGEN addresses the above problem by
estimating the PCR parameters directly from the dataset being processed. This operation is
performed after mapping & alignment and prior to variant calling, without knowledge of the
ground truth and without using external databases of known mutations. The parameters depend
on both the STR period and the repeat length.

For a given STR period and length, a set of N loci with the desired period and length is selected,
and the algorithm examines the pileups of reads mapped to those loci, counting the indels
observed at each locus. The key idea is that by considering a sufficient number of loci, it's
possible to accurately estimate the parameters of interest. We do so by finding the parameters
that maximize the probability of producing the set of N observed pileups. If the number of
parameters to maximize the probability over is small enough (e.g., 2 or 3), an exhaustive search
is possible. In the current implementation of DRAGEN, the optimization is performed over three
parameters: GOP, GCP and alpha, where alpha indicates the probability of indel variants of any
non-zero length. For each STR period and length considered, the search outputs GOP, GCP
and alpha that maximize the probability of producing the set of N observed pileups, and those
values are used as input to the HMM.

Modeling Sources of Correlated Pileup Errors
Foreign Read Detection (FRD)

Conventional variant callers treat mapping errors as independent error events per read, ignoring
the fact that such errors typically occur in bursts (causing correlated mapping errors). This can
result in variant calls emitted with very high confidence scores in spite of low MAPQ and/or
skewed AF. To mitigate this problem, conventional variant callers typically filter out reads
upstream of variant calling, based on a MAPQ threshold (i.e., reads with MAPQ< threshold are
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excluded from the calculation). However, this discards valuable evidence from within the variant
caller and does a poor job of suppressing false positives. To handle correlated mapping errors,
FRD extends the genotyping algorithm by incorporating an additional hypothesis that some
read(s) in the pileup are foreign reads (i.e., their true location is elsewhere in the reference
genome). The algorithm exploits multiple read pileup properties like relative allele depth,
localized reads, MAPQ per read, and strand bias and incorporates this evidence into the
probability calculation in a mathematically rigorous manner.

New genotype candidates hypotheses are added to the legacy list of diploid genotypes (those
that assume independent pileup errors). For example, in the case of a locus with 1 ALT allele, in
addition to considering P(GOO|R), P(G01|R), P(G11|R), we add two more hypotheses as
P(GO0,F1|R) and P(G11,FO|R), where allele FO and F1 represent reference allele and ALT allele
coming from a mapping error. The properties of those errors, such as allele depth and MAPQ
are incorporated in the calculation of P(G00,F1|R) and P(G11,FO|R). Then the winning genotype
is taken over max (max(P(GOO|R), P(G00,F1|R)), P(GO1|R), max(P(G11|R), P(G11,FO|R))).
Sensitivity is improved from rescuing FN, correcting genotypes and enabling lowering of the
MAPQ threshold for incoming reads into the variant caller. Specificity is improved from removing
FP and correcting genotypes.

With FRD, DRAGEN variant caller can apply more relaxed MAPQ thresholds when accepting
reads for downstream processing. For example, it takes in reads with MAPQ as low as 1, while
other conventional callers apply a more stringent MAPQ threshold (typically 20 or higher) to filter
out mid-to-low confidence mapped reads. An overly high MAPQ threshold can cause valuable
evidence of variants to be lost, hence being able to lower the MAPQ threshold yields
increased sensitivity.

Base Quality Drop-Off (BQD)

Conventional variant callers are designed with the assumption that sequencing errors are
independent across reads; following this assumption, it's very unlikely that multiple identical
errors will occur at a specific locus. However, after analyzing NGS datasets, it was observed
that bursts of errors are far more common than would be predicted by the independence
assumption, and these bursts can result in lots of false positives.

Fortunately, these errors have distinct characteristics differentiating them from true variants. The
BQD (base quality drop off) algorithm implemented in DRAGEN is a detection mechanism that
exploits certain properties of those errors (strand bias, localization of the error in the read, low
mean base quality, at the locus of interest) and incorporates them into the probability calculation
in a simple and robust manner, in the genotyper. New genotype candidates hypotheses are
added to the legacy list of diploid genotypes (those that assume independent pileup errors). For
example, in the case of a locus with 1 ALT allele, in addition to considering P(G0OO|R), P(G01|R),
P(G11|R), we add two more hypotheses as P(G00,E1|R) and P(G11,EQ|R), where allele EO and
E1 represent reference allele and ALT allele coming from a sequencing error. The properties of
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those errors, such as strand bias, localization of the error in the read and mean base quality are
incorporated in the calculation of P(G00,E1|R) and P(G11,EQ|R). Then the winning genotype is
taken over max (max(P(GOO|R), P(G00,E1|R)), P(GO1|R), max(P(G11|R), P(G11,E0|R))).

Being able to characterize correlated sequencing errors from within the core of the variant caller
results in a significant gain in specificity because a lot of FP calls are removed. It also helps
sensitivity by correcting genotype errors.

Joint Detection of Overlapping Events

As described earlier, in the genotyper (step 4 in Supplementary Figure 2), candidate
genotypes are formed from diploid combinations of variant events (SNV or indel).

Given a set of reads } and a set of haplotypes }, the HMM produces
scores for all combinations of and At a given locus, we have a
set of candidate alleles }. Let indicate that haplotype  contains allele

The goal of genotyping is to calculate the posterior probability ,

For each allele  (including the reference allele), the conditional probability of
observing aread given the event s estimated as the maximum across all
haplotypes supporting the event.

P(r|a,)= max P(r,|h), i=1...Ng, j=1_N,
= wly —vay

Y» P(r|a,)+P(r|a,)
P(Rla,.a.)=1] 5 ; JelaNgk=1.j

fml

P{ai,n_ﬂR]xP[R|.rrJ_.n,_)P(aj_n-{), j=1.. . N, k=1.j

posteriors likelihoods priors

However, the maximum operation over all haplotypes supporting the event is sub-optimal and
gives inaccurate variant calls for cases of overlapping events or events separated by a short
tandem repeat (STR) region. The optimal solution is to jointly call variants in each region instead
of treating each event as independent of one another.

The DRAGEN variant caller applies joint detection (JD) of variants at multiple loci using the
following criteria: loci have alleles which overlap each other, loci are in a STR region or less
than 10 bases away from an STR region, or loci are less than 10 bases away from each other.
STR regions are good candidates for joint detection because 1) this is where PCR-induced indel
errors occur, which may overlap with true variant SNV, 2) this is also where true indel variants
occur, which may overlap among each other or with SNV, 3) there are situations where a
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homozygous indel has half of its reads misaligned to represent the indel at the end of a
homopolymer rather than at its true location (eg, beginning or middle of a homopolymer). JD is
effective at recovering the true variants in all these cases.

Within JD regions, a haplotype list is generated where all possible combinations of the alleles
are represented. Computational complexity increases rapidly beyond a small number of
combined loci and events, since it can lead to a large number of haplotypes. In a JD region, the
genotyping steps are as follows

X P(r | h, _}+P{f; |7 )
5 ;

P(R|h,.h )=

P(h. h |R)=<P(R|h b )P(h.h), j=1.Nyhk=1_j

posteriors likelihoods priors

P(a,a|R)< 3 % P(h,.h|R). j=1.N.k=1.N,
mh, —>a, I, —ay
In this case, the posterior probability of diploid combinations of haplotypes over the JD region is
computed first, and the pair of events are derived from the most probable pair of haplotypes.

