

1 **HortGenome Search Engine, a universal genomic search engine for horticultural crops**

2
3 Sen Wang^{1,2,#}, Shangxiao Wei^{1,2,#}, Yuling Deng^{1,2}, Shaoyuan Wu^{1,2}, Haixu Peng^{1,2}, You Qing^{1,2},
4 Xuyang Zhai^{1,2}, Shijie Zhou^{1,2}, Jinrong Li^{1,2}, Hua Li^{1,2}, Yijian Feng^{1,2}, Yating Yi^{1,2}, Rui Li^{1,2}, Hui
5 Zhang^{1,2}, Yiding Wang⁵, Renlong Zhang⁵, Lu Ning^{2,6}, YunCong Yao^{1,*}, Zhangjun Fei^{3,4,*}, Yi
6 Zheng^{1,2,*}

7
8 ¹Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant
9 Science and Technology, Beijing University of Agriculture, Beijing, China 102206

10 ²Bioinformatics Center, Beijing University of Agriculture, Beijing, China 102206

11 ³Boyce Thompson Institute, Cornell University, Ithaca, NY 14853

12 ⁴USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853

13 ⁵College of Intelligent Science and Engineering, Beijing University of Agriculture, Beijing,
14 China, 102206

15 ⁶Library, Beijing University of Agriculture, Beijing, China, 102206

16

17 [#]These authors contributed equally to the work.

18 Sen Wang, wangsen@moilab.net

19 Shangxiao Wei, wsx22@moilab.net

20 Yuling Deng, jiapengyou@moilab.net

21 Shaoyuan Wu, wushaoyuan@moilab.net

22 Haixu Peng, holdianmiss@moilab.net

23 You Qing, qingyou@moilab.net

24 Xuyang Zhai, 0weixiao1@moilab.net

25 Shijie Zhou, zsj@moilab.net

26 Jinrong Li, ljr22@moilab.net

27 Hua Li, lh22@moilab.net

28 Yijian Feng, fyj22@moilab.net

29 Yating Yi, yyt22@moilab.net

30 Rui Li, lr22@moilab.net

31 Hui Zhang, 18076158874@moilab.net

32 Yiding Wang, wyd1021244674@gmail.com

33 Renlong Zhang, zrl@bua.edu.cn

34 Lu Ning, ninglu@bua.edu.cn

35

36 *Correspondence:

37 Yuncong Yao (yaoyc_20@126.com), Phone number: +8613910831039, Fax: +8601080769125;

38 Zhangjun Fei (zf25@cornell.edu), Phone number: +16072543234, Fax: +16072541234;

39 Yi Zheng (yz@moilab.net), Phone number: +8618535137613, Fax: +8601080769125;

40

41 **Running title (50 characters)**

42 Searching Horticultural Genomic Data

43

44 **Abstract**

45 Horticultural crops comprising fruit, vegetable, ornamental, beverage, medicinal and aromatic
46 plants play essential roles in food security and human health, as well as landscaping. With the
47 advances of sequencing technologies, genomes for hundreds of horticultural crops have been
48 deciphered in recent years, providing a basis for understanding gene functions and regulatory
49 networks and for the improvement of horticultural crops. However, these valuable genomic data
50 are scattered in warehouses with various complex searching and displaying strategies, which
51 increases learning and usage costs and makes comparative and functional genomic analyses
52 across different horticultural crops very challenging. To this end, we have developed a
53 lightweight universal search engine, HortGenome Search Engine (HSE; <http://hort.moilab.net>),
54 which allows querying genes, functional annotations, protein domains, homologs, and other
55 gene-related functional information of more than 400 horticultural crops. In addition, four
56 commonly used tools, including 'BLAST', 'Batch Query', 'Enrichment analysis', and 'Synteny
57 Viewer', have been developed for efficient mining and analysis of these genomic data.

58

59

60 **Introduction**

61 Horticultural crops comprise fruits, vegetables, floricultural and ornamental plants, as well as
62 beverage, medicinal and aromatic plants, and have played critical roles in food supply, human
63 health, and beautifying landscapes. With the growing human population, new demands are
64 placed on the yield, quality, diversity, and nutritional value of horticultural crops. Decoding the
65 genomes of horticultural crops not only provides an opportunity to investigate gene functions
66 and regulatory networks^{1,2}, but also serves as the cornerstone for functional and comparative
67 genomics studies^{3,4} and paves a path to resolve complex QTLs of important horticultural traits⁵.
68 Advanced genome editing technologies have been demonstrated in recent years to have a great
69 potential for improving the quality and yield of horticultural crops⁶, and reference genomes
70 provide precise sequences for the application of genome editing technologies. Thus, genome
71 sequencing plays a crucial role in horticultural crop improvement, and serves as an important
72 foundation for understanding the history of crop domestication and evolution.

73 With the rapid advances of sequencing technologies, especially the PacBio HiFi long-read
74 sequencing technology, various horticultural crop genomes have been deciphered, including
75 those with high heterozygosity and polyploidy levels. To store, mine, and analyze the large-scale
76 genomics data of horticultural crops, numerous databases have been developed, such as Sol
77 Genomics Network (SGN), Genome Database for Rosaceae (GDR), Cucurbit Genomics
78 Database (CuGenDB), among others⁷⁻¹⁰. Most of these databases manage genomic data for
79 plants from a single-family or species¹¹. Therefore, the genomic resources of horticultural crops
80 are scattered in different databases, and these databases exhibit different ways of presenting and
81 utilizing results, resulting in certain difficulties for users, especially in terms of searching tools
82 that differ in complexity and functionality. This creates a learning curve for users seeking to
83 search, browse, and conduct comparative analysis of genomic data across a broader range of
84 plant species.

85 In recent years, there has been an increasing focus on using search engines to explore the
86 genetic makeup of plants¹². This has proven to be an invaluable tool for researchers who are

87 interested in studying plant genomics, functional genomics, and molecular assisted breeding. To
88 this end, we have developed the HortGenome Search Engine (HSE; <http://hort.moilab.net>), a
89 lightweight universal search engine for the genomic data of horticultural crops. Compared to
90 other genomic databases, it stands out for its search engine-like interface that allows users to
91 easily search genomic data without requiring prior knowledge. Currently, the searchable genomic
92 data includes species information, gene sequences, comprehensive functional annotations, and
93 homologous gene pairs. The HortGenome Search Engine contains data of 434 genome
94 assemblies for horticultural crops covering fruit trees, vegetables, ornaments, and beverage
95 plants, as well as model plant species, *Arabidopsis* and rice. In addition to the searching function,
96 several commonly used genomic data mining and analysis tools have been implemented in HSE,
97 including 'BLAST', 'Batch Query', 'Enrichment analysis', and 'Synteny Viewer'.
98

99 **DATABASE CONTENTS AND FEATURES**

100 **Preparation of genomic data**

101 More than 1000 genome assemblies of nearly 800 plant species have been sequenced and
102 published by the end of 2021^{13,14}. Genomic data of horticultural crops, including the genome
103 sequences, gene structure annotations in general feature format (GFF), and mRNA, coding (CDS)
104 and protein sequences of protein-coding genes, were collected from plant genomics, comparative
105 genomics, and plant family-specific databases, such as Phytozyme¹⁵, Ensembl Plants¹⁶, Genome
106 Warehouse in National Genomics Data Center¹⁷, SGN⁷, GDR⁸ and others. For some genome
107 assemblies, only the genome sequences and GFF files are available; therefore, the corresponding
108 mRNA, CDS and protein sequences were extracted using the gffread program¹⁸. We further
109 performed quality control on the collected genomic data to ensure the accuracy of the data to be
110 included in the database. For example, genome assemblies that lack a GFF file or have an
111 inaccurate GFF file in which the numbers of genes or gene IDs were inconsistent with the
112 corresponding mRNA, CDS and protein sequence files, were excluded. Finally, a total of 434
113 genome assemblies for horticultural crops, as well as the model plant species *Arabidopsis* and

114 rice, were collected and included in the database (Table S1). Besides the genomic data, the
115 taxonomy information, statistics of genome assemblies, associated publications, and images of
116 the plant species, have also been collected from the PlaBiPD database (<https://www.plabipd.de/>),
117 published manuscripts, and other data sources, and included in the database.

118

119 **Gene functional annotation**

120 We used the pipeline described in our previous studies^{9,19} to generate comprehensive functional
121 annotations for all protein-coding genes of the collected genome assemblies of horticulture plants.
122 Briefly, protein sequences of the predicted genes were blasted against the GenBank
123 non-redundant (nr), UniProt (TrEMBL and SwissProt), and Arabidopsis protein databases using
124 DIAMOND²⁰ with an E-value cutoff of 1e-4. Based on the identified homologs from the UniProt
125 and Arabidopsis protein databases, concise and informative functional descriptions were
126 assigned to each gene using the AHRD program (<https://github.com/groupschoof/AHRD>).
127 Protein sequences were further compared against the InterPro database using InterProScan²¹ to
128 identify functional protein domains. Transcription factors (TFs), transcriptional regulators (TRs),
129 and protein kinases (PKs) were identified using the iTAK pipeline²².

130 To generate GO and KEGG pathway annotations for functional enrichment analyses, protein
131 sequences were compared against the EggNOG database using eggNOG-mapper²³. The assigned
132 GO terms of genes/transcripts retrieved from the eggNOG-mapper results were converted to the
133 GO Annotation File (GAF) format. In the eggNOG-mapper results, some non-plant KEGG
134 pathways were assigned to plant genes/transcripts. For example, the tomato gene
135 *Solyc09g008400*, which encodes a serine/threonine protein phosphatase 2A regulatory subunit
136 protein, was assigned to map05165, the human papillomavirus infection pathway. These
137 non-plant pathways were manually identified and removed from the eggNOG-mapper results.

