

1 **Valine Catabolism Drives Bioenergetic and Lipogenic Fuel Plasticity in Prostate**
2 **Cancer**

3 Charles L. Bidgood^{1†}, Lisa K. Philp¹, Anja Rockstroh¹, Melanie Lehman^{1,2}, Colleen C. Nelson¹, Martin C.
4 Sadowski³, and Jennifer H. Gunter^{1†}

5 [†] Corresponding Authors

6 1. Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology,
7 Translational Research Institute, Brisbane, QLD 4102, Australia

8 2. Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660
9 Oak St, Vancouver, BC V6H 3Z6, Canada.

10 3. University of Bern, Institute for Tissue Medicine and Pathology, Murtenstrasse 31, CH-3008 Bern,
11 Switzerland

12

13 **Abstract**

14 Metabolic reprogramming is a hallmark of cancer and fundamental for disease progression. The
15 remodelling of oxidative phosphorylation and enhanced lipogenesis are key characteristics of prostate
16 cancer (PCa). Recently, succinate-dependent mitochondrial reprogramming was identified in high-
17 grade prostate tumours with upregulation of enzymes associated with branched-chain amino acid
18 (BCAA) catabolism. We hypothesised that the degradation of BCAAs, particularly valine may play a
19 critical role in anapleurotic refuelling of the mitochondrial succinate pool. Through suppression of
20 valine availability, we report strongly reduced lipid content despite compensatory upregulation of fatty
21 acid uptake, indicating valine is an important lipogenic fuel in PCa. Inhibition of the enzyme 3-
22 hydroxyisobutyryl-CoA hydrolase (HIBCH) also resulted in selective inhibition of cellular proliferation
23 of malignant but not benign prostate cells and impaired succinate production. In combination with a
24 comprehensive multi-omic investigation of patient and cell line data, our work highlights a therapeutic
25 target for selective inhibition of metabolic reprogramming in PCa.

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 **Introduction**

41 Metastatic castration resistant prostate cancer (mCRPC) is the second leading cause of male cancer
42 mortality, resulting in more than 375,000 deaths globally each year. The objective of current therapies
43 for mCRPC is to inhibit the androgen receptor (AR) signalling axis, which fuels tumour growth and
44 promotes disease progression¹. Restoration of AR signalling, despite negligible levels of androgens,
45 drives resistance to these therapies, ultimately resulting in treatment failure. The development of
46 resistance is supported by fundamental alterations to energetic pathways in response to the
47 heightened metabolic demand of the tumour, and their metabolic adaptations to therapy²⁻⁴. Many
48 studies have previously described dysregulated lipid metabolism as a core metabolic adaptation in
49 prostatic malignancy⁵⁻⁸. The remodelling of oxidative phosphorylation (OxPhos) has recently been
50 identified as a key characteristic of high-grade prostate cancer tissue. Specifically, these studies
51 describe a metabolic shift from NADH-linked respiration to succinate-linked respiratory function
52 (SLRF)^{9,10}. Increased SLRF in high-grade PCa tissue is also coincident with a heightened burden of
53 heteroplasmic mitochondrial DNA (mtDNA) mutations¹¹.

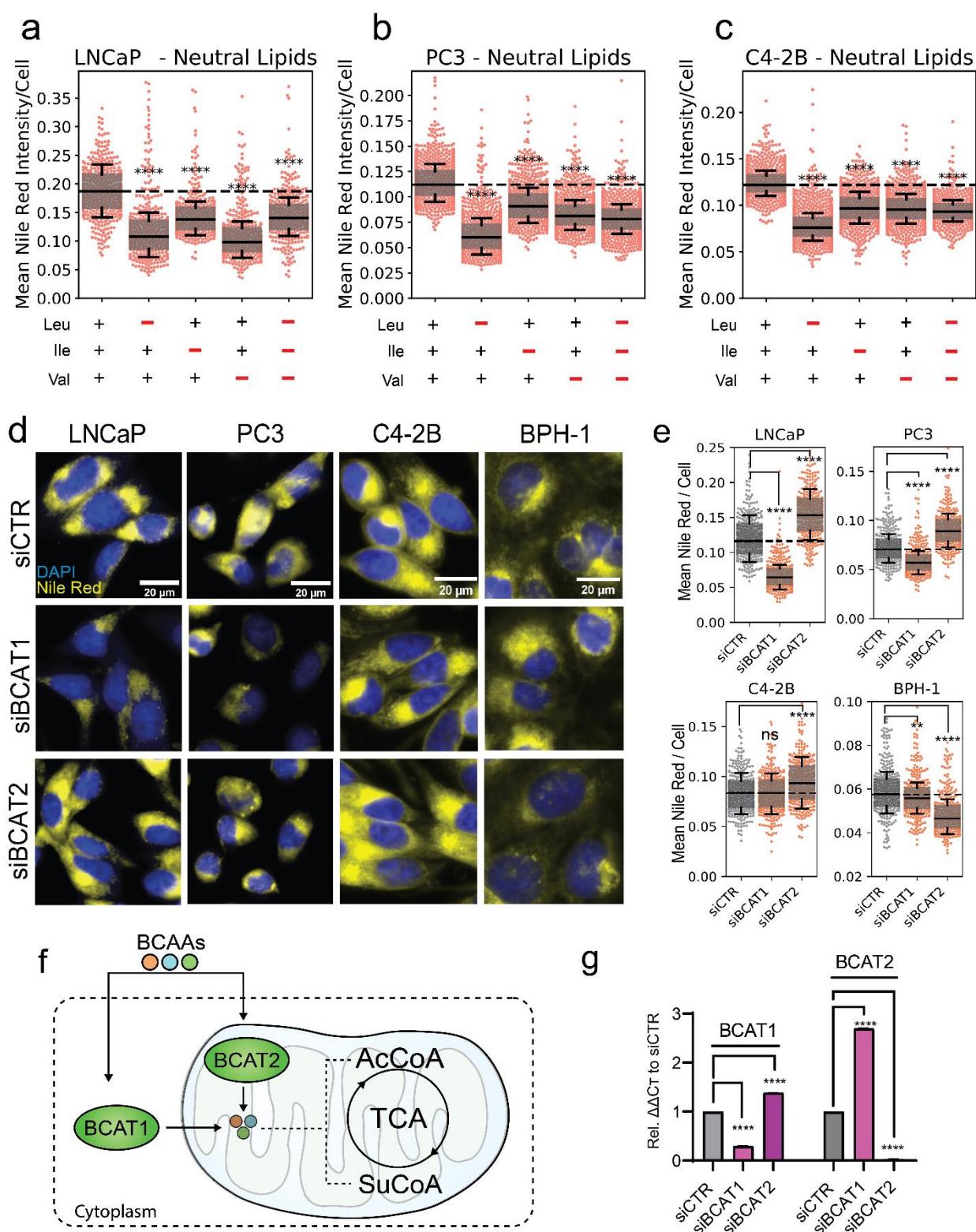
54 Catabolism of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine has been
55 shown to contribute to some pro-oncogenic processes in PCa, but most of what we know about their
56 catabolism comes from their established role as carbon donors during adipogenesis¹²⁻¹⁶. The
57 complete catabolism of the BCAAs produce two major mitochondrial intermediates for tricarboxylic
58 acid (TCA) cycle replenishment: acetyl-CoA and succinyl-CoA. BCAA catabolism is an important fuel
59 source for adipogenesis, demonstrated by significant isotopic carbon labelling (~40%) of acetyl-CoA
60 from the BCAAs¹⁶. While the BCAAs contribute to a significant percentage of the cytosolic acetyl-CoA
61 pool in adipocytes, no relationship has yet been established regarding their contribution to the
62 lipogenic phenotype present in PCa. Given the importance of both acetyl-CoA for lipid homeostasis
63 and succinyl-CoA for succinate maintenance, the BCAA catabolic pathway may present an opportune
64 therapeutic target against PCa.

65 The catabolism of all three BCAAs is universally initiated via the branched-chain amino acid
66 aminotransferases (BCAT1 and BCAT2), but most subsequent downstream reactions are amino acid-
67 specific, allowing interrogation of the role of each individual BCAA. While the BCAAs have been
68 previously identified as a potential target in multiple cancers, their therapeutic potential remains to be
69 investigated in PCa. Here we report that lipid uptake and content of non-malignant prostate cells
70 exhibit a high metabolic dependency on leucine, and that this dependency switches to valine in
71 malignant PCa cell lines. Given the discovery and the importance of succinate metabolism in PCa,
72 we have further investigated the catabolic importance of valine. From the BCAAs, only valine and
73 isoleucine contribute to succinyl-CoA which supplies succinate in the TCA cycle. 3-hydroxyisobutyryl-
74 CoA hydrolase (HIBCH) converts 3-hydroxyisobutyryl-CoA (3HIB-CoA) to 3-hydroxyisobutyric acid
75 (3HIB) and is a central enzyme of valine catabolism. In models of colorectal cancer, specific disruption
76 of valine catabolism via the inhibition of HIBCH directly reduced intracellular succinate levels, inhibited
77 tumour xenograft growth in mice and reduced the occurrence of drug acquired resistance to
78 bevacizumab¹⁷. In our study, we discovered that BCAAs contribute to the lipogenic phenotype of PCa
79 and demonstrate that metabolic reprogramming of mitochondrial respiration in advanced PCa is
80 associated with increased breakdown of the amino acid valine to fuel the succinate pool and SLRF.
81 Disruption of SLRF via specific inhibition of valine degradation (HIBCH) showed promising therapeutic
82 potential.