Column-wise Event Detection

Legacy haplotype-based variant callers use de Bruijn Graph to assemble reads in order to
determine candidate haplotypes and identify potential variant sites. But in regions of the
genome with tandem repeats, structural variants, and clusters of sequencing errors, the local
assembly can fail completely or only give a partial list of candidate haplotypes and variant sites.
Local assembly failure can result in lower variant calling sensitivity since we do not genotype the
potential variant sites missed by the graph. The DRAGEN variant caller implements a column-
wise event harvest scheme that supplements the de Bruijn graph by scanning each column of
an active region for potential variant sites (SNP and indel) and completes the list of candidate
haplotypes with any event found. This restores sensitivity in regions where the graph fails.

DRAGEN ML for Germline Small Variant Calling

DRAGEN-ML is a computationally efficient variant calling method with significant gains in False
Positive detection. This complements the graph technology approach which primarily helps in
recovering False Negatives. Our approach leverages information gathered from the Bayesian
variant caller within DRAGEN and refines the called variants in a computationally efficient
manner. We also find that ML improves variant calling sensitivity in difficult regions and delivers
well calibrated variant call quality scores.

The DRAGEN-ML model is trained using supervised learning, using benchmarks from the GIAB
PrecisionFDA dataset’*(https://precision.fda.gov/challenges/10). We use training data from a
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range of sequencing platforms and configurations so that the model generalizes well across
different sequencer versions, sequencing specific errors (SSEs), lab-preparation flows,
coverages, etc.

The machine learning features include statistical descriptions of mapping quality, base quality,
strand bias, variant length, GC bias, orientation bias, depth, allele fractions, context, internal
HMM scores including foreign read probabilities, SSE triggers, PCR effects, base quality, read
position and other statistics from VC internal processing. These features are extracted during
DRAGEN variant calling at low computational cost.

The features are used to build a model using offline supervised training, outside the DRAGEN
pipeline. The model uses a gradient-boosted ensemble of weak learners to refine variant calls.
Given training data, each weak learner partitions the input space using a nonlinear decision
tree. Subsequent weak learners are built in a stage-wise fashion to refine the model. The model
is trained using gradient descent with regularization and early stopping to address overfitting.
Early stopping holds out a part of the available data as a validation data set. As the model is
trained, performance on the validation data is evaluated. Training is terminated when
performance on the validation data stops improving — this is an indication that the model is
beginning to overfit the training data, impacting generalization capability.

Since DRAGEN-VC has a very high accuracy, only a small minority of calls are false positives,
or have genotype errors. This means training data is highly imbalanced. The model is trained
using a multiclass cross-entropy loss function that properly models the class probability
distribution.

Hyper-parameters (options within model training that affect overfitting and performance, for
example learning rate and regularization weights) are tuned using Bayesian optimization. This
iteratively refines the hyper-parameters over several training cycles in an efficient manner.

The model classifies each variant call as true, false, or zygosity error, giving corrected
genotypes and scores for each variant. The P(false) output confidence is used to recalibrate the
quality score field. The classifier outputs are used to update the genotype and the genotype
quality VCF fields. Potential variants that were scored below threshold by the DRAGEN-VC are
recalibrated by ML, and in some cases, this leads to conversion of FNs to TPs. This genotype
correction approach leads to reduced numbers of zygosity errors, which are typically counted as
both FN and FP, and substantially improves overall performance metrics. The machine learning
approach is well calibrated, leading to variant scores that closely match empirical accuracy. The
model works well for SNV and for indel.

Subsequently, features generated by variants called within new samples are processed by the
pre-trained ML model within DRAGEN-VC, simultaneously with variant calling (Supplementary
Figure S4). This leads to efficient computation with a low-latency time to answer (additional
computation time for DRAGEN-ML is on the order of a minute for a whole genome sample
which compares well with the processing time and cost of competing technigues such as deep
learning). The predictions from the model are used to update VCF fields, including PL, GP,

30


https://doi.org/10.1101/2024.01.02.573821
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.02.573821; this version posted January 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

QUAL, GT and GQ. The QUAL field in the VCF represents the probability of any variant, in
phred-scale. GT represents the highest confidence genotype for each variant position. GQ
represents the probability of the exact genotype called. PL is a phred scaled likelihood per
genotype, and GP is a phred scaled genotype posterior probability.

The machine learning model used in DRAGEN offers global and local interpretation methods,
an important feature for users who want to understand why variant calls were made. Other
machine learning methods are ‘black-box’ and are harder to interpret.

DRAGEN Germline Structural Variant Caller

The DRAGEN Structural Variant (SV) Caller is designed to detect structural variants (SV) and
indel calls (50bp or larger by default) from lllumina data, such as deletions, duplications,
insertions, inversions, and translocations. The process for calling SV in DRAGEN consists of
two primary stages. The first stage entails scanning the sequenced genome to collect auxiliary
statistics and identify candidate SV regions. These regions are typically either single-locus (for
small events) or a pair of loci (corresponding either side of a putative breakpoint). The second
stage involves processing the candidate SV regions to identify, refine, score, filter and report
SVs. These two stages are similar in principle with lllumina Manta® but DRAGEN SV also
includes many unique features and algorithm improvements which result in improved accuracy,
precision and run time speed, namely: 1) internal tandem duplication hotspot handling 2) mobile
element insertion detection for large insertions; 3) optimize proper pair parameters for large
deletion calling; 4) improved assembled contig alignment for large insertion discovery; 5) tuned
default parameters/thresholds; 6) refinements in the assembly step; 7) refinements in read
likelihood calculations step; 8) improved handling of overlapping mates; 9) improved handling of
clipped bases; 10) improved handling of breakpoint homologies; 11) filtering and precision
improvements.

One additional feature available in DRAGEN SV v4.2 is the SV multigenome (graph) Hash
Table (HT), which can be used as optional on the DRAGEN command line (only the hg38
reference genome is supported in v4.2). The SV multigenome (graph) HT is an augmented
version of the default DRAGEN multigenome (graph) HT, which includes common population
haplotypes that contain alternative SV alleles. Those SV haplotypes are added to the reference
contigs set implicitly to improve alignment accuracy. Read alignments that align best to an SV
alternative haplotype carry a “graph alignment” tag (‘ga’ tag which shares the same format as
SA tag, but it contains the alignment of the read with respect to the alternative haplotype
sequence instead) and are lifted-over (with split mapping if necessary) to the reference contigs
accordingly. The DRAGEN SV caller parses the new information provided by the graph
reference genome representation in various processing stages. Fully contained reads without a
reference liftover are treated as providing support for the alternative SV haplotype. This enables
DRAGEN SV to generate full-length assemblies even for insertions larger than twice the library
fragment size.
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DRAGEN SV workflow

In the first stage, a SV candidate graph is created consisting of nodes representing regions of
the genome with SV read support between one or more of these loci. SV read support is
determined by anomalous read pairs, indels in read alignment, soft-clipped reads, split reads, or
'ga’ tagged reads, which meet specific requirements such as high MAPQ scores. Edges in the
graph indicate putative rearrangements between loci, but they do not correspond to specific
structural variant hypotheses (such as deletion, insertion, duplication, inversion, or
translocation). After a merging support from reads mutually supporting a common SV candidate
and denoising to remove poorly supported candidates, the SV candidate region sets are
separated into independent structural variant discovery problems and analyzed individually.