138

139 **Synteny blocks and homologous gene pairs**

140 Identifying synteny blocks and homologous gene pairs within or across genomes lays the

141 groundwork for discovering and dating ancient genomic evolution events, as well as for inferring
142 gene functions²⁴. Detection of synteny blocks among all the 434 genomes would yield more than
143 90,000 pairwise genome comparisons, which is time-consuming and computationally not
144 feasible. Therefore, in our study syntenic blocks and homologous gene pairs were identified only
145 between any two genome assemblies from species within the same family, and within each
146 genome assembly. In addition, synteny blocks and gene pairs were also identified between any
147 genome assemblies and their corresponding model plants, i.e., *Arabidopsis* for eudicot plants and
148 rice for monocot plants. Briefly, the CDS of each genome were arranged in the order based on
149 the GFF file, and then the CDS from different chromosomes, linkage groups, or scaffolds of the
150 two compared genomes were aligned using the LASTZ program with default parameters.
151 Syntenic blocks and homologous gene pairs were then identified using the python version of
152 MCScanX²⁵, which implements a new BLAST filter to remove weak synteny regions and
153 tandem duplications²⁴. In the end, a total of 1,832,351 synteny blocks and 413 million
154 homologous gene pairs were identified from 6,994 pairwise genome comparisons and imported
155 into the back-end database.

156

157 **Data integration and indexing**

158 Genome sequences, gene structures, and functional descriptions are imported into MongoDB, a
159 popular NoSQL document database (<https://www.mongodb.com/>). Currently the database
160 contains more than 34 million records of genes and transcripts from 434 genome assemblies. The
161 top BLAST hits (homologs), GO terms, and InterPro domains assigned to each protein-coding
162 gene have been imported into MongoDB, resulting in more than 126 million records in the
163 database for searching. Indexing of gene/transcript IDs, functional descriptions, GO and Interpro
164 terms, and TF/TR and protein kinase family names has been performed in the database, allowing
165 for efficient search of large amounts of data. The interactive web interfaces have been developed
166 using the Flask web framework and HTML.

167

168 **DATABASE FUNCTIONS**

169 **Search interface**

170 To enhance user convenience in searching large-scale genomic data of horticultural crops, we
171 have designed the search page to resemble popular search engines such as Google and Microsoft
172 Bing. Multiple search methods have been streamlined into a single search box, thereby allowing
173 users to search for genes of interest by entering various types of keywords and other related
174 information, without requiring any prior experience or specialized training (Figure 1A).
175 Currently, the keywords could be the name of the species and gene, gene ID, the functional
176 description of the gene, the family name of the transcription factor or protein kinase, or the GO
177 or IPR ID. It is acknowledged that scientific names of crop species may be challenging to enter
178 accurately than common names. Additionally, it is often difficult for users to remember precise
179 information, such as IDs for genes, GO and IPR terms. To address this issue, we have
180 implemented an auto-completion function for entering keywords. This feature prompts users
181 with suggestions based on the information stored in the backend database after entering 2-3
182 characters, aiding in the accurate entry of information mentioned above. For example, when
183 users search for tomato genetic information, they can use the common name ‘tomato’ or the
184 Latin name ‘*Solanum lycopersicum*’ for the query. When entering the first few characters, the
185 HSE will automatically prompt and complete the corresponding name for users to choose (Figure
186 1B). After selecting species keywords, users can enter other keywords such as gene ID, gene
187 name, gene functional description, etc (Figure 1C-E).

188 The search returns a gene list with the corresponding species name, gene/transcript IDs,
189 gene locations, and gene functional descriptions (Figure 1F). The species name and
190 gene/transcript IDs are linked to the corresponding genome page of the species and
191 gene/transcript pages, respectively. In addition, if user enters a keyword that combines the name
192 of a species and the name of a specific TF/TR/PK family (Figure 1E), the results will directly
193 return to the corresponding gene family page of the species (Figure 3).

194

(A) Searching Horticultural Genomic Data

tomato

Quick Guide for Search

- Update the search function. [May 24 2023]
- Added genomic data for ~ 70 plants, please check the detailed information through the genome list. [Jan 21 2023]
- Added genomic data for more than 100 plants, please check the detailed information through the genome list. [Jan 06 2023]
- Call for papers to our article collection, *Growth Regulation in Horticultural Plants: New Insights in the Omics Era* [Oct 09 2022]
- Synteny Viewer is ready to use. [Oct 09 2022]

more news...

(B)

tomato

Sola

Solanum

- Solanum chilense
- Solanum galapagense
- Solanum habrochaites
- Solanum melongena
- Solanum pennellii
- Solanum pimpinellifolium
- Solanum tuberosum
- Solanum lycopersicum cv. LA1673

tomato (LA1673)

tomato (Accession LA0317)

tomato (Accession LA0407)

tomato Heinz 1706 (BTI)

tomato Heinz 1706 (CAU)

Currant tomato (LA2093)

Wild tomato (LA0716)

wild tomato (LA1353)

(C)

tomato Heinz 1706 (BTI) Soly

tomato Heinz 1706 (BTI) Soly

- tomato Heinz 1706 (BTI) Soly:c00g134620.3
- tomato Heinz 1706 (BTI) Soly:c00g024160.3
- tomato Heinz 1706 (BTI) Soly:c00g025290.1
- tomato Heinz 1706 (BTI) Soly:c00g135260.3
- tomato Heinz 1706 (BTI) Soly:c00g094550.1
- tomato Heinz 1706 (BTI) Soly:c00g084750.4
- tomato Heinz 1706 (BTI) Soly:c00g020040.1
- tomato Heinz 1706 (BTI) Soly:c00g007330.1

tomato Heinz 1706 (BTI) EIN

tomato Heinz 1706 (BTI) EIN

tomato Heinz 1706 (BTI) EIN4; ETHYLENE INSENSITIVE 4

Update the search function [May 24 2023]

tomato Heinz 1706 (BTI) ethyle

tomato Heinz 1706 (BTI) ethyle

tomato Heinz 1706 (BTI) Ethylene receptor

tomato Heinz 1706 (BTI) ethylene-responsive nuclear protein / ethylene-regulated nuclear protein (ERT2)

(D)

tomato Heinz 1706 (BTI) GO:

tomato Heinz 1706 (BTI) GO:

- tomato Heinz 1706 (BTI) GO:0000004
- tomato Heinz 1706 (BTI) GO:0000012
- tomato Heinz 1706 (BTI) GO:0000001
- tomato Heinz 1706 (BTI) GO:0000011
- tomato Heinz 1706 (BTI) GO:0000002
- tomato Heinz 1706 (BTI) GO:0000003
- tomato Heinz 1706 (BTI) GO:0000006
- tomato Heinz 1706 (BTI) GO:0000009

tomato Heinz 1706 (BTI) IPR

tomato Heinz 1706 (BTI) IPR

- tomato Heinz 1706 (BTI) IPR000069
- tomato Heinz 1706 (BTI) IPR000033
- tomato Heinz 1706 (BTI) IPR000084
- tomato Heinz 1706 (BTI) IPR000082
- tomato Heinz 1706 (BTI) IPR000071
- tomato Heinz 1706 (BTI) IPR000074
- tomato Heinz 1706 (BTI) IPR000086
- tomato Heinz 1706 (BTI) IPR000009

(E)

tomato Heinz 1706 (BTI) bZIP

tomato Heinz 1706 (BTI) bZIP

tomato Heinz 1706 (BTI) BZIP28, Basic-leucine zipper (bZIP) transcription factor family protein

tomato Heinz 1706 (BTI) bZIP62; bZIP TF 62

tomato Heinz 1706 (BTI) BZIP domain-containing protein

tomato Heinz 1706 (BTI) bZIP

(F)

tomato Heinz 1706 (BTI) ethylene receptor

Quick Guide for Search

Genome	Gene	Transcript	Position	Description
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c01g160010.1	Soly:c01g160010.1.1	SL4.0ch01.15073956-15077087	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c03g123450.1	Soly:c03g123450.1.1	SL4.0ch03.64759746-64759898	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c04g025660.1	Soly:c04g025660.1.1	SL4.0ch04.20096956-20610009	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c04g064840.1	Soly:c04g064840.1.1	SL4.0ch04.55354113-55356953	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c05g055070.4	Soly:c05g055070.4.1	SL4.0ch05.64243793-64248035	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c06g036450.1	Soly:c06g036450.1.1	SL4.0ch05.32384493-23844795	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c06g051610.1	Soly:c06g051610.1.1	SL4.0ch06.32935071-32935571	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c06g053710.3	Soly:c06g053710.3.1	SL4.0ch06.34339644-34343463	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c07g056680.3	Soly:c07g056680.3.1	SL4.0ch07.64306662-64313264	Ethylene receptor
Solanum lycopersicum (tomato Heinz 1706 (BTI))	Soly:c08g068360.1	Soly:c08g068360.1.1	SL4.0ch08.55553847-55554209	Ethylene receptor

Showing 1 to 10 of 20 rows 10 rows per page 1 2 >

195

196 **Figure 1. Search interface and result pages in HortGenome Search Engine. (A-E)**

197 Screenshots of the search interfaces. (F) Gene list of search results, including plant name,

198 gene/transcript ID, genomic location and functional description.

199 **Genome page display**

200 The genome page displays basic information about the plant species and the genome assembly,
201 and is comprised of three sections: taxonomy, genome assembly and annotation, and publication.
202 The taxonomy section provides the scientific name, common name, and taxonomy information
203 of the plant species, and the taxonomy ID is linked to the GenBank taxonomy database. The
204 ‘genome assembly and annotation’ section shows the information about genome assembly size,
205 the numbers of genome sequences, genes, mRNAs, CDS, and proteins, as well as the ploidy level
206 information and the download link of the genome assembly. For the publication section, the title,
207 authors, abstract, and publication date of the corresponding genome paper, which were
208 automatically retrieved from PubMed according to the PubMed Identifier (PMID), are displayed
209 (Figure 2A).

