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Abstract

Analysis of DNA methylation in cell-free DNA (cfDNA) reveals clinically relevant biomarkers but requires
specialized protocols and sufficient input material that limits its applicability. Millions of cfDNA samples have
been profiled by genomic sequencing. To maximize the gene regulation information from the existing dataset,
we developed FinaleMe, a non-homogeneous Hidden Markov Model (HMM), to predict DNA methylation of
cfDNA and, therefore, tissues-of-origin directly from plasma whole-genome sequencing (WGS). We validated
the performance with 80 pairs of deep and shallow-coverage WGS and whole-genome bisulfite sequencing
(WGBS) data.
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Background

DNA methylation plays an instrumental role in gene regulation during disease progression and embryonic
development!2, Genome-wide DNA methylation level in ¢fDNA has been extensively studied for disease
diagnosis and prognosis*~’. The current gold standard to measure DNA methylation from cfDNA molecules is
bisulfite sequencing®. However, sodium bisulfite treatment causes non-uniformly sequence-dependent
degradation of most DNA fragments®!°. The substantial loss of input DNA during the bisulfite treatment limits
the sensitivity of diagnostic tests and analyses!!. Recent advances in enzymatic conversion and long-read

sequencing approaches have partly mitigated these issues but have yet to be widely applied in clinics!> !¢,

Unlike genomic DNA (gDNA), cfDNA is not randomly fragmented and its fragmentation pattern is highly
associated with the local epigenetic background!”-!%. Several recent studies have identified significantly
different DNA fragmentation patterns between methylated and unmethylated cfDNA molecules’!*2°, These
findings suggest the possibility of computationally inferring DNA methylation levels from cfDNA
fragmentation patterns. One recent study provided a proof-of-concept solution to predict the binary status of
DNA methylation in ultra-high-coverage WGBS through a deep-learning model'®. However, the ability to
predict methylation status from cfDNA WGS remains unexplored. The 2020 American College of Obstetricians
and Gynecologists (ACOG) guidelines recommend non-invasive prenatal testing (NIPT) for all pregnancies
regardless of risk, which will eventually result in millions of shallow-coverage (~0.1X-1X) cfDNA WGS every
year in the US. In addition, hundreds of thousands of cfDNA WGS samples have already been sequenced for
cancer early detection and other purposes worldwide by academic communities and commercial entities?!.
Given the potential to leverage cfDNA WGS datasets to advance understanding of gene regulation and human
health??, we developed a computational method, named FinaleMe (FragmentatloN AnaLysis of cEll-free DNA
Methylation), to predict the DNA methylation status in each CpG at each cfDNA fragment and obtain the
continuous DNA methylation level at CpG sites, mostly accurate in CpG rich regions. We further predicted the
associated tissues-of-origin status directly from the fragmentation patterns in cfDNA WGS. We validated the
predictions of both methylation level and tissues-of-origin status using paired WGS and WGBS of plasma
cfDNA from the same tube of blood across different physiological conditions at deep (~16-39X) and shallow
(~0.1X) WGS.

Results

Since DNA methylation has been tightly correlated with nucleosome occupancy?*-**, we hypothesized that if the
boundaries of cfDNA fragments are biased by their association with nucleosomes, then the fragmentation
pattern observed in each cfDNA molecule should indicate its associated DNA methylation pattern and thus its
tissue-of-origin. To evaluate this hypothesis, we first studied the correlation between fragment size and mean
methylation level of DNA fragments from publicly available WGBS of cfDNA and gDNA of buffy coat
samples from two healthy individuals’ (Figure 1). Replicate samples of ¢cfDNA showed waved methylation
patterns at mono-nucleosomal lengths that were not present in the gDNA samples. This observation supported
the hypothesis that the fragmentation pattern of cfDNA can provide information related to the DNA methylation
level.

