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17 Abstract. This article describes our initial work toward a general-purpose platform
18 for non-invasive neurotechnology research. This platform consists of a multi-
19 modal wireless recording device, an associated software API, and full integration
20 into BCI2000 software. The device is placed on the forehead and features two
21 electroencephalographic (EEG) sensors, an inertial movement sensor (IMU), a
22 photoplethysmogram (PPG) sensor, a microphone, and vibration-based feedback.
23 Herein, we demonstrate different technical characteristics of our platform and its
24 use in the context of sleep monitoring/modulation, simultaneous and synchronized
25 recordings from different hardware, and evoked potentials. With further development
26 and widespread dissemination, our platform could become an important tool for
27 research into new non-invasive neurotechnology protocols in humans.
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s 1. Introduction

2 Recordings from the surface of the scalp (electroencephalography (EEG)) have been
s used for decades in the clinic and in research laboratories. For example, clinicians
s commonly interpret EEG recordings and other physiological signals to generate useful
» diagnostic information about specific sleep disorders (Rundo and Downey III, 2019).
13 Likewise, thousands of research studies have shown that the EEG holds substantial
s information about a person’s function or dysfunction, such as parameters of depression
5 (deAguiar Neto and Rosa, 2019) or cognition (Doan et al., 2021; Jeong, 2004). These
s studies have also shown that EEG can be used, together with appropriate conditioning
;7 protocols, to replace, restore, improve, enhance, or supplement functions lost due to
s different neurological disorders (Wolpaw and Wolpaw, 2012), such as to restore motor
» or speech function that is lost or impaired after stroke (Bundy et al. (2017) or Musso
w0 et al. (2022), respectively).

s In summary, there is now ample if not overwhelming evidence to suggest that EEG
22 could support functions that, in principle, could prove useful not only in the context of
i3 (a relatively limited number of) research studies or clinical evaluations, but could also
s improve the lives of a large number of people in their home. However, it is currently
s largely unclear how to transfer the potential benefits suggested or even realized by
s ongoing clinical practice or by scientific experimentation to practical in-home solutions.
s Determining how to generate such solutions requires, for each use case, large-scale
s evaluations of different neuroscientific protocols and engineering approaches in people’s
s homes.

so 'Traditional research-focused EEG systems can support a wide range of research, but
s they are too impractical for large-scale use outside the laboratory (see Fig. 1). To
s address this issue, over the past 20 years, an increasing number of manufacturers have
53 produced consumer-centric hardware that is meant to support EEG-based applications
s« in people’s homes and/or other natural environments. These consumer EEG systems
s generally fall into two categories.

ss The first category of consumer EEG systems is sleep home solutions that are
57 meant to complement the more traditional polysomnographic (PSG) evaluations
ss that are performed at sleep labs. For example, companies including Compumedics
59 (Compumedics, 2023), Dreem/Beacon Signals (Arnal et al., 2020; Beacon Biosignals,
oo 2023), Shenzhen EEGSmart Technology (Shenzhen EEGSmart Technology, 2019),
o FlectoThink (FlectoThink, 2022), and VentMed (Hunan VentMed Medical Technology,
2 2017) developed forehead patches or headbands for in-home sleep monitoring. These
&3 commercial in-home sleep solutions are usually quite practical, but they often have
s4 limitations in signal quality and/or their ability to use them for research purposes. For
s example, most of them do not have an API that provides real-time access to raw signals.
s Lhere are also research laboratories that have been focusing on different solutions for
e similar specific purposes (da Silva Souto et al., 2021; Kwon et al., 2023; Nakamura et al.,
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Figure 1. Existing research and consumer EEG solutions, and our Polaris
Neurosense platform. Traditional research EEG systems support a wide gamut of
research, but they are relatively impractical to use. Existing consumer EEG solutions
(sleep home solutions as well as other consumer EEG headsets) are more practical, but
have limitations in the research they can support. Our hardware/software platform is
designed for a balance of research ability and practicality.

¢ 2017; Tabar et al., 2023; Xu et al., 2023), but these academic solutions do not support
s a wide array of applications, and are typically not available to others.