(A)

Taxonomy	
Scientific name	<i>Solanum lycopersicum</i> cv. Heinz 1706
Common name	tomato Heinz 1706 (BT)
Order	Solanales
Family	Solanaceae
Genus	<i>Solanum</i>
Species	<i>Lycopersicum</i>
Subspecies	Unknown
Variety	Unknown
Cultivar	Heinz 1706

Genome assembly and annotation	
Ploidy	diploid
Haplotype resolved	No
Genotype samples	12
Genome size	782.52 Mb
No. protein-coding genes	34688
No. mRNAs	34688
No. CDSs	34688
No. proteins	34688
Download	hort-bb.cornell.edu/

Publication	
Title	The tomato genome sequence provides insights into fleshy fruit evolution.
Authors	The Tomato Genome Consortium
Date	2012 May 30
PMID	22980232
Abstract	Tomato (<i>Solanum lycopersicum</i>) is a major crop plant and a model system for fruit development. <i>Solanum</i> is one of the largest angiosperm genera and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, <i>Solanum pimpinellifolium</i> , and compare them to each other and to the potato genome (<i>Solanum tuberosum</i>). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with potato, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling characteristics, such as colour and freshness.

(B)

Transcription Factors							
Af1n-like (10)	AP2/ERF-AP2 (20)	AP2/ERF-ERF (14)	AP2/ERF-RAV (3)	B3 (84)	B3-ARF (20)		
BBR-BPF (6)	BS1 (9)	BHLH (14)	BSD (1)	bZIP (10)	C2C2-CO-like (13)		
C2C2-Dnf (31)	C2C2-GATA (32)	C2C2-LSD (3)	C2C2-YABBY (9)	C3H (85)	C3H2 (124)		
CAMP (1)	COP (4)	EDF (1)	EDF (1)	DEP (7)	DDT (1)		
EDF-EP (8)	ELF (9)	FAR1 (38)	GARP-ARR-B (11)	GARP-O2-like (54)	GARP (10)		
GRAS (54)	GRF (11)	HD-BELL (14)	HD-HD-ZIP (49)	HB-KNOX (7)	HB-other (24)		
HB-PHD (2)	HB-IXOX (11)	HRT (1)	HSP (26)	LFT (1)	LIM (10)		
LOB (63)	MADS-MyB (142)	MADS-MHC (25)	MVB (135)	MVB-related (81)	NAC (94)		
NP-X1 (2)	NP-YA (10)	NP-YB (25)	NT-YC (21)	OPR (24)	PLATZ (27)		
RWRP (11)	SBP (1)	SBP (1)	SBP (13)	SRS (6)	STAT (1)		
TCP (35)	TFY (20)	Trinect (28)	TUB (18)	ULT (3)	VGD (2)		
Wheely (2)	WRKY (83)	zHD (35)					
Transcriptional Regulators							
ARID (10)	AUX/IAA (24)	Coactivator p15 (2)	GNAT (41)	HMG (7)	INSL1 (9)		
Junmy (19)	LUQ (5)	MLD1 (5)	MLD1 (2)	MLD7 (1)	mTERP (32)		
Others (72)	PHD (39)	Pseudo ARR-B (5)	RB (1)	Rsd1-like (20)	SET (42)		
SNF2 (60)	SOH1 (1)	SWI/SNF-BAF60a (15)	SWI/SNF-SWI3 (6)	TAZ (9)	TRAF (17)		
Protein Kinases							
Protein kinase family Tree: (i) Collapse All (ii) Expand All Toggle All							
* Group AOC							
* Group CAMK							
* Group CK1							
* Group CMGC							
* Group Others							
* Group Plant-specific							
* Group RLRK-Pede							
* Group STE							
* Group TNL							

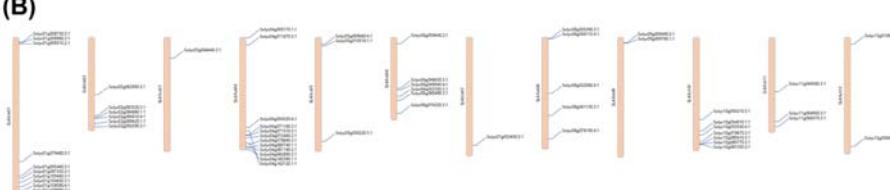
210
211 **Figure 2. Genome page in HortGenome Search Engine. (A)** Screenshot of the genome page
212 containing the genome information and picture of the plant. **(B)** Screenshot of the genome page
213 containing transcription factors, transcriptional regulators, and protein kinases identified from the
214 genome.

215
216 On the genome page, an additional pagination is available to display the names and numbers of
217 transcription factors, transcriptional regulators, and protein kinases identified for the selected
218 genome (Figure 2B). Clicking on a family name directs to the corresponding gene family page.

219

220 **Gene family page display**

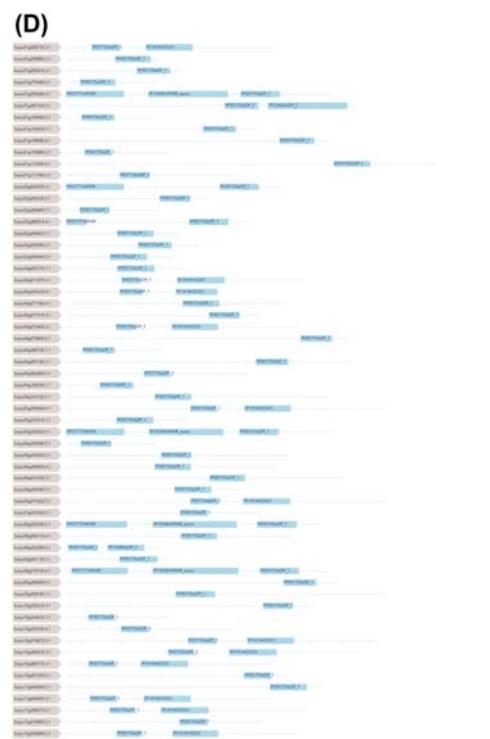
(A)


Show 10 entries Search:

Genome	Gene	Transcript	Position	Description
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g008730.3	Solyc01g008730.3.1	SL4.0ch01.2712469-2721972	Transcription factor like
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g008980.3	Solyc01g008980.3.1	SL4.0ch01.2942640-2946854	ABSCISIC ACID-INSENSITIVE 5-like protein
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g009510.2	Solyc01g009510.2.1	SL4.0ch01.3716336-3722023	BZIP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g079480.3	Solyc01g079480.3.1	SL4.0ch01.71097204-71098337	BZIP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g095460.3	Solyc01g095460.3.1	SL4.0ch01.78964254-78970833	BZIP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g097330.3	Solyc01g097330.3.1	SL4.0ch01.80488031-80493888	BZIP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g100460.3	Solyc01g100460.3.1	SL4.0ch01.82746623-82747895	BZIP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g104650.3	Solyc01g104650.3.1	SL4.0ch01.85389147-85392687	BZIP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g108080.4	Solyc01g108080.4.1	SL4.0ch01.87747886-87750279	Abscisic acid-insensitive 5-like protein
Solanum lycopersicum (tomato Heinz 1706 (BT1))	Solyc01g109880.3	Solyc01g109880.3.1	SL4.0ch01.89070701-89071778	BZIP domain-containing protein

Showing 1 to 10 of 60 entries Previous 1 2 3 4 5 6 Next

Download [Gene List](#) [CDS](#) [Protein](#) [Promoter \(2K\)](#)


(B)

(C)

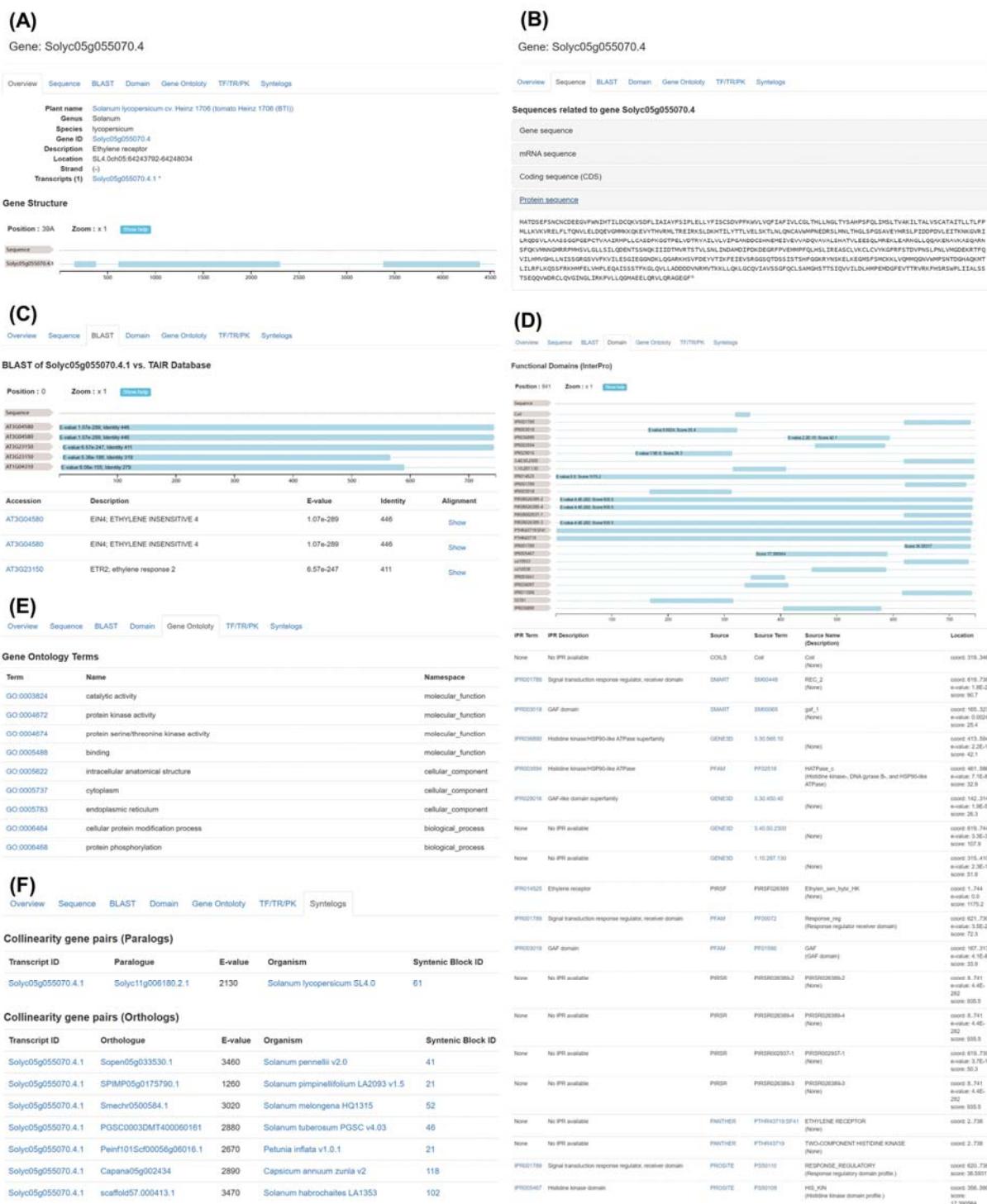
(D)

221

222 **Figure 3. Gene family page in HortGenome Search Engine.** Screenshots of the list and

223 download links (**A**), locations on chromosomes (**B**), structure (**C**) and functional domains (**D**) of
224 the tomato bZIP family genes.

