

1 **Fluidic shear stress alters clathrin dynamics and vesicle formation in endothelial
2 cells**

3

4

5 Tomasz J. Nawara, Elizabeth Sztul and Alexa L. Mattheyses*

6

7 Department of Cell, Developmental, and Integrative Biology, University of
8 Alabama at Birmingham, Birmingham, AL, USA.

9

10 *corresponding author: mattheyses@uab.edu

11 **Abstract**

12 Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses.
13 Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-
14 mediated endocytosis (CME) in non-ECs cells. How ECs overcome such unfavorable,
15 from biophysical perspective, conditions and maintain CME remains elusive. Previously,
16 we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show
17 that endocytic dynamics are similar between statically cultured human umbilical vein
18 endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here we asked whether
19 biophysical stresses generated by blood flow could favor one mechanism of clathrin-
20 coated vesicle formation to overcome environment present in vasculature. We used our
21 data processing platform – DrSTAR – to examine if clathrin dynamics are altered in
22 HUVECs grown under fluidic sheer stress (FSS). Surprisingly, we found that FSS led to
23 an increase in clathrin dynamics. In HUVECs grown under FSS we observed a 2.3-fold
24 increase in clathrin-coated vesicle formation and a 1.9-fold increase in non-productive flat
25 clathrin lattices compared to cells grown in static conditions. The curvature-positive
26 events had significantly delayed curvature initiation in flow-stimulated cells, highlighting a
27 shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings
28 indicate that clathrin dynamics and CCV formation can be modulated by the local
29 physiological environment and represents an important regulatory mechanism.

30 **Significance**

31 Targeted nanomedicine holds a great promise of improved drug bioavailability and
32 specificity. While some cargoes must cross the blood-tissue barrier, the understanding of
33 endocytic pathways in the context of vasculature is limited, which is an obstacle to
34 targeted nanomedicine delivery. In this pilot study we show that the physiological local
35 vascular environment must be considered in the context of internalization of growth
36 factors, membrane proteins, therapeutics, or pathogens. Studies in non-ECs or ECs not
37 cultured under fluidic shear stress do not properly recapitulate clathrin dynamics and will
38 lead to incorrect conclusions.

39 **Introduction**

40 Endothelial cells line the lumen of blood vessels where they locally experience highly
41 dynamic mechanical stresses, differing in magnitude and type between arteries, veins
42 and capillaries (Trimm and Red-Horse, 2023). These can be divided into contact-derived
43 stresses, originating from vessel topography, curvature, and stiffness, and flow-derived
44 stresses such as fluidic shear stress (FSS), pressure, and tensile strain caused by the
45 blood flow (Dessalles et al., 2021). It has been shown in non-endothelial cells that intrinsic
46 plasma membrane curvature dramatically impacts the proteome required for endocytosis
47 (Cail et al., 2022), while stiffer substrates (Baschieri et al., 2018), cell squeezing, and
48 increased osmotic pressure inhibit endocytosis (Ferguson et al., 2017). The mechanical
49 impact on endocytosis has been recently reviewed (Joseph and Liu, 2020). Additionally,
50 FSS has been shown to slow down the internalization rates of polymer nanocarriers
51 targeted to ICAM-1 in endothelial cells (Bhowmick et al., 2012). From a biophysical
52 perspective, the environment present in vasculature seems unfavorable, and capable of
53 abolishing clathrin-mediated endocytosis (CME). Yet, CME is an essential cellular
54 process for endothelial cells that facilitates the internalization of many cargoes, such as
55 vascular endothelial growth factor and vascular endothelial cadherin, and can be hijacked
56 by pathogens such as COVID-19 (Herrschner et al., 2020; Inoue et al., 2007; Katsuno-
57 Kambe and Yap, 2020; Nanes et al., 2012). Thus, CME is indispensable for vascular
58 development and homeostasis (Gaengel and Betsholtz, 2013; Genet et al., 2019; Jones
59 and Shusta, 2007; Potente et al., 2011). It has not yet been determined how endothelial
60 cells preserve CME in their physiological environment and during pathophysiological
61 conditions. Overall, the assumption that CME is a universal and homogenous process is
62 outdated (Chen and Schmid, 2020; Nawara et al., 2022), and it has been highlighted that
63 distinct clathrin-coated structures differentially regulate signaling outcome. Though often
64 studied in “model” fibroblast cell lines, CME must be studied in a cell type and context-
65 dependent manner to reveal context specific regulatory dynamics (Sigismund et al.,
66 2021). Overall, our understanding of endocytic pathways in the context of vasculature is
67 limited, which presents an obstacle to targeted nanomedicine delivery (Rennick et al.,
68 2021).

69 CME is mediated by the trimeric coat protein clathrin, which polymerizes at the plasma
70 membrane to form vesicles and flat lattices (Kaksonen and Roux, 2018). Depending on
71 the cell line or tissue, clathrin generates clathrin-coated structures of various shapes and
72 sizes, with only a fraction contributing to cargo uptake (Jones and Shusta, 2007; Sochacki
73 and Taraska, 2019). Previously, we used a total internal reflection fluorescence (TIRF)-
74 based technique called simultaneous two-wavelength axial ratiometry (STAR)
75 microscopy to define how clathrin-coated vesicles form in human umbilical vein
76 endothelial cells (HUVECs) grown under static conditions (Nawara et al., 2022). STAR
77 has the power to capture the dynamics and axial (z) distribution of clathrin in living cells
78 with a nanoscale axial resolution (Nawara et al., 2023; Nawara and Mattheyses, 2023).
79 Our previous research showed that clathrin dynamics are similar between HUVECs
80 cultured under static conditions and non-endothelial green monkey kidney fibroblast-like
81 (Cos-7) cells. In both cell types we found multiple productive routes of CME mediated by
82 three modes of vesicle formation: nucleation – where endocytosis begins independent of
83 clathrin; constant curvature – where clathrin accumulation and vesicle formation are
84 coinciding; and flat-to-curved transition – where pre-assemblies of flat clathrin lattices
85 transition into clathrin-coated vesicles (Nawara et al., 2022).