7 The second category of consumer EEG systems is commercial devices that evolved
7 from the context of laboratory EEG research. These devices include systems from
722 different manufacturers such as Emotiv (EMOTIV Inc., 2023), g.tec (g.tec, 2023),
72 Muse (InteraXon Inc., 2023), Neurosky (NeuroSky Inc., 2023), OpenBCI (OpenBCI,
72 2022), and Wearable Sensing (Wearable Sensing, 2023). These devices are typically
75 better suited for research (e.g., they all have an API that supports real-time access to
76 signals), but they are usually less practical than sleep home solutions since they have
77 wet electrodes or electrodes that are placed in the hair. An interesting exception is the
78 recent introduction of the EEG-enabled headphones by Neurable (Neurable, 2023), but
7o more information about the device’s capabilities and limitations is needed.

so  None of these consumer EEG solutions are currently packaged with powerful general-
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a1 purpose closed-loop software that facilitates the wide array of evaluations necessary
&2 for development of practical neurotechnology solutions. In summary, there is currently
3 no solution that can simultaneously provide full research/clinical abilities and clinical-
sa grade practicality /robustness. We are painfully aware that it will likely be impossible
&5 to fully address both of these requirements simultaneously. For example, comprehensive
s polysomnography (PSG) evaluations require measurements of chest movements (e.g.,
&7 to disambiguate central and obstructive sleep apnea) or of leg movements (e.g., to
s provide evidence for Restless Leg Syndrome). It is almost certain that such (and
o other) measurements cannot be accomplished using sensors that are placed in a
o completely different location such as on the head. Likewise, optimization of practicality
o almost certainly requires placing electrodes outside the hair (e.g., on the forehead or
2 around/inside the ear), but these locations will not provide optimal access to EEG
o3 signals that are typically detected in more central locations (Schalk et al., 2023).

oo Within these general constraints, with the work described in this paper, we set out
s to develop a platform that combines multi-modal clinical-grade signal acquisition, high
o practicality and robustness, and significant research abilities. This platform, which
o we currently refer to as Polaris Neurosense, consists of a forehead patch that provides
e access to multi-modal signals, a software API, and powerful closed-loop software that
o is optimized for neurotechnology research. We expect that our system will greatly
wo facilitate research into new approaches for home sleep monitoring and modulation, as
1w well as other home-based diagnostic and treatment solutions. Thus, we hope that with
w2 further continuation of the work described herein, we will be able to hasten the transition
w3 of laboratory findings and clinical approaches into clinically and commercially successful
s solutions that will improve the lives of many people.

105 2. Methods

ws  2.1. System

w 2.1.1. Hardware To support clinical-grade and practical data collection, we developed
s multi-modal recording hardware that is capable of efficient closed-loop operation. It
o s relatively small (89 mm * 47 mm * 5 mm) and light-weight (30.6 grams) and,
o together with a disposable electrode patch, is being placed on the forehead (see Fig.
w 2). It is powered by a rechargeable battery that lasts more than 10 hours, and it
12 communicates to a host using Bluetooth 5.0 BLE via a Bluetooth dongle (PCs) or
us  directly (i0S/Android). The device’s electronics are placed on a flexible printed circuit
s board (PCB) and are enclosed in medical-grade flexible silicone (Shore hardness of 80A)
us  to ensure the flexibility and comfort of the equipment and to accommodate the different
us shape of people’s forehead.

w7 Our device has several sensors that support EEG recordings, photoplethysmography
us  (PPG), detection of movements (using an inertial measurement unit (IMU)) and sounds
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1o (using a microphone), and it can provide vibration feedback using a linear motor.

120 The EEG signals are detected from Fpl and Fp2 (referenced to Fpz) using a 24-bit
1 ADC (ADS1299-4, Texas Instruments, USA), and are sampled at 500 Hz after low-pass
122 filtering at 100 Hz. The input range of the EEG signal is £600mV,,, and the input
123 voltage noise (RTT) noise is < 1uV,,.

e PPG recordings are supported by a 3-wavelength optical sensor (Max30101, Analog
s Devices, USA) that samples the degree of reflection to light emitted at 537 nm (green
16 light), 660 nm (red light), and 880 nm (infrared light) wavelengths, respectively, at 100
12z Hz. Together with appropriate algorithms, PPG recordings can be used to derive heart
s rate and heart rate variability (Biswas et al., 2019; Pankaj et al., 2022; Ye et al., 2016),
120 as well as blood oxygenation (SpO2) (Alkhoury et al., 2021; de Kock and Tarassenko,
o 1991; Wukitsch et al., 1988).