225


226 The gene family page displays homologous genes belonging to the same family, as well as gene
227 location, structure, and functional domains. At present, only genes from the transcription factor,
228 transcriptional regulator, and protein kinase families identified by iTAK²² can be searched and
229 displayed. For example, searching for the bZIP transcription factor of tomato will display all 60
230 bZIP genes identified in the genome. The page provides download links to retrieve gene list,
231 CDS, protein, and promoter sequences of these bZIP genes (Figure 3A). The location of genes on
232 chromosomes, gene structure, and protein functional domains are valuable information to study
233 gene families. Therefore, the gene family page of HSE displays the images of gene location,
234 structure, and protein functional domains for these homologous genes (Figure 3B-D), which
235 provide convenience for studying the function and evolution of the corresponding gene families.

236

237 **Gene and transcript page display**

238 Each gene or transcript has a detailed feature page that contains all the related sequences and
239 annotation information. The gene feature page forms different paginations based on the content
240 types (Figure 4). The overview pagination contains information about plant species, gene ID,
241 location, strand, and functional description, as well as transcripts belonging to this gene. The
242 gene structure is represented by its primary transcript and displayed using FeatureViewer²⁶
243 (Figure 4A). The sequence pagination contains gene, mRNA (primary transcript), CDS, and
244 protein sequences (Figure 4B). In the BLAST pagination, it shows the top 5 homologs identified
245 from the GenBank, UniProt, and TAIR databases, respectively. The BLAST hit accession IDs are
246 linked to the corresponding databases, which allow users to access the expression, interaction,
247 protein structure, and other information of the homologous genes from other databases. The
248 detailed sequence alignment of the BLAST result is shown in a popup page when clicking the
249 ‘Show’ link (Figure 4C). The domain pagination lists the functional domains identified from the

250 protein sequence of this gene (Figure 4D). The gene ontology pagination lists the GO terms
 251 assigned to this gene and

254 containing basic information and gene structure. **(B)** Screenshot of the gene page containing gene,
255 mRNA, CDS, and protein sequences. **(C)** Screenshot of the homolog genes and sequence
256 alignments from the BLAST results. **(D)** Screenshot of the functional domains predicted from the
257 protein sequence of the gene. **(E)** Screenshot of the GO terms assigned to the gene. **(F)**
258 Screenshot of the gene page containing collinear gene pairs.

259
260 the GO IDs are linked to the AmiGO database which provides details of the GO terms (Figure
261 4E). The TF/TR/PK pagination shows the family name if the gene is identified as belonging to a
262 specific TF/TR/PK family, which is linked to the corresponding gene family page. The syntelog
263 pagination contains the collinear gene pairs and syntenic blocks related to this gene (Figure 4F).

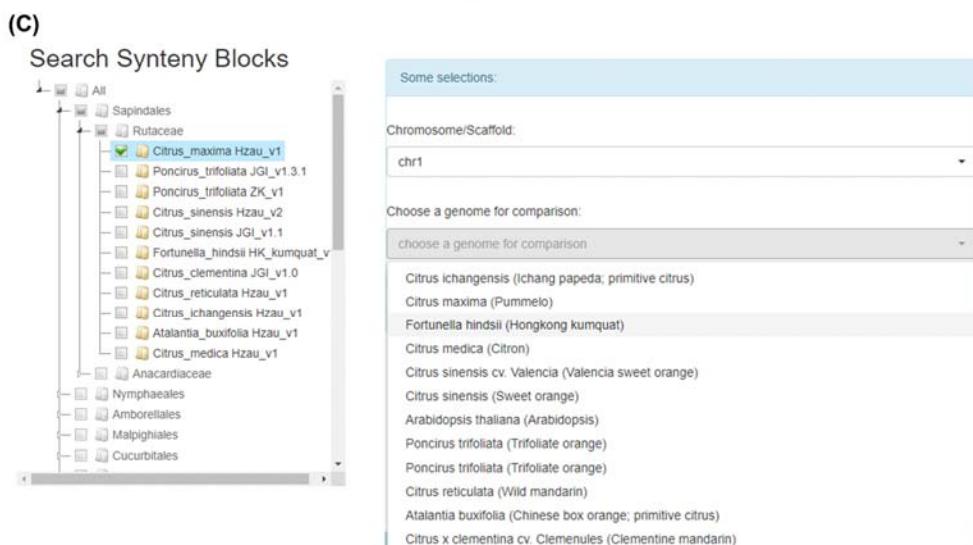
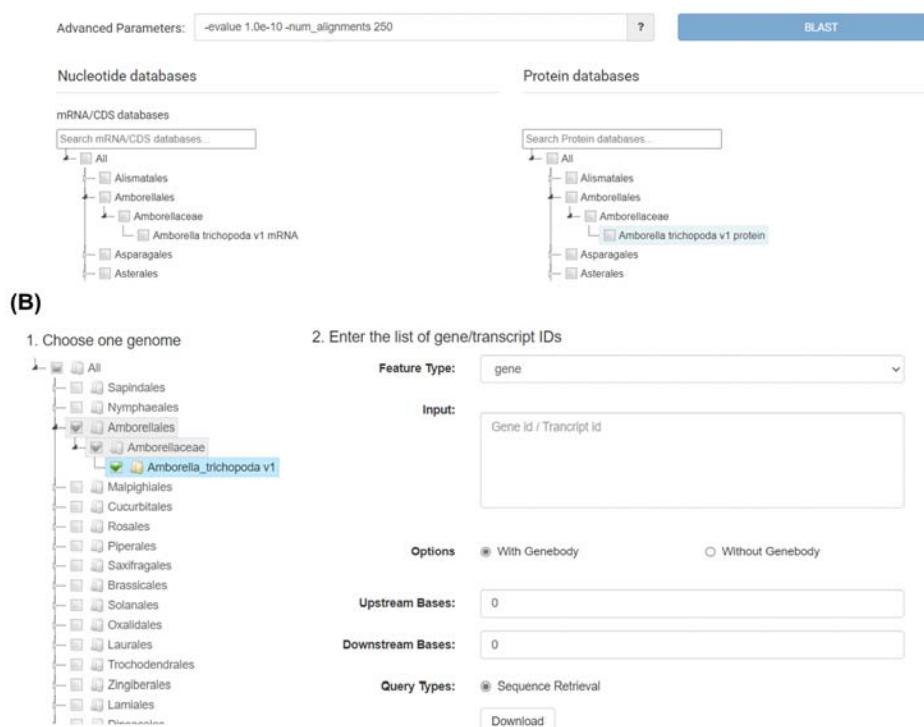
264
265 **BLAST**

266 We implemented the online BLAST tool, one of the most widely used tools in genome databases,
267 using the SequenceServer²⁷. In the query interface, the indexed genomes are organized in a
268 hierarchical taxonomy display using jsTree (<https://www.jstree.com/>). The BLAST indexed
269 databases are categorized into nucleotide and protein databases. The nucleotide databases include
270 the BLAST indexes for genome and mRNA/CDS sequences, and protein databases contain all
271 indexes of protein sequences. With this interface, the BLAST search can be performed more
272 flexibly (Figure 5A). For example, by providing a DNA or protein sequence, the user can search
273 against the sequences from a single plant species, or across the entire genus and family, or all
274 plant species in the database. This provides a useful tool for studying gene function and
275 evolution.

276
277 **Batch Query**

278 Genomic and functional genomic studies typically generate large lists of interesting genes, and
279 retrieving nucleotide or protein sequences and functional annotations of these genes for
280 downstream analyses is essential to understand the underlying biological processes. Similar to

281 the online BLAST tool, a hierarchical taxonomy tree is provided in the ‘Batch Query’ interface
282 for easily selecting the genome to be analyzed. The query options will be changed dynamically
283 according to the selected feature type. By selecting the ‘gene’ feature type, sequences containing
284 exons, introns and the upstream and downstream sequences of a list of genes can be extracted
285 (Figure 5B). By selecting ‘mRNA’ or ‘protein’ feature type, in addition to extracting mRNA and
286 protein sequences, the query also allows for retrieving functional descriptions, and family
287 information for TFs, TRs and PKs.