Next, we built a non-homogeneous Hidden Markov Model, named FinaleMe, to predict the methylation status
in cfDNA (details in Methods and Supplementary Methods, Figure 2). Since CpG is not evenly distributed in
the human genome, we incorporated the distance between CpG sites into the model and utilized the following
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three features: fragment length, normalized coverage, and the distance of each CpG to the center of the DNA
fragment (Figure 1b). We first evaluated the model using high coverage WGBS of ¢fDNA (non-pregnant
healthy individuals), masking the methylation status, and then benchmarked the model performance using the
ground truth DNA methylation states at each CpG in each DNA fragment. After sampling an equal number of
the methylated and unmethylated CpGs, we observed high performance in predicting the methylation status at
each single CpG from each DNA fragment based on the area under the receiver operating characteristic curve
(auROC) within CpG-rich regions (auROC=0.91, for CpGs at fragments with > 5 CpGs, Figure 1c).

To further benchmark the model performance in cfDNA WGS, we generated our own matched high coverage
WGS (~16X-39X) and WGBS (~10-15X) libraries at the plasma cfDNA samples from the same tube of blood
in the healthy individuals and a prostate cancer patient (Figure 3a, Supplementary Table 1). Without using
cfDNA WGBS data, we trained the HMM model and predicted the methylation level from the same cfDNA
WGS dataset. By comparing the results with the methylation level at CpG sites in the reference genome from
matched WGBS, we achieved a high correlation at single-CpGs and 1kb windows in CpG-rich regions (CpG
island and CpG island shore regions, Figure 3b-c). At differentially methylated regions (DMRs) detected in the
cfDNA WGBS between cancer and healthy individuals at CpG-rich regions, we also observed consistent
methylation changes in the predicted methylation levels from matched cfDNA WGS (Figure 3d). To check the
potential overfitting problem of the model, we further trained and decoded the model at gDNA WGS from
cancer and normal blood cells, in which the fragments are sonicated and do not have a correlation with the
epigenetics status. The predicted results at gDNA WGS did not show any methylation differences between
cancer and normal cells in the DMRs detected at the matched gDNA WGBS datasets (Supplemental Fig. 1a).
This result suggested that the differential methylation we predicted in cfDNA WGS is not driven by the
methylation prior we used but indeed the fragmentation features. However, we noticed that, in the CpG-poor
regions, the model in cfDNA WGS did not work well as that in CpG-rich regions (Supplemental Fig. 1b). We
further assessed the methylation level at important regulatory elements, such as CpG island (CGI) promoters
(Figure 3e), 5’exon boundaries, and CTCF motifs (Supplemental Fig. 2). These results showed a high
correlation between the ground truth (WGBS) and the prediction (WGS) in cfDNA from both healthy
individuals and the cancer patient (Figure 3e, Supplemental Fig. 2-3), but not in gDNA dataset (Supplemental
Fig. 4).

Since DNA methylation in CGI and CGI shore regions are often cell-type-specific, we further estimated the
tissue-of-origin in cfDNA by using DNA methylation levels that were measured or predicted using WGBS and
WGS, respectively. We found similar tissue-of-origin profiles between predicted and measured methylation
levels for each of the individuals in both cancer and healthy conditions (Figure 3f), which is also largely
consistent with other previous tissues-of-origin studies by ¢cfDNA WGBS*$.