1w IMU recordings are accomplished using an integrated 9-axis motion tracking device
132 (ICM-20948, TDK InvenSense, Japan) with a sampling rate of 50 Hz. Using appropriate
133 methods such as non-linear complementary filters (Mahony et al., 2008) or gradient-
13« descent orientation filters (Madgwick, 2010), these IMU signals can be converted into
135 absolute position and movement of the device (and thus, the user’s head).

136 The sound signal is detected using a MEMS microphone (MP23ABS, STMicroelectron-
137 ics, Italy) with a sampling rate of 1000 Hz. The sound signal can be used to detect
1s ambient noise and, using appropriate algorithms, the user’s snoring.

19 The device can provide vibration feedback using a linear motor that supports three
110 modes of vibration (constant vibration, pulse vibration, and sinusoidal vibration).

A single-use electrode patch provides a robust interface with the user’s forehead. It
12 consists of four electrodes (Fpl, Fp2, Fpz (reference) and ground), medical non-woven
13 fabric, and a medical adhesive layer. Electrodes are made of Ag/AgCl and are in contact
s with the scalp via a solid PVA-H hydrogel.

Figure 2. Multi-modal recording hardware. A: X-Ray diagram of the device and

its components. B: Front of the device. C: Front of the electrode patch that clips to the
back of the device.
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us  2.1.2. Hardware Testing In initial evaluations, we determined three EEG measurement
s characteristics, namely amplitude accuracy, noise root-mean-square (RMS), and
17 common-mode rejection ratio (CMRR), and we compared our device’s characteristics to
s those of three traditional research-focused EEG acquisition devices: 1) D440, Digitimer
1w Ltd., UK; 2) g.Hlamp, g.tec, Austria; and 3) NeuSen W, Neuracle, China.

5o To measure amplitude accuracy, we used a signal generator to produce a 100 pV 10
151 Hz square wave signal U;,. We connected the generator’s signal pin to one recording
12 channel of our device, and the generator’s reference signal pin to our device’s reference
153 and ground channel. We then measured the amplitude of this signal as U,,, and
15« determined the maximum deviation from the expected value to calculate the maximum
155 €ITOr Oy

156 - w x 100%

157 Finally, we calculated amplitude accuracy using 100 — d,,.

153 'To measure noise RMS, we shorted out our device’s signal input channel, reference
159 channel, and ground, and then calculated RMS amplitude N,,,s given the following
160 equation:

N 2
i Umi
I b i

162 Finally, to measure CMRR, we used a signal generator to produce a sinusoidal signal (3
163 Volt peak-to-peak, 50 Hz), and connected the generator’s signal channel to our device’s
164 signal and reference channels, and the signal generator’s reference channel to our device’s
s ground. We then used our device to measure the peak-to-peak voltage of this signal as
16 U.. We then changed the signal’s amplitude to 3 mV, and used our device to measure
17 the peak-to-peak voltage of this signal as Uy. Finally, we calculated CMRR using the
s following equation (K = 1000):

169 CMRR = 2OIgK + QOZQ%

C

o We also determined timing characteristics that are important for potential closed-loop
i application of our system. To do this, we tested the average duration of each transmitted
12 (20 ms long) data block, its jitter /standard deviation, as well as the fraction of dropped
173 blocks. We performed this testing when the device and associated Bluetooth receiver
s were right next to each other or 2 meters apart. The results are shown in Table 1.
s They demonstrate that, even though the device communicates through a wireless link,
e its timing characteristics are excellent and there is no or only minimal packet loss when
w7 the device is within a reasonable range to the receiver.

ws 2.1.3. Software API To support the hardware functions of our recording device, we
o implemented a C API. This API can identify all currently available devices, connect to
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Figure 3. Amplitude accuracy, noise/RMS amplitude, and CMRR for our
device and three research-focused devices.

close 2 meters

mean 20.00 ms  20.02 ms

jitter/standard deviation 0.70 ms  4.22 ms
packets dropped 0.0% 0.6%

Table 1. Timing characteristics and dropped packets for device operation that is close
to or 2 meters away from the Bluetooth receiver.

180 a specific device, start data streaming, operate the vibration motor, and perform other
w1 functions. The specific functions included in our API are:

182 e Open() This function opens the serial port provided by the Bluetooth dongle and
183 sets necessary parameters for serial communication such as baud rate.

