

Macrophage- and CD4⁺ T cell-derived SIV differ in glycosylation, infectivity and neutralization sensitivity

Christina B. Karsten^{a, *}, Falk F.R. Buettner^{b, #}, Samanta Cajic^{c, d, #}, Inga Nehlmeier^e, Berit Roshani^f, Antonina Klippert^g, Ulrike Sauermann^f, Nicole Stolte-Leeb^f, Udo Reichl^d, Rita Gerardy-Schahn^b, Erdmann Rapp^{c, d}, Christiane Stahl-Hennig^f, and Stefan Pöhlmann^{e, h, *}

^aInstitute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; ^bInstitute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany; ^cglyXera GmbH, 39120 Magdeburg, Germany; ^dBioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ^eInfection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, 37077 Göttingen, Germany; ^fUnit of Infection Models, German Primate Center – Leibniz Institute for Primate Research, 37077 Göttingen, Germany; ^gNuvisan ICB GmbH, 13353 Berlin, Germany; ^hFaculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.

#These authors contributed equally to this work.

*Corresponding authors: Christina Karsten, Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany. Phone: +49 201 723 4205, fax: +49 201 723 5443, e-mail: christina.karsten@uni-due.de; Stefan Pöhlmann, Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany. Phone: +49 551 3851 150, fax: +49 551 3851 184, e-mail: spoehlmann@dpz.eu.

Running title: Differences between macrophage- and CD4⁺ T cell-derived SIV

List of supplementary data items:

- Figure S1: Flow cytometry confirmation of macrophage and CD4⁺ T cell phenotype

- Figure S2: *In vivo* challenge study of rhesus macaques with M-SIV and T-SIV
- Table S1: Structures and relative intensities of *N*-glycans derived from M-SIV and T-SIV analyzed by xCGE-LIF

Key words: infectivity / macrophage / neutralization / SIV / CD4⁺ T cell

1 Abstract

2 The human immunodeficiency virus (HIV) envelope protein (Env) mediates viral
3 entry into host cells and is the primary target for the humoral immune response.
4 Env is extensively glycosylated, and these glycans shield underlying epitopes from
5 neutralizing antibodies. The glycosylation of Env is influenced by the type of host
6 cell in which the virus is produced. Thus, HIV is distinctly glycosylated by CD4⁺ T
7 cells, the major target cells, and macrophages. However, the specific differences in
8 glycosylation between viruses produced in these cell types have not been explored
9 at the molecular level. Moreover, the impact of these differences on viral spread
10 and neutralization sensitivity remains largely unknown. To address these
11 questions, we employed the simian immunodeficiency virus (SIV) model. Glycan
12 analysis revealed higher relative levels of oligomannose-type *N*-glycans in SIV from
13 CD4⁺ T cells (T-SIV) compared to SIV from macrophages (M-SIV), and the complex-
14 type *N*-glycans profiles differed between the two viruses. Notably, M-SIV
15 demonstrated greater infectivity than T-SIV, even when accounting for Env
16 incorporation, suggesting that host cell-dependent factors influence infectivity.
17 Further, M-SIV was more efficiently disseminated by HIV binding cellular lectins.
18 We also evaluated the influence of cell type-dependent differences on SIV's
19 vulnerability to carbohydrate binding agents (CBAs) and neutralizing antibodies. T-
20 SIV demonstrated greater susceptibility to mannose-specific CBAs, possibly due
21 to its elevated expression of oligomannose-type *N*-glycans. In contrast, M-SIV
22 exhibited higher susceptibility to neutralizing sera in comparison to T-SIV. These
23 findings underscore the importance of host cell-dependent attributes of SIV, such
24 as glycosylation, in shaping both infectivity and the potential effectiveness of
25 intervention strategies.

26 Introduction

27 More than four decades since its discovery, the human immunodeficiency virus (HIV) and the
28 associated disease, acquired immunodeficiency syndrome (AIDS), remain a significant global
29 health challenge. In 2021, UNAIDS reported that 1.3 million individuals contracted HIV, and
30 630,000 AIDS-related deaths were observed (UNAIDS 2023). To combat this ongoing crisis, the
31 development of vaccines and innovative antiviral strategies is crucial. The success of these
32 initiatives will be based on a profound understanding of the complex interplay between HIV and
33 its primary host cells, CD4⁺ T cells and macrophages.

34 The viral envelope protein, Env, mediates entry of HIV into host cells and constitutes the
35 sole target for neutralizing antibodies (Walsh & Seaman 2021). Env is synthesized as an inactive
36 precursor protein, gp160, in the secretory pathway of infected cells. During its trafficking through
37 the Golgi apparatus, gp160 is proteolytically cleaved by furin into the surface unit, gp120, and the
38 transmembrane unit, gp41 (Hallenberger et al. 1992), which remain non-covalently associated.
39 For host cell entry, gp120 binds to the CD4 receptor and a chemokine coreceptor, usually C-C
40 motif chemokine receptor 5 (CCR5) and/or C-X-C motif chemokine receptor 4 (CXCR4). Binding to
41 receptor and coreceptor activates gp41, which drives the fusion of the viral and the target cell
42 membranes, enabling the delivery of the viral genetic information into the host cell cytoplasm
43 (Chen 2019).

44 A hallmark of Env, a trimeric type I transmembrane protein, is its extensive glycosylation,
45 particularly of gp120, accounting for roughly 50 % of the molecular mass (Zhu et al. 2000). The
46 glycans play a key role in viral spread: they shield underlying epitopes from attack by neutralizing
47 antibodies (Wei et al. 2003) and facilitate viral capture by immune cell lectins like dendritic cell-
48 specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN) (Geijtenbeek et al. 2000),
49 which likely play an important role in mucosal transmission. The fundamental importance of the
50 glycan shield is underscored by its adaptation in response to the humoral immune response (Wei
51 et al. 2003), and disrupting *N*-glycosylation signals of Env can render HIV (Koch et al. 2003; Ma et
52 al. 2011; Quinones-Kochs et al. 2002) and the closely related simian immunodeficiency virus (SIV)
53 susceptible to neutralization (Johnson et al. 2003; Reitter et al. 1998).

54 The process of *N*-glycosylation involves the transfer of a preformed oligosaccharide
55 precursor linked to dolichol-phosphate (Dol-P-P-GlcNAc₂Man₉Glc₃) onto asparagine residues
56 within the consensus sequon Asn-X-Ser/Thr of nascent Env by the ER-localized
57 oligosaccharyltransferase (Stanley et al. 2022). Following precursor attachment, initial trimming
58 steps carried out by highly conserved ER resident glycosidases occur, which together with the
59 action of glycosyltransferase, play pivotal roles in the regulation of Env folding and transport
60 (Stanley et al. 2022). Only the fully folded trimeric Env enters the Golgi apparatus, where
61 oligomannose-type glycans, generated in the ER, undergo further trimming and extension into
62 hybrid and complex forms, potentially containing fucose, galactose, *N*-acetylglucosamine
63 (GlcNAc), and sialic acid (Stanley et al. 2022). However, the level of *N*-glycan processing depends
64 on the quaternary structure of Env and more than half of the *N*-glycans are not fully accessible to
65 enzymatic processing due to their recessed location or to extremely dense glycan packaging, and
66 thus remain in the oligomannose-type state (Pritchard et al. 2015; Zhu et al. 2000).

67 Notably, glycosylation of Env and cellular proteins is a cell type-dependent process
68 (Liedtke et al. 1994; Liedtke et al. 1997; Raska et al. 2010; Willey et al. 1996) and differences in *N*-
69 glycosylation of HIV and SIV from macrophages and CD4⁺ T cells have been associated with

70 differential infectivity (Gaskill et al. 2008; Heeregrave et al. 2023), neutralization sensitivity
71 (Heeregrave et al. 2023; Willey et al. 1996) and lectin reactivity (Heeregrave et al. 2023; Lin et al.
72 2003). Despite their importance in virus-host cell interactions and immune control, host cell-
73 specific glycosylation differences have not been determined for HIV or SIV at a molecular level.
74 Furthermore, a detailed comparative analysis of the biological properties of isogenic HIV and SIV
75 produced in macrophages and CD4⁺ T cells has been lacking. In this study, we aim to address these
76 knowledge gaps by strategically investigating the influence of macrophage or CD4⁺ T cell origin
77 on the significance of Env glycosylation, viral spread, and neutralization sensitivity, using SIV as a
78 model for HIV.

79 Results

80 Production of SIV in macrophages and CD4⁺ T cells.

81 To produce isogenic SIV in CD4⁺ T cells and macrophages, it was imperative to employ a
82 molecularly cloned SIV variant capable of robust replication in both cell types. Our choice for this
83 purpose was a SIVmac239 variant, specifically SIVmac239/316 Env, characterized by nine amino
84 acid substitutions within Env in comparison to the parental strain (Mori et al. 1993; Mori et al.
85 1992). These substitutions facilitate efficient utilization of CCR5 in the absence of or at very low
86 levels of CD4 expression (Puffer et al. 2002), a condition observed in rhesus macaque
87 macrophages (Mori et al. 2000). For the preparation of SIVmac239/316 Env stocks, CD4⁺ T cells
88 and macrophages were generated from rhesus macaque peripheral blood mononuclear cells
89 (PBMCs) and their identity was confirmed by analysis of cell surface marker expression via flow
90 cytometry (Fig. S1).

91 Subsequently, CD4⁺ T cell and macrophage cultures were infected with SIVmac239/316
92 Env, input virus was removed, and the culture supernatants harvested over a two-week period.
93 Notably, pooled viral supernatants from CD4⁺ T cells (T-SIV) contained 6.5-fold more p27-capsid
94 antigen per ml on average than viral supernatants from macrophages (M-SIV), as determined by
95 enzyme-linked immunosorbent assay (ELISA) (data not shown). Finally, a comprehensive
96 assessment of the complete *env* sequences, which were amplified through reverse transcriptase-
97 polymerase chain reaction (RT-PCR) from the culture supernatants, provided confirmation that
98 no genetic mutations were introduced throughout the *in vitro* propagation process.
99

100 The quantity of oligomannose-type and certain complex N-glycans of gp120 differs 101 between M-SIV and T-SIV

102 The glycan shield of both HIV and SIV plays a pivotal role in immune evasion and mediating lectin-
103 dependent interactions with immune cells. It is plausible that these functions could be modulated
104 by cell type-specific alterations in the glycosylation pattern. To investigate this, we subjected
105 concentrated virions to enzymatic digestion using endoglycosidase H (Endo H), which selectively
106 removes oligomannose-type and certain hybrid N-glycans, and peptide-N-glycosidase F (PNGase
107 F), which eliminates all N-linked glycans. The band shift upon Endo H digestion was more
108 pronounced for T-SIV than M-SIV suggesting that T-SIV gp120 is adorned with a higher proportion
109 of oligomannose-type glycans compared to M-SIV gp120 (Fig. 1). These findings align with
110 previously published data (Gaskill et al. 2008; Lin et al. 2003; Willey et al. 1996) but do not offer
111 insights into the specific structures of the differentially incorporated N-glycan species.

112 To address the latter question, we performed *N*-glycan analytics of T-SIV and M-SIV gp120
113 by multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF).
114 Further, the identity of the proteins subjected to *N*-glycan analytics was confirmed by liquid
115 chromatography-tandem mass spectrometry (LC-MS/MS) (data not shown). The xCGE-LIF
116 fingerprints of *N*-glycans derived from T-SIV and M-SIV gp120 show considerable differences in
117 the relative intensities of the detected peaks suggesting quantitative differences in the
118 incorporated glycan species (Fig. 2A, supplementary table 1).