Deep coverage WGBS and WGS remain costly for routine clinical application. Many publicly available cfDNA
WGS data sets are sequenced with shallow coverage (0.1X-1X). We sought to determine whether we could
predict DNA methylation levels using ultra-low-pass whole-genome sequencing (~0.1X, ULP-WGS). We
generated matched ULP-WGS and ultra-low-pass WGBS (~0.1X, ULP-WGBS) of ¢fDNA from 77 individuals,
including healthy donors, breast, and prostate cancer patients (Supplementary Table 1). We examined the
methylation level globally and at important regulatory elements, such as CGI promoters, and observed similar
average methylation profiles in predicted and measured methylation levels from ULP-WGS and WGBS,
respectively (Fig. 4a,b). We also observed the differential methylation level in ULP-WGS at differentially
methylated regions detected in ULP-WGBS (Supplemental Fig. 5). Next, we assessed whether methylation
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levels from ultra-low-pass sequencing could be utilized for the estimation of tissues-of-origin. We
downsampled the deep coverage sequencing results and found largely consistent tissue-of-origin estimates with
ultra-low-pass sequencing (Supplemental Fig. 6). Finally, we estimated the tissue-of-origin in both ULP-WGS
and ULP-WGBS. We found consistent results between the two assays. The fractions of prostate or breast-
originated cell types are low in healthy individuals and showed a high correlation with tumor fraction as
estimated by copy number variations (ichorCNA) across all samples in both assays (Fig. 4c). These results
suggested that the application of FinaleMe to ULP-WGS is consistent with the ground truth in terms of both
DNA methylation and tissues-of-origin predictions.

Discussions

Our study demonstrates the ability to infer cfDNA methylation level and tissues-of-origin status directly from
deep and shallow-coverage cfDNA WGS. This overcomes a major hurdle associated with bisulfite conversion
of limited amounts of cfDNA and, more importantly, enables the usage of a large number of existing, publicly
available cfDNA genomic datasets for epigenetic analysis. Our predictions are most accurate in CpG-rich
regions of the genome but not in CpG-poor regions. Further work is required to improve the predictions in
CpG-poor regions for the detection of other disease-related methylation features, such as the partially
methylated domains in cancers. Moreover, the Bayesian prior we utilized from genomic DNA methylome may
cause overfitting problems and the false positive call of DMRs in cancer WGS. Previous studies have suggested
that analysis of tissue-of-origin is possible based on analysis of nucleosome spacing in WGS of ¢cfDNA!".
However, only the relative rank of most related cell types is estimated in deep WGS. The tissues-of-origin
estimation from inferred DNA methylation here can provide the estimation of absolute fractions in each cell
type and utilize the rich reference methylome resources. Although we do not expect to replace bisulfite
sequencing for direct measurement of methylation levels, we provide a generalizable method that could enable
the methylation analysis of cfDNA samples with limited material or samples that would otherwise only undergo
genomic profiling.

Methods

1. Clinical samples.

Cancer patient blood samples were obtained from appropriately consented patients as described in
Adalsteinsson et al?>. Healthy donor blood samples were obtained from appropriately consented individuals
from Research Blood Components (http://researchbloodcomponents.com/services.html). Samples were
collected and fractionated as described in Adalsteinsson et al?,

2. Whole-genome bisulfite sequencing of cfDNA.

Library construction was performed on 25 ng of cfDNA using the Hyper Prep Kit (Kapa Biosystems) with
NEXTFlex Bisulfite-Seq Barcodes (Bioo Scientific) and methylated adapters (IDT) along with HiFi Uracil+
polymerase (Kapa Biosystems) for library amplification. NEXTFlex Bisulfite-Seq Barcodes were used at a final
concentration of 7.5 uM and the EZ-96 DNA Methylation-Lightning MagPrep kit (Zymo Research) was used
for bisulfite conversion of the adapter-ligated cfDNA prior to library amplification. Libraries were sequenced
using paired-end 100bp in the platform of HiSeq2500 (Illumina) with a 20% spike of PhiX.
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3. Whole-genome sequencing of cfDNA.

Library construction was performed on 5-20 ng of cfDNA using the Hyper Prep Kit (Kapa Biosystems) and
custom sequencing adapters (IDT) on a Hamilton STAR-line liquid handling system. Libraries were sequenced
using paired-end 100bp in the platform of the HiSeq2500 (Illumina).