83

84

85


86

87

88 **Results**

89 **BCAA uptake and catabolism maintains intracellular lipid supply in prostate cancer.**

90 PCa cells are highly lipogenic and *de novo* synthesise fatty acids and cholesterol (lipogenesis).
91 Lipogenesis uses cytoplasmic acetyl-CoA which can be generated from multiple carbon sources,
92 including glucose, fatty acids, acetate and amino acids. BCAAs (leucine, isoleucine and valine) are
93 important carbon fuels for lipogenesis and lipid content in adipocytes. Whether or not BCAAs have a
94 similar role in PCa remains to be elucidated. To evaluate the effects of each BCAA on PCa lipid
95 content, a customised BCAA-depleted medium (BDM) was generated to deprive cells of exogenous
96 BCAAs, to which physiological concentrations of leucine, isoleucine, or valine were re-added. LNCaP,
97 C4-2B and PC3 cells were cultured in BDM for 24 hours before Nile Red staining to quantify
98 intracellular neutral lipid content by quantitative single cell imaging (qSCI) analysis⁵. The absence of
99 all BCAAs resulted in a statistically significant reduction in lipid content within each PCa cell line (**Fig.**
100 **1a-c**) indicating that BCAAs potentially contribute to the PCa lipidome. While leucine starvation
101 elicited the greatest reduction to lipids in C4-2B and PC3 cells, valine deprivation caused a
102 comparable reduction in lipid content in androgen-sensitive LNCaP cells. Total BCAA depletion also
103 did not have an additive effect compared to the depletion of any individual BCAA, suggesting the
104 induction of a compensatory mechanism. To confirm whether these effects were from BCAA
105 catabolism, independent from their proteinogenic properties, lipid content was again measured
106 following inhibition of BCAA catabolism by siRNA knockdown of *BCAT1* and *BCAT2* (**Fig. 1f**) in
107 addition to the non-malignant prostatic cell line BPH-1. Significant reductions in lipid content were
108 observed following *BCAT1* knockdown in LNCaP and PC3 cells, while only minor decreases were
109 observed within BPH-1 cells supporting the lipogenic role of BCAAs in PCa cell lines. No significant
110 changes were observed in C4-2B cells (**Fig. 1d, e**). Surprisingly, *BCAT2* knockdown stimulated the
111 accumulation of lipids within all PCa cell lines, while exerting an inhibitory effect on lipids in the benign
112 BPH-1 cell line. This compensatory phenotype was also observable at the transcriptomic level, shown
113 by inverse expression of *BCAT1/2* in response to the suppression of the other (**Fig. 1g**). The strong
114 upregulation of *BCAT1* mRNA expression in response to *BCAT2* siRNA could have potentially caused
115 an overcompensation in BCAA-fuelled lipogenesis.

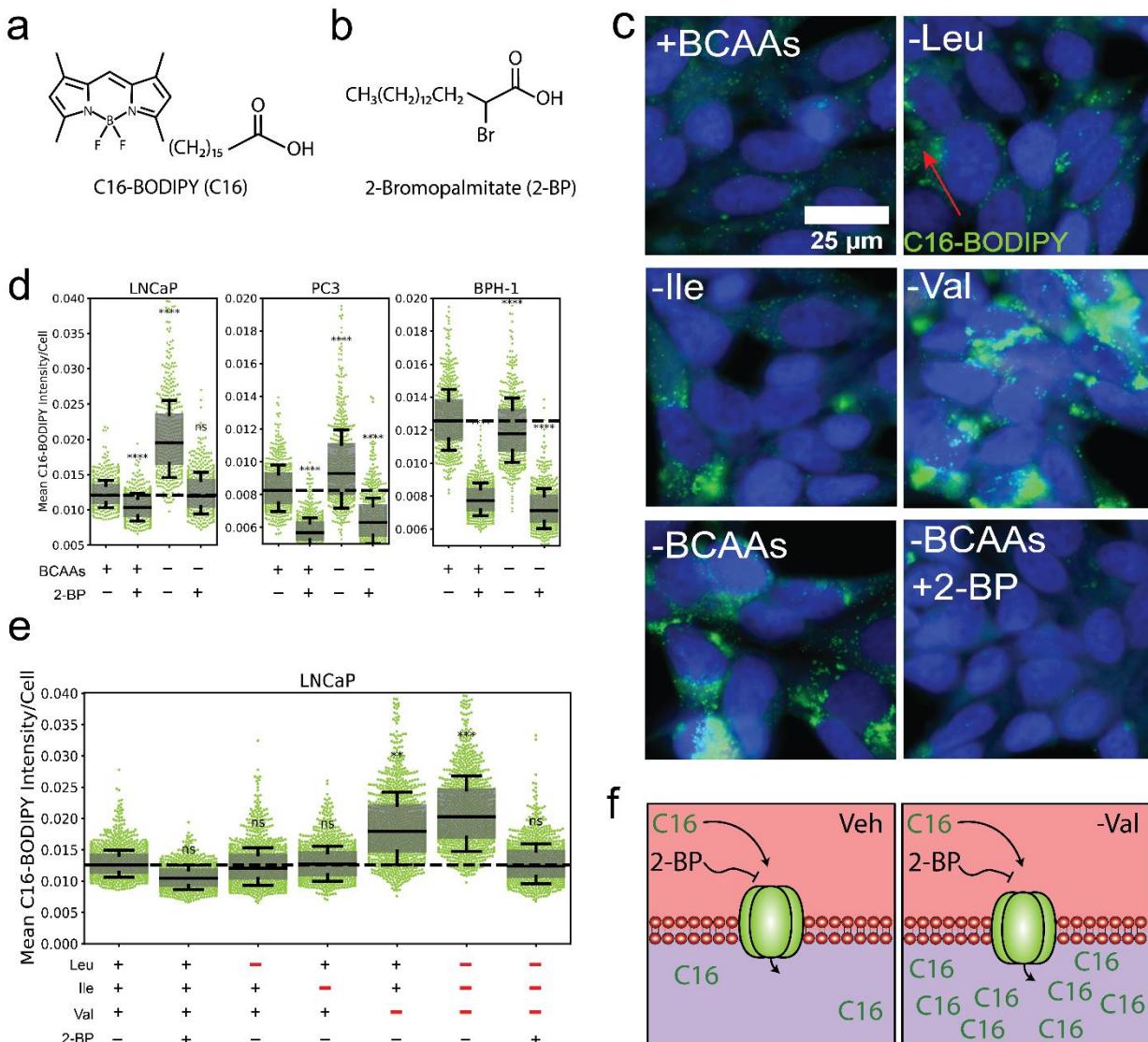
116

117 **Fig. 1 - BCAA Uptake and Catabolism is Critical for Intracellular Lipid Maintenance in PCa.**

118 (a-c) Intracellular neutral lipid content of LNCaP, C4-2B and PC3 cells following 24 hours of exogenous BCAA depletion
119 measured by Nile Red staining and quantitative single cell imaging analysis (qSCI), data representative of 2 independent
120 experiments. (d) Representative fluorescent images and (e) qSCI analysis of LNCaP, PC3, C4-2B, and BPH-1 cells
121 following Nile Red and DAPI staining after 72 hours of siRNA knockdown of either BCAT1 or BCAT2. Data is representative
122 of 2 independent experiments. (f) Schematic of BCAA catabolism by BCAT1 and BCAT2. (g) mRNA expression of BCAT1
123 and BCAT2 following 72 hours siRNA knockdown (siBCAT1 and siBCAT2) measured by qRT-PCR in LNCaP cells. In all
124 experiments, significance was determined by One-Way ANOVA with Dunnett's Multiple Comparison Test compared to the
125 vehicle control (+BCAAs or siCTR). ns - not significant, **p<0.05, ***p<0.001, ****p<0.0001.

126

127 **Exogenous Availability of Valine Co-Regulates Long-Chain Fatty Acid Uptake in PCa.**


128 Having established a non-proteogenic, anabolic role for BCAAs in lipid metabolism, exogenous fatty
129 acid uptake was explored as a potential compensatory mechanism in response to BCAA starvation
130 and loss of BCAA-fuelled fatty acid synthesis. PCa cells were cultured in BDM supplemented with
131 and without individual BCAAs at their physiological concentrations. After 24 hours, cells were
132 incubated with the fluorescent palmitate analogue C16:0-BODIPY (C16) (**Fig. 2a**) to measure long-
133 chain fatty acid uptake in response to BCAA depletion. qSCI analysis revealed that both LNCaP and
134 PC3 cells significantly increased C16 uptake in response to BCAA depletion (**Fig. 2d**), while BPH-1
135 cells significantly reduced C16 uptake. Co-treatment with the non-fluorescent palmitate analogue 2-
136 bromopalmitate (2- BP), a competitive inhibitor of fatty acid transporters (**Fig. 2b**), reduced LNCaP
137 C16 uptake to baseline, and PC3 cell levels below baseline, indicating that C16 uptake was fatty acid
138 transporter-mediated (**Fig. 2d, f**). To probe whether this compensatory response was linked to
139 universal BCAA starvation or was induced by a specific BCAA, C16 uptake was measured in the
140 absence of a single BCAA. Our findings report that valine depletion almost exclusively accounted for
141 the compensatory increase in C16 uptake in malignant LNCaP cells (**Fig. 2c, e**). Notably, benign
142 BPH-1 cells showed this response only after leucine deprivation (**Supplementary Fig. 1**). Together,
143 these findings highlight an important disparity in substrate dependency between benign and malignant
144 prostate cells, most notably a unique response to valine.

145

146

147

148

149

150

Fig. 2 – Extracellular Valine Co-Regulates Long-Chain Fatty Acid Uptake in PCa cells.