288

289 **Enrichment analysis**

290 Genomic and functional genomic analyses are capable of producing extensive lists of genes that
291 are of interest. However, it is crucial to translate these lists into biologically relevant information
292 to gain a deeper understanding of the underlying molecular mechanisms of the related biological
293 processes. Enrichment analysis is a potent method that can be employed to identify classes of
294 genes that are overrepresented in a list of genes. This approach enables the identification of
295 highly dynamical biological processes or biochemical pathways under specific experimental
296 conditions or developmental stages. In order to facilitate the enrichment analysis of gene and
297 transcript data for hundreds of genomes, a hierarchical taxonomy tree has been constructed for
298 the ‘GO Enrichment Analysis’ and ‘KEGG Enrichment Analysis’ tools, utilizing the same
299 structure as that used in BLAST and ‘Batch Query’. The ‘GO Enrichment Analysis’ tool has been
300 implemented through the use of the Perl module GO::TermFinder, which employs the
301 hypergeometric distribution test to determine enriched GO terms²⁸. Similarly, the ‘KEGG
302 Enrichment Analysis’ tool has been developed using KEGG pathways assigned to genes via
303 eggNOG-mapper, with enrichment significance calculated through the hypergeometric distribution
304 test. The resulting enrichment analysis output page provides a list of enriched GO terms and
305 KEGG pathway names, with links to the relevant GO and KEGG databases^{29,30}. Additionally,
306 genes corresponding to each enriched GO term or KEGG pathway are included with links to
307 relevant gene pages in HSE. Overall, GO and KEGG enrichment analyses are essential tools for

308 the interpretation of genomic and functional genomic data, and their use is critical for advancing
309 our understanding of complex biological systems.

310

311

312 **Figure 5. Query interfaces of data mining tools in HortGenome Search Engine. (A)**
313 Screenshot of the BLAST query page. **(B)** Search interface of ‘Batch Query’. **(C)** Search
314 interface of ‘Synteny Viewer’.

315 **Synteny Viewer**

316 We have previously developed ‘Synteny Viewer’ as an extension module of Tripal to view
317 genome synteny and homologous gene pairs between different cucurbit genomes⁹. The tool has
318 been adopted by many genome databases, including Genome Database for Rosaceae
319 (<https://www.rosaceae.org>)⁸, ZEAMAP (<http://zeemap.com>)³¹, etc. In HSE, the ‘Synteny Viewer’
320 has been re-implemented using Python/FLASK for managing the large amount of comparative
321 genomic data generated from hundreds of plant genomes. To facilitate the search of massive
322 amount of synteny blocks and homologous gene pairs, the genome selection form is designed
323 with genomes well organized through a hierarchical taxonomy tree. The chromosome/scaffold
324 selection drop-down list and the compared genome drop-down list will be automatically updated
325 according to the selected genome (Figure 5C). The search result provides a circos plot that
326 displays synteny blocks for query and compared chromosomes/scaffolds. Each synteny block is
327 linked to a complete list of homologous gene pairs within the block, and each gene is linked to
328 the detailed gene feature page mentioned above.

329

330 **CONCLUSIONS AND FUTURE DIRECTIONS**

331 We have developed a universal search engine, HSE, that allows querying genes, functional
332 annotations, and homologous gene pairs for hundreds of genomes of horticultural crops. More
333 than 16 million genes with comprehensive functional annotations as well as 1,832,351 synteny
334 blocks and 413 million homologous gene pairs from 434 genome assemblies are stored in
335 NoSQL document-oriented database for searching. It is worth mentioning that multiple indexes
336 have been established on the document-oriented database to facilitate users to search genes in a
337 more flexible way through a simple search box, which sets HSE apart from other plant genomic
338 databases. Furthermore, several popular data mining tools of genomic databases have been

339 implemented in HSE, including enrichment analysis of GO terms and KEGG pathways, 'Batch
340 Query' for retrieving gene sequences and functional annotations, 'Synteny Viewer', and BLAST.

341 We will continue to collect genomic data of horticultural crops for HSE. HSE will be
342 updated every six months or new horticultural genomes are available. In addition, users can
343 submit genomes to HSE by contacting us. In the future, we will expand the scope of data search
344 to cover other omics data such as gene regulatory networks, gene expression, genotype and
345 phenotype. Furthermore, additional online data mining and visualization tools based on the
346 horticultural crop genomes will be implemented in HSE.

347

348 **Acknowledgements**

349 We thank Bo Yuan at Lianzhi Technology Co., Ltd. for assistance with computing acceleration.
350 This work was supported by grants from the Beijing University of Agriculture (Start-up fund) to
351 Y.Z., Young Teachers' Research and Innovation Capacity Enhancement Program QJKC2022044
352 and Beijing Municipal Education Commission Scientific Research Plan Project
353 KM202310020010 to S.W. The computing power was supported by the Alibaba Cloud.

354

355 **Contributions**

356 Z. Fei and Y. Zheng designed the project. S. Wei, Y. Deng, S. Wu, H. Peng, X. Zhai, S. Zhou, J.
357 Li, H. Li, Y. Feng, Y. Yi, R. Li, H. Zhang, Y. Wang, R. Zhang, L. Ning, and Y. Zheng
358 performed data collection. S. Wei, Y. Qing, H. Peng, and S. Wang performed data analysis. S.
359 Wei and Y. Zheng wrote the code for database construction. Y. Yao, Z. Fei, and Y. Zheng
360 supervised the project and wrote the manuscript. All authors read and approved the final
361 manuscript.

362

363 **Data availability statement**

364 All datasets have been made publicly available at <http://hort.moilab.net/>

365

366 **Conflict of interest**

367 The authors declare that they have no conflict of interest.

368

369 **Supplementary data**

370 Supplementary data is available at Horticulture Research online.

371

372 **Reference:**

373 1 Nurk S, Walenz BP, Rhee A *et al.* HiCanu: Accurate assembly of segmental duplications,
374 satellites, and allelic variants from high-fidelity long reads. *Genome Res* 2020; **30**:
375 1291–1305.

376 2 Sun X, Jiao C, Schwaninger H *et al.* Phased diploid genome assemblies and pan-genomes
377 provide insights into the genetic history of apple domestication. *Nat Genet* 2020 **52**:
378 2020; **52**: 1423–1432.

379 3 Song X, Liu Z, Wan H, Chen W, Zhou R, Duan W. Editorial: Comparative genomics and
380 functional genomics analyses in plants. *Front Genet* 2021; **12**: 618.

381 4 Wang X, Gao L, Jiao C *et al.* Genome of Solanum pimpinellifolium provides insights into
382 structural variants during tomato breeding. *Nat Commun* 2020; **11**: 5817.

383 5 Alonge M, Wang X, Benoit M *et al.* Major impacts of widespread structural variation on
384 gene expression and crop improvement in tomato. *Cell* 2020; **182**: 145–161.e23.

385 6 Xu J, Hua K, Lang Z. Genome editing for horticultural crop improvement. *Hortic Res*
386 2019; **6**: 113.

387 7 Fernandez-Pozo N, Menda N, Edwards JD *et al.* The Sol Genomics Network
388 (SGN)—from genotype to phenotype to breeding. *Nucleic Acids Res* 2015; **43**:
389 D1036–D1041.

390 8 Jung S, Lee T, Cheng CH *et al.* 15 years of GDR: New data and functionality in the
391 Genome Database for Rosaceae. *Nucleic Acids Res* 2019; **47**: D1137–D1145.

392 9 Zheng Y, Wu S, Bai Y *et al.* Cucurbit Genomics Database (CuGenDB): a central portal
393 for comparative and functional genomics of cucurbit crops. *Nucleic Acids Res* 2019; **47**:
394 D1128–D1136.

395 10 Yu J, Wu S, Sun H *et al.* CuGenDBv2: an updated database for cucurbit genomics.
396 *Nucleic Acids Res* 2023; **51**: D1457–D1464.

397 11 Chen F, Song Y, Li X *et al.* Genome sequences of horticultural plants: past, present, and
398 future. *Hortic Res* 2019; **6**: 112.

399 12 Esch M, Chen J, Colmsee C *et al.* LAILAPS: the plant science search engine. *Plant Cell
400 Physiol* 2015; **56**: e8.

401 13 Marks RA, Hotaling S, Frandsen PB, VanBuren R. Representation and participation
402 across 20 years of plant genome sequencing. *Nat Plants* 2021; **7**: 1571–1578.

403 14 Sun Y, Shang L, Zhu QH, Fan L, Guo L. Twenty years of plant genome sequencing:
404 achievements and challenges. *Trends Plant Sci* 2022; **27**: 391–401.

405 15 Goodstein DM, Shu S, Howson R *et al.* Phytozome: a comparative platform for green
406 plant genomics. *Nucleic Acids Res* 2012; **40**: D1178–D1186.

407 16 Bolser DM, Staines DM, Perry E, Kersey PJ. Ensembl Plants: Integrating tools for
408 visualizing, mining, and analyzing plant genomic data. *Methods Mol Biol* 2017; **1533**:
409 1–31.

410 17 Chen M, Ma Y, Wu S *et al.* Genome Warehouse: A public repository housing
411 genome-scale data. *Genomics Proteomics Bioinformatics* 2021; **19**: 584–589.

412 18 Trapnell C, Williams BA, Pertea G *et al.* Transcript assembly and quantification by

413 RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
414 *Nat Biotechnol* 2010; **28**: 511–515.

415 19 Yue J, Liu J, Tang W *et al.* Kiwifruit Genome Database (KGD): a comprehensive
416 resource for kiwifruit genomics. *Hortic Res* 2020; **7**: 117.

417 20 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND.
418 *Nat Methods* 2015; **12**: 59–60.

419 21 Mitchell AL, Attwood TK, Babbitt PC *et al.* InterPro in 2019: improving coverage,
420 classification and access to protein sequence annotations. *Nucleic Acids Res* 2019; **47**:
421 D351–D360.

422 22 Zheng Y, Jiao C, Sun H *et al.* iTAK: A program for genome-wide prediction
423 and classification of plant transcription factors, transcriptional regulators, and protein
424 kinases. *Mol Plant* 2016; **9**: 1667–1670.

425 23 Huerta-Cepas J, Szklarczyk D, Heller D *et al.* eggNOG 5.0: a hierarchical, functionally
426 and phylogenetically annotated orthology resource based on 5090 organisms and 2502
427 viruses. *Nucleic Acids Res* 2019; **47**: D309–D314.