184 e FindDevice() This function finds all devices that are powered on and are within
185 Bluetooth range, and determines whether the device we want to connect to exists

186 based on the device’s MAC address.
187 e Connect () This function connects to the desired device.

188 e CheckConnect() This function checks whether the device and the Bluetooth
189 receiver are properly connected.
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190 e Start() This function turns on data collection and transmission.

191 End () This function stops data collection and transmission.

192 TurnOnMotor () This function turns on the vibrating motor.

193 Turn0ffMotor () This function turns off the vibrating motor.

Disconnect () This function disconnects a device.

194

,_\
©
&
[ ]

Close() This function closes the serial port.

ws 2.1.4. Closed-Loop Software To enable comprehensive closed-loop neurotechnology
17 capabilities, we developed full support for our hardware device in BCI2000. BCI2000
s is a general-purpose software platform for closed-loop neurotechnology (Schalk et al.,
o 2004; Schalk and Mellinger, 2010), and has been in active development for close to 25
200 years. Over this period, BCI2000 has supported experiments reported in more than
20 1000 peer-reviewed publications (Brunner and Schalk, 2018), including many highly
20 influential studies in the neurotechnology literature (e.g., Herff et al. (2015); Leuthardt
205 et al. (2004); Miller et al. (2010); Wolpaw and McFarland (2004)).

20 With appropriate hardware, BCI2000 can acquire signals from the brain, body
20s physiology, or behavior, process them in meaningful ways, and use the outputs to
26 control the timing or other properties of feedback. These capabilities are highly
27 flexible and performant, and execute robustly even with demanding requirements.
2s The comprehensive integration of our hardware with BCI2000 provides many useful
200 functions. For example, it can:

210 e Acquire and synchronize all signals provided by our device, i.e., two channels of
211 EEG, accelerometer/gyroscope/magnetometer (providing absolute body position),
212 IR/red/green light (photoplethysmograph (PPG), providing heart rate, heart rate
213 variability, and SpO2), and microphone

214 e Provide highly customized tactile feedback through the vibration motor

215 e Synchronize signals from our device with behavioral measurements acquired from
216 many supported devices such as eye trackers, data gloves, or wearable movement
217 Sensors

218 e Calculate spectral amplitude/power/phase using different algorithms (e.g.,
219 bandpass-filtering and Hilbert transform, FFT, or AR spectral estimation)

220 e Compute different types of statistics of these measurements

21 e Provide auditory, visual, or other stimulation contingent on the results of these
222 statistics
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23 Users can harness these capabilities without delving into programming intricacies, or can
24 enhance them using documented interfaces in C++, Python, Matlab, and Simulink. The
2s  versatility of the filtering tools extends to both real-time brain signal data and offline
26 data analysis, offering a streamlined avenue for algorithm optimizations. Moreover, the
227 inclusion of comprehensive scripting features empowers users to craft sophisticated, fully
»s  automated experimental protocols.

20 BCI2000 excels in demanding experimental scenarios, offering exceptional performance
20 that ensures swift feedback with minimal latencies and jitter (Wilson et al., 2010). For
2 example, under optimized settings, the audio output jitter remains below 1 ms, while
222 stimulation latency is kept under 3 ms. Notably, BCI2000 includes a timing certification
233 system that can assess the timing of any BCI2000 configuration, encompassing both
2 hardware and software components.

25 3. Results

26 3.1. Sleep Monitoring and Modulation

27 We here demonstrate the application of our platform in three contexts. The first of
238 these contexts is sleep monitoring and modulation.

20 We spend almost a third of our life sleeping. It is now clear that sleep is critical to
20 our health and quality of life, and that poor sleep can cause reduced productivity and
21 increased mortality (De Fazio et al., 2022; Kwon et al., 2023). Unfortunately, many
22 people have insufficient amount of sleep, or suffer from different types of sleep disorders.
23 Indeed, it is estimated that approximately 10% of the adult population suffer from
24 insomnia, and an additional 20% experience occasional insomnia symptoms (Morin and
25 Jarrin, 2022). Obstructive sleep apnea (OSA), one of the most common sleep disorders,
25 18 estimated to affect 936 million adults aged 30-69 worldwide (Benjafield et al., 2019;
27 Surani and Taweesedt, 2022). Despite the high prevalence of these problems, 80% to 90%
s of people remain underdiagnosed and undertreated (Kwon et al., 2023; Senaratna et al.,
210 2017). One of the main reasons for this important issue is the lack of easily accessible
0 tools for evaluating different approaches to sleep monitoring and sleep modulation in
251 people’s homes (Kwon et al., 2023, 2021).