151 Chemical structure of (a) C16-BODIPY (C16) and (b) 2-Bromopalmitate (2-BP). (c) Representative live-cell fluorescent
 152 images and (d-e) quantitative single cell imaging (qSCI) analysis of C16-BODIPY (green) uptake following 24 hours of
 153 exogenous BCAA deprivation and/or co-treatment with 2-BP in LNCaP cells co-stained with Hoechst 33342. (f) Schematic
 154 describing valine's consequence on C16 uptake in PCa cells and its ability to be inhibited by 2-BP. Significance determined
 155 by One-Way ANOVA with Dunnett's Multiple Comparison Test compared to the vehicle control (+BCAAs, -2-BP). ns - not
 156 significant, **p<0.01, ***p<0.001, ****p<0.0001.

157

158

159

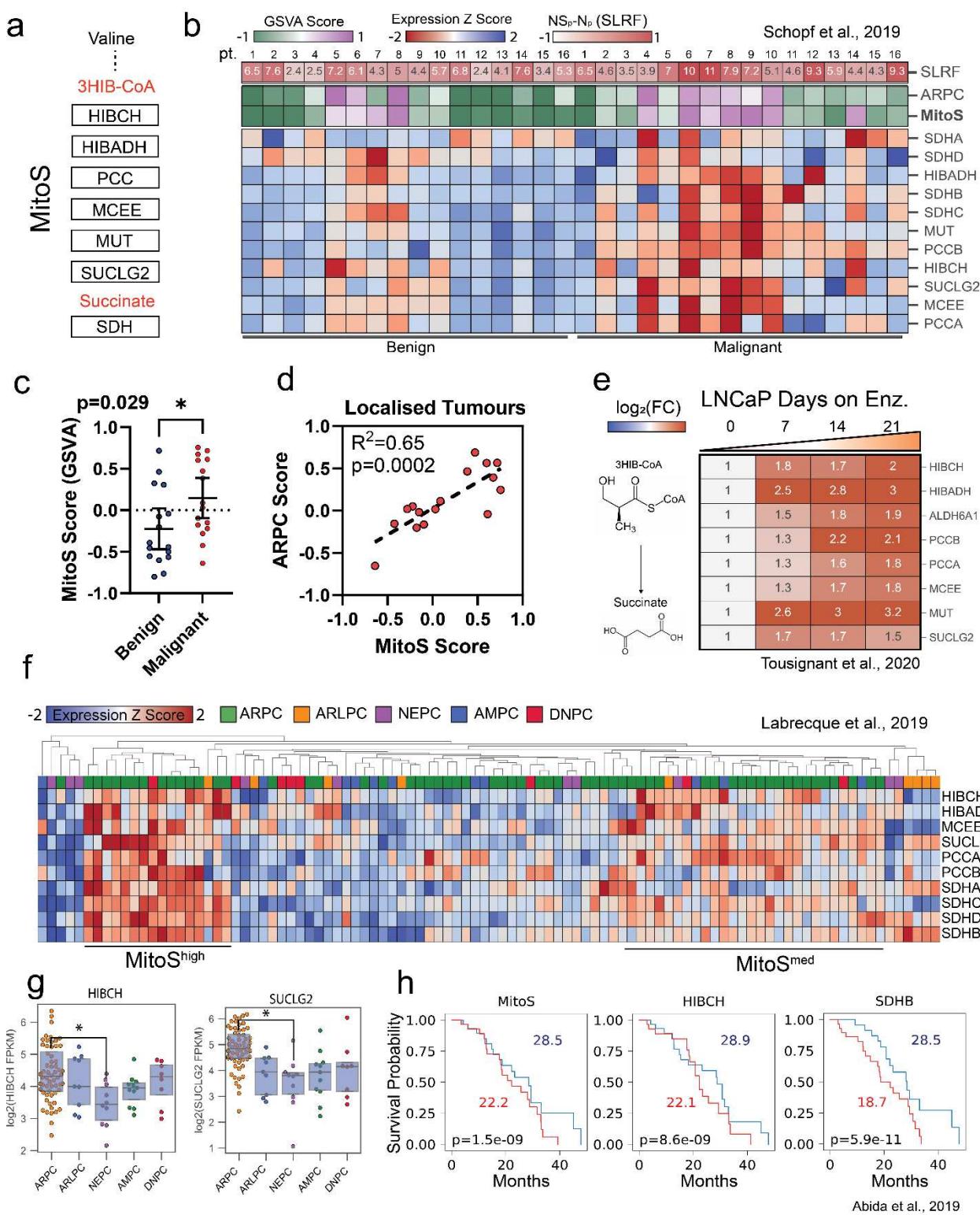
160

161

162

163

164


165

166 **Valine catabolism is associated with enhanced succinate-linked respiratory function (SLRF),**
167 **AR activity and survival across the PCa disease spectrum.**

168 To explore the clinical association of valine catabolism and intratumoral SLRF, publicly available
169 patient-derived datasets were interrogated using a customized metabolic gene signature (denoted as
170 MitoS), incorporating genes encoding enzymes necessary to catabolize 3HIB-CoA into succinate, and
171 the respective subunits of SDH (**Fig. 3a**). The MitoS signature was evaluated against an RNA-seq
172 dataset containing matched benign and malignant tissues from 16 localized PCa prostatectomy
173 samples (Schopf et al., 2019 - EGAD00001005931)¹¹. The MitoS gene signature was significantly
174 (p=0.029) enriched in malignant versus benign tissue (**Fig. 3b,c**). Finally, the MitoS signature was
175 compared to a previously published gene signature (ARPC) representing AR-high tumours²⁹. Linear
176 regression analysis revealed a statistically significant correlation (p=0.0002) between the MitoS and
177 ARPC gene scores within malignant samples, indicating that valine induced SLRF is supported in
178 localised disease and is highly correlated to AR activity (**Fig. 3d**).

179 To examine the association of valine catabolism in advanced and metastatic disease, we interrogated
180 a microarray (RNA) dataset generated from long-term (21-day) treatment of PCa cells with the AR
181 antagonist, enzalutamide (Tousignant et al., 2020 - GSE143408)⁴. This analysis revealed significantly
182 increased levels of the genes responsible for succinate generation downstream of HIBCH in
183 androgen-sensitive LNCaP cells, suggesting that advanced PCa responds to AR antagonism by
184 further enhancing valine catabolism and SLRF (**Fig. 3e**). To determine the relevance of this
185 mitochondrial phenotype in metastatic castrate-resistant disease, the MitoS signature was compared
186 against a published RNAseq dataset (Labrecque et al, 2019 - GSE126078) of molecularly subtyped
187 patient tumours²⁹, which we then stratified for MitoS enrichment. This uncovered a select cohort of
188 AR positive (ARPC) mCRPC patients whose tumours were both highly (MitoS^{high}) and moderately
189 (MitoS^{med}) enriched for the MitoS gene signature (**Fig. 3f**). Inversely, tumours that possessed
190 neuroendocrine PCa features (NEPC) were negatively associated with these genes, notably HIBCH
191 and succinyl-CoA ligase subunit beta (*SUCLG2*) (**Fig. 3g**). Finally, RNAseq of patient tumours with
192 mCRPC (n=208) were analysed against longitudinal survival data (Abida et al., 2019) to determine
193 whether the MitoS gene signature was predictive of clinical patient outcomes³⁰. This analysis revealed
194 that patients with a high MitoS score (top 50%) were associated with a 6.3 month reduced mean
195 survival time (MST) (p<0.0001) than those in the bottom 50%. In concordance with this result, analysis
196 of only *HIBCH* had a 6.8-month reduced MST (p<0.0001) and most notably, the succinate
197 dehydrogenase subunit *SDHB* had a 9.8 month reduced MST.

198

199

200 **Fig. 3 - Valine Catabolism and Succinate-Linked Respiration is Enhanced Through PCa progression.**

201 (a) Schematic of the MitoS gene signature, generated for the purpose of this study. (b) Heatmap showing MitoS expression

202 z-scores in benign vs. malignant patient primary prostate tissue with included signature scores of MitoS and AR activity

203 (ARPC) as well as functional succinate-oxidation. (c) MitoS scoring by gene set variation analysis (GSVA) of benign vs.