119 A relative quantification of *N*-glycan signal intensities was performed. For this, the total
120 peak intensity (tpi) of a peak was allocated to all *N*-glycan groups of the analysis, for which the
121 assigned single or multiple glycan species met the criteria. This analysis revealed the following: T-
122 SIV exhibited increased relative levels of oligomannose structures on gp120 compared to M-SIV
123 (Fig. 2B, 16.7 % vs. 9.6 % of the tpi); in alignment with the results from glycosidase digestion and
124 subsequent western blot analysis (Fig. 1). Additionally, profiles of complex-type *N*-glycans
125 differed between the two viruses (Fig. 2C). M-SIV gp120 displayed more extensive branching of
126 complex glycans, with a higher proportion featuring four antennae rather than three, in
127 comparison to T-SIV (23.2 % vs. 17.5 % tpi). An overall assessment of fucose, sialic acid, and
128 LacdiNAc content revealed that T-SIV gp120 harbors increased levels of *N*-glycan species carrying
129 fucose (34 vs. 29.8 tpi) and sialic acid (51.7 vs. 48.8 tpi) compared to M-SIV; while the latter
130 exhibited more LacdiNAc (11.8 vs. 7.4 tpi) containing structures. A more detailed analysis of the
131 complex -type glycan species revealed a more nuanced pattern: M-SIV complex glycans tended
132 to feature either both fucose and sialic acid residues (23.8 (M-SIV) vs. 18.6 % tpi (T-SIV)) or neither
133 (8.7 (M-SIV) vs. 4.6 % tpi (T-SIV)). Differently, T-SIV complex glycans tended to have either fucose
134 (12.5 (T-SIV) vs. 5.7 % tpi (M-SIV)) or sialic acid (33.1 (T-SIV) vs. 25 % tpi (M-SIV)) but not both.
135 Taken together, despite general similarities in the *N*-glycomes of M-SIV and T-SIV gp120, there
136 are pronounced differences in the level of oligomannose-type *N*-glycans and their complex *N*-
137 glycan profiles.

138 **M-SIV is better equipped for both direct and indirect viral spread compared to T-SIV**
139 The revelation that T-SIV and M-SIV exhibit significant disparities in glycan coat composition
140 raised the question of whether these distinctions are linked to variations in other SIV
141 characteristics pertinent to viral dissemination. To investigate this possibility, our initial focus was
142 on viral infectivity. When TZM-bl indicator cells were exposed to viruses normalized for p27-
143 capsid content, it became evident that M-SIV exhibited significantly higher infectivity than T-SIV
144 (Fig. 3A, 2-way ANOVA, $p = 0.03$). However, both viruses exhibited *in vivo* infectivity and
145 replicated to comparable levels (Fig. S2), and when we equalized the infectivity of T-SIV and M-
146 SIV stocks determined on C8166 T cells, the infection efficiency was found to be similar (Fig. 3B).
147 These results underscore that the infectivity of M-SIV per ng capsid antigen surpasses that of T-
148 SIV, confirming the findings previously obtained for SIV (Gaskill et al. 2008) and dual-tropic HIV
149 (Heeregrave et al. 2023).

150 Glycosylation also affects HIV Env incorporation into viral particles (Li et al. 1993). To
151 clarify whether the increased M-SIV infectivity in comparison to T-SIV could be attributed solely
152 to disparities in Env incorporation, we subjected p27-capsid normalized quantities of both M-SIV
153 and T-SIV to western blot analysis to assess their gp120 and p27 content, and quantified the signal
154 using the software ImageJ (Fig. 4). A visual examination already revealed that the less infectious

156 T-SIV exhibited lower levels of gp120 incorporation compared to the more infectious M-SIV (Fig.
157 4A). Following quantification and subsequent normalization of the gp120 signal to the p27-capsid
158 signal, the data indicated a noteworthy 62 % reduction in Env incorporation for T-SIV when
159 compared to M-SIV (Fig. 4B, t-test, $p = 0.0051$). While this effect is significant, the disparities in
160 infectivity between the two viruses (55-fold at 6 ng p27/ml) surpasses the differences in Env
161 incorporation. This suggests that the virus-producing cell has a broader impact on SIV infectivity
162 beyond its influence on Env incorporation.

163 Lectins modulate HIV and SIV transmission to susceptible cells *in vitro* (Bashirova et al.
164 2001; de Witte et al. 2007; Geijtenbeek et al. 2000; Pöhlmann et al. 2001), a process possibly
165 relevant for early viral spread after transmission *in vivo* (Gonzalez et al. 2019). Since both M-SIV
166 and T-SIV were found to be infectious in rhesus macaques via the rectal route (Fig. S2), the
167 question arose whether the cell type-dependent differences in these viruses influence their
168 engagement of lectin receptors. Specifically, the interactions of M-SIV and T-SIV with the lectins
169 with potential positive (DC-SIGN (Geijtenbeek et al. 2000), DC-SIGN related protein (DC-SIGNR)
170 (Bashirova et al. 2001)) or negative (Langerin (de Witte et al. 2007)) influence on HIV/SIV viral
171 spread were investigated. For this purpose CEMx174 R5 target cells were infected in two ways:
172 directly with either virus, normalized for equal infectivity, or indirectly via co-culture with Raji
173 transmitter cells bearing either no lectin or the aforementioned lectins (Fig. 5). While direct
174 infection of target cells confirmed the equivalent infectivity of M-SIV and T-SIV, and co-culturing
175 the virus with transmitter cells in the absence of target cells yielded only background signals, a
176 significant difference emerged. M-SIV was more efficiently transferred to target cells by DC-SIGN
177 compared to T-SIV (t-test, $p = 0.01$). This observation is consistent with previous findings related
178 to the transmission of dual-tropic HIV produced in macrophages versus CD4⁺ T cells through DC-
179 SIGN (Heeregrave et al. 2023). Similarly, DC-SIGNR and Langerin preferentially transferred M-SIV
180 in comparison to T-SIV (t-test, $p = 0.0001, 0.0003$). These findings suggest that SIV replication in
181 macrophages produces viral particles with distinctive characteristics that confer a clear advantage
182 in direct and possibly indirect viral spread via lectins compared to viruses originating from CD4⁺ T
183 cells.

184
185 **Host cell-dependent features of SIV define the sensitivity of M-SIV and T-SIV to**
186 **carbohydrate binding agents (CBAs) and neutralizing antibodies.**

187 CBAs and especially broadly neutralizing antibodies are under investigation as promising
188 biomedical treatments to prevent the spread of HIV (Julg & Barouch 2021; Nabi-Afjadi et al. 2022).
189 They ultimately target Env and must interact with or overcome its dense glycan shield. Therefore,
190 it was plausible that host cell-derived features of SIV Env, such as the observed differences in
191 glycomes between M-SIV and T-SIV, might influence the effectiveness of CBAs and neutralizing
192 antibodies. To explore this hypothesis, we examined the ability of CBAs to inhibit SIV infection of
193 TZM-bl cells, focusing on two glycan species groups: oligomannose glycans and core fucosylated
194 complex glycans, which were incorporated in different quantities into M-SIV and T-SIV gp120 (Fig.
195 2). Pre-treatment with *ulex europaeus* agglutinin (UEA), a lectin against core fucose, did not

196 interfere with the infection of TZM-bl cells by controls (HIV-1 or vesicular stomatitis virus
197 glycoprotein (VSV-G) pseudotyped viruses) or SIV (Fig. 6A) as expected (Karsten et al. 2015). As
198 anticipated, HIV-1 was highly sensitive to inhibition by mannose-specific lectins cyanovirin-N (CV-
199 N, target: Man α 1-2) or galanthus nivalis agglutinin (GNA, target: Man α 1-3, Man α 1-6), while there
200 was significantly less inhibition of infection by pseudotypes bearing the minimally glycosylated
201 protein VSV-G (Balzarini et al. 1991; Boyd et al. 1997). Consistent with the xCGE-LIF data (Fig. 2),
202 T-SIV with its higher oligomannose content in gp120 was more strongly inhibited than M-SIV in a
203 concentration-dependent manner (Fig. 6A), and these differences were statistically significant
204 (Fig. 6B, t-test, CV-N: $p = 0.0032$, GNA: $p = 0.008$). Thus, the producer cell type can influence SIV
205 susceptibility to inhibition by mannose-specific CBAs.

206 To investigate whether cell type-dependent differences in SIV impact antibody
207 neutralization effectiveness, we conducted infections of TZM-bl cells with HIV, M-SIV, and T-SIV
208 in the presence of neutralizing sera. These sera were obtained from rhesus macaques infected
209 with SIVmac239, the parental strain of SIVmac239/316 Env used for producing M- and T-SIV. This
210 parental virus differs in nine amino acids, making it more resistant to antibody neutralization
211 (Puffer et al. 2002). Using four different sera, we observed some inhibition of HIV (Fig. 7A).
212 Intriguingly, M-SIV was neutralized more efficiently than T-SIV. These effects were concentration-
213 dependent (Fig. 7B) and statistically significant (Fig. 7C, paired t-test, $p = 0.013$). In light of these
214 findings, we conclude that differences originating from the virus-producing cell can influence the
215 efficacy of CBA and antibody neutralization, and thus might have relevance for the development
216 of biomedical interventions based on these scaffolds.

217 Discussion

218 Here, we analyzed whether an infectious molecular clone of SIV produced in primary
219 rhesus macaque macrophages (M-SIV) or CD4 $^{+}$ T cells (T-SIV) differs in Env glycosylation, viral
220 spread and neutralization sensitivity. We found that the overall glycan landscape of M-SIV and T-
221 SIV gp120 shared similarities; however, different quantities of the glycan species were
222 incorporated. While oligomannose-type *N*-glycans were more frequent in T-SIV gp120, the
223 complex glycan profiles between both viruses varied considerably. The producer cell type also
224 influenced virus characteristics, which are important for viral spread with M-SIV being more
225 infectious, incorporating more Env, and being better transmitted by lectin receptors than T-SIV.
226 We further found host cell-dependent differences in viral sensitivity to CBAs and neutralizing sera
227 showing that T-SIV, bearing higher levels of oligomannose structures on gp120, was more
228 sensitive to mannose-specific lectins, while M-SIV was more efficiently neutralized by sera.

229 It has been documented previously that CD4 $^{+}$ T cell-derived viruses exhibit a greater
230 prevalence of oligomannose structures in gp120 (Gaskell et al. 2008; Lin et al. 2003) but less
231 LacDiNac residues in comparison to virus originating from macrophages (Willey et al. 1996). By
232 providing the first comparative molecular analysis of gp120 glycosylation of primary host cells,
233 we corroborate and expand upon these earlier observations. Our xCGE-LIF analysis demonstrated
234 an increased presence of M5, M6, and M8 on T-SIV-derived gp120 in comparison to M-SIV-derived
235 gp120. The signature for M9 also appeared to be elevated in T-SIV versus M-SIV. However, it is
236 important to note that this study did not allow for a definitive conclusion due to the potential co-
237 migration of Man9 with another *N*-glycan structure (FA2G2). Nevertheless, other studies have
238 indicated that Man9 is a frequently incorporated glycan species, or even the predominant one, in

239 CD4⁺ T cell-derived HIV gp120 (Bonomelli et al. 2011; Panico et al. 2016). The disparities in the
240 complex glycan profiles of M-SIV and T-SIV gp120 reveal that variations in the incorporation of
241 LacDiNac are just one aspect of the distinct glycomes originating from these two cell types. These
242 distinctions align with the expectations generated by an mRNA analysis of more than 20
243 glycosylation-related enzymes, which exhibit differential expression in CD4⁺ T cells and
244 macrophages (Gaskill et al. 2008). Specifically, rhesus macaque CD4⁺ T cells exhibit elevated
245 expression levels of genes that potentially enhance core fucosylation (FUT8) and sialylation
246 (ST6Gal1), while rhesus macaque macrophages express higher levels of genes that promote the
247 conversion of oligomannose to complex glycans (MGAT1), a reduction in sialic acid (NPL), and
248 high-level branching (MGAT4B) (Gaskill et al., 2008). Finally, our findings indicate that M-SIV
249 gp120 displays a more extensive branching of complex glycans, a higher frequency of glycan
250 species featuring both core fucose and sialylation, and a greater LacDiNac content compared to
251 T-SIV gp120. This suggests that gp120 might undergo a higher degree of glycan processing in
252 macrophages than in CD4⁺ T cells.