22 The hardware/software platform described in this paper allowed us to begin addressing
253 this issue by facilitating the design and clinical evaluation of our own sleep solution that
4 supports monitoring of EEG signals, heart rate, SpO2, and head movements, and that
s provides auditory stimulation that seeks to enhance EEG delta activity during slow
26 wave sleep, similar to protocols described in previous research (Garcia-Molina et al.,
»7 2018; Ngo et al., 2013; Papalambros et al., 2019; Santostasi et al., 2016). Figure 4 shows
s examples of results of our ongoing evaluations of these sleep monitoring and modulation
250 functions.
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Figure 4. Sleep monitoring and modulation. A: Concurrent acquisition of EEG
activity (filtered here in the alpha (8-12 Hz) and delta (0.5-4 Hz) ranges), posture,
movement, snoring, and heart rate (top to bottom panels, respectively) in one subject
during 6 hours of sleep. B: EEG signals (0.3-35 Hz bandpass, red dotted trace) and
EEG in the delta range (black solid trace) in one subject. Dashed green lines indicate
times of auditory stimulation at certain phases of delta activity.

3.2. Synchronized Acquisition of Signals From Different Devices

The second context involves the capability to acquire and synchronize signals from
different devices, which enables or facilitates a number of neurotechnology applications.
Specifically, our platform supports the synchronized acquisition of all EEG and
physiologic/behavioral measurements provided by our device with those of other
behavioral measurements such as inertial measurement units (IMUs) or eye trackers.
We show examples of such simultaneous acquisition with MTw Awinda IMUs (Xsens,
The Netherlands) (Fig. 5-A) and a Tobii Pro Fusion (Tobii, Sweden) eye tracker (Fig.
5-B).

3.3. Fvoked Potentials Resulting from Visual Stimulation

The third context involves the capability to present auditory/visual stimuli, and to
synchronize the timing of the stimuli with EEG data collection. This capability enables
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Figure 5. Synchronized acquisition of signals from different devices. A:
Movements from one subject during approximately four hours of sleep. The top panel
shows forehead movements detected using our device; and the center and bottom panels
show concurrent chest and ankle movements detected using MTw IMUs, respectively.
Each colored vertical line represents a 30-second time period, and the color and length
of each line gives the magnitude of movement. As expected, movements detected at
these three positions are similar but not identical. B: Head and eye movements from
one subject who focused on different parts of a computer screen during a 100-second
period. Black solid time courses give forehead movements detected using our device;
red dashed time courses give eye movements detected using the Tobii Pro Fusion eye
tracker. Top and bottom panels show horizontal and vertical movements, respectively.
Black dots on top indicate the times during which the eye tracker could not detect eye
movements (presumably due to eye blinks). Head movements detected by our device
closely track the eye movements detected by the eye tracker.
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a2 closed-loop neurotechnology applications (such as Doan et al. (2021); Musso et al.
23 (2022)) that depend on evaluation of evoked potentials. Our platform can readily
272 implement such protocols.

a5 'To showcase a typical example, we implemented a visual oddball paradigm that
s sequentially presented visual stimuli that were of one of two types. The first type
a7 of stimulus was a picture of a face (standard stimulus); the second type of stimulus was
zs  a picture of a zebra (oddball stimulus). Each stimulus was presented for 150 ms, and
2o the inter-stimulus interval (ISI) randomly varied between 340-640 ms. The sequence of
20 stimuli was block-randomized in blocks of 10. Each block contained a random sequence
21 of 8 standard and 2 oddball stimuli. The subjects were asked to count the total number
22 of oddball stimuli presented throughout the task.

23 Fig. 6 shows average evoked responses to oddball (red trace) and standard (blue)
s visual stimulation. Shaded areas indicate the standard error. As expected from the
25 recording/reference locations on the forehead and consistent with the findings in Schalk
25 et al. (2023), the responses are smaller in amplitude and visually different than those
27 measured with more common montages (e.g., Cz referenced to the earlobe). At the same
s time, they clearly detect EEG responses to visual stimulation, and they are different for
250 oddball and standard stimulation. This example demonstrates that our platform can
200 readily implement such visual stimulation synchronized to wireless EEG acquisition, and
201 our device with its forehead electrode montage can detect resulting EEG responses.