86 Here, we investigated how endothelial cells preserve endocytic dynamics in a
87 biophysically unfavorable environment. HUVECs were exposed to FSS, mimicking a
88 naturally occurring mechanical stress caused by the blood flow, or cultured statically as
89 a control. We then quantified the number and proportion of productive and nonproductive
90 plasma membrane associated clathrin accumulations. For productive events, we
91 compared clathrin-coated vesicle formation dynamics and classified the mode. We show
92 that HUVECs exposed to FSS had a 2.3-fold increase in clathrin-coated vesicle formation
93 and a 1.9-fold increase in non-productive flat clathrin lattices compared to cells grown in
94 static conditions. Moreover, in the long-lasting events (>50 s) we observed a switch in
95 mode of clathrin-coated vesicle formation, with a preference for flat clathrin platform
96 preassembly before vesicle initiation. This data shows that FSS serves as a mechanical
97 stimulus that impacts CME, thereby preserving endocytosis by offsetting the inhibitory
98 effects of other mechanical stresses.

99 **Materials and methods**

100 *Automated data processing*

101 Raw STAR microscopy data was processed and Δz was calculated using a high-
102 throughput custom-written MATLAB software – DrSTAR (Nawara et al., 2023). Detection,
103 tracking and classification of endocytic events was achieved using CMEanalysis (Aguet
104 et al., 2013), as previously described (Nawara et al., 2022).

105 *Cell culture*

106 Pooled human umbilical vein endothelial cells (Lonza, C2519A or Sigma, 200P-05N) were
107 cultured at 37 °C and 5% CO₂ and per manufacture recommendations. EBM-2 media
108 (Lonza, CC-3156) supplemented with EGM-2 SingleQuots (Lonza, CC-4176) or Vascular
109 Cell Basal Medium (ATCC, PCS-100-030) supplemented with Endothelial Cell Growth
110 Kit-VEGF (ATCC, PCS-100-041) were used. Cells between passages 3-6 were used for
111 the experiments.

112 *Fluidic shear stress experiments*

113 Human umbilical vein endothelial cells (HUVECs) were plated onto a 6 well dish at 40000
114 cells/well. 24h later cells were transfected with TransIT-2020 (Mirus, MIR 5404) as
115 previously described (Nawara et al., 2022) using 250 μ l of DPBS (Sigma, D8537), 1 μ g
116 of CLCa-STAR plasmid, and 1 μ l of RT TransIT-2020. Media was replaced after
117 incubation with transfection mixture for 6 h at 37 °C and 5% CO₂. 24h later expression of
118 the plasmid was confirmed by epifluorescence and cells from all 6 wells were collected
119 by trypsinization and spun down (150g for 5 min). The cell pellet was then resuspended
120 in 200 μ l of fresh media and 100 μ l of cell suspension was plated per μ -Slide I Luer Glass
121 Bottom (Ibidi, 80177). Before plating the cells, 200 μ l of fresh media was added to the μ -
122 Slides and allowed to equilibrate in the incubator. After cell attachment, 60 μ l of fresh
123 media was added to each of the μ -Slide reservoirs. 3-4 h later, slides were gently flushed
124 with 1ml of media. 24h after plating, cells were again flushed with 1 ml of media. Then the
125 flow system was assembled. Here we used a peristaltic pump (Fisherbrand, 13-876-2 or
126 Kamoer Fluid Tech, DIP-B253) to circulate media. Briefly, tubing (Ibidi, 10831), and 10 ml
127 syringe (Fisherbrand, 14-955-459) were preheated to 37°C. Then the tubing was

128 connected to disinfected peristaltic pump silicone tubing. The plunger from a 10 ml
129 syringe was removed and syringe was inserted into one of the μ -Slide inlets. The syringe
130 serves as a media reservoir and air bubble trap. Then the tubing was connected to the
131 second μ -Slide inlet and the end of the assembled was placed inside the syringe. This
132 was followed by a gentle addition of 10 ml of media to the syringe. The top of the syringe
133 was then parafilmed to mount the tubing and seal the system from contamination.
134 Everything was placed into the incubator for at least 30 min to allow for equilibration. After
135 that silicon tubing was mounted into the pump and flow was set to achieve shear stress
136 of 10 dyn/cm². The shear stress was then calculated according to manufacture protocol.
137 Cells plated on the second μ -Slide were used as static control. 24h later cell alignment
138 with the flow direction was confirmed. Then the μ -Slide was disconnected from the flow,
139 followed by a media change to a media with biliverdin. 30 min later media containing
140 biliverdin was washed and replaced with regular media and live cells experiments were
141 performed as previously published under static conditions (Nawara et al., 2022).

142 *Image processing*

143 Data were corrected and analyzed using Fiji (ImageJ, National Institutes of Health,
144 Bethesda, MD), MATLAB version 2018b for CMEanalysis, and MATLAB 2020b for
145 DrSTAR.