Each SV candidate region set identified in the previous step undergoes refinement through local
assembly. This involves gathering reads that map to the candidate regions, including from
remote regions or a subset of unmapped reads with a 'ga’ tag, expanded by flanking regions.
Reads that support the reference allele, have MAPQO, are supplementary alignments, or are
clipped at both ends by more than 10 bp are filtered out, leaving only the selected reads for
assembly. A de Bruijn graph approach is used to assemble the selected reads, producing
contigs by traversing paths through the graph. The contigs are then scored based on the
number of supporting reads, and the highest scoring ones are chosen for further analysis.

High scoring contigs are aligned to reference sequence corresponding to breakend regions
using a variant of the Smith-Waterman alignment with a standard affine gap scheme where an
additional ‘jump’ state is included to provide a transition between breakend alignment regions if
they are distant. The post-assembly alignment process uses features like breakend orientation,
breakend distance, alignment quality on flanking regions, and a local breakend depth filter to
characterize the SV candidate with the proper SV type and the correct length with single base-
pair resolution.

Depending on the type of evidential reads that are associated with each SV candidate, the
scoring function in DRAGEN SV will assign weights from the paired-end read component and/or
the split read component to the diploid likelihood model ?°. Filters are then applied in a final step
to improve the precision of the scored output.

DRAGEN Germline Copy Number Variant Caller

The DRAGEN Germline Copy Number Variant (CNV) caller is a read depth and junction based
workflow for detection of copy number deletions and duplications. The workflow is defined as a
set of subsequent stages, starting from a sample’s input alignments, and ending with an output
Variant Call Format (VCF) file containing the inferred Copy Number (CN) alterations for the
sample under analysis.

In the first stage, the input reference genome is split into disjoint intervals, with approximately
the same size, and the read counts from input alignments falling on each interval are
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summarized (also denoted as “target [interval] counts”). This approach significantly improves
the computation and memory performance of the entire workflow since coverage along the
genome is not stored for every base position. The number of bases in each interval depends on
its number of k-mer unique positions. k-mer unique positions are defined as bases where the k-
mer starting at such position does not show up anywhere else in the genome (default k-mer
length is 35 bases). Each interval should have at least n (default: 1000) k-mer unique positions,
however, the physical size of the interval cannot grow larger than 2*n. In such cases, the entire
interval is discarded, and the interval generation starts from the next genomic position. The use
of k-mer unique positions improves precision since it reduces the impact on coverage observed
in low-complexity regions due to lower mappability. Finally, for each interval, the “target counts”
are summarized as the number of reads falling in such interval that are: primary alignments, not
duplicates, properly paired, in forward orientation, with MAPQ = 3, and starting on a k-mer
unigque position.

Target counts from the previous stage are corrected based on the estimation of GC content in
each interval. The purpose of this correction is to reduce GC content related coverage bias. The
most likely cause of this bias are PCR artifacts, although GC-bias can also be observed in PCR-
free assays. The GC-bias effect on fragment abundance is unimodal: both GC-rich and GC-low
intervals are under-represented. GC-bias correction consists of two steps: i) In the
measurement step, target intervals are aggregated into different GC content bins. The median
read count value for each bin is computed as its correction factor. ii) In the correction step, each
correction factor is applied to every read count value within its bin. The target intervals with
corrected values are then used in subsequent stages.

The corrected values from each target interval are normalized with respect to the expected
baseline level and they will represent copy-ratio values against baseline. The normalization
algorithm for Germline CNV is based on the autosomal diploid level from the sample under
analysis. Sex chromosomes and pseudo autosomal regions (PAR) regions are handled
accordingly based on the sample sex, and any previously excluded intervals are not used for
normalization. Briefly, for each contig, the median and total sum of counts are computed. The
median divided by the total sum value across all autosomal contigs is then used to compute a
distribution of medians. The final median (of the medians’ distribution) is the normalization factor
(baseline level) used to compute the copy-ratio values for the sample. The resulting copy-ratio
values for each target interval are then transformed in log2-space and median centered.

The next stage is the segmentation stage. The purpose of this stage is to group the input
(normalized) target intervals into distinct segments, each segment being assigned a specific
state and a normalized log2-transformed copy-ratio. The preferred segmentation mode for the
DRAGEN Germline CNV workflow is a variant of the Shifting Levels Model (SLM) "*"*. This
mode is based on a fixed-state Hidden Markov Model (HMM), which identifies the most likely
state of input intervals through the Viterbi algorithm. All states in the HMM emit values following
a Gaussian distribution and are specified with equal variance. All states have the same prior
probability for the first data point, and state-to-state transition probabilities are the same for all
data points. The segmentation output is then post-processed in two steps: i) a segment might
be split into sub-segments when some of its targets have different reference ploidy or are
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separated by a large gap, ii) a segment can be merged with a consecutive one when it contains
a small number of bins, and it is not too far from the consecutive one or separated by PAR
boundaries. Finally, each segment is summarized with a segment median value (SM), which is
computed as the median of its log2-transformed normalized target interval values.

The final stage is the scoring and genotyping stage. The purpose of this stage is to identify the
most likely copy number state for each segment and the quality score for the corresponding
copy number call. Each copy number state’s coverage is modeled using a Student’s t-
distribution with v = 30 degrees of freedom. For each segment, the assigned copy number is
the one having maximum probability given the segment median (SM), over all possible copy
numbers. The maximum likelihood estimate (MLE) of the copy number is emitted in the CN
subfield of the genotype field for each segment’s VCF entry. The quality score for each segment
call is based on the probability of the directional call (i.e., LOSS, NEUTRAL, or GAIN), rather
than specific integer copy number call. This assumes that it is more important to detect the
presence of copy number change relative to a reference, than it is to precisely calculate the
segment copy number. The Phred-scaled quality score is rounded to the nearest integer and
capped at a maximum value. The result is emitted in the QUAL column for each segment entry
in the VCF.

When executed in conjunction with the DRAGEN SV caller, the DRAGEN CNV caller extends
detection down to 1kbp events by leveraging junction signals. The breakpoint accuracy is
improved by split reads and improper pair signals. Depth based calls are reciprocally matched
with junction based calls. Previously filtered calls can be rescued if supported by both depth and
junction signals and annotated in the VCF file with the SVCLAIM field. This method improves
both recall and precision across all length scales.