22 4. Discussion

203 4.1. Summary

24 In this paper, we describe our work toward the development of a general-purpose
205 non-invasive neurotechnology research platform that is based on our multi-modal
26 recording device, an associated API, and an interface to BCI2000 software. As the
207 examples herein demonstrate, we implemented several protocols that demonstrate
208 the platform’s capabilities and that will facilitate research into home-based sleep
200 Mmonitoring and modulation techniques as well as other neurotechnologies. Thus, our
;0 successful demonstration brings us closer to the day when it will be possible to more
so0  practically interact with the human brain with sophisticated recording and stimulation
32 protocols.

33 4.2. Our Approach to Translation

sa It is undisputed that the identification and development of neurotechnologies for
w5 practical home use is a challenging enterprise. It requires the simultaneous optimization
w5 of neuroscientific protocol, hardware, software, and signal processing/Al algorithms, and
w7 the design of an easy-to-use solution that can deliver clear (and otherwise unobtainable)
s value to the user.
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Figure 6. Evoked responses resulting from visual stimulation. We presented a
series of oddball and standard visual stimuli (see text for details). Red and blue traces
give the resulting average evoked responses, respectively, and shaded areas indicate the
standard error. Visual stimulation generates clear evoked potentials, and those are
different between the oddball and standard stimuli.

To date, the predominant approach to identifying and testing neurotechnology
candidates has been to conduct laboratory studies using research equipment and highly
trained personnel, thereby greatly sacrificing practicality in favor of system performance.
The underlying logic is to describe the validity of a certain neurotechnology candidate
first, and then to optimize the approach for home use later.

By proposing the platform described herein, we imply and promote an entirely
different approach. We suggest to begin with a system that, while clearly limited in
electrode coverage, is much more practical. With this increase in practicality, more
neurotechnology candidates can be evaluated, and successful candidates have a more
direct path to adoption.

We are fully aware that there may be efficacious applications of EEG technology that
critically depend on trained personnel and/or complex EEG montages or other aspects
of system configuration. In this case, it may be impossible to realize them with a more
reduced system such as ours, or otherwise make them more practical. We argue that, if
the primary goal is to produce neurotechnology solutions that eventually will improve
the lives of many people, both efficacy and practicality are critical and need to be
considered from the beginning.
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26 4.3. Availability

27 We completed an initial complete prototype of our platform, and have begun to share
w8 it with a distinct set of collaborators. We anticipate to continue sharing it with select
w0 partners, and expand availability over time as the capabilities and robustness of our
s0  platform further increase. Please send inquiries about the availability of our platform
31 to gs@chenfrontierlab.com.

2 4.4. Conclusions and Outlook

;33 Neurotechnologies have the potential to improve many people’s lives, but to date, we
134 have barely scratched the surface of these opportunities. An important reason for this
15 lack of widely accessible solutions is the lack of a capable hardware/software platform
16 that makes it easy to develop and evaluate different non-invasive neuromodulation
a7 approaches. The work described in this paper illustrates our initial steps towards
138 addressing this issue. At the same time, much work is left to be done. To
;30 maximize the potential impact of our work, we need to prepare our platform for more
a0 widespread dissemination and then make it widely available together with appropriate
s documentation and training.

2 5. Acknowledgements

s We gratefully acknowledge funding from the Tiangiao and Chrissy Chen Institute
s (TCCI), the National Natural Science Foundation of China (82272116 (LC), 52105030
15 (GL)), the Shanghai Natural Science Foundation (23ZR1430900 (GL)), and the National
15 Key Research and Development Program (2021YFC2501404 (HY)). We also thank Jason
37 Reindorp (T'CCI) and Tony Larsson (deDesigned) for their help with illustrations, and
us Duofu Liu (TCCI) for his support of the hardware project.

a0 References

0  Alkhoury L, Choi J w, Wang C, Rajasekar A, Acharya S, Mahoney S, Shender
351 B S, Hrebien L and Kam M 2021 Journal of Clinical Monitoring and Computing
2 35(4), 7T97-813.

33 URL: hitps://doi.org/10.1007/s10877-020-00559-2

s« Arnal P J, Thorey V, Debellemaniere E, Ballard M E, Bou Hernandez A, Guillot A,
355 Jourde H, Harris M, Guillard M, Van Beers P, Chennaoui M and Sauvet F 2020 Sleep
356 43(11), zsaal97.