146 *Statistics and reproducibility*

147 Data was acquired from three independent replicates and total of $n_{\text{Stat}} = 21$ cells and $n_{\text{FSS}} = 18$ cells. Figure legends contain description of statistical test used and p values. All
148 results are presented as mean \pm SEM unless otherwise noted. Statistical calculations
149 were performed in GraphPad Prism (Version 9.0.0).

151

152 **Results**

153 *Clathrin dynamics are increased in HUVECs cultured under FSS*

154 To investigate CME in physiological vasculature conditions, we focused on the impact
155 of biophysical stresses generated by blood flow on clathrin dynamics in ECs. HUVECs

156 were cultured under static or fluidic shear stress (FSS; 10 dyn/cm²) conditions for 24 h.
157 As expected, FSS caused overall morphological changes and the alignment of HUVECs
158 with the direction of the flow (**Fig. 1A**). In HUVECs exposed to FSS we also observed
159 reorganization of the actin cytoskeleton compared to control HUVECs, with alignment of
160 actin fibers parallel to the direction of flow, similar to previous reports (Dean et al., 2023;
161 Noria et al., 2004) (**Fig. 1B**). Next, we transfected HUVECs with clathrin light chain a
162 (CLCa) tagged with the STAR probe (iRFP713-EGFP fusion). Surprisingly, live-cell TIRF
163 microscopy revealed that HUVECs exposed to FSS have increased plasma membrane-
164 associated clathrin dynamics (**Fig. 1C, D**).

165 *Both vesicle formation and flat clathrin accumulations are increased in HUVEC exposed*
166 *to FSS*

167 Conventional TIRF microscopy provides excellent time resolution for studying CME
168 dynamics, however it is virtually impossible to separate productive clathrin accumulations
169 from non-productive based on their fluorescent signal (Nawara and Mattheyses, 2023).
170 To overcome this limitation we used STAR microscopy to parse out whether the observed
171 increase in clathrin dynamics was caused by the surge in formation of productive clathrin-
172 coated vesicles or nonproductive flat clathrin lattices (**Fig. 2A**) (Nawara et al., 2023;
173 Nawara and Mattheyses, 2023; Nawara et al., 2022). STAR uses a ratiometric approach
174 to recover axial Δz information, which requires the dual-tag (CLCa-iRFP713-EGFP). The
175 bespoke MATLAB-based data processing pipeline DrSTAR was employed to process
176 multiple cells and experimental replicates in a robust and high throughout manner
177 (Nawara et al., 2023). Next CMEanalysis tracked clathrin events automatically based on
178 their fluorescence signal allowing quantification of hundreds of clathrin events (Aguet et
179 al., 2013). This was followed by classification of all diffraction-limited *de novo* clathrin
180 accumulations as productive endocytosis (clathrin-coated vesicles - positive Δz) or as flat
181 clathrin lattices (FCLs - no change in Δz ; **Fig. 2B, C**). When productive clathrin events
182 were divided into cohorts based on their total lifetime, we observed a similar initial rise of
183 Δz for all cohorts in cells grown under static conditions (**Fig. 2B** – purple dashed
184 rectangle). However, in cells exposed to FSS we observed a correlation between the
185 lifetime of the clathrin accumulation and the rate of change in Δz (**Fig. 2C** – purple dashed

rectangle). Longer-lived clathrin events formed vesicles at a slower rate in cells grown under the FSS. We had hypothesized that FSS may have a similar impact as mechanical stressors and cause disruption or inhibition of CME, which would result in an increase in flat clathrin lattices but not vesicle formation. Contrary to our hypothesis, we observed a 2.3-fold increase in CCV formation and a 1.9-fold increase in non-productive flat clathrin lattices in HUVECS grown under FSS compared to cells grown in static conditions (**Fig. 2D, E**). These data show that the increased clathrin dynamics in HUVECs grown under FSS represent both clathrin vesicle formation and flat clathrin lattices. This shows FSS is a mechanical stimulus of CME in HUVECS, contrary to most mechanical stresses evaluated in other cellular contexts.

196 *Initiation of clathrin-coated vesicle formation is delayed after exposure to FSS*

197 We next asked whether the mechanism of CCV formation is altered in response to FSS. To do so, we quantified the initiation of CCV formation relative to clathrin arrival, reported as the time difference in when Δz and CLCa are detected (Nawara et al., 2023; Nawara et al., 2022). Multiple productive routes of clathrin-coated vesicle formation have been observed in living cells, which have been classified into three main models (Chen and Schmid, 2020; Nawara et al., 2022; Scott et al., 2018). The nucleation model assumes that plasma membrane curvature occurs before clathrin recruitment. This can be mediated by curvature sensing/inducing proteins, receptor clustering etc. (Bhave et al., 2020). In the constant curvature model, there is simultaneous clathrin recruitment and vesicle formation (**Fig. 2A, left**). Finally, the flat-to-curved transition model is based on preassemblies of flat clathrin lattices that then dynamically bend to form a vesicle (**Fig. 2A, right**) (Nawara et al., 2022).