204 malignant prostate tissues. (d) Correlation analysis of MitoS and ARPC score in malignant PCa tissue. (e) Gene expression

205 heatmap of enzymes responsible for 3HIB-CoA to succinate conversion in LNCaP cells treated with 7, 14 and 21 days of 10

206 μM enzalutamide. (f) Clustered heatmap of MitoS genes in metastatic castrate-resistant PCa (mCRPC) RNAseq data

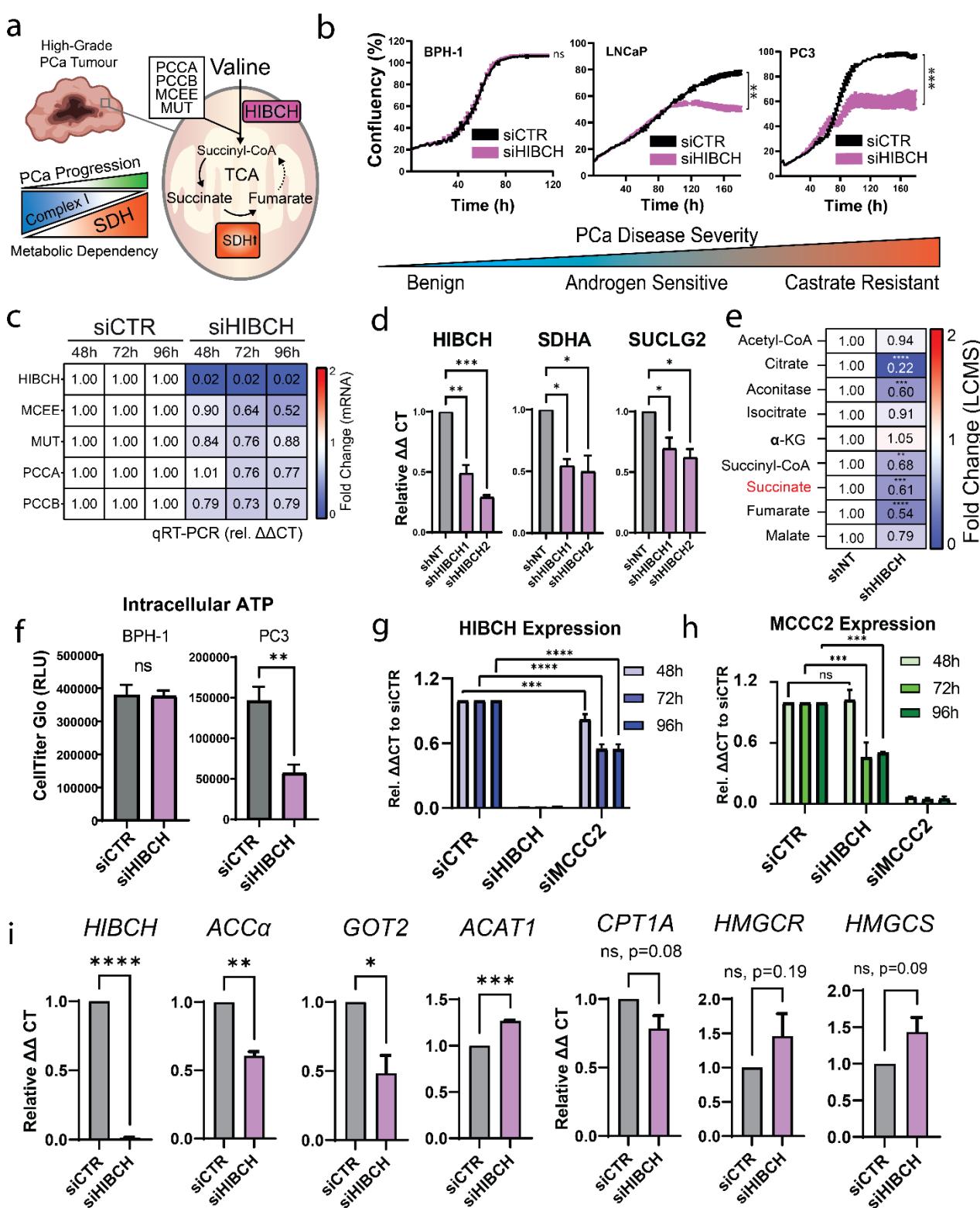
207 stratified by disease molecular subtype: AR-high PCa (ARPC), AR-low PCa (ARLPC), neuroendocrine PCa (NEPC), double-

208 positive tumours (AMPC) and double-negative tumours (DNPC). (g) Gene expression of HIBCH and SUCLG2 across

209 mCRPC subtypes. (h) Kaplan-Meier curves displaying the months overall survival of mCRPC patients classified into high

210 (red) or low (blue) tumour expression of MitoS score, HIBCH and SDHB. Raw datasets were obtained from Schopf et al.,

211 2020 (a-d), Tousignant et al., 2020 (f), Labrecque et al., 2019 (f-g) and Abida et al., 2019 (h). Significance determined by


212 One-Way ANOVA, * $p<0.05$, or Kaplan Meier survival analysis.

213 **Inhibition of valine catabolism via HIBCH suppresses prostate cancer cell metabolism via**
214 **succinate generation.**

215 To investigate the effects of inhibiting valine catabolism on PCa proliferation and succinate-linked
216 metabolism (**Fig. 4a**), cell growth was continuously measured following an optimised siRNA-based
217 HIBCH knockdown protocol (**Supplementary Fig. 2**). LNCaP and PC3 cell confluence (**Fig. 4b**) and
218 cellular morphology (**Supplementary Fig. 3**) were both significantly impaired at 96 hours post-
219 transfection. Cell proliferation was not reduced in benign BPH-1 cells, suggesting selective sensitivity
220 in malignant prostate cells. Expression of the genes responsible for encoding the propionyl-CoA to
221 succinyl-CoA enzymatic pathway (*PCCA*, *PCCB*, *MCEE*, *MUT*) were also measured by qRT-PCR at
222 multiple time points following HIBCH knockdown. Expression of these genes was reduced at 48 hours
223 with more substantial reductions 96 hours post-transfection. This included a significant reduction
224 (~50%) in *MCEE* gene expression ($p=0.0004$) and a non-significant reduction (~20%) in *PCCA* and
225 *PCCB* expression compared to siCTR (**Fig. 4c**). HIBCH protein was also measured at 72 hours by
226 Western blot analysis post-siRNA transfection to validate knockdown (KD) which confirmed reduced
227 expression in the BPH-1 (69% KD) LNCaP (66% KD) and PC3 (76% KD) prostate cell lines
228 (**Supplementary Fig. 4**).

229 To investigate the long-term effects of HIBCH suppression, doxycycline-inducible shRNA targeting
230 HIBCH (shHIBCH), or a non-targeting control (shNT) were generated in LNCaP cells. This model
231 showed similar transcriptional perturbations in the genes responsible for SLRF as the siRNA model
232 with gene expression of *SDHA* (succinate oxidation) reduced ~50% and *SUCLG2* (succinate
233 generation) reduced ~40% after 72 hours dox-induction (**Fig. 4d**). We also performed 96 hours of
234 HIBCH suppression in LNCaP cells by siRNA, which resulted in less substantial but statistically
235 significant reductions to the expression of both the catalytic (*SDHA*: $p=0.010$, *SDHB*: $p=0.004$) and
236 membrane bound (*SDHC*: $p=0.032$, *SDHD*: $p=0.003$) subunits of SDH (**Supplementary Fig. 5**),
237 suggesting a sustained reduction in SLRF over time with the loss of valine catabolism. Furthermore,
238 a statistically significant reduction to mitochondrial solute transporter *SLC25A10* expression ($p=0.008$)
239 was detected, suggesting decreased shuttling of succinate and malate in response to SDH inhibition
240 (**Supplementary Fig. 5**). To functionally confirm these results, a metabolomic analysis was
241 conducted in LNCaP cells as a proof-of-principle experiment to demonstrate the effect of long-term
242 (144h) shRNA mediated-inhibition of HIBCH. Substantial reductions to succinate (-39%), succinyl-
243 CoA (-32%), fumarate (-46%), malate (-21%), cis-aconitate (-40%) and citrate (-78%) were observed
244 within the shHIBCH samples (**Fig. 4e**). Inversely, minimal fluctuations to acetyl-CoA (-6.5%), isocitrate
245 (-9.4%), and alpha-ketoglutarate (+5.4%) were detected. Together these results highlight the role of
246 HIBCH in the maintenance of succinyl-CoA and succinate as well as the preservation of SDH function
247 within the TCA cycle.

248 The leucine-specific enzyme methylcrotonyl-CoA carboxylase subunit 2 (MCCC2) has been
249 previously highlighted as a therapeutic target in PCa, and was thus investigated to ensure it was not
250 enhanced as a result of aberrant HIBCH levels³¹. Following 72 and 96 hours of HIBCH knockdown in
251 LNCaP cells, *MCCC2* gene expression was significantly reduced (50%), suggesting a delayed
252 reduction to leucine catabolic activity in response to suppressed valine catabolism (**Fig. 4g**). Similarly,
253 inhibition of *MCCC2* resulted in significant reductions to *HIBCH* gene expression by 48 hours post-
254 knockdown (**Fig. 4h**). These findings provide preliminary evidence that valine and leucine catabolism
255 are indirectly linked, and that targeting either pathway results in a delayed suppression of the other.
256 An analysis of central metabolic gene expression further showed a statistically significant reduction in
257 the expression of *ACCo* ($p=0.0031$) and *GOT2* ($p=0.0298$), and a non-significant reduction in *CPT1a*
258 ($p=0.082$) (**Fig. 4i**). Inversely, a significant increase in the expression of *ACAT1* ($p=0.0005$) was
259 observed, suggesting that compensation of isoleucine catabolism may be invoked in response to
260 reduced valine catabolic activity. Finally, non-significant increases in the expression of *HMGCR*
261 ($p=0.1862$) and *HMGCS* ($p=0.0897$) were noted, indicating that cholesterol synthesis may be
262 enhanced following HIBCH knockdown, which would benefit from future investigation (**Fig. 4i**).