ALT masking and hg38 reference improvements

The hg38 reference genome has undergone multiple revisions and improvements over time
(Supplementary Table S17), as described in this study®* and here
(https://www.illumina.com/content/illumina-marketing/amr/en_US/science/genomics-
research/articles/dragen-demystifying-reference-genomes.html). In the latest DRAGEN v.4.2,
we recommend using “hg38-alt-masked-v3” and “hg38-alt-masked-v3-graph” depending on
whether DRAGEN multigenome (graph) reference is enabled or not. The improvements
between hg38-alt-masked-v3 and the previous hg38-alt-masked-v2 version are as follows:

We included 34 sequences from chm13 and hs37d5 as decoys. Specifically, we included 24
contigs from T2T-CMH13 identified in this study?** as well as 4 contigs from hs37d5 identified in
these studies *** as missing segmental duplication in GRCh38. Furthermore, we included 5
contigs in acrocentric arms of chromosomes 13, 14, 15, and 22 of T2T-CHM13 missing in the
GRCh38 assembly and 1 missing duplication of a non-coding region of chr4 identified in chr20
of T2T-CHM13. The main effect of the aforementioned decoys is the variant calling accuracy
improvement in the Challenging Medically Relevant Genes FANCD2, MAP2K3, KCNJ18, and
KMT2C, as well as in the Y chromosome.
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The improvements between hg38-alt-masked-graph-v3 and the previous hg38-alt-masked-
graph-v2 version includes the extension of the population samples from 16 samples from
European ancestry to 32 samples from different ancestries around the globe. Population SNVs
and alt contigs are extracted from the difficult-to-map regions of the genome, extended to
include gaps of length <3kbp. Furthermore, we also included one population alt contig from the
chromosome 2 of T2T-CHM13 including the TPO gene.

DRAGEN Gene Specific Callers in Paralog Regions

Segmental duplications account for approximately 5% of the genome. Genes in these regions
have traditionally been difficult to interrogate due to high sequence homology. Over multiples
releases (Supplementary Table S6), DRAGEN has demonstrated that it is possible to variant
call some paralog regions by using targeted callers that use fixed base differences gleaned from
population level sequencing data to uniquely and correctly place reads to call CNV, SNV, and
indels. These callers can be run as part of the regular DRAGEN workflow with no meaningful
run time increase and share similar subcomponents.

First, the total copy humber of the gene and its paralog is computed from the counts of reads
aligned to regions in either the gene or its paralog. A series of pre-selected differentiating sites
across the gene and paralog regions are then used to identify the gene-specific copy number for
various segments of the gene. These differentiating sites were selected at positions with
sequence differences between the gene and paralog. Structural variant calling is performed
from the gene-specific copy numbers across the gene to detect various hybrid structures
between the gene and paralog, optionally including phasing of the various detected haplotypes
to detect gene conversion events. Following structural variant calling, small variant calling may
also be performed at a set of pre-determined sites containing known variants in the population.
For variants occurring in homologous regions of the gene, a joint analysis of reads mapping to
either the gene or the paralog is performed since reads containing these variants may map to
either location in the reference genome.

The methods used for each targeted gene caller are given below.

CYP2D6 caller

The CYP2D6 caller (https://www.illumina.com/content/illumina-
marketing/amr/en_US/science/genomics-research/articles/PGx-research-blog.html) identifies
the total copy number of the gene-pseudogene pair, as well as for a 1.6kbp tract of unique
sequence adjacent to CYP2D7. This unique region co-occurs with CYP2D7 and CYP2D6-
CYP2D7 fusion genes, so the total copy number of CYP2D6 and CYP2D6-CYP2D7 fusion
genes can be found by subtracting the copy number of the unique region from the copy number
of the gene-pseudogene pair. Fusion genes are further identified by scanning across
differentiating sites within the gene-pseudogene pair, calculating the gene copy number at each
differentiating site, and finding changes in copy number states that indicate where a gene fusion
has occurred.
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Small variants are identified by read analysis. In regions of the gene where reads can be
confidently aligned to CYP2D6, reads from only that gene are considered. In regions where high
homology makes confident alignment impossible, reads from either gene are used to call
variants without phasing to gene or pseudogene.

SMN1/2 caller

The SMN1/2 %’ caller identifies the total copy number of the SMN1-SMN2 pair using reads
aligned to a 22kbp region, which includes exons 1-6. The copy number of intact (non-truncated)
SMN is determined by calling the copy number of a 6kbp region (with exons 7-8) and
subtracting that copy number from the total. If there is a difference, a truncation is identified.

A scan is then performed across the differentiating sites to determine the most likely SMN1 vs
SMNZ2 copy number at each site, and the resulting site copy numbers are combined to generate
a consensus SMN1 copy number. SMN1 copy number is found by subtracting SMN1 copy
number from total copy number.

GBA caller

The GBA? caller identifies the total GBA-GBAP1 copy number, as well as the copy number of a
10kbp unique region between them. Non-diploid copy number of this region indicates that a
recombinant variant has occurred. Copy number of less than two indicates a deletion, while
more than two indicates a duplication. The breakpoint of recombinant variants is then identified.
First, a scan is performed across differentiating sites and the copy humber of the GBA allele is
calculated at each. Transitions from one copy state to another between pairs of differentiating
sites indicate the breakpoint region. The breakpoint is further refined by performing read-based
phasing across the 1.1kbp high-homology region, using differentiating sites between tracts of
identical sequence as evidence. Haplotypes are identified which convert from GBA to GBAP1
alleles, indicating the breakpoint location.

Small variants are identified by read analysis. In regions of the gene where reads can be
confidently aligned to the gene, reads from only the gene are considered. In regions where high
homology makes confident alignment impossible, reads from either gene are used to call
variants without phasing to gene or pseudogene.

CYP2B6 caller

The CYP2B6 caller (https://www.illumina.com/content/illumina-
marketing/amr/en_US/science/genomics-research/articles/PGx-research-blog.html) identifies
the total copy number of CYP2B6 and CYP2B7. Small variants are identified by read analysis.
In regions of the gene where reads can be confidently aligned, reads from only the target gene
are considered and variant calls assigned uniquely to the gene location. The homology-region
gene conversion variant is called by a dedicated method. Reads that align to that location,
whether from the gene or from the pseudogene, are tested for the pathogenic allele. If found, a
small number of nearby differentiating sites are employed in read-based phasing and site-by-
site read depth analysis. These pieces of evidence indicate if the pseudogene allele occurs on
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the same haplotype as gene alleles at nearby differentiating sites, indicating a gene fusion/gene
conversion.

Structural and small variants identified are matched against 39 known star allele definitions. The
two haplotypes with highest likelihood (based on variant copy number and population frequency
in the 1kGP) are selected for reporting. If no variants called match known star alleles, no call is
reported. If multiple genotypes are identified with similar population frequencies, all genotypes
are reported.

The accuracy of the CYP2B6 caller was assessed against 125 samples from 1KGP and 76
Coriell samples. Calls on the Coriell samples were compared against either GeT-RM or calls
from Stargazer. For the six samples where calls were not concordant with GeT-RM, DRAGEN
was concordant with Stargazer on five samples and Stargazer did not make a call on the sixth
sample. Calls on the 125 samples from 1kGP were compared against calls manually curated
from long-read sequencing data. Supplementary Table S6 shows the concordance results of
the DRAGEN and CYP2B6 caller.

HLA caller

The HLA caller in DRAGEN is specifically designed for genotyping HLA-A and HLA-B genes,
which are highly polymorphic; that is, these genes have thousands of defined haplotypes across
the population, each containing hundreds of variants. This caller uses expectation maximization
to analyze reads aligning to full sequence alleles from the IMGT/HLA database and Allele
Frequency Net Database to output two-field resolution of HLA.