428 24 Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in
429 plant genomes. *Science* 2008; **320**: 486–488.

430 25 Wang Y, Tang H, Debarry JD *et al.* MCScanX: a toolkit for detection and evolutionary
431 analysis of gene synteny and collinearity. *Nucleic Acids Res* 2012; **40**: e49.

432 26 Garcia L, Yachdav G, Martin MJ. FeatureViewer, a BioJS component for visualization
433 of position-based annotations in protein sequences. *F1000Research* 2014; **3**: 47.

434 27 Priyam A, Woodcroft BJ, Rai V *et al.* Sequenceserver: A modern graphical user interface
435 for custom BLAST databases. *Mol Biol Evol* 2019; **36**: 2922–2924.

436 28 Boyle EI, Weng S, Gollub J *et al.* GO::TermFinder--open source software for accessing
437 Gene Ontology information and finding significantly enriched Gene Ontology terms
438 associated with a list of genes. *Bioinformatics* 2004; **20**: 3710–3715.

439 29 Carbon S, Douglass E, Dunn N *et al.* The Gene Ontology Resource: 20 years and still
440 GOing strong. *Nucleic Acids Res* 2019; **47**: D330–D338.

441 30 Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating
442 viruses and cellular organisms. *Nucleic Acids Res* 2021; **49**: D545–D551.

443 31 Gui S, Yang L, Li J *et al.* ZEAMAP, a comprehensive database adapted to the maize
444 multi-omics era. *iScience* 2020; **23**: 101241.

445

446

447

448 **FIGURES LEGENDS**

449 **Figure 1. Search interface and result pages in HortGenome Search Engine. (A-E)**

450 Screenshots of the search interfaces. **(F)** Gene list of search results, including plant name,
451 gene/transcript ID, genomic location and functional description.

452

453 **Figure 2. Genome page in HortGenome Search Engine. (A)** Screenshot of the genome page
454 containing the genome information and picture of the plant. **(B)** Screenshot of the genome page
455 containing transcription factors, transcriptional regulators, and protein kinases identified from the
456 genome.

457

458 **Figure 3. Gene family page in HortGenome Search Engine.** Screenshots of the list and
459 download links **(A)**, locations on chromosomes **(B)**, structure **(C)** and functional domains **(D)** of
460 the tomato bZIP family genes.

461

462 **Figure 4. Gene feature page in HortGenome Search Engine. (A)** Screenshot of the gene page
463 containing basic information and gene structure. **(B)** Screenshot of the gene page containing gene,
464 mRNA, CDS, and protein sequences. **(C)** Screenshot of the homolog genes and sequence
465 alignments from the BLAST results. **(D)** Screenshot of the functional domains predicted from the
466 protein sequence of the gene. **(E)** Screenshot of the GO terms assigned to the gene. **(F)**
467 Screenshot of the gene page containing collinear gene pairs.

468

469 **Figure 5. Query interfaces of data mining tools in HortGenome Search Engine. (A)**
470 Screenshot of the BLAST query page. **(B)** Search interface of ‘Batch Query’. **(C)** Search
471 interface of ‘Synteny Viewer’.

472

(A)

Taxonomy

Taxonomy ID	3281
Scientific name	<i>Solanum lycopersicum</i> subsp. <i>Lycopersicum</i> (700)
Common name	Tomato (Many) (700) (BT1)
Order	Solanales
Family	Solanaceae
Genus	<i>Solanum</i>
Species	<i>Lycopersicum</i>
Subspecies	Unknown
Variety	Unknown
Chloro	Many (700)

Genome assembly and annotation

Plants	4300
Peptides resolved	50
Genomes seq. used	13
Genome size	710 Mb (700)
No. protein-coding genes	36889
No. mRNAs	24999
No. CDSs	24889
No. proteins	36889
Download	Solanum lycopersicum (700)

Publication

Title The tomato genome sequence provides insights into fruit development.

Authors The Tomato Genome Consortium

Date 2012 May 20

PMID 22602608

Abstract Tomato (*Solanum lycopersicum*) is a major crop plant and a model system for fruit development. *Solanum* is one of the largest angiosperm genera and includes annual and perennial plants from diverse habitats. There are present a high-quality genome sequence of domesticated tomato, a close relative of the closely related relative, *Solanum lycopersicum*, and compare them to each other and to the potato genome (*Solanum tuberosum*). The two tomato genomes show only 0.5% nucleotide divergence and signs of recent evolution, but show more than 5% divergence from potato, with site-specific and several similar inversions. In contrast, *Amaranthus*, but similar to soybean, tomato and potato, show RNAi predominantly to gene non-coding regions, including gene promoters. The *Solanum* lineage has experienced two alternative gene evolution pathways that is evident and shared with potato, and a more recent one. These implications set the stage for the refunctionalization of genes controlling fruit characteristics, such as colour and freshness.

(B)