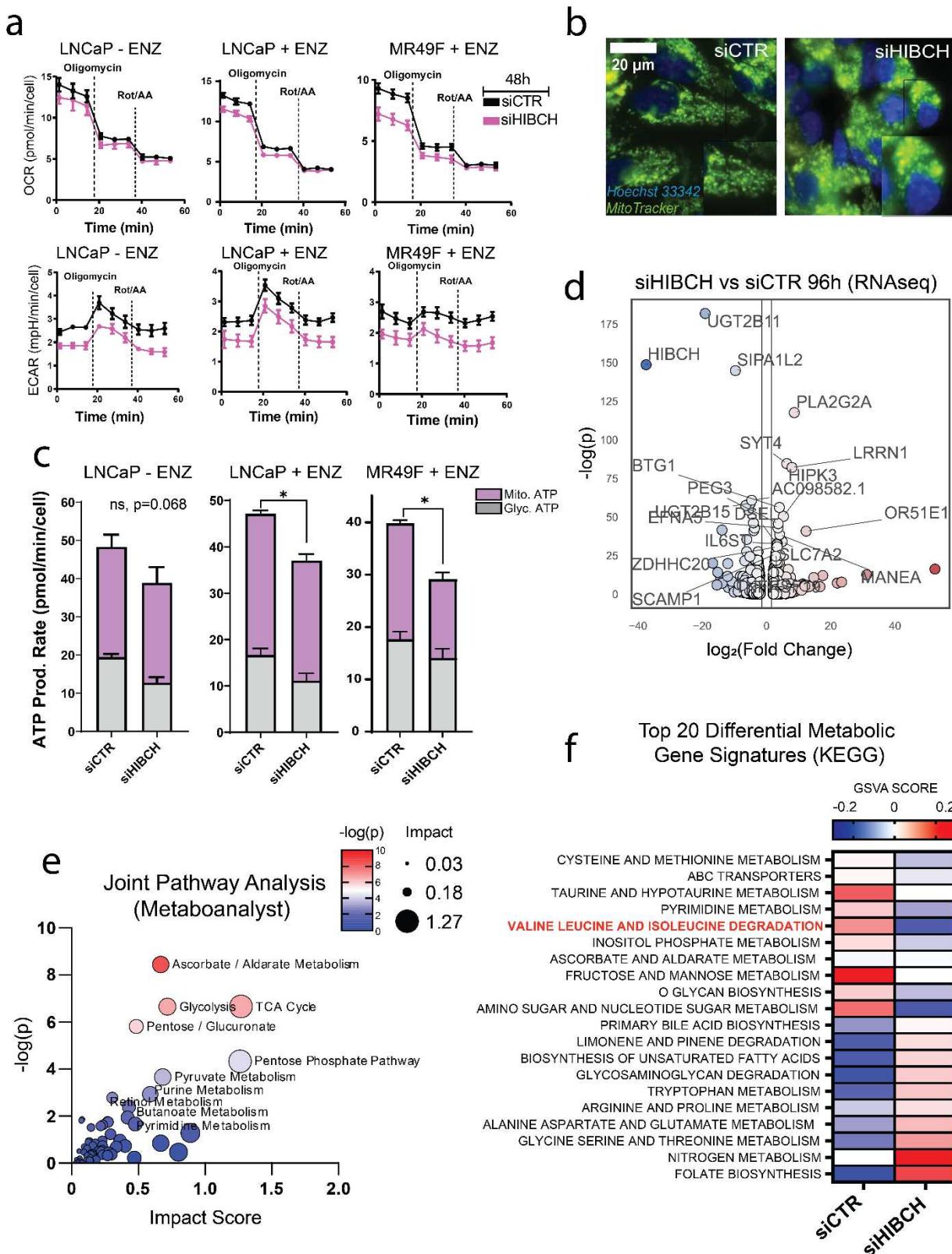
264

265 **Fig. 4. Targeting Valine Catabolism to Inhibit Proliferation and Metabolic Plasticity in PCa.**

266 (a) Schematic describing proposed hypothesis that mitochondrial energy remodelling (enhanced succinate oxidation by
267 SDH) is facilitated by enhanced valine catabolism and 3-hydroxyisobutyryl-CoA Hydrolase (HIBCH) activity. (b) Cell
268 confluence time course assay in LNCaP, PC3 and BPH-1 cells, following siRNA transfection of either siCTR or siHIBCH. (c)
269 mRNA expression of genes encoding the succinyl-CoA generating enzymes within LNCaP cells following 24, 72 and 96
270 hours of siCTR or siHIBCH transfection. (d) mRNA expression of HIBCH, SDHA and SUCLG2 following 96 hours of induction
271 of shCTR or shHIBCH in LNCaP cells. (e) Metabolomic quantification (LCMS) of tricarboxylic-acid cycle intermediates
272 following 144 hours of induction of shCTR or shHIBCH in LNCaP cells. (f) ATP content of PC3 and BPH-1 cells following 96
273 hours of siCTR or siHIBCH transfection measured by CellTitre Glo assay. (g) HIBCH and (h) MCCC2 mRNA expression
274 following 48, 72 and 96 hours of siCTR, siHIBCH or siMCCC2 transfection. (i) mRNA expression of ACCa, ACAT1, GOT2,
275 CPT-1A, HMGCR and HMGCS by qRT-PCR following 96 hours of siCTR or siHIBCH transfection. Significance was
276 determined by One-Way ANOVA comparing each observation to the vehicle control (siCTR or shCTR). ns – not significant,
277 *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

278 **HIBCH Knockdown inhibits mitochondrial respiration and glycolysis in PCa.**

279 To functionally measure the metabolic response of PCa cells to HIBCH knockdown, real-time
280 metabolic flux analysis was performed with the Seahorse XFe96 Analyzer. From our previous analysis
281 of LNCaP PCa cells, it was uncovered that valine catabolism is enhanced in response to
282 enzalutamide. We therefore sought to compare the glycolytic and mitochondrial response of
283 enzalutamide-sensitive (LNCaP) and enzalutamide-resistant (MR49F) cells in response to only 48
284 hours of HIBCH knockdown. A timeframe of 48 hours was employed in these experiments to identify
285 acute changes in cellular respiration. LNCaP cells were exposed to either vehicle (EtOH) or 10 μ M
286 enzalutamide (ENZ) for 48 hours while MR49F cells were maintained in continuous ENZ to prevent
287 therapeutic re-sensitization. Following treatment and siRNA transfection, glycolytic lactate export was
288 calculated as a function of extracellular acidification rate (ECAR) while oxidative respiration was
289 measured as a readout of oxygen consumption rate (OCR). These analyses revealed reductions to
290 basal OCR and ECAR in both cell lines following HIBCH knockdown, however this response was
291 muted in LNCaP cells not exposed to ENZ (**Fig. 5a**). Calculation of ATP production rate also
292 demonstrated significant reductions to both mitochondrial and glycolytic ATP generation in these cells
293 (**Fig. 5c**). We also noted changes to oxidative respiration were more prominent in MR49F cells,
294 supporting the concept that enzalutamide resistance may lead to a heightened energetic dependency
295 on HIBCH. Live cell fluorescent microscopy of MR49F mitochondria also revealed dramatic changes
296 to mitochondrial morphology, including increased fragmentation and decreased complexity of the
297 mitochondrial tubular network (**Fig. 5b**).


298 To investigate the global transcriptomic consequences (e.g. compensation) induced by HIBCH
299 knockdown, RNA sequencing was performed on mRNA isolated from LNCaP PCa cells following 96
300 hours of siHIBCH transfection. Differential expression analysis was then performed on the processed
301 dataset which revealed 497 differentially expressed genes (269 increased, 228 decreased) in
302 response to HIBCH knockdown. Within the top 10 differentially expressed genes included a decrease
303 of *HIBCH*, *UGT2B11*, *UGT2B28* and *SIPA1L2*, as well as the increase of *OR51E1*, *PLA2G2A*,
304 *LRRN1*, *SYT4*, and *HIPK3* (**Table 1**, **Fig. 5f**). To investigate changes to differential metabolic pathway
305 enrichment, gene set variation scoring (GSVA) was performed. This revealed notable decrease of
306 BCAA degradation, cysteine and methionine metabolism and expression of the ABC transporters,
307 while nitrogen metabolism, folate biosynthesis and unsaturated fatty acid synthesis were increased
308 (**Fig. 5d**). To improve confidence in the identification of dysregulated metabolic pathways, an
309 integrated (joint) analysis was performed with MetaboAnalyst 5.0, to calculate an impact score derived
310 from the previously acquired metabolomics (shHIBCH 144h) in combination with the RNAseq
311 (siHIBCH 96h) (**Fig. 5e**). This analysis revealed that the top 5 most impacted pathways were
312 ascorbate / aldarate metabolism, TCA cycle, pentose phosphate pathway, glycolysis and pyruvate
313 metabolism. A limitation of the integrated analysis is that the data sets were derived from different
314 gene silencing methods (siRNA vs shRNA), alternating time points (96h and 144h) and a targeted
315 library of only 40 metabolites.

316

317 **Table. 1 – Top 10 Differentially Expressed Genes (Up and Down) Following HIBCH Knockdown in LNCaP PCa Cells**

Gene (Up)	Log(FC)	Adj. P Val	Ensembl99 ID	Gene (Down)	Log(FC)	Adj. P Val	Ensembl99 ID
OR51E1	12.294	2.09E-18	ENSG00000180785	HIBCH	-37.475	3.11E-65	ENSG00000198130
PLA2G2A	8.63	9.28E-52	ENSG00000188257	UGT2B11	-19.107	1.15E-79	ENSG00000213759
LRRN1	7.889	2.50E-36	ENSG00000175928	UGT2B28	-13.866	1.01E-18	ENSG00000135226
LCN2	7.446	1.95E-05	ENSG00000148346	SIPA1L2	-9.687	1.41E-63	ENSG00000116991
SYT4	6.268	2.04E-37	ENSG00000132872	ITGA1	-6.779	4.41E-10	ENSG00000213949
CRYAB	5.945	2.25E-04	ENSG00000109846	F5	-6.462	1.23E-25	ENSG00000198734
HIPK3	5.246	1.39E-22	ENSG00000110422	AGR2	-6.209	1.22E-12	ENSG00000106541
PXYLP1	5.132	7.83E-05	ENSG00000155893	FAR2P3	-6.196	8.07E-04	ENSG00000240253
PRSS1	5.102	2.78E-03	ENSG00000204983	ZNF812P	-6.15	4.36E-16	ENSG00000224689
SLC7A2	4.873	1.77E-15	ENSG00000003989	ODAM	-5.867	5.88E-04	ENSG00000109205

318

319

320 **Fig. 5. Targeting HIBCH in PCa Disrupts Oxidative Respiration, Glycolysis and Central Metabolic Pathways.**

321 (a) Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) following 96 hours of siCTR or siHIBCH
 322 transfection in LNCaP and MR49F cells measured by Seahorse Extracellular Flux Analysis. (b) Mitochondrial morphology
 323 (MitoTracker Green FM) of LNCaP cells following 72 hours of siCTR or siHIBCH transfection. (c) Glycolytic vs. mitochondrial
 324 ATP production rate calculated from Seahorse Extracellular Flux assay shown in Fig. 5a. (d)Volcano plot showing most
 325 differentially expressed genes following HIBCH knockdown. (e) Joint pathway analysis of both metabolomic and RNAseq
 326 data ranked by $-\log(p)$ value and impact scores. (f) Heatmap of the top 20 differential gene signature scores of LNCaP cells
 327 following 96 hours of siCTR or siHIBCH transfection measured by RNAseq.