The DRAGEN v4.0 HLA caller was validated for genotyping accuracy with 117 WGS samples
from the 1000 Genomes consortium. Of the 351 calls (three genes for each of the samples),
349 calls were concordant with Sanger sequencing results (accuracy 99.6%).

HBA1/2 caller

The HBA1/2 caller (https://www.illumina.com/content/illumina-
marketing/amr/en_US/science/genomics-research/articles/HBA-targeted-caller.html) identifies
the total copy number of HBA1 and HBA2, and the copy number of a region around them. This
is used to determine, in the case of a copy number variant, the copy number genotype of HBA1
and HBA2 genes. Pathogenic small variants are identified using reads aligned to either gene
and variants are reported without phasing to gene or pseudogene.

CYP21A2 caller

Total copy number of CYP21A2 and CYP21A1P is determined using a region of the segmental
duplications that includes the entire target gene but omits other common copy number variants
nearby. Small variants in high-homology regions are identified using reads from both gene

copies, while CYP21A2 reads are used to test for a small number of variants in unique regions.
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The frequency of recombination between segmental duplication copies calls for targeted
identification of gene conversion variants, as in GBA. A set of differentiating sites across most of
the CYP21A2/CYP21A1P genes are used in read-based phasing to identify case switches, from
pseudogene to gene, in the same haplotype. These are reported as recombinant variants.

RHD/RHCE caller

The RHD/RHCE caller calls the RHCE*CE-D(2)-CE gene conversion. It identifies the total
combined RHCE/RHD copy number using reads aligning to either gene. It then scans across a
set of differentiating sites within the genes to determine the copy number state of each gene at
each site. Identification of a copy state change in consecutive differentiating sites shows
evidence of the gene conversion event. Both RHD->RHCE and RHCE->RHD must be detected
for a call. Read-based phasing is then performed across the region of the gene conversion to
support the call and refine the breakpoint location, using the differentiating sites as evidence.
The breakpoint can be refined as phasing reveals haplotypes with transition from RHD-only
alleles to RHCE-only alleles or the reverse. In cases where haplotypes indicate gene conversion
from one gene to the other and then back, the differentiating sites that provide evidence for the
gene conversion are reported as variant sites.

LPA caller

The LPA? caller identifies the total KIV-2 copy number using reads aligned to any of the six
copies of the repeat unit in the reference genome. That reference copy number is used as a
special scaling factor to determine the number of copies of KIV-2 in the sample, rather than
copies of the six-copy reference sequence.

The effect of KIV-2 on transcript length means that phased/per-haplotype copy number is also
an important factor to determine. Two marker sites within the repeat unit can be leveraged for
this. These sites, identified by diverse trio analysis within the 1kGP, are polymorphic but
consistently have the same allele within each same-haplotype copy of KIV-2. Reads are
therefore collected at these sites, from any copy of the KIV-2 repeat, and the reference/alternate
alleles counted. If both reference and alternate marker site alleles occur, the sample is
considered heterozygous for the markers. The reference-allele read fraction is then used as a
multiplier for total copy humber to determine the number of KIV-2 copies with the reference
marker allele. The same analysis using alternate marker allele fraction determines the number
of copies with the alternate allele, and phased allelic copy number is found. As this analysis
requires the heterozygous state for the marker sites, it is possible in a subset of genomes,
averaging ~50% across the 1kGP.

Iterative gVCF Genotyping beyond million sample size scale

In multi sample VCF (msVCF), all the variants called at cohort level are stored, with all samples
genotyped at every variant site. The overarching challenges in this joint analysis include variant
guality, performance and scalability, and solving the N+1 problem (i.e., iteratively aggregating a
new batch of samples with the existing batches, without reanalyzing the existing ones).
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The DRAGEN lterative gVCF Genotyper (IGG) can efficiently aggregate hundreds of thousands
to millions of gVCFs from the DRAGEN germline variant calling pipeline, perform joint calling
and genotyping, and generate a msVCF file. The output msVCF file also contains cohort level
variant statistics (including allele frequency, sample genotype rate, coverage rate) and QC
metrics (such as Hardy Weinberg test p-value, and inbreeding coefficient) that can be used for
downstream variant filtering.

IGG splits the samples into batches (e.g. 1000 samples per batch) and genome into shards (1%
of genome per shard). The process consists of 3 steps, and each step is highly parallelized by
batch and by shard across distributed compute nodes (minimum 16 cores, 32G memory). For
variant comparison we utilize the start location or precise reported position per variant to
compare them.

In stepl, for each batch, gVCFs files are aggregated into a customized data format, aka Cohort
files, which store the compressed sample level metrics data. The variant statistics are stored in
another customized data format, aka Census files. In step 2, Census files from all batches are
aggregated into a Global Census file, which stores the global variant statistics and normalized
variant alleles. In step 3, for each batch, msVCFs are generated for all the variants called in the
Global Census file and sample level metrics are retrieved from the batch Cohort and Census
files.

In N+1 scenario, IGG minimizes the cost of recompute, by requiring only new batches to be
aggregated in step 1, followed by a quick update of Global Census from both old and new
batches in step 2, and output of msVCFs for both old and new batches in step 3. This is
achieved since in the Cohort files, we use hash compression to store per sample variant metrics
in hash tables and then encode them into a generic htslib” bed file format, so that the tabix
indexing allows random access based on position. We cluster gVCFs records in all batch
samples by regions for both variants or hom-ref records.

IGG addresses the limitation of storing millions of samples by compressing the sample metrics
into a localized format (e.g., LPL, LAD). The batch/shard data partition scheme also allows for
highly parallelized downstream variant analysis. The msVCFs from different batches contain the
same number of variants, allele order and global variant statistics, making it straightforward to
merge across multiple batches, and concatenate into chromosomes.

lllumina Connected Annotations (ICA)

In preparation for usage, lllumina Connected Annotations (ICA) performs re-structuring and
compression of data from annotation sources (Supplementary Table S17) into pre-computed
caches for highly efficient parallelized querying, analogous to preparing a reference genome for
DRAGEN mapping and alignment. This can be repeated to provide updated annotation content
independent of the annotations software version. The annotations software reads in single or
multi-sample VCFs for small variants (including MNVs), CNVs, SVs, and/or STRs, such as
those generated by the DRAGEN DNA analysis pipeline.

In the first phase of analysis, all variant types are annotated using reciprocal overlap with
cytobands and known CNVs/SVs from interval-based annotation sources. Next, the software
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computes sample-specific variant allele frequencies, ensuring availability of these critical values
not always present in the input VCFs.