7 URL: hitps://doi.org/10.1093/sleep/zsaa097

s Beacon Biosignals 2023 ‘Dreem’.
0 URL: hitps://beacon.bio/dreem-headband


https://doi.org/10.1101/2024.01.01.573494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.01.573494; this version posted January 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES 15

w0 Benjafield A V, Ayas N T, Eastwood P R, Heinzer R, Ip M S, Morrell M J, Nunez
361 C M, Patel S R, Penzel T, Pépin J L et al. 2019 The Lancet Respiratory Medicine
362 7(8), 687-698.

3 Biswas D, Simoes-Capela N, Van Hoof C and Van Helleputte N 2019 IEFE Sensors
3¢ Journal 19(16), 6560-6570.

s Brunner P and Schalk G 2018 in C. S Nam, A Nijholt and F Lotte, eds, ‘Brain-Computer
366 Interfaces Handbook: Technological and Theoretical Advances’” CRC Press, Taylor &
367 Francis Cambridge, MA, USA pp. 323-336.

e Bundy D T, Souders L, Baranyai K, Leonard L, Schalk G, Coker R, Moran D W, Huskey
30 1 and Leuthardt E C 2017 Stroke 48(7), 1908-1915.

s Compumedics 2023 ‘Somfit/Somfit Pro’.
s URL: hitps://www.compumedics.com.au/en/products/somfit/

sz da Silva Souto C F, Patzold W, Wolf K I, Paul M, Matthiesen I, Bleichner M G and
373 Debener S 2021 Frontiers in Digital Health 3, 688122.

s De Fazio R, Mattei V, Al-Naami B, De Vittorio M and Visconti P 2022 Micromachines
375 13(8).
v  URL: hitps://www.mdpi.com/2072-666X/13/8/1335

s de Kock J and Tarassenko L 1991 Journal of Biomedical Engineering 13(1), 61-66.
ws  URL: hitps://www.sciencedirect.com/science/article/pii/014154259190046A

s deAguiar Neto F' S and Rosa J L G 2019 Neuroscience € Biobehavioral Reviews 105, 83—
380 93

1 Doan D N T, Ku B, Choi J, Oh M, Kim K, Cha W and Kim J U 2021 Frontiers in
382 Aging Neuroscience 13, 180.

3. EMOTIV Inc. 2023 ‘Emotiv’.
s URL: hitps://www.emotiv.com/

35 FlectoThink 2022 ‘Airdream’.
s URL: https://www.flexolinkai.com/about. html

;7 Garcia-Molina G, Tsoneva T, Jasko J, Steele B, Aquino A, Baher K, Pastoor S,
388 Pfundtner S, Ostrowski L, Miller B et al. 2018 Journal of Neural FEngineering
389 15(6), 066018.

0 g.tec 2023 ‘g.tec medical engineering’.
s URL: hitps://www.gtec.at/product/

s Herff C, Heger D, De Pesters A, Telaar D, Brunner P, Schalk G and Schultz T 2015

303 Frontiers in Neuroscience 9, 217.


https://doi.org/10.1101/2024.01.01.573494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.01.573494; this version posted January 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES 16

50 Hunan VentMed Medical Technology 2017 ‘Sf-¢’.
s URL: hitps://www.ventmed.cn/product.aspz?Product Typeld=1006

36 InteraXon Inc. 2023 ‘muse’.
w7 URL: hitps://choosemuse.com/

w8 Jeong J 2004 Clinical Neurophysiology 115(7), 1490-1505.

0 Kwon S, Kim H S, Kwon K, Kim H, Kim Y S, Lee S H, Kwon Y T, Jeong J W, Trotti
wo L M, Duarte A et al. 2023 Science Advances 9(21), eadg9671.

s Kwon S, Kim H and Yeo W H 2021 Iscience 24(5).
w2 Leuthardt E, Schalk G, JR J W, Ojemann J and Moran D 2004 1(2), 63-71.

w3 Madgwick S O H 2010.
wi  URL: hitps://api.semanticscholar.org/CorpusID:2976407

w5 Mahony R, Hamel T and Pflimlin J M 2008 IEEE Transactions on Automatic Control
w  53(5), 1203-1218.