209 When all productive endocytic events were analyzed, it revealed a significant delay in 210 the initiation of vesicle formation relative to when clathrin was first observed in HUVECs 211 exposed to FSS (**Fig. 3**). We hypothesized that preassembling stable flat clathrin lattice 212 before vesicle formation might be preferential under stress. This could prevent clathrin- 213 coated structure or plasma membrane rupture during stress. Therefore, we next asked if 214 this delay was dependent on event lifetime. We found that in cells grown under FSS, only 215 clathrin events longer than 50 s favor the pre-assembly of flat clathrin lattices and the flat-

216 to-curved mode of CCV formation (**Fig. 4 A, B**). This suggests that preassembling a flat
217 clathrin platform before vesicle initiation is a preferred mechanism of CCV formation
218 under conditions in the vasculature.

219

220 **Discussion**

221 We have shown that FSS increases clathrin dynamics and modulates the mechanism
222 of CCV formation in ECs (**Fig. 4C**). It is possible that both changes work to preserve
223 robust endocytosis in the vasculature by countering the inhibitory effects of cyclic stretch,
224 plasma membrane tension and other mechanical stresses (Dessalles et al., 2021; Joseph
225 and Liu, 2020). One explanation for the increase in membrane associated clathrin
226 dynamics is an upregulation of endocytic accessory proteins. Interestingly, a more
227 peripheral clathrin signal was observed in HUVECs exposed to FSS when imaged with
228 epifluorescence (**Fig. 1B**). This leads us to propose that alternatively clathrin itself could
229 be redirected to the plasma membrane as a direct result of FSS (Charwat et al., 2018).
230 This localization could be achieved, for example, by activation of fast-loop recycling of
231 endosomes mediated by Rab4 (Kofler et al., 2018). Our data shows that HUVECs
232 exposed to FSS have slower vesicle formation dynamics (**Fig. 2A, B** and **Fig. 3**).
233 Moreover, longer events (>50 s) prefer to preassemble a stable flat clathrin platform
234 before initiation of vesicle formation (**Fig. 4A, B**). Both of those phenomena may be
235 protective against plasma membrane injury during cargo internalization. We hypothesize
236 that different levels of FSS as well as different flow patterns may require ECs to adapt
237 accordingly. This work opens the door to many interesting questions about the nature of
238 such adaptation. Are endocytic accessory proteins upregulated or redistributed? Are
239 there any markers that highlight the productive or unproductive sites? Is the increase of
240 clathrin dynamics related to reorganization of cytoskeleton?

241 This study highlights the importance of considering the physiological local vascular
242 environment in the context of internalization of growth factors, membrane proteins,
243 therapeutics, or pathogens. Studies in non-ECs or ECs not cultured under FSS may not
244 properly recapitulate endocytosis rates or clathrin dynamics and could lead to incorrect
245 conclusions. Further research into the biophysical framework of CME in ECs under

246 physiological and stress conditions will provide critical insight required for targeted drug
247 delivery to promote cardio-vascular health and treat disease (Jones and Shusta, 2007).
248 As more tools are developed to allow quantification of endocytosis in primary cells in
249 physiological environments it will prove key to revisit principles derived from continuous
250 cell culture experiments (Chan et al., 2022; Schöneberg et al., 2018; Sochacki et al.,
251 2021).

252

253 **Author contributions**

254 Conceptualization: T.N.; methodology: T.N. and A.M.; validation: T.N.; formal analysis:
255 T.N.; investigation: T.N.; resources: T.N., E.S., and A.M.; data curation: T.N.; writing—
256 original draft: T.N.; writing—reviewing and editing: T.N., E.S. and A.M.; visualization: T.N.;
257 supervision: E.S. and A.M.; funding acquisition: T.N. and A.M.

258 **Competing interests**

259 The authors declare no competing interests.

260 **Acknowledgments**

261 The authors support diversity and inclusiveness in science and believe strongly in equality
262 of human rights. The authors would like to thank Andrew Kowalczyk (Penn State) and
263 Aleksandra Michrowska (The Francis Crick Institute), as well as members of the
264 Mattheyses and Sztul laboratories for their support and helpful discussion. We thank UAB
265 IT Research Computing. This work was supported by American Heart Association 906086
266 to T.N., NIH/NIGMS R01GM131099 to A.L.M. and NSF CAREER 1832100 to A.L.M.

267 **References**

268 Aguet, F., C.N. Antonescu, M. Mettlen, S.L. Schmid, and G. Danuser. 2013. Advances
269 in analysis of low signal-to-noise images link dynamin and AP2 to the functions of
270 an endocytic checkpoint. *Dev Cell*. 26:279-291.

271 Baschieri, F., S. Dayot, N. Elkhatib, N. Ly, A. Capmany, K. Schauer, T. Betz, D.M.
272 Vignjevic, R. Poincloux, and G. Montagnac. 2018. Frustrated endocytosis
273 controls contractility-independent mechanotransduction at clathrin-coated
274 structures. *Nature Communications*. 9:3825.

275 Bhave, M., R.E. Mino, X. Wang, J. Lee, H.M. Grossman, A.M. Lakoduk, G. Danuser,
276 S.L. Schmid, and M. Mettlen. 2020. Functional characterization of 67 endocytic
277 accessory proteins using multiparametric quantitative analysis of CCP dynamics.
278 *Proc Natl Acad Sci U S A*. 117:31591-31602.

279 Bhowmick, T., E. Berk, X. Cui, V.R. Muzykantov, and S. Muro. 2012. Effect of flow on
280 endothelial endocytosis of nanocarriers targeted to ICAM-1. *Journal of Controlled
281 Release*. 157:485-492.

282 Cail, R.C., C.R. Shirazinejad, and D.G. Drubin. 2022. Induced nanoscale membrane
283 curvature bypasses the essential endocytic function of clathrin. *Journal of Cell
284 Biology*. 221.