Transcription Factors

AP2-like (10)	AP2/ERF/AP2 (20)	AP2/ERF/AP2 (14)	AP2/ERF/AP2 (2)	BS (34)	BS (20)
B3GAT (6)	B3GAT (8)	B3GAT (14)	B3GAT (6)	BSB (6)	BSB (10)
C2C2-like (10)	C2C2-MATA (3)	C2C2-LBD (3)	C2C2-YABBY (9)	C2D (12)	C2D (8)
C2H2-like (5)	C2H2-LBD (3)	C2H2-LBD (3)	C2H2-YABBY (9)	C2D (5)	C2D (5)
CH3COP (3)	CH3COP (3)	CH3COP (3)	CH3COP (3)	CH3COP (3)	CH3COP (3)
CH3K2 (3)	CH3K2 (3)	CH3K2 (3)	CH3K2 (3)	CH3K2 (3)	CH3K2 (3)
CH3K3 (3)	CH3K3 (3)	CH3K3 (3)	CH3K3 (3)	CH3K3 (3)	CH3K3 (3)
CH3K4 (3)	CH3K4 (3)	CH3K4 (3)	CH3K4 (3)	CH3K4 (3)	CH3K4 (3)
CH3K5 (3)	CH3K5 (3)	CH3K5 (3)	CH3K5 (3)	CH3K5 (3)	CH3K5 (3)
CH3K6 (3)	CH3K6 (3)	CH3K6 (3)	CH3K6 (3)	CH3K6 (3)	CH3K6 (3)
CH3K7 (3)	CH3K7 (3)	CH3K7 (3)	CH3K7 (3)	CH3K7 (3)	CH3K7 (3)
CH3K8 (3)	CH3K8 (3)	CH3K8 (3)	CH3K8 (3)	CH3K8 (3)	CH3K8 (3)
CH3K9 (3)	CH3K9 (3)	CH3K9 (3)	CH3K9 (3)	CH3K9 (3)	CH3K9 (3)
CH3K10 (3)	CH3K10 (3)	CH3K10 (3)	CH3K10 (3)	CH3K10 (3)	CH3K10 (3)
CH3K11 (3)	CH3K11 (3)	CH3K11 (3)	CH3K11 (3)	CH3K11 (3)	CH3K11 (3)
CH3K12 (3)	CH3K12 (3)	CH3K12 (3)	CH3K12 (3)	CH3K12 (3)	CH3K12 (3)
CH3K13 (3)	CH3K13 (3)	CH3K13 (3)	CH3K13 (3)	CH3K13 (3)	CH3K13 (3)
CH3K14 (3)	CH3K14 (3)	CH3K14 (3)	CH3K14 (3)	CH3K14 (3)	CH3K14 (3)
CH3K15 (3)	CH3K15 (3)	CH3K15 (3)	CH3K15 (3)	CH3K15 (3)	CH3K15 (3)
CH3K16 (3)	CH3K16 (3)	CH3K16 (3)	CH3K16 (3)	CH3K16 (3)	CH3K16 (3)
CH3K17 (3)	CH3K17 (3)	CH3K17 (3)	CH3K17 (3)	CH3K17 (3)	CH3K17 (3)
CH3K18 (3)	CH3K18 (3)	CH3K18 (3)	CH3K18 (3)	CH3K18 (3)	CH3K18 (3)
CH3K19 (3)	CH3K19 (3)	CH3K19 (3)	CH3K19 (3)	CH3K19 (3)	CH3K19 (3)
CH3K20 (3)	CH3K20 (3)	CH3K20 (3)	CH3K20 (3)	CH3K20 (3)	CH3K20 (3)
CH3K21 (3)	CH3K21 (3)	CH3K21 (3)	CH3K21 (3)	CH3K21 (3)	CH3K21 (3)
CH3K22 (3)	CH3K22 (3)	CH3K22 (3)	CH3K22 (3)	CH3K22 (3)	CH3K22 (3)
CH3K23 (3)	CH3K23 (3)	CH3K23 (3)	CH3K23 (3)	CH3K23 (3)	CH3K23 (3)
CH3K24 (3)	CH3K24 (3)	CH3K24 (3)	CH3K24 (3)	CH3K24 (3)	CH3K24 (3)
CH3K25 (3)	CH3K25 (3)	CH3K25 (3)	CH3K25 (3)	CH3K25 (3)	CH3K25 (3)
CH3K26 (3)	CH3K26 (3)	CH3K26 (3)	CH3K26 (3)	CH3K26 (3)	CH3K26 (3)
CH3K27 (3)	CH3K27 (3)	CH3K27 (3)	CH3K27 (3)	CH3K27 (3)	CH3K27 (3)
CH3K28 (3)	CH3K28 (3)	CH3K28 (3)	CH3K28 (3)	CH3K28 (3)	CH3K28 (3)
CH3K29 (3)	CH3K29 (3)	CH3K29 (3)	CH3K29 (3)	CH3K29 (3)	CH3K29 (3)
CH3K30 (3)	CH3K30 (3)	CH3K30 (3)	CH3K30 (3)	CH3K30 (3)	CH3K30 (3)
CH3K31 (3)	CH3K31 (3)	CH3K31 (3)	CH3K31 (3)	CH3K31 (3)	CH3K31 (3)
CH3K32 (3)	CH3K32 (3)	CH3K32 (3)	CH3K32 (3)	CH3K32 (3)	CH3K32 (3)
CH3K33 (3)	CH3K33 (3)	CH3K33 (3)	CH3K33 (3)	CH3K33 (3)	CH3K33 (3)
CH3K34 (3)	CH3K34 (3)	CH3K34 (3)	CH3K34 (3)	CH3K34 (3)	CH3K34 (3)
CH3K35 (3)	CH3K35 (3)	CH3K35 (3)	CH3K35 (3)	CH3K35 (3)	CH3K35 (3)
CH3K36 (3)	CH3K36 (3)	CH3K36 (3)	CH3K36 (3)	CH3K36 (3)	CH3K36 (3)
CH3K37 (3)	CH3K37 (3)	CH3K37 (3)	CH3K37 (3)	CH3K37 (3)	CH3K37 (3)
CH3K38 (3)	CH3K38 (3)	CH3K38 (3)	CH3K38 (3)	CH3K38 (3)	CH3K38 (3)
CH3K39 (3)	CH3K39 (3)	CH3K39 (3)	CH3K39 (3)	CH3K39 (3)	CH3K39 (3)
CH3K40 (3)	CH3K40 (3)	CH3K40 (3)	CH3K40 (3)	CH3K40 (3)	CH3K40 (3)
CH3K41 (3)	CH3K41 (3)	CH3K41 (3)	CH3K41 (3)	CH3K41 (3)	CH3K41 (3)
CH3K42 (3)	CH3K42 (3)	CH3K42 (3)	CH3K42 (3)	CH3K42 (3)	CH3K42 (3)
CH3K43 (3)	CH3K43 (3)	CH3K43 (3)	CH3K43 (3)	CH3K43 (3)	CH3K43 (3)
CH3K44 (3)	CH3K44 (3)	CH3K44 (3)	CH3K44 (3)	CH3K44 (3)	CH3K44 (3)
CH3K45 (3)	CH3K45 (3)	CH3K45 (3)	CH3K45 (3)	CH3K45 (3)	CH3K45 (3)
CH3K46 (3)	CH3K46 (3)	CH3K46 (3)	CH3K46 (3)	CH3K46 (3)	CH3K46 (3)
CH3K47 (3)	CH3K47 (3)	CH3K47 (3)	CH3K47 (3)	CH3K47 (3)	CH3K47 (3)
CH3K48 (3)	CH3K48 (3)	CH3K48 (3)	CH3K48 (3)	CH3K48 (3)	CH3K48 (3)
CH3K49 (3)	CH3K49 (3)	CH3K49 (3)	CH3K49 (3)	CH3K49 (3)	CH3K49 (3)
CH3K50 (3)	CH3K50 (3)	CH3K50 (3)	CH3K50 (3)	CH3K50 (3)	CH3K50 (3)
CH3K51 (3)	CH3K51 (3)	CH3K51 (3)	CH3K51 (3)	CH3K51 (3)	CH3K51 (3)
CH3K52 (3)	CH3K52 (3)	CH3K52 (3)	CH3K52 (3)	CH3K52 (3)	CH3K52 (3)
CH3K53 (3)	CH3K53 (3)	CH3K53 (3)	CH3K53 (3)	CH3K53 (3)	CH3K53 (3)
CH3K54 (3)	CH3K54 (3)	CH3K54 (3)	CH3K54 (3)	CH3K54 (3)	CH3K54 (3)
CH3K55 (3)	CH3K55 (3)	CH3K55 (3)	CH3K55 (3)	CH3K55 (3)	CH3K55 (3)
CH3K56 (3)	CH3K56 (3)	CH3K56 (3)	CH3K56 (3)	CH3K56 (3)	CH3K56 (3)
CH3K57 (3)	CH3K57 (3)	CH3K57 (3)	CH3K57 (3)	CH3K57 (3)	CH3K57 (3)
CH3K58 (3)	CH3K58 (3)	CH3K58 (3)	CH3K58 (3)	CH3K58 (3)	CH3K58 (3)
CH3K59 (3)	CH3K59 (3)	CH3K59 (3)	CH3K59 (3)	CH3K59 (3)	CH3K59 (3)
CH3K60 (3)	CH3K60 (3)	CH3K60 (3)	CH3K60 (3)	CH3K60 (3)	CH3K60 (3)
CH3K61 (3)	CH3K61 (3)	CH3K61 (3)	CH3K61 (3)	CH3K61 (3)	CH3K61 (3)
CH3K62 (3)	CH3K62 (3)	CH3K62 (3)	CH3K62 (3)	CH3K62 (3)	CH3K62 (3)
CH3K63 (3)	CH3K63 (3)	CH3K63 (3)	CH3K63 (3)	CH3K63 (3)	CH3K63 (3)
CH3K64 (3)	CH3K64 (3)	CH3K64 (3)	CH3K64 (3)	CH3K64 (3)	CH3K64 (3)
CH3K65 (3)	CH3K65 (3)	CH3K65 (3)	CH3K65 (3)	CH3K65 (3)	CH3K65 (3)
CH3K66 (3)	CH3K66 (3)	CH3K66 (3)	CH3K66 (3)	CH3K66 (3)	CH3K66 (3)
CH3K67 (3)	CH3K67 (3)	CH3K67 (3)	CH3K67 (3)	CH3K67 (3)	CH3K67 (3)
CH3K68 (3)	CH3K68 (3)	CH3K68 (3)	CH3K68 (3)	CH3K68 (3)	CH3K68 (3)
CH3K69 (3)	CH3K69 (3)	CH3K69 (3)	CH3K69 (3)	CH3K69 (3)	CH3K69 (3)
CH3K70 (3)	CH3K70 (3)	CH3K70 (3)	CH3K70 (3)	CH3K70 (3)	CH3K70 (3)
CH3K71 (3)	CH3K71 (3)	CH3K71 (3)	CH3K71 (3)	CH3K71 (3)	CH3K71 (3)
CH3K72 (3)	CH3K72 (3)	CH3K72 (3)	CH3K72 (3)	CH3K72 (3)	CH3K72 (3)
CH3K73 (3)	CH3K73 (3)	CH3K73 (3)	CH3K73 (3)	CH3K73 (3)	CH3K73 (3)
CH3K74 (3)	CH3K74 (3)	CH3K74 (3)	CH3K74 (3)	CH3K74 (3)	CH3K74 (3)
CH3K75 (3)	CH3K75 (3)	CH3K75 (3)	CH3K75 (3)	CH3K75 (3)	CH3K75 (3)
CH3K76 (3)	CH3K76 (3)	CH3K76 (3)	CH3K76 (3)	CH3K76 (3)	CH3K76 (3)
CH3K77 (3)	CH3K77 (3)	CH3K77 (3)	CH3K77 (3)	CH3K77 (3)	CH3K77 (3)
CH3K78 (3)	CH3K78 (3)	CH3K78 (3)	CH3K78 (3)	CH3K78 (3)	CH3K78 (3)
CH3K79 (3)	CH3K79 (3)	CH3K79 (3)	CH3K79 (3)	CH3K79 (3)	CH3K79 (3)
CH3K80 (3)	CH3K80 (3)	CH3K80 (3)	CH3K80 (3)	CH3K80 (3)	CH3K80 (3)
CH3K81 (3)	CH3K81 (3)	CH3K81 (3)	CH3K81 (3)	CH3K81 (3)	CH3K81 (3)
CH3K82 (3)	CH3K82 (3)	CH3K82 (3)	CH3K82 (3)	CH3K82 (3)	CH3K82 (3)
CH3K83 (3)	CH3K83 (3)	CH3K83 (3)	CH3K83 (3)	CH3K83 (3)	CH3K83 (3)
CH3K84 (3)	CH3K84 (3)	CH3K84 (3)	CH3K84 (3)	CH3K84 (3)	CH3K84 (3)
CH3K85 (3)	CH3K85 (3)	CH3K85 (3)	CH3K85 (3)	CH3K85 (3)	CH3K85 (3)
CH3K86 (3)	CH3K86 (3)	CH3K86 (3)	CH3K86 (3)	CH3K86 (3)	CH3K86 (3)
CH3K87 (3)	CH3K87 (3)	CH3K87 (3)	CH3K87 (3)	CH3K87 (3)	CH3K87 (3)
CH3K88 (3)	CH3K88 (3)	CH3K88 (3)	CH3K88 (3)	CH3K88 (3)	CH3K88 (3)
CH3K89 (3)	CH3K89 (3)	CH3K89 (3)	CH3K89 (3)	CH3K89 (3)	CH3K89 (3)
CH3K90 (3)	CH3K90 (3)	CH3K90 (3)	CH3K90 (3)	CH3K90 (3)	CH3K90 (3)
CH3K91 (3)	CH3K91 (3)	CH3K91 (3)	CH3K91 (3)	CH3K91 (3)	CH3K91 (3)
CH3K92 (3)	CH3K92 (3)	CH3K92 (3)	CH3K92 (3)	CH3K92 (3)	CH3K92 (3)
CH3K93 (3)	CH3K93 (3)	CH3K93 (3)	CH3K93 (3)	CH3K93 (3)	CH3K93 (3)
CH3K94 (3)	CH3K94 (3)	CH3K94 (3)	CH3K94 (3)	CH3K94 (3)	CH3K94 (3)
CH3K95 (3)	CH3K95 (3)	CH3K95 (3)	CH3K95 (3)	CH3K95 (3)	CH3K95 (3)
CH3K96 (3)	CH3K96 (3)	CH3K96 (3)	CH3K96 (3)	CH3K96 (3)	CH3K96 (3)
CH3K97 (3)	CH3K97 (3)	CH3K97 (3)	CH3K97 (3)	CH3K97 (3)	CH3K97 (3)
CH3K98 (3)	CH3K98 (3)	CH3K98 (3)	CH3K98 (3)	CH3K98 (3)	CH3K98 (3)
CH3K99 (3)	CH3K99 (3)	CH3K99 (3)	CH3K99 (3)	CH3K99 (3)	CH3K99 (3)
CH3K100 (3)	CH3K100 (3)	CH3K100 (3)	CH3K100 (3)	CH3K100 (3)	CH3K100 (3)