328

Discussion

329

Metabolic plasticity is an important multifaceted factor which underpins the evasive nature of cancer. We have uncovered novel insights into the role of valine catabolism in maintaining SLRF in advanced PCa. This work links the existing literature identifying the importance of BCAA degradation, lipid metabolism and oxidative phosphorylation in supporting the unique metabolic phenotype of PCa. While the BCAs have been previously reported to be critical regulators of lipid biology within both adipose and hepatic tissues^{16,32,33}, our investigation has for the first time shed light on their importance in lipid metabolism of malignant prostate cells. Our data demonstrates extracellular BCAA availability is essential for the maintenance of intracellular lipids in multiple models of advanced and castrate-resistant PCa (LNCaP, C4-2B and PC3). This finding was further supported in our BCAA catabolic inhibitory models, which demonstrated that knockdown of BCAT1 could successfully reduce lipid content in LNCaP and PC3 cells, while knockdown of BCAT2 results in an increase to lipid content in PCa cells, but not in benign BPH-1 cells. Gene expression analysis of BCAT1 and BCAT2 following their knockdown also confirmed a compensatory transcriptional relationship, highlighting a dynamic cross-regulatory mechanism. To investigate the specific roles of each BCAA, we identified an important role for valine in co-regulating fatty acid uptake in androgen responsive PCa. In response to the absence of extracellular valine, we found that LNCaP cells increase long-chain fatty acid uptake. This result is supported by other studies that link valine catabolism and fatty acid uptake through a regulatory feedback loop between HIBCH and pyruvate dehydrogenase kinase 4 (PDK4). This response was unique to PCa cells but absent in non-malignant BPH-1 cells, which instead demonstrated a unique response to leucine. Together, these investigations suggest a possible switch in metabolic dependency in PCa cells, including a modified reliance from BCAT2 to BCAT1 and from extracellular leucine to valine.

351

Over the past few years, enhanced succinate oxidation by SDH has been identified as an emergent hallmark of PCa metabolism⁹⁻¹¹. Increased reliance on succinate in response to reduced Complex I (CI) activity is also not unique to cancer, as cell-permeable succinate has been shown to overcome CI dysfunction in models of mitochondrial disease³⁴. While direct inhibition of SDH activity has been explored as a therapeutic strategy within multiple cancers due to its critical role in oxidative phosphorylation, an inherent flaw with this approach is the resultant accumulation of intracellular succinate. Increased cytoplasmic succinate is well known to stabilise hypoxia-inducible factors (HIFs), which play a pivotal role in the oncogenesis of multiple malignancies^{35,36}. As a result, cells which are deficient in SDH activity are also subject to enhanced pseudohypoxia, epithelial to mesenchymal transition (EMT) and metastatic potential^{37,38}. Our unique approach has aimed to resolve this problem, by instead inhibiting the upstream production of succinate via the valine catabolic axis. Our analyses of publicly available data also confirmed a transcriptomic enrichment of genes which facilitate the entry of valine into the TCA cycle (MitoS gene signature) in patient PCa tumours as well as negatively correlating to patient survival outcomes.

365

Inhibition of valine catabolism was achieved in this study via the suppression of HIBCH, a key enzyme facilitating the conversion of 3HIB-CoA to 3HIB. Our data demonstrates that knockdown of HIBCH results in metabolic catastrophe for PCa cells, including a reduction in intracellular succinate among other TCA metabolites, the muting of oxidative and glycolytic respiration and an induction of mitochondrial fragmentation. These findings are also supported by Shan et al (2019), who in colorectal cancer cells demonstrated that HIBCH inhibition reduces cell proliferation and TCA metabolite levels¹⁷. Furthermore, in response to HIBCH inhibition a time-delayed reduction to *MCCC2* gene expression was also observed, a key enzyme in the leucine catabolic pathway. *MCCC2* has been previously highlighted as a therapeutic target in PCa³¹ and was thus measured to validate that leucine catabolism was not enhanced in response to HIBCH inhibition. Our findings demonstrated that not only do *MCCC2* and HIBCH fail to share a compensatory relationship but are mutually dependent on the activity of the other. Our exploration into the global multi-omic changes occurring because of HIBCH inhibition also highlighted several broader metabolic consequences. This included the

378 reduction of the genes *ACCo* and *GOT2*, as well as dysregulation of the ascorbate,
379 cysteine/methionine, nitrogen, and folate metabolic pathways.

380 One knowledge gap which our study has not examined are the alternative sources of succinyl-CoA,
381 including the catabolism of isoleucine, methionine, and threonine. However, amongst these, valine
382 remains the most abundant and readily available amino acid in PCa patient serum (Val: 222.8 μ M,
383 Ile: 56.3 μ M, Met: 16.9 μ M, Thr: 102.1 μ M)³⁹. Our findings also highlight the significance of dissecting
384 the specific roles for each BCAA in cellular metabolism and justify further investigations into their
385 unique functions and regulatory mechanisms. This will be essential in further understanding the
386 specific energetic demands which are dynamically adapted throughout the PCa disease spectrum
387 and will assist in the generation and deployment of novel metabolically targeted strategies. More
388 broadly, ontological pathway databases would also likely benefit from separating the leucine,
389 isoleucine, and valine catabolic entries to prevent statistical muting introduced from signature-based
390 analyses, which often group BCAA degradation as a singular process. Succinate has been identified
391 as having many pro-oncogenic roles, including HIF1 α stabilisation^{35,36}, alteration of the tumour
392 microenvironment⁴⁰, promotion of metastatic potential via enhanced EMT³⁷, suppression of anti-
393 tumour immune responses^{41,42} and the activation of pro-inflammatory signalling pathways⁴³. Future
394 directions from this work would thus benefit from investigations into the targeting of these oncogenic
395 factors via inhibition of HIBCH. In summary, our study introduces a novel therapeutic approach which
396 exploits metabolic reliance on succinate in PCa. This multifaceted investigation reveals the intricate
397 connections between BCAAs, lipid metabolism, and succinate-linked respiration in the context of PCa.
398 The clinical implications of our findings highlight the potential of HIBCH inhibition as a targeted
399 therapeutic strategy for PCa, warranting further exploration and validation.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419 **Methods**

420 **Cell Culture** - Benign and malignant prostate cell lines: BPH-1, LNCaP, C4-2B, PC3 and MR49F
421 were cultured in RPMI 1640 (Gibco) supplemented with 5% foetal bovine serum (FBS). The
422 enzalutamide-resistant cell line MR49F was continuously maintained in 10% FBS + 10µM
423 enzalutamide (MedChemExpress) to prevent therapeutic re-sensitisation. Medium was replenished
424 at least every 72 hours and cells were routinely screened for mycoplasma.

425 **Amino Acid Depletion Assays** - Following 72 hours of standard culture in poly-L-ornithine coated
426 96-well optical plates (Cellvis, #P96-1.5H-N), culture medium was washed twice and refreshed with
427 BCAA depleted medium (BDM). BDM was generated through supplementation of glucose and amino
428 acids (except BCAAs) to RPMI 1640 Medium Modified without L-Glutamine, Amino acids, Glucose or
429 Phenol Red (MyBioSource, #MBS653421). BDM was supplemented with 10% dialysed FBS to
430 prevent the addition of amino acids from serum. Exogenous supplementation of leucine (100 µM),
431 isoleucine (55 µM) and valine (220 µM) were then performed to restore physiologically representative
432 BCAA serum concentrations. The formulation of BDM has been included in the Supplementary Data.

433 **Small Interfering RNA (siRNA) Knockdown** - siRNA silencing was accomplished using forward
434 transfection of pre-designed MISSION siRNAs from Sigma-Aldrich. A 10 nM final concentration of
435 siBCAT1 (SASI_Hs01_00066058), siBCAT2 (SASI_Hs02_00331330), siHIBCH
436 (SASI_Hs01_00064760) or siMCCC2 (SASI_Hs01_00039625) was transfected into cells with
437 RNAiMAX transfection reagent (ThermoFisher, #13778150) diluted 1:25 in serum free RPMI 1640.
438 Following 5 hours of transfection, standard serum conditions were restored by the addition of FBS
439 (5%). A universal negative control (Sigma Aldrich, #SIC001) and Cy5-labelled negative control (Sigma
440 Aldrich, #SIC005) with no known human homologies were included in all experiments to control for
441 non-specific toxicity and validate successful lipofection.