In the second phase, the annotations software refines each alternate allele to its most
parsimonious representation. The HGVS’® genomic notation applies a right-aligned approach to
this representation, while all other annotations follow a left-aligned format per NGS conventions.
Following this refinement, alternate alleles are matched to variant databases such as gnomAD
and ClinVar. Exact allele matching is required for population frequency data. For other sources
such as ClinVar, both exact and overlapping matches are included and marked accordingly. ICA
then applies repeat size thresholds to classify STR variants as “normal” or “expanded” based on
user-defined thresholds or a default threshold set as described previously*

In the third phase, 1) identifies transcripts intersecting each alternate allele using an interval
array, 2) marks overlapping exons and/or introns, 3) adjusts for discrepancies between
transcript and genomic reference sequences, and 4) provides predicted impact on coding
sequence (“c.” or “cNomen”) and protein sequence (“p.” or “pNomen”). Canonical transcripts are
identified using information from MANE’’ or, when not available, via existing heuristic
methods’®"®. This phase also provides consequences relevant to each variant using Sequence
Ontology® standard nomenclature. ICA performs right-alignment to coding and protein
sequences as needed, in accordance with HGVS standards’®. If applicable, it also adds
associated cancer hotspot annotation. Then itevaluates SVs to identify potential unidirectional
gene fusions based on the resulting gene orientation and proximity. Known fusions are
annotated using paired gene symbols from resources such as COSMIC and FusionCatcher.

In the final phase, it adds gene-specific annotations for each unique gene with at least one
variant in the VCF, retrieving data from OMIM, ClinGen, and other gene information sources.

The output of ICA is a structured, indexed, and compressed file in JISON format that can be
queried directly using JASIX (an included tool analogous to TABIX for VCF manipulation) or
used as input for downstream tertiary analysis platforms such as Illlumina Connected Insights.
ICA utilizes an interval array data structure to optimize for speed and a comprehensive testing
system to ensure accuracy, thus suiting the demanding requirements of population-scale WGS.

The structure and function of ICA offer several key advantages. First, the highly compressed
binary data files, interval arrays, and multi-sample inputs, enables it to annotate a single human
genome (roughly 4-6 million variants) within 12 minutes using a DRAGEN server. Second, finely
tuned alternate allele refinement (the normalization and left-alignment of each alternate allele
mentioned in the second phase) and transcript corrections (adjusting for the discrepancies
between the transcript and genomic reference sequences mentioned in the third phase) greatly
reduce the number of erroneous consequence predictions and missed annotations. To account
for the nuances of both the HGVS ruleset and imperfect transcript-to-genome mapping, ICA
utilized the BioCommons hgvs package® to create an extensive test suite containing more than
18 million variants to achieve 99.995% accuracy in HGVS c. notation and 99.986% accuracy in
HVGS p. notation. Finally, the breadth of supported inputs and variant types streamlines WGS
workflows that would otherwise require different annotation tools for each variant type.
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Variant calling comparison and benchmarking

Mapping and Variant calling:

For the DRAGEN end-to-end variant calling pipeline, the illumina NovaSeq 6000 PCR-free 35x
sequencing of all samples were uploaded to illumina’s ICA platform where the alignment and
variant calling was performed using the DRAGEN 4.2 pipeline. The command and parameters
used for the DRAGEN run are given below.

dragen \
--ref-dir <path-to-hg38-alt masked.graph.cnv.hla.rna v3> \
--fastg-filel <path-to-Rl-fastqg> \
--fastg-file2 <path-to-R2-fastg> \
--enable-map-align true \
--enable-map-align-output true \
--output-format CRAM \
--enable-duplicate-marking true \
--enable-variant-caller true \
--vc-emit-ref-confidence GVCF \
--vc-enable-vecf-output true \
--enable-cnv true \
--enable-sv true \
--vc-ml-enable-recalibration true \
--repeat-genotype-enable true \
--repeat-genotype-use-catalog expanded \
--enable-targeted true \
--enable-pgx true \
--cnv-enable-self-normalization true \
--intermediate-results-dir /scratch \
--output-file-prefix <sample-name> \
--output-directory <output-path-directory> \
--force

The above command performed SNV and indel calling including ML recalibration, CNV calling,
SV calling, STR calling, and targeted calling.

For the BWA based variant calling pipelines, first the illumina NovaSeq 6000 PCR-free 35x
sequencing of all samples are mapped using BWA (v0.7.15) (with parameters -K 100000000
-Y -t 8 -R
@RG\tID:0\tSM:HG002\tLB:HG002\tPU:HG002 38 nodecoy\tCN:BCM\tDT:2021-03-
10T00:00:00-0600\tPL:I11lumina) to both GRCh37 and GRCh38 reference genome. The
GRCh37 reference is used because the SV benchmark set is only available for that reference.
Following is one of the commands used for mapping HG002 dataset to the GRCh38 reference.

For SNV and indel calling, we used GATK (v4.2.5.0) Haplotypecaller with - -java-options "-
Djava.io.tmpdir=${TMP} -Xms20G -Xmx20G parameters. We also run DeepVariant
(v1.5.0) using singularity pull docker: //google/deepvariant:"${BIN VERSION}" and
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performed the singularity run with the GRCh38 reference and alignment i.e., BAM files
generated using BWA-MEM v0.7.15. The following singularity was used for the HG002 dataset.

singularity run \
--bind

"${INPUT DIR}:/mnt/input, ${REF _DIR}:/mnt/reference, ${OUTPUT DIR}:/mnt/outp

ut, ${BIND TMPDIR}:/tmp" \
deepvariant 1.5.0.sif \
/opt/deepvariant/bin/run_ deepvariant \
--ref="/mnt/reference/hg38.fa" \
--reads="/mnt/input/${SAMPLE} hg38 sorted.bam" \
--model type="WGS" \
--sample name="${SAMPLE}" \
--output_vecf="/mnt/output/${SAMPLE}.vcEf.gz" \
--output_gvcf="/mnt/output/${SAMPLE}.g.vcf.gz" \
--num_shards="1"

For SV calling, we used Manta(v1.6), Delly(v1.16), and Lumpy (v0.3.1) with their default
parameters given the bam file from BWA-MEM v0.7.15 (GRCh37 reference). The SV calling by
Lumpy first needs pre-processing to extract the discordant read-pairs (using samtools view -b
-F 1294) and the split-read alignments using samtools and the customized script
extractSplitReads BwaMem thatis provided with the tool. After these steps, we run the
lumpyexpress executable with the original BAM file, the split-read alignment BAM and the
discordant read-pair BAM as inputs and all other default parameters. For Delly, we converted the
generated BCF file to VCF file using bcftools (v1.15.1).

For CNV calling, we used CNVnator (v0.4.1) in addition to the DRAGEN 4.2 pipeline on ICA..
For CNVnator, we run it with default parameters.