253 The advantages observed for M-SIV over T-SIV in terms of direct and indirect viral spread
254 prompt the question of whether these differences could lead to more efficient *in vivo*
255 transmission of macrophage-derived viruses. The characteristics of successfully sexually
256 transmitted HIV isolates are, apart from being usually R5- (Kariuki et al. 2017) and likely T cell-
257 tropic (Alexander et al. 2010), under debate. Interestingly, recent studies demonstrated direct
258 infection of macrophages with HIV by fusion with infected CD4⁺ T cells (Han et al. 2022) and
259 indirectly by infection with CD4⁺ T cell-derived HIV transcytosed through epithelial cells (Real et
260 al. 2018). Further, macrophages were determined as an important viral reservoir in penile tissue
261 (Ganor et al. 2019) and the main virus source in semen (Fennessey et al. 2022). In light of these
262 recent findings, it is noteworthy that SIVmac239/316 Env produced in macrophages exhibited
263 traits similar to those reported for HIV-1 clade B and C transmitted founder viruses when
264 compared to unmatched chronic isolates. In this study, transmitted founder viruses showed
265 increased Env incorporation, higher infectivity, and enhanced transfer to target cells by DCs in
266 comparison to chronic viral isolates (Parrish et al. 2013). Similarly, SIVmac239/316 Env replicated
267 to higher levels in CD4⁺ T cells as compared to macrophages and M-SIV incorporated more Env,
268 was displaying higher infectivity, and was better transmitted by (DC) lectins than T-SIV. This
269 suggests that macrophage origin might further strengthen viral characteristics, which have
270 already been associated with successful viral transmission. Furthermore, one of our previous
271 studies using SIVmac239/316 Env and the rhesus macaque model indicated that exclusive
272 oligomannose glycosylation of Env completely prevents *in vivo* SIV transmission (Karsten et al.,
273 2015), suggesting that the oligomannose glycan content of CD4⁺ T cell-derived HIV and SIV may
274 be unfavorable during sexual transmission. While our exploratory animal experiment showed that
275 the oligomannose profile of T-SIV Env did not have the same detrimental effect on virus
276 transmission as observed for exclusive oligomannose glycosylation, larger animal studies might
277 decipher potential differences in the *in vivo* transmissibility of macrophage and CD4⁺ T cell-
278 derived viruses. Thus, transmitted founder viruses possibly replicate in macrophages prior and
279 after transmission, and macrophage-dependent viral traits such as the Env glycosylation profile
280 might booster virus dissemination.

281 Our results support the conclusions of others that cell type-dependent differences in HIV
282 and SIV, like Env glycosylation, influence the sensitivity towards potential biological interventions

283 including lectins and antibodies (Heeregrave et al. 2023; Raska et al. 2010; Willey et al. 1996). In
284 contrast to our results, two other studies determined macrophage-derived HIV to be more
285 neutralization sensitive than viruses produced in CD4⁺ T cells (Heeregrave et al. 2023; Willey et
286 al. 1996). While one study utilized HIV and 2G12, a mannose-only binding neutralizing antibody,
287 for their investigations (Heeregrave et al. 2023), the other study made this conclusion by using
288 sera of an HIV infected chimpanzee (Willey et al. 1996). This suggests that whether macrophage
289 or CD4⁺ T cell-derived traits provide protection for the virus *in vivo*, is likely dependent on the
290 specific antibody profile of the host. Host cell-dependent neutralization sensitivity was recently
291 also shown to introduce a bias into the selection of neutralizing antibodies for HIV clinical trials
292 (Cohen et al. 2018). The standard assay for the assessment of candidate neutralizing antibodies
293 utilizes 293T-derived pseudotypes with HIV envelopes of different strains (Sarzotti-Kelsoe et al.
294 2014), but the efficiency of antibody neutralization differed when the same viruses were
295 produced in PBMCs instead (Cohen et al. 2018). The *in vitro* results suggest that cell host-
296 dependent viral traits like Env glycosylation add another layer of complexity to Env diversity
297 beyond genetic variability. Current efforts to design antibody-based therapy approaches to
298 control genetically complex HIV swarms in infected individuals, aim to target multiple epitopes
299 on Env at once including glycan-protein targets (Wagh & Seaman 2023). Although host cell-
300 dependent differences appear to be important for antibody and lectin interactions *in vitro*, these
301 might have a negligible relevance *in vivo*, considering that CD4⁺ T cells are likely the main virus
302 producing cells over the course of infection (DiNapoli et al. 2016). Future research must
303 determine whether host cell-dependent viral distinctions should factor into the selection of
304 candidate therapeutics and the design of strategies to address the challenges posed by the
305 extensive diversity of HIV.

306 One limitation of this study is the use of a single SIV strain, which was carefully chosen
307 from the few available macrophage-tropic SIV proviruses previously used in studies with rhesus
308 macaques. Since the completion of our study, HIV strains were found to differ in their sensitivity
309 to host cell-derived modifications of their traits (Heeregrave et al. 2023), emphasizing the need
310 for testing multiple viral strains for more comprehensive conclusions. Additionally, limited blood
311 availability from rhesus macaques constrained the production of sufficient virus for extended
312 glycan analysis, preventing the identification of overlapping peaks in xCGE-LIF annotations via
313 glycosidase digest. Finally, host cell-dependent glycosylation differences in Env have been
314 repeatedly linked to observed variations in viral functions (Gaskill et al. 2008; Heeregrave et al.
315 2023; Lin et al. 2003). However, other factors such as viral surface glycosylation beyond Env
316 (Spillings et al. 2022), host cell protein incorporation (Lawn et al. 2000; Munoz et al. 2022), and
317 virus stock impurities like exosomes (Hazrati et al. 2022) could have influenced the presented
318 results. Establishing a direct link between Env glycosylation and viral functions is technically
319 challenging and beyond the scope of this study. Nevertheless, infectivity experiments with SIV
320 after glycosidase treatment of the virus performed by Gaskill and colleagues, support a direct
321 relationship between Env glycosylation and SIV infectivity (Gaskill et al. 2008).

322 In summary, our study using SIV as a model for HIV provides the first detailed molecular
323 characterization of gp120 N-glycomes as derived by the target cells macrophages and CD4⁺ T cells.
324 Further, it highlights the significance of host cell-dependent differences *in vitro*, affecting both
325 direct and indirect viral spread, as well as neutralization sensitivity. Overall, our findings might

326 have broader implications for the successful development of innovative strategies for HIV
327 prevention and therapy.
328

329 **Material and Methods**

330 **Animal studies**

331 The animal studies were conducted at the German Primate Center, which has the permission to
332 breed and house non-human primates under license number 392001/7 granted by the local
333 veterinary office and conforming with x 11 of the German Animal Welfare act. Ethics approval
334 was obtained from a committee authorized by the Lower Saxony State Office for Consumer
335 Protection and Food Safety with the project license 33.14-42502-04-11/026. All animals were
336 bred, cared for by qualified staff and, housed at the German Primate Center adhering to the
337 German Animal Welfare Act and complying with the European Union guidelines for the use of
338 nonhuman primates in biomedical research.

339 In total, eight male and one female Indian-origin rhesus macaques (*Macaca mulatta*) were
340 assigned to experimental groups based on their age (4 to 7 years). A maximum of 5-6 ml blood
341 per kg bodyweight was drawn *ex vivo* from animals, which were anesthetized intramuscularly
342 with 10 mg ketamine per kg body weight from the femoral vein employing the Vacutainer system
343 (BD Biosciences). For virus challenges, animals were anesthetized intramuscularly with a mixture
344 of 5 mg ketamine, 1 mg xylazin, and 0.01 mg atropine per kg body weight. Virus introduction
345 occurred up to ten centimeters into the rectum using a catheter (Urotech). During the procedure
346 and for the subsequent 30 minutes, the animals were maintained in a ventral position with an
347 elevated pelvis. Monitoring for infection establishment by RT-PCR took place every two and three
348 weeks post-challenge.
349

350 **Plasmids**

351 The plasmids encoding HIV-1 NL4-3 (Pöhlmann et al. 2001), SIVmac239/316 Env (Mori et al. 1992),
352 the HIV-1 NL4-3-derived vector pNL4-3.Luc.R-E- (Connor et al. 1995), and the vesicular stomatitis
353 virus glycoprotein (Naldini et al. 1996) have been previously described.

354 **Cell culture**

355 293T and TZM-bl cells were cultured in Dulbecco's modified Eagle's medium (DMEM; PAN-
356 Biotech) supplemented with 10% fetal bovine serum (FBS, Biochrome), 100 U/ml penicillin, and
357 100 µg/ml streptomycin (P/S; PAN-Biotech). The suspension cell lines (C8166, CEMx174 R5, Raji,
358 Raji DC-SIGN/DC-SIGNR/Langerin) were cultured in RPMI 1640 supplemented with L-glutamine
359 (PAN-Biotech), 10 % FBS, and P/S. For the isolation of rhesus macaque primary CD4⁺ T cells and
360 macrophages, PBMCs were isolated from whole blood using ficoll (Biochrom) density gradient
361 centrifugation. CD4⁺ T cells were purified by negative depletion using magnetic beads (Miltenyi
362 Biotech) and cultured in RPMI 1640 supplemented with 20 % FBS, P/S and 10 µg/ml concanavalin
363 A (Sigma-Aldrich) for 24 h at a density of 2 x 10⁶ cells/ml. Following that, CD4⁺ T cells were cultured
364 in RPMI 1640 supplemented with 20 % FBS, P/S and 100 U/ml recombinant human interleukin-2
365 (IL-2). For the generation of macrophages, monocytes were purified from PBMCs by positive
366 selection for CD14⁺ cells with magnetic beads (Miltenyi Biotech). For differentiation into
367 macrophages, monocytes were seeded at a density of 3 x 10⁵ cells/ml in RPMI 1640 medium

368 supplemented with 20 % FBS, 10 % human AB serum (Sigma-Aldrich), and 10 ng/ml recombinant
369 human macrophage colony stimulating factor (Peprotech) and cultured for 5 d. Subsequently,
370 macrophages were cultured in RPMI 1640 supplemented with 20% FBS. All cells were grown in a
371 humidified atmosphere at 37 °C with 5% CO₂.

372 **Flow cytometry**

373 For flow cytometric analysis of marker expression, 50,000 to 500,000 PBMCs and the above
374 mentioned cell subsets were stained for 30 min at room temperature (RT) with mixtures of
375 monoclonal antibodies (mAb) reactive against CD3 (SP34-2, Alexa Fluor 700), CD4 (L200, V450),
376 CD11b (ICRF44, PE), CD16 (3G8, FITC) and CD20 (L27, PE-Cy7) all from BD Biosciences, as well as
377 CD8 (3B5, Pacific Orange, Invitrogen), and CD14 (RMO52, ECD, Beckman Coulter) diluted in
378 staining buffer (phosphate-buffered saline with 5% FBS). Subsequently, cells were washed with
379 staining buffer, and fixed with 4 % paraformaldehyde solution for seven minutes. After an
380 additional washing step, the cells were analyzed using a LSRII cytometer (BD Biosciences)
381 equipped with three lasers. Compensation was calculated by FACS DIVA software 6.1.3 using
382 appropriate single antibody labeled compensation beads from SpheroTech. Data analysis was
383 performed using FlowJo software v9.6 (Treestar).