285 Chan, C.Y., Y. Faragalla, and L.-G. Wu. 2022. Illuminating membrane structural
286 dynamics of fusion and endocytosis with advanced light imaging techniques.
287 *Biochemical Society Transactions*. 50:1157-1167.

288 Charwat, V., I. Olmos Calvo, M. Rothbauer, S.R.A. Kratz, C. Jungreuthmayer, J.
289 Zanghellini, J. Grillari, and P. Ertl. 2018. Combinatorial in Vitro and in Silico
290 Approach To Describe Shear-Force Dependent Uptake of Nanoparticles in
291 Microfluidic Vascular Models. *Analytical Chemistry*. 90:3651-3655.

292 Chen, Z., and S.L. Schmid. 2020. Evolving models for assembling and shaping clathrin-
293 coated pits. *Journal of Cell Biology*. 219.

294 Dean, W.F., T.J. Nawara, R.M. Albert, and A.L. Mattheyses. 2023. OOPS: Object-
295 Oriented Polarization Software for analysis of fluorescence polarization
296 microscopy images. *bioRxiv*:2023.2012.2005.570241.

297 Dessalles, C.A., C. Leclech, A. Castagnino, and A.I. Barakat. 2021. Integration of
298 substrate- and flow-derived stresses in endothelial cell mechanobiology.
299 *Commun Biol.* 4:764.

300 Ferguson, J.P., S.D. Huber, N.M. Willy, E. Aygün, S. Goker, T. Atabay, and C. Kural.
301 2017. Mechanoregulation of clathrin-mediated endocytosis. *Journal of Cell
302 Science.* 130:3631-3636.

303 Gaengel, K., and C. Betsholtz. 2013. Endocytosis regulates VEGF signalling during
304 angiogenesis. *Nat Cell Biol.* 15:233-235.

305 Genet, G., K. Boye, T. Mathivet, R. Ola, F. Zhang, A. Dubrac, J. Li, N. Genet, L.
306 Henrique Geraldo, L. Benedetti, S. Kunzel, L. Pibouin-Fragner, J.L. Thomas, and
307 A. Eichmann. 2019. Endophilin-A2 dependent VEGFR2 endocytosis promotes
308 sprouting angiogenesis. *Nat Commun.* 10:2350.

309 Herrscher, C., F. Pastor, J. Burlaud-Gaillard, A. Dumans, F. Seigneuret, A. Moreau, R.
310 Patient, S. Eymieux, H. de Rocquigny, C. Houroux, P. Roingeard, and E.
311 Blanchard. 2020. Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-
312 mediated endocytosis. *Cell Microbiol.* 22:e13205.

313 Inoue, Y., N. Tanaka, Y. Tanaka, S. Inoue, K. Morita, M. Zhuang, T. Hattori, and K.
314 Sugamura. 2007. Clathrin-dependent entry of severe acute respiratory syndrome
315 coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. *J
316 Virol.* 81:8722-8729.

317 Jones, A.R., and E.V. Shusta. 2007. Blood-brain barrier transport of therapeutics via
318 receptor-mediation. *Pharm Res.* 24:1759-1771.

319 Joseph, J.G., and A.P. Liu. 2020. Mechanical Regulation of Endocytosis: New Insights
320 and Recent Advances. *Adv Biosyst.* 4:e2000155.

321 Kaksonen, M., and A. Roux. 2018. Mechanisms of clathrin-mediated endocytosis. *Nat
322 Rev Mol Cell Biol.* 19:313-326.

323 Katsuno-Kambe, H., and A.S. Yap. 2020. Endocytosis, cadherins and tissue dynamics.
324 *Traffic.* 21:268-273.

325 Kofler, N., F. Corti, F. Rivera-Molina, Y. Deng, D. Toomre, and M. Simons. 2018. The
326 Rab-effector protein RABEP2 regulates endosomal trafficking to mediate

327 vascular endothelial growth factor receptor-2 (VEGFR2)-dependent signaling. *J*
328 *Biol Chem.* 293:4805-4817.

329 Nanes, B.A., C. Chiasson-MacKenzie, A.M. Lowery, N. Ishiyama, V. Faundez, M. Ikura,
330 P.A. Vincent, and A.P. Kowalczyk. 2012. p120-catenin binding masks an
331 endocytic signal conserved in classical cadherins. *J Cell Biol.* 199:365-380.

332 Nawara, T.J., W.F. Dean, and A.L. Mattheyses. 2023. DrSTAR: Tracking real-time
333 nanometer axial changes. *Biophys J.* 122:595-602.

334 Nawara, T.J., and A.L. Mattheyses. 2023. Imaging nanoscale axial dynamics at the
335 basal plasma membrane. *Int J Biochem Cell Biol.* 156:106349.

336 Nawara, T.J., Y.D. Williams, 2nd, T.C. Rao, Y. Hu, E. Sztul, K. Salaita, and A.L.
337 Mattheyses. 2022. Imaging vesicle formation dynamics supports the flexible
338 model of clathrin-mediated endocytosis. *Nat Commun.* 13:1732.

339 Noria, S.F., F. Xu, S. McCue, M. Jones, A.I. Gotlieb, and B.L. Langille. 2004. Assembly
340 and reorientation of stress fibers drives morphological changes to endothelial
341 cells exposed to shear stress. *The American journal of pathology.* 164 4:1211-
342 1223.