For the Giraffe based pipeline, we followed the WDL pipeline as specified in
(https://zenodo.org/record/6655968#.ZHYsCy _MKgQ), using the minaf.0.1 GRCh38 reference
released on AWS (https://s3-us-west-2.amazonaws.com/human-
pangenomics/index.html?prefix=pangenomes/freeze/freezel/minigraph-cactus/filtered/). We
aligned the reads using Giraffe v1.48.0,. The command lines and parameters are as follows.

vg giraffe \
--progress \
--read-group "ID:1 LB:1libl SM:HG002 PL:illumina PU:unitl" \
--sample "HG0O02" \
--prune-low-cplx \
--max-fragment-length 3000 \
--output-format bam \
-f <path-to-Rl-fastg> \
-f <path-to-R2-fastg> \
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-x hprc-vl.0-mc-grch38-minaf.0.1.xg \
-H hprc-vl.0-mc-grch38-minaf.0.1.gbwt \
-g hprc-vl.0-mc-grch38-minaf.0.1.g9g9 \
-d hprc-vl.0-mc-grch38-minaf.0.1.dist \
-m hprc-vl.0-mc-grch38-minaf.0.1.min \

-t 32 > HGO002.giraffe.grch38.minaf.0.1l.bam
sort the output BAM with sambamba v0.8.1 and index with samtools v1.15.1

sambamba sort \
-t 32\
-0 HGO002.giraffe.grch38.minaf.0.1l.sort.bam \
HG002.giraffe.grch38.minaf.0.1.bam

samtools index \
-@ 32 \
HGO002.giraffe.grch38.minaf.0.1.sort.bam

left shift using FreeBayes v1.20

bamleftalign < HG002.giraffe.grch38.minaf.0.1l.sort.bam \
> HG002.giraffe.grch38.minaf.0.1l.sort.left.shifted.bam \
--fasta-reference hprc-vl.0-mc-grch38-minaf.0.1.fa \
--compressed

Identified targets for indel realignment using GATK v3.8.1 and bedtools v2.21.0

java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator \
--remove program records \
-drf DuplicateRead \
--disable bam_ indexing \
-nt 32 \
-R hprc-v1l.0-mc-grch38-minaf.0.1.fa \
-I HGO002.giraffe.grch38.minaf.0.1l.sort.left.shifted.bam \
--out HGO002.giraffe.grch38.minaf.0.1l.sort.left.shifted.intervals

awk -F '[:-]' 'BEGIN { OFs = "\t" } { if( $3 == "") { print $1, $2-1, 352 }
else { print $1, $2-1, $3}}°
HG002.giraffe.grch38.minaf.0.1.sort.left.shifted.intervals >
HG002.giraffe.grch38.minaf.0.1l.sort.left.shifted.intervals.bed && \

bedtools slop -1i
HG002.giraffe.grch38.minaf.0.1.sort.left.shifted.intervals.bed \

-g hprc-vl.0-mc-grch38-minaf.0.1.fa.fai \

-b 160 >
HG002.giraffe.grch38.minaf.0.1.sort.left.shifted.intervals.widened.bed
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Indel realign using Abra v2.23

java -Xmx16G -jar abra2-2.23.jar \
--targets
HG002.giraffe.grch38.minaf.0.1l.sort.left.shifted.intervals.widened.bed \
--in HGO002.giraffe.grch38.minaf.0.1l.sort.left.shifted.bam \
--out HG002.giraffe.grch38.minaf.0.1.sort.indel.realigned.bam \
--ref hprc-vl.0-mc-grch38-minaf.0.1.fa \

--index \
--log warn \
--threads 32

Variant calling using DeepVariant v1.5.0 with the following singularity command.

singularity run \
--bind
"${INPUT DIR}:/mnt/input, ${REF_DIR}:/mnt/reference, ${OUTPUT DIR}:/mnt/outp
ut, ${BIND TMPDIR}:/tmp" \
deepvariant 1.5.0.sif \
/opt/deepvariant/bin/run_deepvariant \
--ref="/mnt/reference/hprc-vl.0-mc-grch38-minaf.0.1.fa" \
reads="/mnt/input/HG002.giraffe.grch38.minaf.0.1.sort.indel.realigned.bam" \
--model type="WGS" \
--sample name="HG002" \
--output_ vecf="/mnt/output/HG002.vcf.gz" \
--output gvcf="/mnt/output/HG002.g.vcf.gz" \
--make examples extra args=min mapping quality=1 \
--num_shards="1"

Filtering and counting

Only the variants with PASS filter and non-REF calls (i.e., the ALT is not “.”) are retained for
further analysis. We used the bcftools stats command to count SNV and indel variants.
For the SV VCF files, the inversion (INV) and translocation (TRA) variant types are marked as
SVTYPE=BND, so we used a customized script

(https://github.com/srbehera/DRAGEN _Analysis/blob/main/convertinversion.py) that changes
the SVTYPE value of inversion types from BND to INV e.g., SVTYPE=INV using the following
commands.

python2.7 convertInversion.py <samtools PATH> <ref PATH> <VCF_file>

The remaining BND types are considered to be TRA types. The actual number of TRA types is
counted by the counting of BNDs and match MATE_BNDs then divide them by 2. The counting
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of other variants were done by just counting variants with SVTYPE=<Variant_type> where
Variant_type is either INS or DEL or DUP or INV.

Benchmark

The benchmarking of variants was performed using the GIAB benchmark set for both small
variants and structural variants.

For small variants we benchmarked each of the SNV VCF files once with the genome wide
benchmark (GIAB v4.2.1) and once with the challenging medically relevant genes (GIAB v1.0)*.
This was performed for HG001-07 to assess the variant performance on all available samples
(https:/ftp-trace.nchi.nlm.nih.gov/ReferenceSamples/giab/release/). For evaluation we used the
vcfeval®® option of RTGTools (v3.12.1) with parameters -m roc-only along with other
inputs e.g., benchmark set (-b) , high-confidence bed regions for benchmark set (--bed-
regions), SNV VCF file (-¢), reference sequence formatted to SDF format (-t)and reported
the values based on PASS filter. For generating the SDF format of reference sequence, we
used format option of RTGTools.

For the Structural Variant calling benchmark we compared the obtained insertion and deletions
and compared it to the GIAB benchmark (v0.6) on GRCh37. In addition to genome wide we also
benchmarked the CMRG benchmark for SV (v0.6) **%2. We evaluated all the SV call sets based
on HGO0O02 only using Witty.er (v0.3.5.1) with default config file provided in github repo
(https://github.com/Illumina/witty.er) and -em SimpleCounting parameters. The following
command is used for running the Witty.er.

Wittyer.dll -i <input vcfs> -t HG002 SVs Tierl v0.6.vcf.gz
--includeBed HG002 SVs Tierl v0.6.bed --configFile config wittyer.json -
em SimpleCounting -o <out file>

For CNV calls, we could only evaluate deletions as there are no duplications reported on HG002
benchmarks. We compared the results to deletion calls from GIAB SV benchmark (v0.6) for
GRCh37 that are 1Kbp or larger (using SVTYPE=DEL and SVLEN <= -1000 filters). This was
again evaluated using Witty.er (v0.3.5.1) with -em CrossTypeAndSimpleCounting
parameter and all other default parameters.

For STR discovery, DRAGEN was run with —--repeat-genotype parameters and a catalog
of approximately 50K regions and 174K regions. GangSTR(v2.5) was run with the catalog
(https://s3.amazonaws.com/gangstr/hg38/genomewide/hg38_verl3.bed.gz) provided on their
Github repository. The following command was used to run GangSTR. The BAM file is
generated by aligning the HG002 NovaSeq 6000 PCR-free 35x sequences to the NCBI
GRCh38 reference.