4. Model development and training.

4.1. Data preprocessing.

For WGS data, reads were aligned to the human genome (GRCh37) using BWA-MEM 0.7.15%¢ with default
parameters. Each fragment containing CpGs in the autosomal chromosomes reference genome was used for the
analysis. Fragment lengths of more than 500bp or less than 30 bp were discarded. Regions with coverage more
than 250X or ENCODE blacklist regions (merged wgEncodeDukeMapabilityRegionsExcludable and
wgEncodeDacMapabilityConsensusExcludable) were also discarded. Only high-quality reads were considered
in the following analysis (high quality: uniquely mapped, no PCR duplicates, both of ends are mapped with
mapping qualities more than 30 and properly paired). To calculate the methylation status for each CpG in each
fragment, only bases with a base quality of more than 5 were used.

For cfDNA WGBS data, a recent study demonstrated that the existence of the jagged-end at the end of cfDNA
fragment will affect the estimation accuracy of DNA methylation?’. We first generated the M-bias plot by using
Bismark?® to map the reads without trimming (see Supplementary Figure 7). To avoid the artifact potentially
brought by the jagged end for Figure 1a, we trimmed the 40bp from the 5’ end and 10bp from 3’ end at the R2
reads. The 3’end of R1 reads seems to be not affected by the jagged-end problem. However, in CpG islands
(often open chromatin regions), cfDNA fragments are usually very small. To avoid the potential bias at these
small fragments, we also trimmed 40bp from 3’ end at the R1 reads, and the results were still largely the same.
After trimming, reads were aligned to the human genome (GRCh37) using Bismark (v0.22.3) with bowtie2
(v2.3.5)*°. The methylation status of CpGs was counted from the first converted cytosine in each of the
fragments as described in Bis-SNP3°. Fragment coverage at each CpG site was first normalized by dividing the
total number of high-quality reads in the bam file. Further, the three features (fragment length, normalized
coverage, and distance to the center of the fragment) were transformed into Z-score by the mean and standard
deviation of the features within the same bam file as the input for the HMM model (Figure 2). All details are
implemented in ‘CpgMultiMetricsStats.java’ (with parameters “-stringentPaired” for only high-quality
fragments and with parameters “-wgsMode” for WGS data). The methylation level from WGBS was called by
Bis-SNP v0.90°°,

4.2. Non-homogeneous Hidden Markov Model.

The initiation matrix was summarized based on the methylation states of the first CpG in each DNA fragment
separately (Figure 2). A nonparametric model was used to calculate the initiation and transition matrix by
considering the distance with adjacent CpG sites. A gaussian mixture model was applied to model the emission
likelihood of each of the three fragmentation features (fragment length, coverage, and distance to the center of
the fragment). A weighted DNA methylation prior, estimated from methylation level at genomic DNA (buffy
coat) in healthy individuals, was utilized to calculate the posterior emission probability of hidden status only in
the decoding (i.e., prediction) step, which models the base DNA methylation differences in different genomic
contexts. For example, the probability of observing methylated event em given that located at the CpG site with
methylation prior £ is:
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Pr(e,, | k) Pr(k)

Pren) = Brlen TR Pr(R) + Pr(e, [1 - R~ Pr(R)

Two states Hidden Markov Model (HMM) is implemented as described in Rabiner 1990°! at Jahmm framework
with some adaptations to our problem. Baum-Welch algorithm was used to estimate the parameters with a
maximum of 50 iterations. The model was trained by all the cfDNA fragments with at least 7 CpGs within the
same fragments. The number of CpGs was not limited at the decoding step. In low-coverage data, we utilized an
HMM model trained in high-coverage samples (HD 45, a healthy individual) to estimate the model parameters
and applied it directly to each ULP-WGS dataset for the decoding. All details are implemented in
‘FinaleMe.java’ (with parameters “-miniDataPoints 7 -gmm -covOutlier 3” for the training step and parameters
“-decodeModeOnly” for the decoding step).

4.2.1. Gaussian Mixture Model (GMM) initialization for HMM model.

GMM algorithm was utilized to estimate the initiation state of each CpG in each fragment by three
fragmentation feature vectors with a maximum of 10,000 iterations. After GMM initialization, in WGBS, the
methylated and unmethylated states were identified by the mean methylation level of each state. In WGS data,
the state with a higher distance to the center was defined as the methylated state. Then the initiation parameters
of HMM model were estimated based on the GMM initialization.