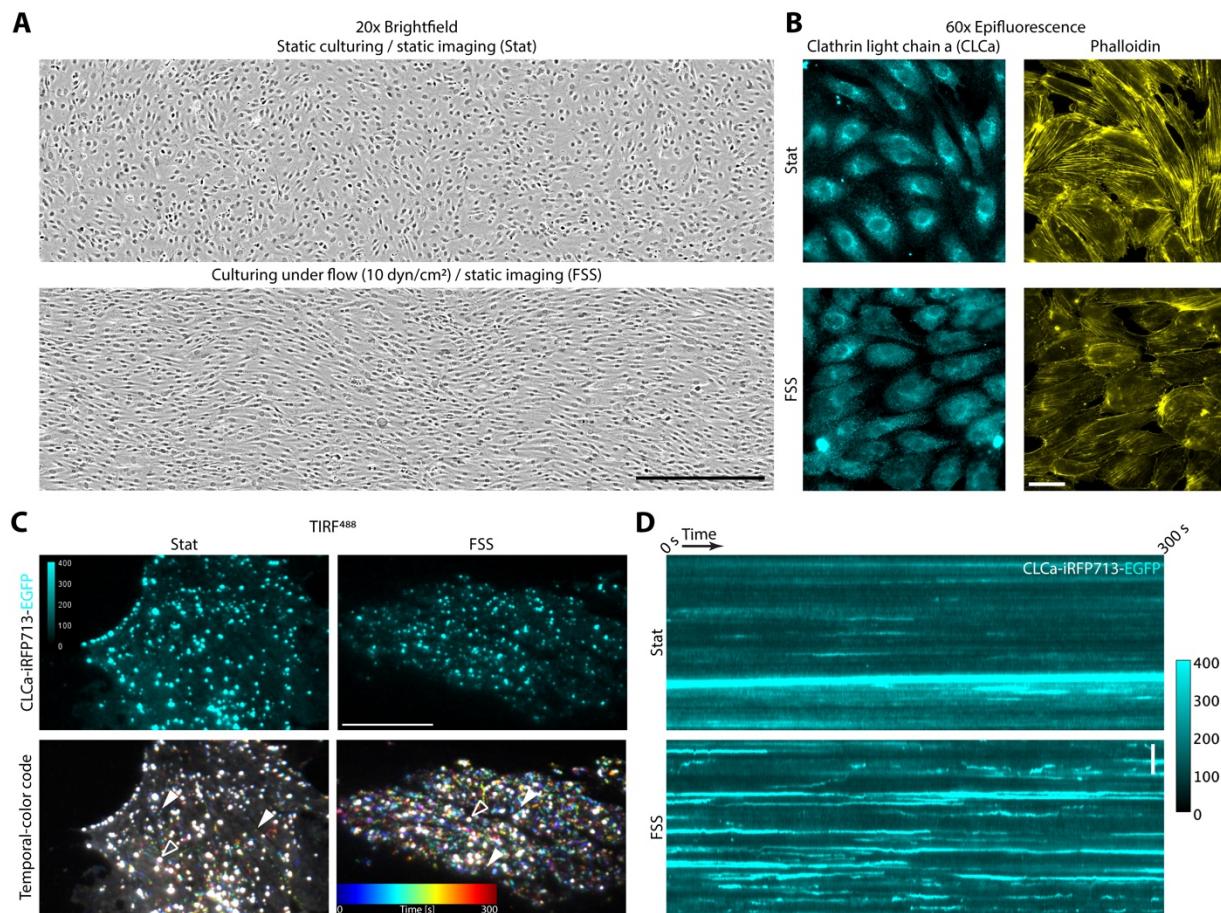
343 Potente, M., H. Gerhardt, and P. Carmeliet. 2011. Basic and therapeutic aspects of
344 angiogenesis. *Cell.* 146:873-887.

345 Rennick, J.J., A.P.R. Johnston, and R.G. Parton. 2021. Key principles and methods for
346 studying the endocytosis of biological and nanoparticle therapeutics. *Nat*
347 *Nanotechnol.* 16:266-276.

348 Schöneberg, J., D. Dambourne, T.-L. Liu, R. Forster, D. Hockemeyer, E. Betzig, and
349 D.G. Drubin. 2018. 4D cell biology: big data image analytics and lattice light-
350 sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell-
351 derived intestinal organoids. *Molecular Biology of the Cell.* 29:2959-2968.