384 **Production of viruses and pseudotyped viruses**

385 To generate virus stocks of HIV-1 NL4-3 and SIVmac239/316 Env, 293T cells were seeded into T25-
386 cell culture flasks and transfected with 12 µg of plasmids encoding proviral DNA using calcium
387 phosphate. For pseudotype production, 293T cells were cotransfected with plasmids encoding
388 pNL4-3.Luc.R-E- and VSV-G. The culture medium was exchanged at 6-7 h post transfection, and
389 the cellular supernatant was harvested at 72 h post transfection. The supernatants were clarified
390 from debris by centrifugation (5 min, 3488 x g, RT) filtered through a 0.45 µm filter, aliquoted and
391 stored at -80 °C.

392 **Amplification of SIV in T cells and macrophages**

393 To produce SIVmac239/316 Env in CD4⁺ T cells, the concanavalin A stimulated cells were infected
394 with SIVmac239/316 Env generated in 293T cells at a multiplicity of infection (MOI) of 0.1 in RPMI
395 1640 medium supplemented with 20 % FCS and P/S at RT under occasional shaking. Subsequently,
396 the cells were grown in medium supplemented with IL-2 and incubated for 48 h. The cells were
397 then washed twice with 5 ml of culture medium, transferred to a new cell culture flask, and
398 cultured for 2 weeks. Every 2-3 d, the cells were pelleted, the supernatant was harvested and the
399 cells were dissolved in fresh media at a density of 2 x 10⁶ cells/ml. The supernatants were
400 processed as described above for pseudotypes and viral capsid protein concentration determined
401 by a p27-antigen capture enzyme linked immunosorbent assay (ABL), following the
402 manufacturer's instructions. The p27-antigen-positive supernatants from CD4⁺ T cell cultures
403 obtained from 9 donor animals were pooled to create the stock of CD4⁺ T cell-derived
404 SIVmac239/316 Env, referred to as T-SIV throughout the manuscript. To generate SIVmac239/316
405 Env in macrophages (M-SIV), the same procedure as described above was followed, except that
406 washing and harvesting of the cells were conducted without detaching the cells from the cell
407 culture flask, and no IL-2 was added to the cell culture medium. The M-SIV virus stock was derived
408 from infected cultures established from eight donor animals. To confirm the absence of mutations
409 in env introduced during virus replication, we isolated RNA from M-SIV and T-SIV using the High

410 Pure Viral RNA Kit (Roche), converted it to cDNA with the Cloned AMV First-Strand cDNA Synthesis
411 Kit (Invitrogen), and then sequenced it after PCR amplification. The viral stocks were further
412 characterized for p27-capsid content, as described above, and for infectious units/ml by titration
413 on C8166 cells as described before (Stahl-Hennig et al. 1999).

414

415 **Infectivity assays**

416 For the determination of virus stock infectivity, TZM-bl cells were seeded at a density of 10,000
417 cells per well in a 96-well cell culture plate and allowed to adhere for 2 hours prior to infection.
418 Infection was carried out using p27-capsid protein or MOI normalized SIVmac239/316 Env in a
419 total volume of 100 μ l. After 2 h of spin-oculation (870 \times g, RT) (O'Doherty et al. 2000), the
420 infection was allowed to continue for 3-4 h at 37 °C. Thereafter, the infection medium was
421 replaced by 200 μ l of fresh culture medium and the cells were cultured for 72 h. Subsequently,
422 the cells were lysed and beta-galactosidase activity in lysates was detected using a commercially
423 available kit (Applied Biosystem) following the manufacturer's protocol. For lectin inhibition
424 assays, infectivity normalized M-SIV, T-SIV, HIV-1 NL4-3 and env-defective NL4-3 pseudotyped
425 with VSV-G were preincubated with PBS or the lectins UEA (Eylabs), GNA (Sigma), or CV-N (Boyd
426 et al. 1997) for 15 min at 37 °C. Subsequently, the lectin-virus mix was added to TZM-bl cells for
427 infection, and the infection efficiency was determined as described earlier. To assess antibody-
428 mediated neutralization, a similar experimental procedure as the lectin inhibition assay was
429 carried out, except that sera obtained from SIVmac239-infected rhesus macaques were used
430 instead of lectins. Before use, the sera were heat-inactivated for 30 minutes at 56 °C.

431

432 **Transmission assays**

433 To model viral transmission, 30,000 Raji, Raji DC-SIGN, Raji DC-SIGNR, or Raji Langerin cells were
434 preincubated for 2-3 h at 37 °C with virus adjusted to ensure equivalent infectivity on the
435 CEMx174 R5 target cell line. Subsequently, the cells underwent two washes with 5 ml PBS each
436 (270 \times g, 5 min) to eliminate unbound virus. Following this, the cells were co-cultured with 30,000
437 CEMx174 R5 target cells in 100 μ l of RPMI-1640 medium in a 96-well cell culture plates. After two
438 days, 50 μ l of the medium was replaced with fresh media. One day thereafter, the cells were
439 lysed, and luciferase activity was quantified utilizing a commercially available assay kit (Promega).
440 In addition, all cell lines were infected directly without subsequent removal of unbound viruses
441 to control the uniform infectivity of viruses and background signals of transmitter cell lines.

442

443 **Western blot**

444 For the analysis of viral particle content, the virus was concentrated through a 20 % sucrose
445 cushion in TNE buffer (0.01 M Tris-HCl pH 7.4, 0.15 M NaCl and 2 mM EDTA in ddH₂O) using
446 centrifugation. The proteins from the pelleted virions were then separated using SDS-PAGE and
447 subjected to western blot analysis. SIV gp120 was detected using the mouse monoclonal gp120-
448 specific antibody DA6 (Edinger et al. 2000) at a dilution of 1:2,000, while the mouse monoclonal
449 p27-specific antibody 55-2F12 (Higgins et al. 1992) was employed at a dilution of 1:100 for the
450 detection of p27-capsid protein. As a secondary antibody, a horseradish peroxidase-labeled
451 antibody of appropriate species specificity from Dianova was employed at a dilution of 1:5,000.
452 In order to examine the glycosylation of gp120, the concentrated virus was treated with either

453 Endo H or PNGase F from New England Biolabs, for 30 min prior to SDS-PAGE. Signal intensities
454 of western blot bands were quantified using the software ImageJ (Schneider et al. 2012).

455 **Glycoprofiling by xCGE-LIF**

456 To investigate the *N*-glycosylation of gp120 from M- and T-SIV, sample preparation and analysis
457 were performed as described before (Hennig et al. 2015). Briefly, the virions were concentrated
458 by ultra-centrifugation through a sucrose cushion and the viral proteins were separated by SDS-
459 PAGE. The gp120 protein bands were excised from the Coomassie Blue-stained SDS-
460 polyacrylamide gels, destained, reduced, and alkylated. The attached *N*-glycans were then
461 released by in-gel incubation with PNGase F, and the released *N*-glycans were extracted with
462 water. Next, the *N*-glycans were labeled with 8-aminopyrene-1,3,6-trisulfonic acid (APTS), and
463 any excess label was removed using hydrophilic interaction solid phase extraction. The
464 fluorescently labeled *N*-glycans were separated and analyzed by xCGE-LIF. The glyXtoolCE
465 software (glyXera) was utilized to process the data generated by xCGE-LIF, including the
466 normalization of migration times to an internal standard. This resulted in the creation of *N*-glycan
467 "fingerprints" where the signal intensity in relative fluorescence units (RFU) was plotted on the y-
468 axis against the aligned migration time in aligned migration time units (MTU") on the x-axis. The
469 high reproducibility of aligned migration times allowed for the comparison of *N*-glycan
470 "fingerprints" between different samples. To elucidate the *N*-glycan structures and annotate the
471 peaks, an in-house *N*-glycan database was used. For quantitative comparison, the relative peak
472 height, which represents the ratio of the peak height to the total height of all peaks, was
473 calculated for each peak and sample.

474

475 **LC-MS/MS and automated MS data analysis**

476 After the in-gel release of *N*-glycans by PNGase F treatment proteins were digested with trypsin
477 according to the method outlined by Shevchenko *et al.* (Shevchenko et al. 2006). The procedure
478 involved reducing the proteins with 10 mM DTT (Sigma-Aldrich), followed by
479 carbamidomethylation with 100 mM iodoacetamide (Sigma-Aldrich), and subsequent digestion
480 with sequencing-grade trypsin (Promega). To extract the resulting peptides, acetonitrile was
481 used, and the samples were then dried in a vacuum centrifuge before being dissolved in a solution
482 containing 2 % (v/v) acetonitrile and 0.1% (v/v) trifluoroacetic acid (Sigma-Aldrich) for subsequent
483 LC-MS/MS analysis. The analysis was performed using a LTQ-Orbitrap Velos mass spectrometer
484 (Thermo Fisher Scientific) coupled online to a nano-flow ultra-high-pressure liquid
485 chromatography system (RSLC, Thermo Fisher Scientific). Reverse-phase chromatography and
486 mass spectrometry was carried out as described previously (Konze et al. 2014). For data analysis,
487 the MaxQuant proteomics software suite version 1.2.2.5 (Cox & Mann 2008) was utilized, and
488 peak lists were searched against the SIVmac239/316 Env sequence using the Andromeda search
489 engine version 1.1.0.36 (Cox et al. 2011).

490

491 **Software**

492 Graphs and statistics were conducted using the GraphPad Prism 9 (Dotmatics) software unless
493 stated otherwise. The text of this manuscript was subjected to rephrasing using ChatGPT (OpenAI)
494 to enhance its linguistic quality.

495 **Funding**

496 This work was supported by the German Research Foundation (SFB 900); and the Leibniz
497 foundation.
498

499 **Acknowledgements**

500 We extend our gratitude to the following individuals and organizations for their contributions: K.
501 L. Clayton for providing critical feedback on the manuscript, K. Gustafson for providing cyanovirin-
502 N, J. Münch for the plasmids encoding proviral DNA, and R. Desrosiers for antibody DA6. We also
503 acknowledge the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH, for providing the
504 following reagents: TZM-bl (Cat #8129) from J.C. Kappes, X. Wu, and Tranzyme Inc., B-THP-1 (Raji)
505 and B-THP-1/DC-SIGN (Raji DC-SIGN) from Drs. Li Wu and Vineet N. KewalRaman, human
506 recombinant interleukin-2 (Cat #136) from M. Gately, Hoffmann - La Roche Inc., His-tagged
507 griffithsin (Cat #11610) from B. O'Keefe and J. McMahon, and SIVmac p27 monoclonal antibody
508 55-2F12 (Cat #1610) from N. Pedersen. Mass spectrometry analysis was carried out at the "Core
509 Unit Mass Spectrometry - Proteomics," led by A. Pich, at the Institute of Toxicology, Hannover
510 Medical School. The following reagents were obtained through the National Institutes of Health
511 (NIH) AIDS Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases
512 (NIAID), NIH: B-THP-1 and B-THP-1/DC-SIGN from Drs. Li Wu and Vineet N. KewalRaman as well
513 as TZM-bl cells from Dr. John C. Kappes, Dr. Xiaoyun Wu and Tranzyme Inc.