Transcriptional Regulators

ACD (10)	ACD (24)	Coiled-coil p15 (3)	CH3K1 (1)	CH3K1 (7)	CH3K1 (3)
Armadillo (7)	Armadillo (3)	CH3K1 (3)	CH3K1 (1)	CH3K1 (1)	CH3K1 (2)
Brachy (7)	Brachy (3)	CH3K1 (3)	CH3K1 (1)	CH3K1 (4)	CH3K1 (2)
CH3K2 (3)	CH3K2 (7)	CH3K2 (3)	CH3K2 (1)	CH3K2 (4)	CH3K2 (1)
CH3K3 (3)	CH3K3 (3)	CH3K3 (3)	CH3K3 (1)	CH3K3 (1)	CH3K3 (1)

Protein Kinases

Protein kinase family Tree: [Collapse All](#) | [Expand All](#) | [Toggle All](#)

CH3K101 (3)	CH3K102 (3)	CH3K103 (3)	CH3K104 (3)	CH3K105 (3)	CH3K106 (3)
CH3K107 (3)	CH3K108 (3)	CH3K109 (3)	CH3K110 (3)	CH3K111 (3)	CH3K112 (3)
CH3K113 (3)	CH3K114 (3)	CH3K115 (3)	CH3K116 (3)	CH3K117 (3)	CH3K118 (3)
CH3K119 (3)	CH3K120 (3)	CH3K121 (3)	CH3K122 (3)	CH3K123 (3)	CH3K124 (3)
CH3K125 (3)	CH3K126 (3)	CH3K127 (3)	CH3K128 (3)	CH3K129 (3)	CH3K130 (3)
CH3K131 (3)	CH3K132 (3)	CH3K133 (3)	CH3K134 (3)	CH3K135 (3)	CH3K136 (3)
CH3K137 (3)	CH3K138 (3)	CH3K139 (3)	CH3K140 (3)	CH3K141 (3)	CH3K142 (3)
CH3K143 (3)	CH3K144 (3)	CH3K145 (3)	CH3K146 (3)	CH3K147 (3)	CH3K148 (3)
CH3K149 (3)	CH3K150 (3)	CH3K151 (3)	CH3K152 (3)	CH3K153 (3)	CH3K154 (3)
CH3K155 (3)	CH3K156 (3)	CH3K157 (3)	CH3K158 (3)	CH3K159 (3)	CH3K160 (3)
CH3K161 (3)	CH3K162 (3)	CH3K163 (3)	CH3K164 (3)	CH3K165 (3)	CH3K166 (3)
CH3K167 (3)	CH3K168 (3)	CH3K169 (3)	CH3K170 (3)	CH3K171 (3)	CH3K172 (3)
CH3K173 (3)	CH3K174 (3)	CH3K175 (3)	CH3K176 (3)	CH3K177 (3)	CH3K178 (3)
CH3K179 (3)	CH3K180 (3)	CH3K181 (3)	CH3K182 (3)	CH3K183 (3)	CH3K184 (3)
CH3K185 (3)	CH3K186 (3)	CH3K187 (3)	CH3K188 (3)	CH3K189 (3)	CH3K190 (3)
CH3K191 (3)	CH3K192 (3)	CH3K193 (3)	CH3K194 (3)	CH3K195 (3)	CH3K196 (3)
CH3K197 (3)	CH3K198 (3)	CH3K199 (3)	CH3K200 (3)	CH3K201 (3)	CH3K202 (3)
CH3K203 (3)	CH3K204 (3)	CH3K205 (3)	CH3K206 (3)	CH3K207 (3)	CH3K208 (3)
CH3K209 (3)	CH3K210 (3)	CH3K211 (3)	CH3K212 (3)	CH3K213 (3)	CH3K214 (3)
CH3K215 (3)	CH				

(A)

Show 10 ✓ entries

Search:

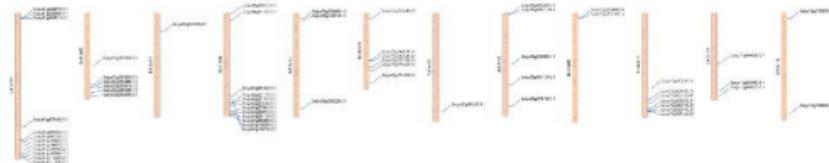
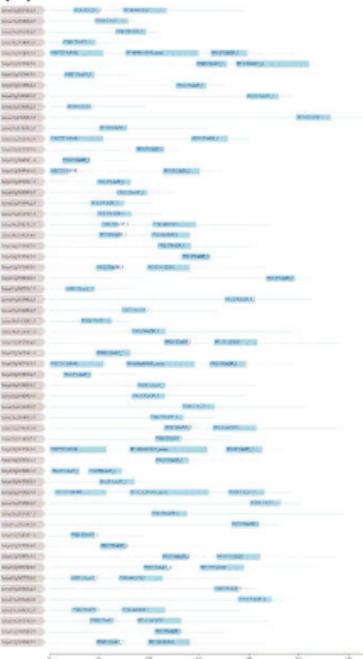
Genome	Gene	Transcript	Position	Description
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g002733.3	Solyc01g002733.3.1	SL4.0c01.2712489-2721972	Transcription factor like
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g008890.3	Solyc01g008890.3.1	SL4.0c01.2942640-2946054	ARCSOIC ACID-SENSITIVE 5-like protein 2
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g009510.2	Solyc01g009510.2.1	SL4.0c01.3716336-3722023	B2IP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g073480.3	Solyc01g073480.3.1	SL4.0c01.71067204-71099337	B2IP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g054490.3	Solyc01g054490.3.1	SL4.0c01.78964254-79970803	B2IP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g067330.3	Solyc01g067330.3.1	SL4.0c01.80486531-80493888	B2IP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g100493.3	Solyc01g100493.3.1	SL4.0c01.82746623-82747895	B2IP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g104650.3	Solyc01g104650.3.1	SL4.0c01.85389147-85392687	B2IP domain-containing protein
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g108890.4	Solyc01g108890.4.1	SL4.0c01.87747588-87750279	Abscisic acid insensitive 5-like protein
Solanum lycopersicum (tomato Heinz 1706 (ST1))	Solyc01g109880.3	Solyc01g109880.3.1	SL4.0c01.89070701-89071778	B2IP domain-containing protein

Showing 1 to 10 of 60 entries

Previous

1

2



3

4

5

6

Next

Download[Gene List](#) [CDS](#) [Protein](#) [Promoter \(2K\)](#)**(B)****(C)****(D)**

(A)

Paste query sequence(s) or drag file containing query sequence(s) in FASTA format here ...

Advanced Parameters: ?

BLAST

Nucleotide databases

mRNA/CDS databases

Search mRNA/CDS databases...

- ↳ All
- ↳ Alismatales
- ↳ Amborellales
- ↳ Amborellaceae
 - ↳ Amborella trichopoda v1 mRNA
- ↳ Asparagales
- ↳ Asterales

Protein databases

Search Protein databases...

- ↳ All
- ↳ Alismatales
- ↳ Amborellales
- ↳ Amborellaceae
 - ↳ Amborella trichopoda v1 proteins
- ↳ Asparagales
- ↳ Asterales

(B)

1. Choose one genome

- ↳ All
- ↳ Sapindales
- ↳ Nymphaeales
- ↳ Amborellales
- ↳ Amborellaceae
 - ↳ Amborella trichopoda v1
- ↳ Malpighiales
- ↳ Cucurbitales
- ↳ Rosales
- ↳ Piperales
- ↳ Saxifragales
- ↳ Brassicales
- ↳ Solanales
- ↳ Oxalidales
- ↳ Laurales
- ↳ Trochodendrales
- ↳ Zingiberales
- ↳ Lamiales
- ↳ Plantaginaceae

2. Enter the list of gene/transcript IDs

Feature Type: ?

Input:

Options: With Genebody Without Genebody

Upstream Bases:

Downstream Bases:

Query Types: Sequence Retrieval Blast

(C)

Search Synteny Blocks

- ↳ All
- ↳ Sapindales
- ↳ Rutaceae
 - ↳ Citrus_maxima Hzau_v1
 - ↳ Poncirus_trifoliata JGI_v1.3.1
 - ↳ Poncirus_trifoliata ZK_v1
 - ↳ Citrus_sinensis Hzau_v2
 - ↳ Citrus_sinensis JGI_v1.1
 - ↳ Fortunella_hindsii HK_kumquat_v
 - ↳ Citrus_clementina JGI_v1.0
 - ↳ Citrus_reticulata Hzau_v1
 - ↳ Citrus_ichangensis Hzau_v1
 - ↳ Atalantia_buxifolia Hzau_v1
 - ↳ Citrus_meditica Hzau_v1
- ↳ Anacardiaceae
- ↳ Nymphaeales
- ↳ Amborellales
- ↳ Malpighiales
- ↳ Cucurbitales

Some selections:

Chromosome/Scaffold:

chr1

Choose a genome for comparison:

choose a genome for comparison

Citrus ichangensis (Ichang papeda; primitive citrus)

Citrus maxima (Pummelo)

Fortunella hindsii (Hongkong kumquat)

Citrus medica (Citron)

Citrus sinensis cv. Valencia (Valencia sweet orange)

Citrus sinensis (Sweet orange)

Arabidopsis thaliana (Arabidopsis)

Poncirus trifoliata (Trifoliolate orange)

Poncirus trifoliata (Trifoliolate orange)

Citrus reticulata (Wild mandarin)

Atalantia buxifolia (Chinese box orange; primitive citrus)

Citrus x clementina cv. Clementine (Clementine mandarin)