w7 Miller K J; Schalk G, Fetz E E, Den Nijs M, Ojemann J G and Rao R P 2010 Proceedings
408 of the National Academy of Sciences 107(9), 4430-4435.

w0 Morin C M and Jarrin D C 2022 Sleep Medicine Clinics 17(2), 173-191.

a0 Musso M, Hiibner D, Schwarzkopf S, Bernodusson M, LeVan P, Weiller C and
s Tangermann M 2022 Brain Communications 4(1), fcac008.

a2 Nakamura T, Goverdovsky V, Morrell M J and Mandic D P 2017 IEEE Journal of
a13 Translational Engineering in Health and Medicine 5, 1-8.

ss Neurable 2023 ‘neurable’.
as  URL: https://www.neurable.com/

a6 NeuroSky Inc. 2023 ‘neurosky’.
ar  URL: http://neurosky.com/

ss Ngo H V V, Martinetz T, Born J and Molle M 2013 Neuron 78(3), 545-553.

a0 OpenBCI 2022 ‘openbci’.
20 URL: https://openbci.com/

w21 Pankaj, Kumar A, Komaragiri R and Kumar M 2022 Archives of Computational Methods
422 in Engineering 29(2), 921-940.
w23 URL: hitps://doi.org/10.1007/s11831-021-09597-4

w20 Papalambros N A, Weintraub S, Chen T, Grimaldi D, Santostasi G, Paller K A, Zee
425 P C and Malkani R G 2019 Annals of Clinical and Translational neurology 6(7), 1191—
426 1201.


https://doi.org/10.1101/2024.01.01.573494
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.01.573494; this version posted January 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES 17

27 Rundo J V and Downey III R 2019 Handbook of Clinical Neurology 160, 381-392.

w8 Santostasi G, Malkani R, Riedner B, Bellesi M, Tononi G, Paller K A and Zee P C 2016
429 Journal of Neuroscience Methods 259, 101-114.

a0 Schalk G, McFarland D, Hinterberger T, Birbaumer N and Wolpaw J 2004 IEEE
e Transactions on Biomedical Engineering 51(6), 1034-1043.

a2 Schalk G and Mellinger J 2010 A Practical Guide to Brain-Computer Interfacing with
233 BCI2000 1st edn Springer London, UK.

sa Schalk G, Shao S, Xiao K and Wu Z 2023 Biomedical Physics & Engineering Express .

w5 Senaratna C 'V, Perret J L, Lodge C J, Lowe A J, Campbell B E, Matheson M C,
436 Hamilton G S and Dharmage S C 2017 Sleep Medicine Reviews 34, 70-81.

a3 Shenzhen EEGSmart Technology 2019 ‘UmindSleep’.
s URL: hitp://www.eegsmart.com/en/UMindSleep.html

a0 Surani S and Taweesedt P 2022 ‘Obstructive sleep apnea: New perspective’.

a0 Tabar Y R, Mikkelsen K B, Shenton N, Kappel S L, Bertelsen A R, Nikbakht R, Toft
aa1 H O, Henriksen C H, Hemmsen M C, Rank M L et al. 2023 Frontiers in Neuroscience
a2 17, 987578.

a3 Wearable Sensing 2023 ‘Wearable Sensing’.
wus  URL: hitps://wearablesensing.com/

ws Wilson J A, Mellinger J, Schalk G and Williams J 2010 [EEE Transactions on
a6 Biomedical Engineering 57(7), 1785-1797.

w7 Wolpaw J and McFarland D 2004 Proc Natl Acad Sci U S A 101(51), 17849-17854.

us Wolpaw J and Wolpaw E, eds 2012 Brain-Computer Interfaces: Principles and Practice
449 Oxford University Press New York.

0 Wukitsch M W, Petterson M T, Tobler D R and Pologe J A 1988 Journal of Clinical
s Monitoring 4(4), 290-301.
2 URL: https://doi.org/10.1007/BF01617328

53 Xu Y, De la Paz E, Paul A, Mahato K, Sempionatto J R, Tostado N, Lee M, Hota G,
454 Lin M, Uppal A et al. 2023 Nature Biomedical Engineering pp. 1-14.

5 Ye 'Y, Cheng Y, He W, Hou M and Zhang Z 2016 [EEE Sensors Journal 16(19), 7133—
456 7141


https://doi.org/10.1101/2024.01.01.573494
http://creativecommons.org/licenses/by-nc-nd/4.0/