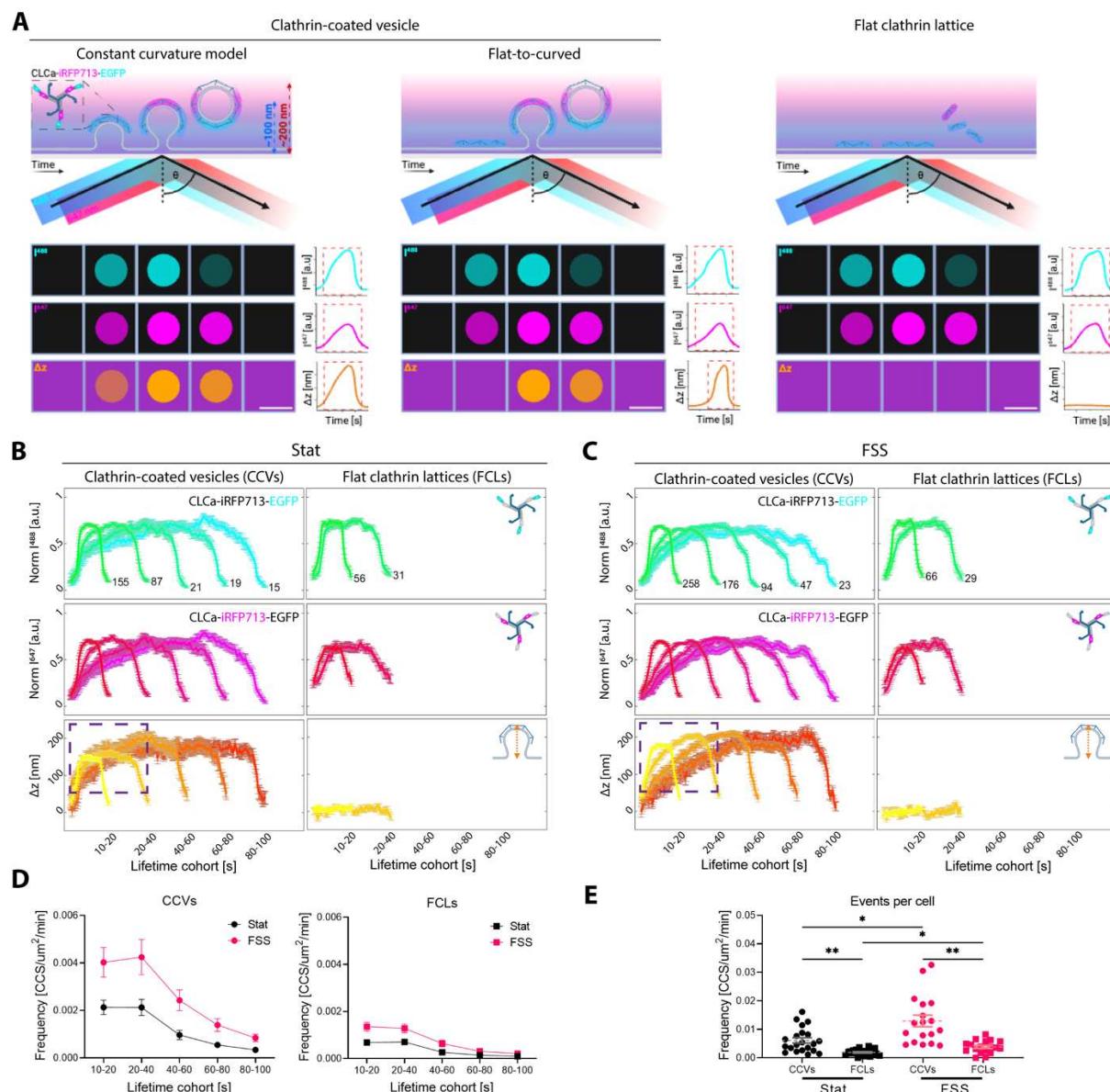
352 Scott, B.L., K.A. Sochacki, S.T. Low-Nam, E.M. Bailey, Q. Luu, A. Hor, A.M. Dickey, S.
353 Smith, J.G. Kerkvliet, J.W. Taraska, and A.D. Hoppe. 2018. Membrane bending
354 occurs at all stages of clathrin-coat assembly and defines endocytic dynamics.
355 *Nature Communications.* 9:419.

356 Sigismund, S., L. Lanzetti, G. Scita, and P.P. Di Fiore. 2021. Endocytosis in the context-
357 dependent regulation of individual and collective cell properties. *Nat Rev Mol Cell
358 Biol.* 22:625-643.


359 Sochacki, K.A., B.L. Heine, G.J. Haber, J.R. Jimah, B. Prasai, M.A. Alfonzo-Méndez,
360 A.D. Roberts, A. Somasundaram, J.E. Hinshaw, and J.W. Taraska. 2021. The
361 structure and spontaneous curvature of clathrin lattices at the plasma membrane.
362 *Dev Cell.* 56:1131-1146.e1133.

363 Sochacki, K.A., and J.W. Taraska. 2019. From Flat to Curved Clathrin: Controlling a
364 Plastic Ratchet. *Trends Cell Biol.* 29:241-256.

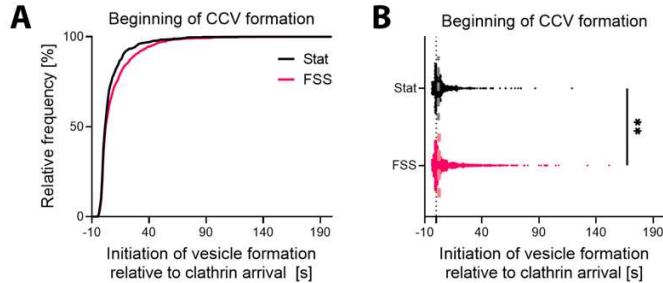
365 Trimm, E., and K. Red-Horse. 2023. Vascular endothelial cell development and
366 diversity. *Nat Rev Cardiol.* 20:197-210.