GangSTR --bam HG002_ hg38.bam
--ref GCA 000001405.15 GRCh38 no_alt analysis set.fasta
--regions hg38 verl3.bed
--out <outputprefix>
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For benchmarking, the VCFs generated by both DRAGEN and GangSTR were converted into
VCF4.2 specifications by using custom scripts (see Data Availability). The evaluations were
performed using the Truvari (v4.1-dev) and the GIAB benchmark VCF and bed regions
(https://github.com/ACEnglish/adotto/tree/main). Truvari performs the evaluation in two stages:
1) benchmarking using truvari bench 2) refinement using truvari refine. Following is
the command used for the first stage
truvari bench -b GIABTR.HG002.benchmark.vcf.gz \

-c <VCF> \

--includebed GIABTR.HGO002.benchmark.regions.bed.gz \

--sizemin 5 --pick ac -o bench result/
For the refinement stage, three different approaches were used. First, the refinement was performed
using the GIAB bed regions only.

truvari refine --use-original-vcfs --reference ${ref} bench result/

Then, the bed regions used by callers make sure the individual callers are not penalized for the
regions that are outside of individual bed regions. The output file refine.region summary.json
contained the evaluation results.

truvari refine --use-original-vcfs --reference ${ref} --regions
<individual regions.bed> --align mafft bench result/

Finally, to make a comparison of STR calls in the region that are common to DRAGEN and
GangSTR, we used bedtools intersect of two bed regions and then used the refinement
commands of truvari.

truvari refine --use-original-vcfs --reference ${ref} --regions
<intersect.bed> --align mafft bench result/

1kGP small variant analysis

The individual small variant VCF files of DRAGEN runs were combined to multi-sample VCF file
using DRAGEN's lterative GVCF Genotyper Analysis platform that works on three steps: a)
gVCF aggregation b) Census aggregation and c) msVF generation. The first step aggregates
the batch of gVCF files into a Cohort and a Census file. The cohort file stores the gVCF data of
multiple samples in a condensed format and the census file stores summary statistics of all the
variants and hom-ref blocks among samples in the cohort. The second step creates a census
file of all samples taken together. Finally, the last step generates a multisample VCF containing
the variants and alleles discovered in all samples from all batches, and also includes global
statistics such as allele frequencies, the number of samples with or without genotypes, and the
number of samples without coverage.

The multi-sample VCF files are first left-aligned and normalized with bcftools (bcftools norm
-f ${ref} -m -both). Forthe DRAGEN callset, the variants with GT =*“, QL=.,,DP=0or .,
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GQ =. are considered as “no data” (in both DRAGEN and GATK msVCFs). The variants with
GT=./. Or ALT=NON_REF are considered as “no genotype”. The variants with “no data” or “no
genotype” and zero allele count (AC=0) are filtered. For the GATK callset, the variants with
ALT=* are also filtered. For both GATK and DRAGEN callset, only variants with filter=PASS are
considered for further analysis. The number of variants are computed at cohort level as well as
sample level (averaged by population).

For allele frequency(AF) based analysis and finding the known and novel variants, the variants
are annotated using ICA, a variant annotation pipeline for genomic variants. We annotated small
variants called from a subset of 2504 unrelated samples, by extracting site level VCF from the
multi-sample VCF as the input of the annotation pipeline. From the annotation result, we define
novel variants as those not present in doSNP (build 155). For each variant the functional
annotation is retrieved from the transcripts consequence of the ICA output JSON file. The count
of variants were generated for both known and novel based on three AF bins (singleton, rare:
AF <= 1% and common: AF > 1%).

1kGP large variant analysis

For the analysis of large variants (>= 50bp) generated by DRAGEN for the 1kGP cohort, we first
merged the STR, CNV and SV VCF files of each individual independently by first splitting multi-
allelic sites into separate VCF entries using the normalization command of bcftools (v1.15.1).
We then collapsed redundant calls between type representations using a custom script
(dragen_sv_merge.py) which leverages the Truvari (v4.1.0) api*®. This script identifies
redundant variant representations between STR and SV VCFs as well as redundancies
between SV and CNV VCFs before outputting a single, unified VCF. To be considered
redundant, SV representations up to 500bp in length with at least 70% size similarity to an
overlapping STR representation of matching type is removed. Here, matching type is defined as
SV deletions being synonymous to STR contractions and SV insertions to STR expansions.
Similarly, CNV representations with at least 70% size similarity and within a maximum distance
of 1kbp of an SV representation at least 800bp in length and of matching type is removed. Here,
matching type is defined as SV and CNV deletions or SV insertions and duplications with CNV
duplications. In the final merging step, a project-level VCF is produced using bcftools merge to
consolidate genotypes from identical variants between samples. The resulting project level VCF is
then further normalized to ensure variant representations’ reference alleles have a consistent
adherence to VCF format specification using bcftools norm --check-ref s --fasta-ref.
Finally, we filtered variants in centromeric, pericentromeric etc. regions and generated the final SV
callset. We counted the STRs and CNVs in the final merged file using the STR and cnv tags and the
remaining variants were counted as SVs. The number of different SV types (DEL, INS, DUP, INV,
TRA) were counted using SURVIVOR®® (v1.0.6). We also generated the SV counts for different
types per individual using SURVIVOR and computed the average counts for super-population. The
allele frequency of variants were calculated using VCFtools (v0.1.6) for all SVs separately.
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For the PCA plot analysis, we first extracted the SVs at chromosome level merged and normalized
multi-sample VCF files with MAF >= 0.05 using bcftools (v1.15.1) and then used principal
component analysis module of AKT (v0.3.3) (https://github.com/Illumina/akt) on the extracted
variants using the following command.

akt pca file.vcf.gz --force -0z -o file.pca.cf.gz > file pca.txt

For variant annotation, we used the merged variant file that is normalized and the multi-allelic
sites split into different lines. We extracted the variants for 2,504 unrelated samples and then
the annotation was done using lllumina Connected Annotations (ICA) from three different
sources: gnomAD, 1kGP and TOPMed™®*. The novel variants are the ones with counts for all
these four sources marked as zero in the annotated VCF file and the remaining i.e. with count >
0 for at least one source is considered to be known variant. The Pearson correlation coefficient
and p-value calculations for allele count and allele frequency (Max_AF) were calculated using
pearsonr function from the scipy.stats module of numpy (v1.25) python library.

The overlapping SVs with exon, intron and intergenic regions were extracted using bcftools’®
and corresponding bed regions extracted from Genecode annotation file (release 43).

Data availability

The DRAGEN VCEF files and trageted caller JSON files were uploaded to
https://zenodo.org/uploads/8350256

The SV and CNV VCF files (GRCh37 reference with DRAGEN, Lumpy, Manta, Delly,
CNVNator), SNV VCF files (GRCh38 reference with GATK+BWA and DeepVariant+BWA and
DeepVariant+Giraffe) were uploaded to https://zenodo.org/uploads/10428664.

AWS bucket for 1kGP DRAGEN4.0 : https://s3://1000genomes-dragen-v4.0.3/data/cohorts/gvci-
genotyper-dragen-4.0.3/hg38/3202-samples-cohort/

minaf.0.1 GRCh38 reference https://s3-us-west-2.amazonaws.com/human-
pangenomics/index.html?prefix=pangenomes/freezel/freezel/minigraph-cactus/filtered/)

Code availability

Scripts used in this study https://github.com/srbehera/DRAGEN_Analysis . DRAGEN v4.2 is
freely available for academic institutions upon request.
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