4.2.2. Initiation and transition probability.

The initiation probability of each state with the same offset from the start of the fragment was averaged by the
states of the first CpGs with the same offset range at all the high-quality fragments. The transition probability
matrix between states was also calculated separately for each of the possible distance ranges to the previous
CpG.

4.2.3. Emission distributions.
Three features were modeled by Multivariate Mixture Gaussian distribution. Two components mixture of
Gaussian distribution was used to model each of the features separately.

Pr(en | k) = (1 —m) x N(pui,07) + 7 N(,uj,ai)
In the Viterbi decoding step, methylation prior estimated from genomic DNA in buffy coat samples from
healthy individuals’ was only used to calculate the emission probability for each CpG.

4.2.4. KL divergence.

Kullback-Leibler distance was used to estimate the divergence of new HMM during Baum-Welch re-estimation.
Since methylation prior was used for the decoding step and is different at different CpG site, 10,000 random
fragments with a minimum of 5 CpGs is selected to calculate the Kullback-Leibler distance. If the distance
between new and old HMM was less than 1e* or the changes of distance were less than 1%, the model was
considered converged.

4.2.5. Summary of the model
In cfDNA WGS (Figure 2), our HMM model infers the model parameters directly from WGS data without

using cfDNA WGBS data. The principle of the model is: we assume that there are two binary states (“u” or
“m”) in each CpG at each cfDNA fragment. These two states are not observable in WGS (thus “hidden”). We
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assume that the states are affected by three fragmentation features. At each CpG in each fragment in the bam
file ("CpG point”), we can obtain three features: the fragment’s length, the CpG’s distance to the center of that
fragment, and the fragment coverage at that particular CpG position in the reference genome. We also assume
the status of each CpG in each fragment is a Multivariate Gaussian distribution of these three features.

Step 1, we utilized a Gaussian mixture model to classify all the CpG points in WGS into two groups (“u” or
“m”) to initiate the HMM model (the initial parameters). Given the hypothesis in Figure 1B, we always assume
“m” group has a larger average distance to the center of fragments.

Step 2, we applied the initiated parameters to the HMM model and built a Markov chain for each single cfDNA
fragment. Due to the Markov process, the status of each CpG point is affected by its adjacent CpG in the same
fragment. Then, the Baum-Welch algorithm was used to estimate the maximum likelihood parameters in the
WGS dataset. Different from the traditional HMM model that assumes equal transition probability between
CpGs, we utilized a non-homogenous model to estimate different transition probability matrices given different
distances between CpGs. Kullback-Leibler distance was utilized to estimate whether or not the model
converged during the iteration.

Step 3, after the estimation of parameters in step 2 (training), we utilize the Viterbi algorithm to estimate the
best state (“u” or “m”) in each CpG at each fragment. Different from the traditional HMM model, we add
methylation prior from WGBS in a healthy buffy coat to calculate the posterior probability.

Step 4, after the prediction in step 3, we aggregated the methylation status across fragments at each CpG site in
the reference genome and calculated the continuous methylation level (0-100%).

4.3. Performance evaluation.

4.3.1. Comparison of the binary methylation status of each CpG in each fragment (WGBS).

The equal number of methylated and unmethylated CpGs was randomly sampled at the evaluation step.
Prediction results were compared with ground truth methylation binary states at each CpG in each cfDNA
fragment of WGBS. The threshold was varied to identify methylated status at the Viterbi decoding step in order
to calculate the ROC curve.

4.3.2. Comparison of the continuous methylation level at each CpG or windows in the reference genome (paired
WGBS and WGS).

FinaleMe was trained and decoded at WGS data only. The methylation level was calculated by aggregating the
binary methylation status across fragments at each CpG in the reference genome. Finally, the continuous
methylation level at each CpG or window was compared with the methylation level obtained from matched
WGBS in the same blood draw.