Abbreviations

AIDS - Acquired immunodeficiency syndrome
APTS - 8-aminopyrene-1,3,6-trisulfonic acid
CBA - Carbohydrate binding agent
CCR5 - C-C motif chemokine receptor 5
C.p.s. – Counts per second
CV-N - Cyanovirin-N
CXCR4 - C-X-C motif chemokine receptor 4
DC-SIGN - Dendritic-specific intercellular adhesion molecule-grabbing nonintegrin
DC-SIGNR – DC-SIGN related protein
ELISA - Enzyme-linked Immunosorbent assay
Endo H – Endoglycosidase H
Env – Envelope protein
FBS – Fetal bovine serum
FITC - Fluorescein
GNA – Galanthus nivalis agglutinin
HIV - Human immunodeficiency virus
IL-2 – Interleukin-2
LC-MS/MS - Liquid chromatography-tandem mass spectrometry
M-SIV – SIV produced in macrophages
MOI - Multiplicity of infection
MTU" – Migration time units
PBMCs - Peripheral blood mononuclear cells
PE-Cy7 – Phycoerythrin-cyanine 7
PNGase F - Peptide-*N*-glycosidase F
P/S – Penicillin/streptomycin
RFU - Relative fluorescence units
RT - Room temperature
RT-PCR – Reverse transcription-polymerase chain reaction
SEM – standard error of the mean
SIV - Simian immunodeficiency virus
tpi – total peak intensity
T-SIV – SIV produced in CD4⁺ T cells
UEA – Ulex europaeus agglutinin
VSV-G - Vesicular stomatitis virus glycoprotein
wpi – weeks post infection
xGELIF – Multiplexed capillary gel electrophoresis with laser-induced fluorescence detection

Data Availability statement

The data underlying this article will be shared on reasonable request to the corresponding author.

Conflict of Interest

The authors declare no conflict of interest.

Author's contributions

Conceptualization: R.G.-S. and S.P.; supervision: R.G.-S. and S.P.; project administration: C.B.K., C.S.-H., E.R., and U.R.; resources: R.G.-S., E.R., and C.S.-H.; methodology: C.B.K., F.F.R.B., B.R., A.K., E.R., C.S.-H., and S.P.; investigation: C.B.K., F.F.R.B., S.C., I.N., B.R., A.K., N.S.-L., and C.S.-H.; data curation: C.B.K., S.C., B.R., A.K., U.S., and C.S.-H.; formal analysis: C.B.K., F.F.R.B., S.C., B.R., A.K., U.S., C.S.-H., and S.P.; validation: C.B.K., F.F.R.B., S.C., U.S., E.R., C.S.-H. and S.P.; visualization: C.B.K., S.C., B.R., A.K., C.S.-H., and S.P.; writing – original draft: C.B.K. and S.P.; writing – review & editing: C.B.K., F.F.R.B., S.C., I.N., B.R., A.K., U.S., U.S., N.S.-L., U.R., R.G.-S., E.R., C.S.-H., and S.P.; funding acquisition: R.G.-S. and S.P.

References

514 Alexander M, Lynch R, Mulenga J, Allen S, Derdeyn CA, Hunter E. 2010. Donor and recipient envs
515 from heterosexual human immunodeficiency virus subtype c transmission pairs require
516 high receptor levels for entry. *J Virol*, 84(8), 4100-4104.

517 Balzarini J, Schols D, Neyts J, Van Damme E, Peumans W, De Clercq E. 1991. Alpha-(1-3)- and
518 alpha-(1-6)-d-mannose-specific plant lectins are markedly inhibitory to human
519 immunodeficiency virus and cytomegalovirus infections in vitro. *Antimicrob Agents
520 Chemother*, 35(3), 410-416.

521 Bashirova AA, Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ, Eilering JB, Martin MP, Wu L,
522 Martin TD, Viebig N, Knolle PA, et al. 2001. A dendritic cell-specific intercellular adhesion
523 molecule 3-grabbing nonintegrin (dc-sign)-related protein is highly expressed on human
524 liver sinusoidal endothelial cells and promotes hiv-1 infection. *J Exp Med*, 193(6), 671-678.

525 Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, Crispin M, Scanlan CN. 2011.
526 The glycan shield of hiv is predominantly oligomannose independently of production
527 system or viral clade. *PLOS ONE*, 6(8), e23521.

528 Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O'Keefe BR, Mori T, Gulakowski RJ, Wu L,
529 Rivera MI, Laurencot CM, et al. 1997. Discovery of cyanovirin-n, a novel human
530 immunodeficiency virus-inactivating protein that binds viral surface envelope
531 glycoprotein gp120: Potential applications to microbicide development. *Antimicrob Agents
532 Chemother*, 41(7), 1521-1530.

533 Chen B. 2019. Molecular mechanism of hiv-1 entry. *Trends Microbiol*, 27(10), 878-891.

534 Cohen YZ, Lorenzi JCC, Seaman MS, Nogueira L, Schoofs T, Krassnig L, Butler A, Millard K,
535 Fitzsimons T, Daniell X, et al. 2018. Neutralizing activity of broadly neutralizing anti-hiv-1
536 antibodies against clade b clinical isolates produced in peripheral blood mononuclear
537 cells. *J Virol*, 92(5).

538 Connor RI, Chen BK, Choe S, Landau NR. 1995. Vpr is required for efficient replication of human
539 immunodeficiency virus type-1 in mononuclear phagocytes. *Virology*, 206(2), 935-944.

540 Cox J, Mann M. 2008. Maxquant enables high peptide identification rates, individualized p.P.B.-
541 range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol*, 26(12),
542 1367-1372.

543 Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. 2011. Andromeda: A peptide
544 search engine integrated into the maxquant environment. *J Proteome Res*, 10(4), 1794-
545 1805.

546 de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y,
547 Geijtenbeek TB. 2007. Langerin is a natural barrier to hiv-1 transmission by langerhans
548 cells. *Nat Med*, 13(3), 367-371.

549 DiNapoli SR, Hirsch VM, Brenchley JM. 2016. Macrophages in progressive human
550 immunodeficiency virus/simian immunodeficiency virus infections. *Journal of Virology*,
551 90(17), 7596-7606.

552 Edinger AL, Ahuja M, Sung T, Baxter KC, Haggarty B, Doms RW, Hoxie JA. 2000. Characterization
553 and epitope mapping of neutralizing monoclonal antibodies produced by immunization
554 with oligomeric simian immunodeficiency virus envelope protein. *J Virol*, 74(17), 7922-
555 7935.

556 Fennessey C, Brands C, Florea S, Newman L, Lipkey L, Bosche W, Fast R, Lifson J, Keele B, Deleage
557 C. (2022). *Macrophages are the primary source of virus in semen in acutely infected*
558 *macaques.* Paper presented at the CROI 2022, Virtual.
559 [https://www.croiconference.org/abstract/macrophages-are-the-primary-source-of-](https://www.croiconference.org/abstract/macrophages-are-the-primary-source-of-virus-in-semen-in-acutely-infected-macaques/)
560 [virus-in-semen-in-acutely-infected-macaques/](https://www.croiconference.org/abstract/macrophages-are-the-primary-source-of-virus-in-semen-in-acutely-infected-macaques/)

561 Ganor Y, Real F, Sennepin A, Dutertre CA, Prevedel L, Xu L, Tudor D, Charmeteau B, Couedel-
562 Courteille A, Marion S, et al. 2019. Hiv-1 reservoirs in urethral macrophages of patients
563 under suppressive antiretroviral therapy. *Nat Microbiol*, 4(4), 633-644.

564 Gaskill PJ, Zandonatti M, Gilmartin T, Head SR, Fox HS. 2008. Macrophage-derived simian
565 immunodeficiency virus exhibits enhanced infectivity by comparison with t-cell-derived
566 virus. *J Virol*, 82(3), 1615-1621.

567 Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL,
568 Nottet HS, KewalRamani VN, Littman DR, et al. 2000. Dc-sign, a dendritic cell-specific hiv-
569 1-binding protein that enhances trans-infection of t cells. *Cell*, 100(5), 587-597.

570 Gonzalez SM, Aguilar-Jimenez W, Su RC, Rugeles MT. 2019. Mucosa: Key interactions determining
571 sexual transmission of the hiv infection. *Front Immunol*, 10, 144.

572 Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. 1992. Inhibition of furin-
573 mediated cleavage activation of hiv-1 glycoprotein gp160. *Nature*, 360(6402), 358-361.

574 Han M, Cantaloube-Ferrieu V, Xie M, Armani-Tourret M, Woottum M, Pagès JC, Colin P, Lagane
575 B, Benichou S. 2022. Hiv-1 cell-to-cell spread overcomes the virus entry block of non-
576 macrophage-tropic strains in macrophages. *PLoS Pathog*, 18(5), e1010335.

577 Hazrati A, Soudi S, Malekpour K, Mahmoudi M, Rahimi A, Hashemi SM, Varma RS. 2022. Immune
578 cells-derived exosomes function as a double-edged sword: Role in disease progression and
579 their therapeutic applications. *Biomarker Research*, 10(1), 30.

580 Heeregrave EJ, Thomas J, van Capel TM, de Jong EC, Pollakis G, Paxton WA. 2023. Glycan
581 dependent phenotype differences of hiv-1 generated from macrophage versus cd4(+) t
582 helper cell populations. *Front Immunol*, 14, 1107349.

583 Hennig R, Rapp E, Kottler R, Cajic S, Borowiak M, Reichl U. 2015. N-glycosylation fingerprinting of
584 viral glycoproteins by xcge-lif. *Methods Mol Biol*, 1331, 123-143.

585 Higgins JR, Sutjipto S, Marx PA, Pedersen NC. 1992. Shared antigenic epitopes of the major core
586 proteins of human and simian immunodeficiency virus isolates. *J Med Primatol*, 21(5), 265-
587 269.

588 Johnson WE, Sanford H, Schwall L, Burton DR, Parren PW, Robinson JE, Desrosiers RC. 2003.
589 Assorted mutations in the envelope gene of simian immunodeficiency virus lead to loss of
590 neutralization resistance against antibodies representing a broad spectrum of
591 specificities. *J Virol*, 77(18), 9993-10003.

592 Julg B, Barouch D. 2021. Broadly neutralizing antibodies for hiv-1 prevention and therapy. *Semin*
593 *Immunol*, 51, 101475.

594 Kariuki SM, Selhorst P, Ariën KK, Dorfman JR. 2017. The hiv-1 transmission bottleneck.
595 *Retrovirology*, 14(1), 22.

596 Karsten CB, Buettner FF, Cajic S, Nehlmeier I, Neumann B, Klippert A, Sauermann U, Reichl U,
597 Gerardy-Schahn R, Rapp E, et al. 2015. Exclusive decoration of simian immunodeficiency
598 virus env with high-mannose type n-glycans is not compatible with mucosal transmission
599 in rhesus macaques. *J Virol*, 89(22), 11727-11733.

600 Koch M, Pancera M, Kwong PD, Kolchinsky P, Grundner C, Wang L, Hendrickson WA, Sodroski J,
601 Wyatt R. 2003. Structure-based, targeted deglycosylation of hiv-1 gp120 and effects on
602 neutralization sensitivity and antibody recognition. *Virology*, 313(2), 387-400.

603 Konze SA, van Diepen L, Schröder A, Olmer R, Möller H, Pich A, Weißmann R, Kuss AW, Zweigerdt
604 R, Buettner FF. 2014. Cleavage of e-cadherin and β -catenin by calpain affects wnt signaling
605 and spheroid formation in suspension cultures of human pluripotent stem cells. *Mol Cell
606 Proteomics*, 13(4), 990-1007.