367

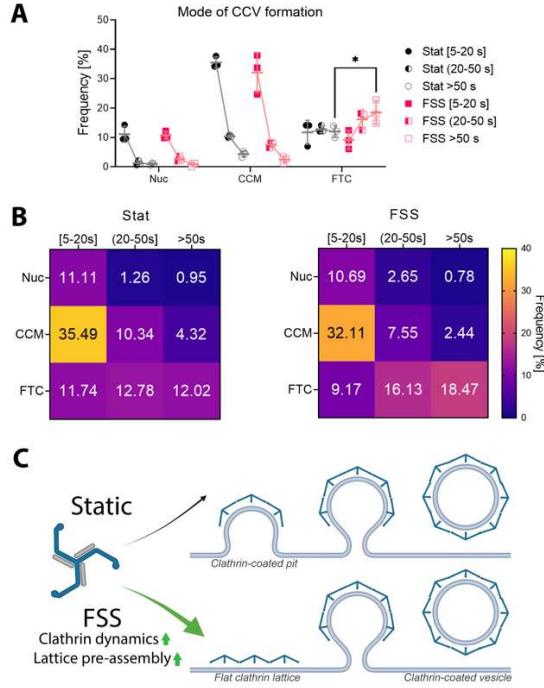
368 **Figures:**

369

370 **Fig. 1 Clathrin dynamics are increased in HUVECs cultured under FSS. (A)**
371 Brightfield images of HUVECs grown under static (Stat - top) and FSS (10 dyn/cm² -
372 bottom) conditions for 24h, scale bar = 500 μ m. (B) Clathrin light chain a and actin
373 distribution in HUVECs grown under static or FSS conditions, scale bar = 40 μ m. (C) Live-
374 cell TIRF imaging shows increased clathrin dynamics in HUVECs grown under FSS
375 compared to static (representative cells), scale bar = 20 μ m. Temporal-color code projects
376 a 5-minute-long movie onto a single image. Each frame is color-coded for time. *De novo*
377 clathrin accumulations are multi-colored with the specific color based on the time of
378 appearance and lifetime and (full caret) while persistent clathrin structures are white
379 (empty caret). (D) Kymograph showing clathrin accumulation (intensity, [a.u.]) for
380 HUVECs cultured under static or FSS conditions, scale bar = 5 μ m.



381


382 **Fig. 2 More productive and flat clathrin accumulations are observed in HUVEC**
383 **exposed to FSS. (A)** STAR microscopy can identify productive clathrin-coated vesicles
384 and unproductive flat clathrin lattices. CLCa-iRFP713-EGFP (STAR probe) imaged by
385 STAR during: clathrin-coated vesicle formation following the constant curvature (left) or
386 flat-to-curved models (middle) and flat clathrin lattice assembly (right). Each event is
387 depicted as a schematic of the images that will be acquired (top panels) and a schematic
388 of a single endocytic puncta as imaged by the camera (panels labeled I^{488} (cyan) –
389 intensity at 488 nm and I^{647} (magenta) – intensity at 647 nm) as well as the calculated in
390 a pixel-by-pixel manner Δz from the I^{647}/I^{488} ratio. On the right from the camera view are

391 “measured” intensity and Δz traces for the example clathrin accumulations. Those single
392 traces are then pulled into lifetime cohorts as in **B** and **C**. Evanescent wave penetration
393 depths (dashed arrows) correspond to 488 (blue) and 647 (red) nm lasers where Θ is the
394 incidence angle. Scale bar = 100nm. Formation of CCVs or flat clathrin lattices (FCLs) in
395 HUVECs grown under static (Stat - **B**) and FSS (10 dyn/cm² - **C**) conditions for 24h was
396 determined using simultaneous two-wavelength axial ratiometry (STAR) microscopy. N
397 of representative clathrin accumulations for each lifetime cohort are indicated (mean \pm
398 SEM; EGFP - cyan, iRFP713 - magenta, Δz which indicates vesicle formation - orange).
399 The dashed square highlights the first 0 - 40 s of vesicles formation. (**D**) Histogram of
400 lifetime distribution of clathrin-coated vesicles (CCVs) and flat clathrin lattices (FCLs) per
401 μm^2 , per minute (mean \pm SEM). (**E**) Cumulative frequency of CCVs and FCLs per μm^2 ,
402 per minute (mean \pm SEM, * - $p < 0.03$, ** - $p < 0.002$, Brown-Forsythe and Welch ANOVA
403 tests followed by Dunnett’s T3 multiple comparisons test). Data was acquired from three
404 independent replicates and total of $n_{\text{Stat}} = 21$ cells and $n_{\text{FSS}} = 18$ cells.

405

406 **Fig. 3 Initiation of clathrin-coated vesicle formation is delayed after exposure to**
407 **FSS. (A)** Cumulative distribution of the initiation of vesicle formation (Δz) relative to the
408 detection of CLCa-STAR, reported as reported as $\Delta z_{\text{Beg}} - \text{CLCa}_{\text{Beg}}$. **(B)** Distribution of the
409 initiation of vesicle formation (dashed line indicates median, ** - $p=0.09$, Kolmogorov–
410 Smirnov test). Data was acquired from three independent replicates and total of $n_{\text{Stat}} = 21$
411 cells and $n_{\text{FSS}} = 18$ cells.

412

413 **Fig. 4 Mode of clathrin-coated vesicle formation is changed following FSS. (A)**
414 Distribution of events across three models of vesicle formation and three lifetime cohorts
415 in HUVECs grown under static (Stat, black) and FSS (10 dyn/cm²; magenta),
416 Nuc = Nucleation, CCM = Constant Curvature Model, FTC = Flat-to-curved transition.
417 (mean \pm SD, * - p = 0.048 by two-way ANOVA followed by Tukey's multiple comparisons
418 test) (B) Means from (A) reported as a frequency heat map for static (left) and FSS (right).
419 Data was acquired from three independent replicates and total of n_{Stat} = 21 cells and n_{FSS}
420 = 18 cells. (C) FSS upregulates clathrin dynamics and promotes FTC vesicle formation
421 in HUVECs.