442 **Inducible Short Hairpin RNA (shRNA) Knockdown** - Glycerol *Escherichia coli* stocks containing
443 SMARTvector inducible lentiviral shRNA (mCMV, tGFP) were obtained from Horizon Discovery.
444 Purified plasmid DNA was generated from overnight LB cultures with the QIAprep Spin Miniprep Kit
445 (Qiagen, #27106X4) and quantified using the NanoDrop ND-1000 spectrophotometer (ThermoFisher,
446 #ND-1000). Viral supernatants were generated in 10 cm dishes by transfection of HEK293T cells with
447 0.2 µg pCMV delta R8.2 (lentiviral packaging plasmid), 1.8 µg pCMV-VSV-G (lentiviral envelope
448 plasmid) and 2 µg purified shRNA DNA with 12 µg (3:1) of X-tremeGENE transfection reagent (Sigma
449 Aldrich, #6366244001). Following 72 hours of transfection, LNCaP cells were transduced with fresh
450 viral supernatant for 6 hours and the cultures expanded. Target-specific regions of shHIBCH1 and
451 shHIBCH2 were **GAATAATGCTGTTGGTTCT** and **ACTCTTAATATGATTGGC**, respectively.

452 **Quantitative Reverse Transcription PCR (qRT-PCR)** – Following cell siRNA transfection or shRNA
453 induction, total RNA was isolated using the Total RNA Purification Plus Kit (Norgen, #48300)
454 according to the manufacturer's protocol. RNA concentration was quantified using the NanoDrop ND-
455 1000 (ThermoFisher, #ND-1000) and RNA purity was subsequently assessed. cDNA was generated
456 from 1 µg of RNA using the SensiFAST cDNA synthesis kit (Bioline, #BIO65054). cDNA was then
457 diluted (1:5) with RNAase/DNAase-free water and qRT-PCR performed using SYBR-Green Master
458 Mix (ThermoFisher, #4309155) and primers listed in Supplementary Data. qPCR was monitored on
459 the ViiA-7 Real-Time PCR system (Applied Biosystems). Relative mRNA expression was then
460 calculated using the $\Delta\Delta CT$ method normalising gene expression to the RPL32 house-keeping gene.

461 **SDS-PAGE and Western Blotting** - Cells were scraped and lysed with 100 µL of freshly prepared
462 RIPA buffer. Samples were centrifuged at 14,000 RCF (x g) for 15 minutes before collection of the
463 supernatant and removal of cellular debris. Protein concentrations were measured using the Pierce
464 BCA Protein Assay Kit (ThermoFisher, #23225). 50 µg of protein lysate was prepared with 4X Bolt™
465 LDS Sample Buffer (ThermoFisher, #B0007) and 10X Bolt™ Sample Reducing Agent (ThermoFisher,
466 #B0009) and loaded onto a Bolt™ 4-12% Bis-Tris Mini Protein Gel (ThermoFisher, #NW04127). Gel
467 electrophoresis was run at 120 V (constant) for 60 minutes in 1X MOPS SDS running buffer

468 (ThermoFisher) using the Bolt Mini Blot Module (ThermoFisher, #B1000). Protein transfer using
469 nitrocellulose membrane was conducted in 1X Bolt Transfer Buffer at 10V (ThermoFisher, #BT0006)
470 for 1 hour, then blocked in Odyssey TBS Blocking Buffer (LI-COR, #927-500) for 1 hour at room
471 temperature. HIBCH and γ -Tubulin antibodies were diluted 1:1000 in blocking buffer and incubated
472 with the membrane overnight at 4°C. The membrane was washed again and then incubated with
473 1:25000 Odyssey fluorescent-dye conjugated secondary antibodies (LI-COR) for 1 hour at room
474 temperature protected from light. The membrane was again washed and imaged using the Odyssey
475 infrared imaging system (LI-COR) and densitometry quantified using Image Studio Lite (LI-COR).

476 **Intracellular Lipid Content Quantification** - Following 24 hours of culture in BDM, media was
477 removed, and the optical plate was washed twice with 200 μ L PBS. Cells were fixed with 4%
478 paraformaldehyde (PFA) (Electron Microscopy Sciences, #50-980487) at room temperature for 30
479 minutes, rinsed with PBS, then intracellular lipids were co-stained with 0.1 μ g/mL Nile Red (Invitrogen,
480 #N1142) and 1 μ g/mL 4,6-diamidino-2-phenylindole (DAPI) (Invitrogen, #D1306) in PBS for 1 hour at
481 4°C. Automated fluorescent microscopy was accomplished using the InCell Analyzer 6500HS (Cytiva,
482 #6500HS). Ten fields per well were captured using the 405, 561 and 642 nm (Phospholipids)
483 excitation filters at 10X and 60X magnifications. Image segmentation and quantitation of cellular
484 parameters from fluorescent 10X imaging were derived using custom pipelines in CellProfiler 4¹⁸.
485 Representative images (60X) where processed with ImageJ and identical thresholding settings were
486 applied across all images where comparisons have been made¹⁹.

487 **Live Cell C16:0-BODIPY Uptake Assay** - Following 24 hours of culture in BDM, media was removed,
488 and the optical plate was washed twice with 200 μ L PBS. Cells were then treated with 5 μ M C16:0
489 BODIPY (C16) (Invitrogen, #D3821), 1 μ g/ml Hoechst 33342 (ThermoFisher, #62249) and 0.2%
490 bovine serum albumin (BSA) (Sigma Aldrich, #A8412) in serum-free BDM for 30 minutes at 37°C to
491 allow cellular uptake of C16. Cells were washed twice with 200 μ L serum-free BDM before imaging.
492 Images were captured using the InCell Analyzer 6500HS (Cytiva). Ten fields per well were captured
493 with the 405 nm (Blue, DAPI) and 488 nm (Green, C16) excitation filters at 10X and 60X
494 magnifications. Image analysis was performed as described above.

495 **Seahorse Extracellular Flux Assay** - Quantification of glycolytic and mitochondrial ATP production
496 was performed using the Seahorse XFe Real-Time ATP Rate Assay Kit (Agilent, #103591-100). Prior
497 to cell adhesion, Seahorse 96XFe tissue culture plates were coated with 0.01% poly-L-ornithine
498 solution (Sigma-Aldrich, #P4957) and incubated at 37°C. Cells were seeded at a density of 10,000
499 cells per well in standard phenol red-free RPMI 1640 (ThermoFisher, #11835055) with 5% FBS. Cells
500 were subject to 48 hours of siRNA mediated HIBCH knockdown as described above. At endpoint, the
501 media was replaced with Seahorse Base Medium (Agilent, #103334-100), supplemented with 2 mM
502 L-glutamine (Sigma Aldrich, #1294808), 10 mM glucose (ThermoFisher, #A2494001) and 1 mM
503 sodium pyruvate (ThermoFisher, #11360070) adjusted to pH 7.4. Oligomycin (15 μ M) and a combined
504 injection of 10 μ M antimycin A + 10 μ M rotenone were added to the appropriate Seahorse XFe
505 injection ports. The Seahorse XFe96 analyser was programmed to measure both oxygen
506 consumption rate (OCR) and extracellular consumption rate (ECAR) over the course of 60 minutes.
507 Nine measurements were taken at 7-minute intervals with oligomycin injected between
508 measurements 3 and 4 and rotenone + antimycin A injected between measurements 6 and 7.
509 Extracellular flux data was analysed using Wave desktop software (Agilent) and normalised to the
510 number of cells in each well quantified with a Hoechst nuclear stain.

511 **LCMS Metabolite Quantification** – HIBCH knockdown was induced in shHIBCH and shNT LNCaP
512 cells with 0.25 μ g/mL doxycycline for 144 hours. Cells were rapidly washed with 5 mL isotonic wash
513 solution (5% D-mannitol) on ice to remove residual media and exogenous metabolites without
514 disturbing metabolite integrity as previously described²⁰. Instantly, 1 mL of ice-cold extraction buffer
515 (50% methanol + 250 nM AZT standard) was added before cells were scraped and transferred into
516 to 15 mL conical tubes. This step was again repeated, and the two fractions were combined. Samples
517 were freeze-thawed (-80°C) then sonicated on ice for 10 minutes. Metabolites were purified from the
518 organic fraction of a phenol:chloroform:isoamyl (25:24:1) solution and centrifuged at 16,000 RCF for

519 5 minutes at 4°C. The supernatant was removed without disturbing the interface layer, frozen and
520 sent to the Metabolomics Australia Queensland Facility for analysis. Samples were freeze-dried and
521 resuspended in 100 µL 2% acetonitrile (ACN) before being injected (LCMS) in two dilutions to account
522 for natural variability in metabolite levels.

523 **RNA Sequencing** - Total cellular RNA from LNCaP cells following 96 hours of HIBCH knockdown
524 was extracted using the Norgen RNA Purification PLUS kit (Norgen, #48400) according to the
525 manufacturer's instructions. RNA quality and quantity were determined on an Agilent 2100
526 Bioanalyzer (Agilent Technologies, Santa Clara, USA) and Qubit® 2.0 Fluorometer (ThermoFisher).
527 Library preparation and sequencing was performed at the QUT Central Analytical Research Facility
528 (CARF) using the Illumina TruSeq Stranded mRNA Sample Prep Kit (strand-specific, polyA enriched,
529 Illumina, San Diego, USA) with an input of 1 µg total RNA (RIN>9), followed by paired-end sequencing
530 on the Illumina NovaSeq6000. Raw reads were trimmed using TrimGalore, followed by alignment to
531 the human genome (GRCh38 / hg38) using the STAR2 aligner and read quantification with
532 RSEM4^{21,22}. Differential expression (DE) between siCTR and siHIBCH samples was calculated after
533 sample normalization using edgeR (no replicates: Fisher Exact Test; replicates: General Linear
534 Model) and is defined by an absolute fold change of ≥ 1.5 and an FDR corrected p-value ≤ 0.05 ²³.
535 Data quality control included running FastQC before and after trimming, checking RNAseq metrics
536 with the PICARD tool kit, and mapping reads against microbial genomes using Kraken^{24,25}.