607 Lawn SD, Roberts BD, Griffin GE, Folks TM, Butera ST. 2000. Cellular compartments of human
608 immunodeficiency virus type 1 replication in vivo: Determination by presence of virion-
609 associated host proteins and impact of opportunistic infection. *J Virol*, 74(1), 139-145.

610 Li Y, Luo L, Rasool N, Kang CY. 1993. Glycosylation is necessary for the correct folding of human
611 immunodeficiency virus gp120 in cd4 binding. *J Virol*, 67(1), 584-588.

612 Liedtke S, Adamski M, Geyer R, Pfützner A, Rübsamen-Waigmann H, Geyer H. 1994.
613 Oligosaccharide profiles of hiv-2 external envelope glycoprotein: Dependence on host
614 cells and virus isolates. *Glycobiology*, 4(4), 477-484.

615 Liedtke S, Geyer R, Geyer H. 1997. Host-cell-specific glycosylation of hiv-2 envelope glycoprotein.
616 *Glycoconj J*, 14(7), 785-793.

617 Lin G, Simmons G, Pohlmann S, Baribaud F, Ni H, Leslie GJ, Haggarty BS, Bates P, Weissman D,
618 Hoxie JA, Doms RW. 2003. Differential n-linked glycosylation of human immunodeficiency
619 virus and ebola virus envelope glycoproteins modulates interactions with dc-sign and dc-
620 signr. *J Virol*, 77(2), 1337-1346.

621 Ma BJ, Alam SM, Go EP, Lu X, Desaire H, Tomaras GD, Bowman C, Sutherland LL, Scearce RM,
622 Santra S, et al. 2011. Envelope deglycosylation enhances antigenicity of hiv-1 gp41
623 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies.
624 *PLoS Pathog*, 7(9), e1002200.

625 Mori K, Ringler DJ, Desrosiers RC. 1993. Restricted replication of simian immunodeficiency virus
626 strain 239 in macrophages is determined by env but is not due to restricted entry. *J Virol*,
627 67(5), 2807-2814.

628 Mori K, Ringler DJ, Kodama T, Desrosiers RC. 1992. Complex determinants of macrophage tropism
629 in env of simian immunodeficiency virus. *J Virol*, 66(4), 2067-2075.

630 Mori K, Rosenzweig M, Desrosiers RC. 2000. Mechanisms for adaptation of simian
631 immunodeficiency virus to replication in alveolar macrophages. *J Virol*, 74(22), 10852-
632 10859.

633 Munoz O, Banga R, Perreau M. 2022. Host molecule incorporation into hiv virions, potential
634 influences in hiv pathogenesis. *Viruses*, 14(11).

635 Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. 2022. Lectins
636 and lectibodies: Potential promising antiviral agents. *Cell Mol Biol Lett*, 27(1), 37.

637 Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D. 1996. In vivo gene
638 delivery and stable transduction of nondividing cells by a lentiviral vector. *Science*,
639 272(5259), 263-267.

640 Neelamegham S, Aoki-Kinoshita K, Bolton E, Frank M, Lisacek F, Lütteke T, O'Boyle N, Packer NH,
641 Stanley P, Toukach P, et al. 2019. Updates to the symbol nomenclature for glycans
642 guidelines. *Glycobiology*, 29(9), 620-624.

643 O'Doherty U, Swiggard WJ, Malim MH. 2000. Human immunodeficiency virus type 1 spinoculation
644 enhances infection through virus binding. *J Virol*, 74(21), 10074-10080.

645 Panico M, Bouché L, Binet D, O'Connor MJ, Rahman D, Pang PC, Canis K, North SJ, Desrosiers RC,
646 Chertova E, et al. 2016. Mapping the complete glycoproteome of virion-derived hiv-1
647 gp120 provides insights into broadly neutralizing antibody binding. *Sci Rep*, 6, 32956.

648 Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, Zajic L, Iyer SS, Decker JM, Kumar A, et
649 al. 2013. Phenotypic properties of transmitted founder hiv-1. *Proceedings of the National
650 Academy of Sciences of the United States of America*, 110(17), 6626-6633.

651 Pöhlmann S, Baribaud F, Lee B, Leslie GJ, Sanchez MD, Hiebenthal-Millow K, Münch J, Kirchhoff F,
652 Doms RW. 2001. Dc-sign interactions with human immunodeficiency virus type 1 and 2
653 and simian immunodeficiency virus. *J Virol*, 75(10), 4664-4672.

654 Pritchard LK, Vasiljevic S, Ozorowski G, Seabright GE, Cupo A, Ringe R, Kim HJ, Sanders RW, Doores
655 KJ, Burton DR, et al. 2015. Structural constraints determine the glycosylation of hiv-1
656 envelope trimers. *Cell Rep*, 11(10), 1604-1613.

657 Puffer BA, Pöhlmann S, Edinger AL, Carlin D, Sanchez MD, Reitter J, Watry DD, Fox HS, Desrosiers
658 RC, Doms RW. 2002. Cd4 independence of simian immunodeficiency virus envs is
659 associated with macrophage tropism, neutralization sensitivity, and attenuated
660 pathogenicity. *J Virol*, 76(6), 2595-2605.

661 Quinones-Kochs MI, Buonocore L, Rose JK. 2002. Role of n-linked glycans in a human
662 immunodeficiency virus envelope glycoprotein: Effects on protein function and the
663 neutralizing antibody response. *J Virol*, 76(9), 4199-4211.

664 Raska M, Takahashi K, Czernekova L, Zachova K, Hall S, Moldoveanu Z, Elliott MC, Wilson L, Brown
665 R, Jancova D, et al. 2010. Glycosylation patterns of hiv-1 gp120 depend on the type of
666 expressing cells and affect antibody recognition. *J Biol Chem*, 285(27), 20860-20869.

667 Real F, Sennepin A, Ganor Y, Schmitt A, Bomsel M. 2018. Live imaging of hiv-1 transfer across t
668 cell virological synapse to epithelial cells that promotes stromal macrophage infection.
669 *Cell Rep*, 23(6), 1794-1805.

670 Reitter JN, Means RE, Desrosiers RC. 1998. A role for carbohydrates in immune evasion in aids.
671 *Nat Med*, 4(6), 679-684.

672 Sarzotti-Kelsoe M, Bailer RT, Turk E, Lin CL, Bilska M, Greene KM, Gao H, Todd CA, Ozaki DA,
673 Seaman MS, et al. 2014. Optimization and validation of the tzm-bl assay for standardized
674 assessments of neutralizing antibodies against hiv-1. *J Immunol Methods*, 409, 131-146.

675 Schneider CA, Rasband WS, Eliceiri KW. 2012. Nih image to imagej: 25 years of image analysis.
676 *Nat Methods*, 9(7), 671-675.

677 Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. 2006. In-gel digestion for mass spectrometric
678 characterization of proteins and proteomes. *Nat Protoc*, 1(6), 2856-2860.

679 Spillings BL, Day CJ, Garcia-Minambres A, Aggarwal A, Condon ND, Haselhorst T, Purcell DFJ,
680 Turville SG, Stow JL, Jennings MP, Mak J. 2022. Host glycocalyx captures hiv proximal to
681 the cell surface via oligomannose-glcNAc glycan-glycan interactions to support viral entry.
682 *Cell Rep*, 38(5), 110296.

683 Stahl-Hennig C, Steinman RM, Tenner-Racz K, Pope M, Stolte N, Mätz-Rensing K, Grobschupff G,
684 Raschdorff B, Hunsmann G, Racz P. 1999. Rapid infection of oral mucosal-associated
685 lymphoid tissue with simian immunodeficiency virus. *Science*, 285(5431), 1261-1265.

686 Stanley P, Moremen KW, Lewis NE, Taniguchi N, Aebi M. (2022). N-glycans. In Varki A, Cummings
687 RD, et al. (Eds.), *Essentials of glycobiology* (Vol. 4, pp. 103-116). Cold Spring Harbor (NY):
688 Cold Spring Harbor Laboratory Press.

689 Tsuchiya S, Aoki NP, Shinmachi D, Matsubara M, Yamada I, Aoki-Kinoshita KF, Narimatsu H. 2017.
690 Implementation of glycanbuilder to draw a wide variety of ambiguous glycans. *Carbohydr Res*, 445, 104-116.

691 UNAIDS. (2023, 2023 July 13). Fact sheet 2023: Global hiv/aids statistics. *Fact sheet*. Retrieved
692 from https://www.unaids.org/en/resources/documents/2023/UNAIDS_FactSheet

693 Wagh K, Seaman MS. 2023. Divide and conquer: Broadly neutralizing antibody combinations for
694 improved hiv-1 viral coverage. *Curr Opin HIV AIDS*, 18(4), 164-170.

695 Walsh SR, Seaman MS. 2021. Broadly neutralizing antibodies for hiv-1 prevention. *Front Immunol*,
696 12, 712122.

697 Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM,
698 Saag MS, et al. 2003. Antibody neutralization and escape by hiv-1. *Nature*, 422(6929), 307-
700 312.

701 Willey RL, Shibata R, Freed EO, Cho MW, Martin MA. 1996. Differential glycosylation, virion
702 incorporation, and sensitivity to neutralizing antibodies of human immunodeficiency virus
703 type 1 envelope produced from infected primary t-lymphocyte and macrophage cultures.
704 *J Virol*, 70(9), 6431-6436.

705 Zhu X, Borchers C, Bienstock RJ, Tomer KB. 2000. Mass spectrometric characterization of the
706 glycosylation pattern of hiv-gp120 expressed in cho cells. *Biochemistry*, 39(37), 11194-
707 11204.

708 **Figure Legends**

709 Fig. 1 CD4⁺ T cell-derived simian immunodeficiency virus (T-SIV) gp120 carries more
710 oligomannose-type glycans than gp120 of macrophage-derived SIV (M-SIV). A) T-SIV and M-SIV
711 viral stocks were normalized for comparable gp120 content and concentrated. The viruses were
712 subjected to mock treatment or enzymatic digestion with endoglycosidase H (Endo H) or peptide-
713 N-glycosidase F (PNGase F), followed by western blot detection of the envelope protein (Env).
714 Consistent results were obtained across three independent experiments.

715
716 Fig. 2 Differences in the relative distribution of *N*-glycans from gp120 of M-SIV and T-SIV
717 measured by multiplexed capillary gel electrophoresis with laser-induced fluorescence detection
718 (xCGE-LIF). A) The electropherogram region with the most striking differences between M-SIV and
719 T-SIV is plotted (140-380 migration time units (MTU')). Peak intensities are presented as
720 percentage of the total peak height to obtain the relative signal intensity (in %) for each peak
721 (representing at least one *N*-glycan structure). A selection of distinct *N*-glycan structures enriched
722 in T-SIV are denoted with green boxes, while those enriched in M-SIV are marked with blue boxes.
723 Symbolic representation of *N*-glycan structures in the figure were drawn with the software
724 GlycanBuilder2 (Tsuchiya et al. 2017), in alignment with the updated guidelines of the Symbol
725 Nomenclature For Glycans working group (Neelamegham et al. 2019): green circle, mannose;
726 yellow circle, galactose; blue square, *N*-acetylglucosamine; pink diamond, *N*-acetylneurameric
727 acid; white diamond, *N*-glycolylneurameric acid; red triangle, fucose. B, C) To delve deeper into
728 the distinctions in the *N*-linked glycan profile of M-SIV and T-SIV gp120, we aggregated the xCGE-
729 LIF signal intensities of peaks corresponding to glycan species associated with specific groups to
730 calculate the total % signal intensity. These data were calculated based on the information
731 provided in supplementary table 1. B) illustrates the distribution of annotated glycan species
732 across various glycan types, while C) categorizes complex glycans based on their distinct features.
733 Numbers at the end of bars give the exact total % signal intensity for the specific glycan group.