4.3.3. Comparison of methylation profiles at important regulatory elements (paired WGBS and WGS).
FinaleMe was trained and decoded at WGS data. The predicted methylation level was calculated as described in
4.2. The average methylation level around CpG island promoters, 5° end of exons, and CTCF motifs were
calculated by Bis-Tools as described in Lay & Liu et al. 2015%2, CpG island definition was downloaded from
UCSC genome browser*?. CpG island shore was defined by the regions within 2kb regions around the CGI.
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4.3.4. Benchmark of the speed

We downsampled the high-coverage cfDNA WGS data and calculated the time cost with different numbers of
fragments in the bam files (Supplementary Figure 8). Benchmark was performed at a single CPU in the
computational cluster (Intel(R) Xeon(R) Gold 6338 CPU @ 2.0GHz).

4.4. Tissue-of-origin deconvolution.

To infer tissue of origin from measured or inferred DNA methylation data, we modeled patient methylation data
as a linear combination of reference methylomes. We constrain the weights to sum up to one so that the weights
can be interpreted as tissue contribution to cfDNA. Quadratic programming was utilized to solve the
constrained optimization problem. This method and approach closely follow the tissue deconvolution algorithm
described in Sun et al PNAS®. To reduce the noise, we utilized the methylation density at 1kb non-overlapped
windows within the CpG island and CpG island shore regions at autosomes and binarized the methylation level
(window with methylation density <0.1 was defined as 0, otherwise 1) in both reference methylomes and
cfDNA data. Only windows with at least 10 Cs or Ts across all the reference methylomes were utilized for the
analysis. Only windows that were highly variable across reference methylomes (top 1% most variable regions in
the reference methylomes) were further utilized for the deconvolution.

We incorporated WGBS from the major immune cell types (Neutrophil, B cell, T cell, Macrophage, Nature
Killer cell, Erythroblast cells), blood vessel endothelial cells, and liver hepatocyte cells, as suggested by Moss
2018 Nature Communications®. We also incorporated methylomes from mammary epithelial cells (HMEC) and
prostate epithelial cells (PrEC) since they are related to the cancer types we analyzed.

In the low pass data, we further relaxed our criteria about the coverage to keep more windows. The top 25% of
most variable regions in the reference methylomes were utilized for deconvolution. Windows with less than 5
Cs or Ts in either reference methylome or cfDNA data were marked as NA. Samples or windows with more
than 80% NA were filtered. We further imputed the missing data of the windows by K-nearest neighbor (k=5
and maxp="p" in impute.knn function at impute package, R 4.2.1) and finally binarized the methylation level
within the window as that in high coverage data.

4.5. ichorCNA analysis
Estimation of tumor fraction was performed using ichorCNA as described previously in Adalsteinsson et al.
Nature Communications 2017%,

4.6. Differential methylation analysis

Differential methylation regions (predefined non-overlapped 1kb windows in autosomes) in high-coverage
WGBS were identified by metilene (v 0.2-8)** with q value < 0.05. Data in ULP-WGBS are very sparse and
noisy. Therefore, we utilized two-sided Wilcoxon Rank Sum Tests to identify the windows that were different
between cancers and healthy controls with a p value cut-off 0.01.

Availability of data and materials:
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Code for FinaleMe and associated scripts are publicly available on GitHub under the MIT license for academic
researchers: https://github.com/epifluidiab/FinaleMe.qgit. The raw sequencing data for ULP-WGS is obtained
from Adalsteinsson et al*>(dbGap id: phs001417.v1.p1). The newly generated deep WGS, WGBS, and ULP-
WGBS data are deposited at Sequence Read Archive with controlled access (dbGap id: phs003287.v1.p1). All
the intermediate results and de-identified data are available at zenodo.org (doi:
https://doi.org/10.5281/zenodo.7647046 ).
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Figure 1. Inferring DNA methylation from high-coverage whole genome bisulfite sequencing. a. The
correlation between mean DNA methylation and fragment lengths in ¢cfDNA and gDNA WGBS in healthy
individuals. b. Diagram of the features utilized for the inference of DNA methylation level. c. ROC curve for