537 **Statistics and Bioinformatic Analyses**

538 Statistical analyses were performed either with GraphPad Prism 10 (GraphPad Software) or the SciPy
539 python package. Statistical tests are described in the figure legends²⁶. Hierarchically clustered
540 heatmaps were produced using the seaborn python package. Kaplan Myer survival plots were
541 generated using the lifelines python package. Gene signature scoring was accomplished using Gene
542 Set Variation Analysis (GSVA) package in R, incorporating the respective transcript per million (TPM)
543 values of genes listed in the Supplementary Data²⁷. Joint pathway analysis was achieved in
544 MetaboAnalyst 5.0 using differentially expressed fold change values (FC ≥ 1.5 , p ≤ 0.05) derived from
545 the RNAseq and metabolomic experiments listed above²⁸.

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561 **References**

- 562 1. Semenas, J., Allegrucci, C., Boorjian, S. A., Mongan, N. P. & Persson, J. L. Overcoming drug
563 resistance and treating advanced prostate cancer. *Curr. Drug Targets* **13**, 1308–23 (2012).
- 564 2. Nouri, M. *et al.* Therapy-induced developmental reprogramming of prostate cancer cells and
565 acquired therapy resistance. *Oncotarget* **8**, 18949–18967 (2017).
- 566 3. Bader, D. A. & McGuire, S. E. Tumour metabolism and its unique properties in prostate
567 adenocarcinoma. *Nat. Rev. Urol.* **17**, 214–231 (2020).
- 568 4. Tousignant, K. D. *et al.* Therapy-induced lipid uptake and remodeling underpin ferroptosis
569 hypersensitivity in prostate cancer. *Cancer Metab.* **8**, 11 (2020).
- 570 5. Tousignant, K. D. *et al.* Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway
571 Associated with Prostate Cancer Disease Progression and Bone Metastasis. *Mol. Cancer Res.*
572 **17**, 1166–1179 (2019).
- 573 6. Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. *Prostate*
574 *Cancer Prostatic Dis.* **9**, 230–234 (2006).
- 575 7. Zadra, G. *et al.* Inhibition of de novo lipogenesis targets androgen receptor signaling in
576 castration-resistant prostate cancer. *Proc. Natl. Acad. Sci.* **116**, 631 LP – 640 (2019).
- 577 8. Young, R. S. E. *et al.* Apocryphal FADS2 activity promotes fatty acid diversification in cancer.
578 *Cell Rep.* **34**, 108738 (2021).
- 579 9. Sant'Anna-Silva, A. C. B. *et al.* Succinate Anaplerosis Has an Onco-Driving Potential in Prostate
580 Cancer Cells. *Cancers* **13**, 1727 (2021).
- 581 10. Zhang, A. *et al.* Enhanced Succinate Oxidation with Mitochondrial Complex II Reactive Oxygen
582 Species Generation in Human Prostate Cancer. *Int. J. Mol. Sci.* **23**, (2022).
- 583 11. Schöpf, B. *et al.* OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations
584 and increased succinate oxidation. *Nat. Commun.* **11**, (2020).
- 585 12. Billingsley, K. L. *et al.* The feasibility of assessing branched-chain amino acid metabolism in
586 cellular models of prostate cancer with hyperpolarized [1-13C]-Ketoisocaproate. *Magn. Reson.*
587 *Imaging* **32**, 791–795 (2014).

588 13. Otsuki, H. *et al.* Prostate Cancer Cells in Different Androgen Receptor Status Employ Different
589 Leucine Transporters: Leucine Transporter Change in Prostate Cancer. *The Prostate* **77**, 222–
590 233 (2017).

591 14. Xu, M. *et al.* Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in
592 Prostate Cancer Cells. *J. Urol.* **195**, 1588–1597 (2016).

593 15. Ananieva, E. A. & Wilkinson, A. C. Branched-chain amino acid metabolism in cancer. *Curr.*
594 *Opin. Clin. Nutr. Metab. Care* **21**, 64–70 (2018).

595 16. Green, C. R. *et al.* Branched-chain amino acid catabolism fuels adipocyte differentiation and
596 lipogenesis. *Nat. Chem. Biol.* **12**, 15–21 (2016).

597 17. Shan, Y. *et al.* Targeting HIBCH to reprogram valine metabolism for the treatment of colorectal
598 cancer. *Cell Death Dis.* **10**, 618 (2019).

599 18. Stirling, D. R. *et al.* CellProfiler 4: improvements in speed, utility and usability. *BMC*
600 *Bioinformatics* **22**, 433 (2021).

601 19. Collins, T. J. ImageJ for microscopy. *BioTechniques* **43**, S25–S30 (2007).

602 20. Koh, T. *et al.* Changes of Metabolic Profiles in an Oral Squamous Cell Carcinoma Cell Line
603 Induced by Eugenol. *In Vivo* (2013).

604 21. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinforma. Oxf. Engl.* **29**, 15–21
605 (2013).

606 22. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or
607 without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).

608 23. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential
609 expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140 (2010).

610 24. Broad Institute. Picard Toolkit. *Broad Inst. GitHub Repos.* (2019).

611 25. Davis, M. P. A., van Dongen, S., Abreu-Goodger, C., Bartonicek, N. & Enright, A. J. Kraken: A
612 set of tools for quality control and analysis of high-throughput sequence data. *Methods San*
613 *Diego Calif* **63**, 41–49 (2013).

614 26. Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat.*
615 *Methods* **17**, 261–272 (2020).

616 27. Hänelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray
617 and RNA-Seq data. *BMC Bioinformatics* **14**, 7 (2013).

618 28. Pang, Z. *et al.* MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional
619 insights. *Nucleic Acids Res.* **49**, W388–W396 (2021).

620 29. Labrecque, M. P. *et al.* Molecular profiling stratifies diverse phenotypes of treatment-refractory
621 metastatic castration-resistant prostate cancer. *J. Clin. Invest.* **129**, 4492–4505 (2019).

622 30. Abida, W. *et al.* Genomic correlates of clinical outcome in advanced prostate cancer. *Proc. Natl.*
623 *Acad. Sci. U. S. A.* **116**, 11428–11436 (2019).

624 31. He, J. *et al.* Methylcrotonoyl-CoA Carboxylase 2 Promotes Proliferation, Migration and Invasion
625 and Inhibits Apoptosis of Prostate Cancer Cells Through Regulating GLUD1-P38 MAPK
626 Signaling Pathway. *OncoTargets Ther.* **Volume 13**, 7317–7327 (2020).

627 32. Bishop, C. A., Schulze, M. B., Klaus, S. & Weitkunat, K. The branched-chain amino acids valine
628 and leucine have differential effects on hepatic lipid metabolism. *FASEB J.* **34**, 9727–9739
629 (2020).

630 33. Bjune, M. S. *et al.* Metabolic role of the hepatic valine/3-hydroxyisobutyrate (3-HIB) pathway in
631 fatty liver disease. *eBioMedicine* **91**, (2023).

632 34. Ehinger, J. K. *et al.* Cell-permeable succinate prodrugs bypass mitochondrial complex I
633 deficiency. *Nat. Commun.* **7**, 12317 (2016).

634 35. Lukyanova, L. D., Kirova, Y. I. & Germanova, E. L. The Role of Succinate in Regulation of
635 Immediate HIF-1 α Expression in Hypoxia. *Bull. Exp. Biol. Med.* **164**, 298–303 (2018).

636 36. Selak, M. A. *et al.* Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha
637 prolyl hydroxylase. *Cancer Cell* **7**, 77–85 (2005).

638 37. Røsland, G. V. *et al.* Epithelial to mesenchymal transition (EMT) is associated with attenuation
639 of succinate dehydrogenase (SDH) in breast cancer through reduced expression of SDHC.
640 *Cancer Metab.* **7**, 6 (2019).

641 38. Aspuria, P.-J. P. *et al.* Succinate dehydrogenase inhibition leads to epithelial-mesenchymal
642 transition and reprogrammed carbon metabolism. *Cancer Metab.* **2**, 21 (2014).

643 39. Dereziński, P., Klupczynska, A., Sawicki, W., Pałka, J. A. & Kokot, Z. J. Amino Acid Profiles of
644 Serum and Urine in Search for Prostate Cancer Biomarkers: a Pilot Study. *Int. J. Med. Sci.* **14**,
645 1–12 (2017).

646 40. Inamdar, S. *et al.* Succinate in the tumor microenvironment affects tumor growth and modulates
647 tumor associated macrophages. *Biomaterials* **301**, 122292 (2023).

648 41. Harber, K. J. *et al.* Succinate Is an Inflammation-Induced Immunoregulatory Metabolite in
649 Macrophages. *Metabolites* **10**, 372 (2020).

650 42. Gudgeon, N. *et al.* Succinate uptake by T cells suppresses their effector function via inhibition of
651 mitochondrial glucose oxidation. *Cell Rep.* **40**, 111193 (2022).

652 43. Tannahill, G. M. *et al.* Succinate is an inflammatory signal that induces IL-1 β through HIF-1 α .
653 *Nature* **496**, 238–242 (2013).

654