734
735 Fig. 3 M-SIV is more infectious than T-SIV. A) TZBM-bl indicator cells were exposed to equal
736 volumes of M-SIV and T-SIV stocks, normalized for p27-capsid protein (left panel) or infectious
737 units (right panel). Following virus removal at 5-6 hours post-infection, β -galactosidase activity
738 was measured in cell lysates 72 hours post-infection. The grand mean of three experiments
739 performed in triplicates (left panel) or quadruplates (right panel) are shown with the standard
740 error of the mean (SEM). Statistical significance between datasets determined by two-way
741 ANOVA (*, p \leq 0.05).

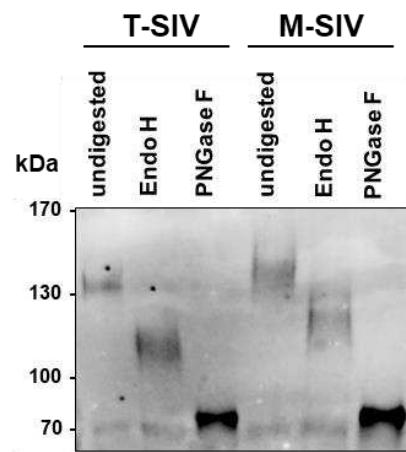
742
743 Fig. 4 M-SIV incorporates more gp120 than T-SIV. A) M-SIV and T-SIV normalized for equal
744 amounts of p27 were concentrated, resolved using SDS-PAGE, and analyzed by western blot for
745 gp120 and p27. Consistent outcomes were observed across three independent experiments. B)
746 The software ImageJ (Schneider et al. 2012) was utilized to quantify gp120 and p27 signal
747 intensities obtained in A). The gp120 signal per p27 signal ratio was calculated, and values were
748 plotted, with M-SIV set as 100 %. Presented is the grand mean with SEM. Paired t-test was applied
749 to assess statistical differences between groups (**, p \leq 0.01).

750

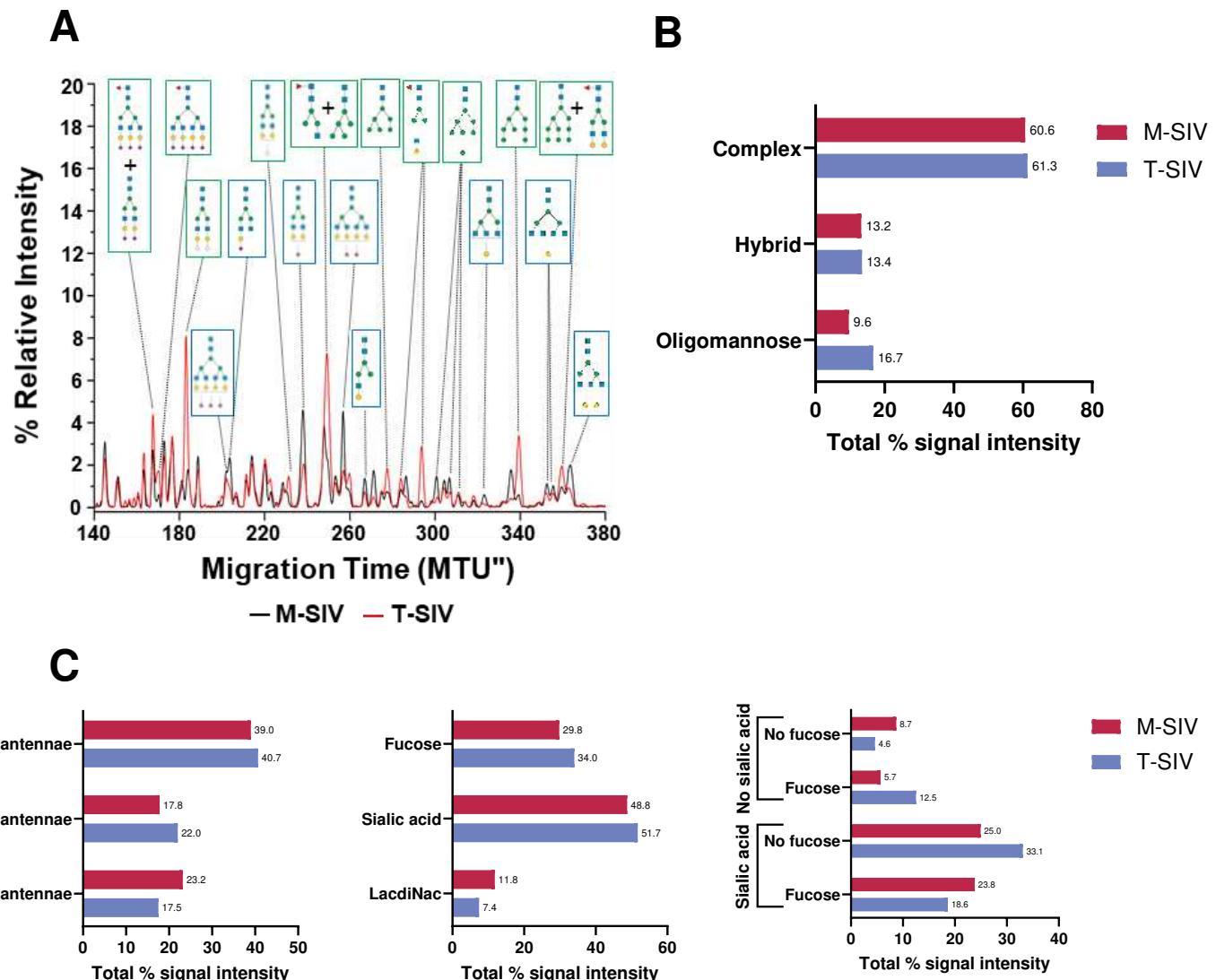
751 Fig. 5 Lectins transmit M-SIV better than T-SIV. M-SIV and T-SIV were incubated with Raji cells
752 expressing no additional lectin, dendritic cell-specific intercellular adhesion molecule-grabbing
753 nonintegrin (DC-SIGN), DC-SIGN related protein (DC-SIGNR) or Langerin. Unbound virus was
754 removed and the transmitter cells were co-cultured with CEMx174 R5 target cells. Infection of
755 target cells was detected by the measurement of luciferase activity in cell lysates 72 h post
756 infection. Direct infection of CEMx174 R5 cells served as positive control, while negative controls
757 consisted of Raji cells incubated without target cells. The grand mean of three independent
758 experiments conducted in triplicates with SEM, normalized to direct target cell infection, is
759 depicted. Statistical differences between M-SIV and T-SIV for each transmitting lectin were
760 calculated by t-test (*, p <= 0.05; ***, p <= 0.001). C.p.s.: counts per second.

761
762 FIG 6 T-SIV is more sensitive to inhibition by mannose-specific lectins than M-SIV. Infectivity-
763 normalized M-SIV, T-SIV, HIV-1 NL4-3 and *env*-defective HIV-1 NL4-3 pseudotyped with vesicular
764 stomatitis virus glycoprotein (VSV-G) were preincubated with the indicated concentrations of ulex
765 europaeus agglutinin (UEA), cyanovirin-N (CV-N), or galanthus nivalis agglutinin (GNA), before
766 addition to TZM-bl indicator cells. Virus was removed at 5-6 h post infection and β -galactosidase
767 activity was measured in cell lysates at 72 h post infection. Presented are the grand mean values
768 with SEM normalized to lectin-free conditions from two independent experiments conducted in
769 triplicates for all lectin concentrations. B) Plotted are the results obtained in A) for M-SIV and T-
770 SIV using a lectin concentration of 100 μ g/ml. Statistical differences between M-SIV and T-SIV
771 were calculated for each lectin using a paired t-test (**, p \leq 0.01).

772
773 FIG 7 M-SIV is more sensitive to serum neutralization than T-SIV. A) Infectivity-normalized M-SIV,
774 T-SIV, and HIV-1 NL4-3 were preincubated with sera from SIVmac239-infected rhesus macaques
775 at varying dilutions prior to infection of TZM-bl indicator cells. Incubation of virus with medium
776 alone served as negative control. Virus removal occurred at 5-6 hours post-infection, with β -
777 galactosidase activity measured in cell lysates at 72 hours post-infection. Shown is the grand
778 mean with SEM from two independent experiments conducted in triplicates at a serum dilution
779 of 1:20,000. Infection in the absence of serum was normalized to 100 %. B) The titration curve for
780 serum 3 from A) is presented as grand mean with SEM. C) Data for sera 1-4 from A), all at a
781 1:20,000 dilution, are directly compared. Paired t-test was applied to assess differences in means
782 between groups (*, p \leq 0.05).


783
784 Fig. S1: Exemplary flow cytometric validation of purified CD4 $^{+}$ T cells and macrophages. A) Rhesus
785 macaque PBMCs and monocyte-derived macrophages were flow cytometrically stained using
786 antibodies targeting macrophage (CD11b, CD14, CD16), T cell (CD3), and B cell (CD20) markers.
787 Representative data from four different experiments are presented. B) Rhesus macaque PBMCs
788 or purified CD4 $^{+}$ T cells were stained for flow cytometry using antibodies specific for T cells (CD3)
789 or T cell subpopulations (CD4, CD8). Representative data from two independent experiments are
790 shown. For A) and B), the y-axis represents the cell count, while the x-axis indicates marker signal
791 intensity. Proportions of cells within gates are denoted above the bars.

792
793 Fig. S2: Both M-SIV and T-SIV are infectious *in vivo*. A) Rhesus macaques (n = 4-5 per group) were
794 rectally challenged with 3 ng p27-capsid-protein of M-SIV or T-SIV diluted in PBS. The challenges


795 were repeated every three weeks until the animals became infected (indicated by black filled
796 symbols) or up to six challenges. Infection was determined by detection of SIV RNA in the
797 peripheral blood by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR).
798 Animal identifiers are indicated on the y-axis. B) Plasma viral load of rhesus macaques infected
799 with M-SIV or T-SIV was measured as RNA copies/ml from the day of challenge (day 0) up to 10
800 weeks post infection (wpi). At 3 wpi with SIVmac239/316 Env, animal 13057 underwent an
801 additional challenge with SIVmac251 as part of a separate experiment, which was not part of this
802 study.

803
804 Supplemental table 1. Structures and relative intensities of *N*-glycans derived from M-SIV and T-
805 SIV, analyzed by xCGE-LIF. Relative peak abundances are presented as percentages of the total
806 peak intensity (peaks 1-96 = 100%). *N*-glycan structures were assigned to peaks based on
807 migration times matching the entries of an in-house *N*-glycan database. Symbols used to depict
808 *N*-glycan structures are given in figure 2A.