the model performance at deep WGBS in fragments with different numbers of CpGs.
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Figure 3. Inferring DNA methylation from high-coverage whole genome sequencing. a. workflow to
benchmark the model performance. b. Pearson and Spearman correlation of DNA methylation at single CpGs
with different coverages at CpG island and CpG island shore regions between matched cfDNA WGBS and
WGS. c. Scatterplot of DNA methylation level within 1kb non-overlapped bins at CpG island and CpG island
shore regions between matched cfDNA WGBS and WGS. d. Heatmap of measured (left panel, cfDNA WGBS)
and predicted (right panel, matched cfDNA WGS) DNA methylation level at hypermethylated differentially
methylated windows (1kb) characterized in CGI and CGI shore regions. The row orders in both WGBS and
WGS datasets were based on the clustering of DNA methylation levels in WGBS only. e. Average ground truth
(WGBS) and predicted (WGS) DNA methylation level at CpG island promoter region from cancer and healthy
individuals. f. The fraction of cell types that contributed to cfDNA was estimated by matched WGS and WGBS.

17


https://doi.org/10.1101/2024.01.02.573710
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.02.573710; this version posted January 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ULP-WGBS ULP-WGS
Cancer —— Cancer
8 Healthy S _ —— Healthy
6 S
R 8 R -
z z
s Q
g 8 £ 8
<
! =
=)' 0 v _
() o
| T T | | T T 1
-2000 -1000 0 1000 2000 -2000 -1000 0 1000 2000
Distance to TSS (bp) Distance to TSS (bp)
ULP-WGBS ULP-WGS
¥ 7 Prostate cancer . . Prostate cancer® °
° SV ° o
. N Healthy e °
[aV) ° ° ° ° ® ° ® (] ° °
o o L 3PS - 7 e = ¢ o
o ° . . . A ::o ° N o ¢ o [ & . o
L L] @
%J o IS 0 . L4 . e 2 Z o .o ® ) % ®
- o T e e . - . o  Healthy e
.. ° ° o L4 A - _ * ° ° ¢ :
q : o o .o 4 I 1 S o o * °
) ° * 4 (\|' — ° ° L °
O e Breast cancer e "e. Breast cancer
I I I I T T T T T T
-4 2 0 2 4 -2 -1 0 1 2
T-SNE 1 T-SNE 1
Tissue-of-origin (ULP-WGBS) Tissue-of-origin (ULP-WGS)
L <
(=} r=0.67 o r=0.44 B Healthy
p=6.12¢7%° . p=0.001 B Tripple neg breast cancer
O HER2+ breast cancer
o | B Prostate cancer
o

Non-blood or liver derived cell fraction

g ° B Healthy
; B Tripple neg breast cancer
O HER2+ breast cancer
8 B Prostate cancer

I I I I I I I I
00 01 02 03 04 05 06 07

TF(ichorCNA)

Non-blood or liver derived cell fraction

TF(ichorCNA)

18


https://doi.org/10.1101/2024.01.02.573710
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.02.573710; this version posted January 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 4. Inferring DNA methylation and tissues-of-origin from cfDNA ULP-WGS. a. Average ground
truth (ULP-WGBS) and predicted (ULP-WGS) DNA methylation level from cancer and healthy individuals at
CpG island promoter regions. b. T-SNE plot by using the DNA methylation level in the 100kb non-overlapped
window in autosomes but only summarized from CGI and CGI shore regions in the ground truth (ULP-WGBS)
and predicted (ULP-WGS) results from cancer and healthy individuals. c. the concordance of prostate or breast
related cell type fractions with tumor fraction estimated by ichorCNA in both healthy and cancers.
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