Figure 1 Glycosidase analysis of M-SIV and T-SIV

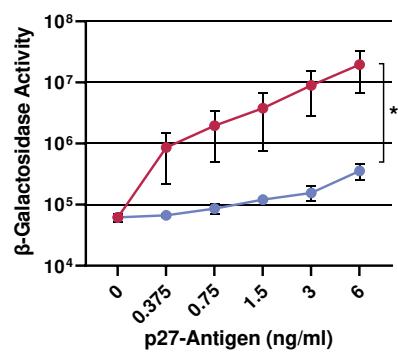


Figure 2 xCGE-LIF

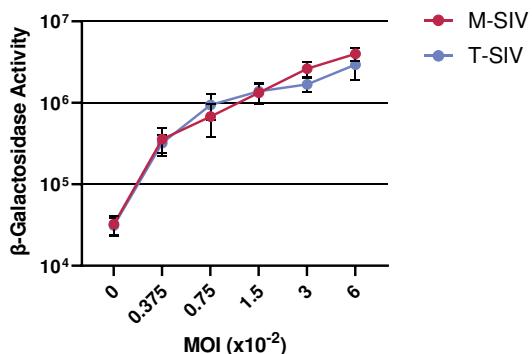
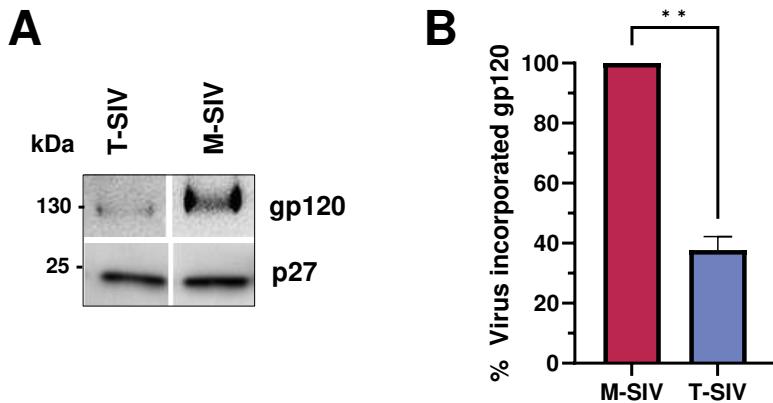


Figure 3 Infectivity


A

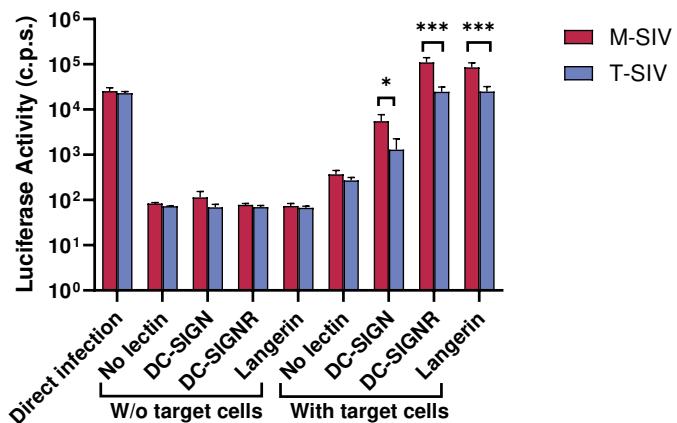

B

Figure 4 Env incorporation

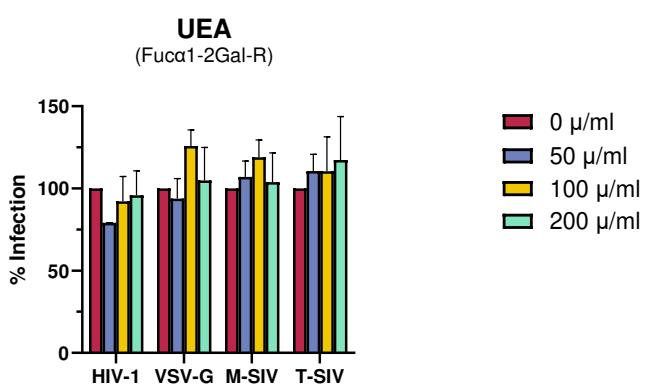


Figure 5 Transmission by DC lectins

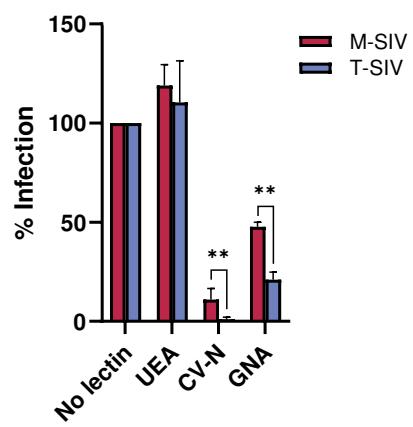
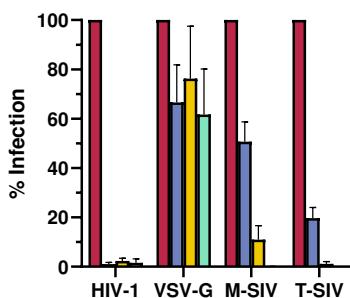
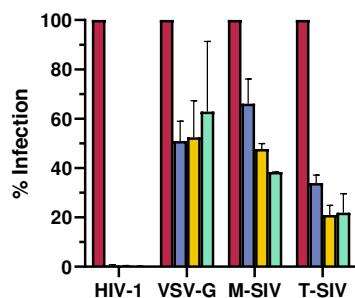


Figure 6 Lectin inhibition assays

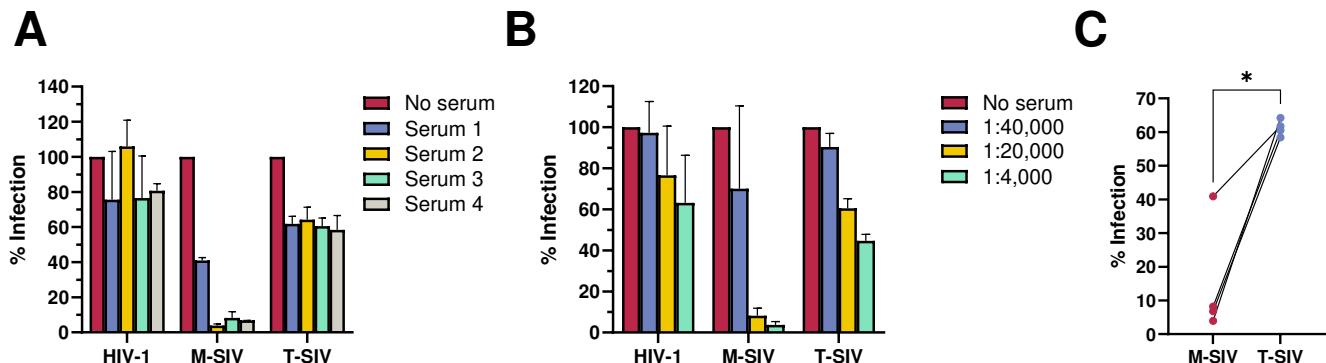
A



B


CV-N

(Man α 1-2)



GNA

(Man α 1-3, Man α 1-6)

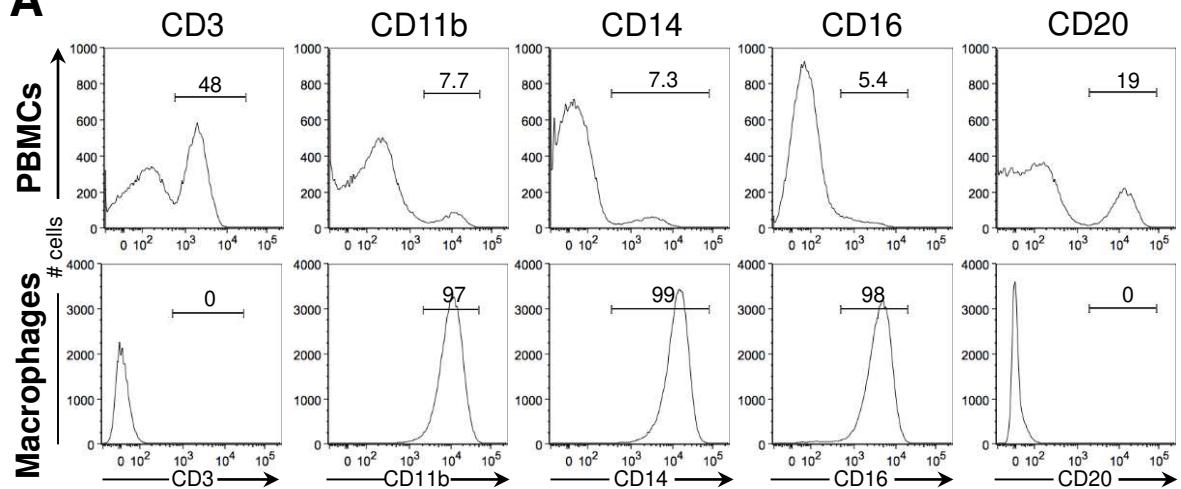


Figure 7 Serum neutralizability

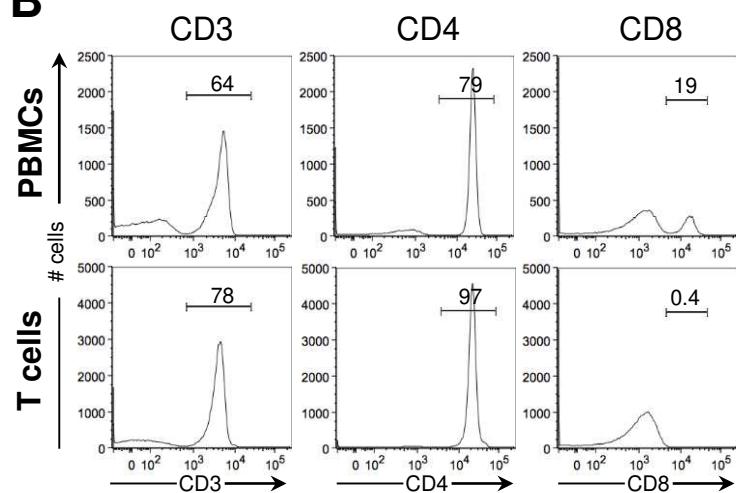
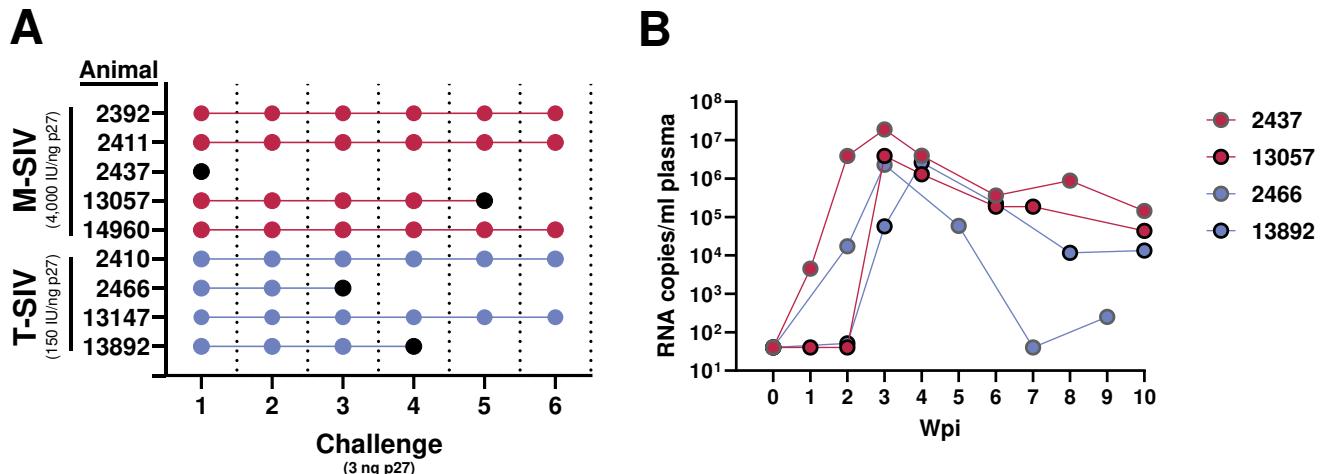


Figure S1: Flow cytometry confirmation of macrophage and CD4+ T cell phenotype


A

B

Figure S2: In vivo challenge study of rhesus macaques with M-SIV and T-SIV

