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Abstract 

 

Background:  

The Incentive-Sensitization Theory postulates that addiction is primarily driven by the 

sensitization of the brain's reward system to addictive substances, such as nicotine. According 

to this theory, exposure to such substances leads to an increase in 8wanting9, while 8liking9 

the experience remains relatively unchanged. Although this candidate mechanism has been 

well substantiated through animal brain research, its translational validity for humans has 

only been partially demonstrated so far, with evidence from human neuroscience data being 

very limited. 

Methods:  

From fMRI data of N=31 individuals with Nicotine Use Disorder, we created multivoxel 

patterns capable of capturing wanting and liking-related dimensions from a smoking cue-

reactivity task. Using these patterns, we then designed a novel resting-state 8reading9 method 

to evaluate how much wanting or liking still persist as a neural trace after watching the cues. 

Results:  

We found that the persistence of wanting-related brain patterns at rest increases with longer 

smoking history but this was not the case for liking-related patterns. Interestingly, such 

behavior has not been observed for non-temporal measures of smoking intensity.  

Conclusion: 

This study provides basic human neuroscience evidence that the dissociation between liking 

and wanting escalates over time, further substantiating the Incentive-Sensitization Theory, at 

least for Nicotine Use Disorder. These results suggest that treatment approaches could be 

personalized to account for the variability in individuals9 neural adaptation to addiction by 

considering how individuals differ in the extent to which their incentive salience system is 

sensitized. 
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Introduction 

The Incentive-Sensitization Theory (IST) has emerged as a prominent framework for 

investigating the neural processes involved in addiction and dependence to substances. 

According to this theory, addiction is primarily driven by the sensitization of the brain's 

reward system to addictive substances. This leads to an escalating desire or craving for the 

drug over time, whereas the subjective experience of pleasure or liking remains relatively 

stable (1,2). The IST has been supported by animal studies showing neuroadaptations in the 

reward circuitry following repeated exposure to addictive substances (3–6). An essential 

aspect of the theory is the distinction between psychological dimensions of liking and the 

wanting. While 8wanting9 seems to be supported by large dopamine-based regions, 8liking9 

seems more linked to opioids-based systems, and distinct and smaller brain regions, also 

called hedonic hotspots, such as the ventral pallidum and the parabrachial nucleus (2,7). 

Although it was mainly built on animal research, the IST has significantly shaped our 

understanding of addiction in humans. However, the theory's translation from animal models 

to human contexts has not been extensively substantiated by empirical evidence, with a 

limited number of studies corroborating the proposed dissociation between 8liking9 and 

8wanting9. This dissociation has primarily been demonstrated through behavioral measures 

such as the Implicit-Association-Test (8,9) and sophisticated behavioral modelling of the 

transition from a 8liking9 to a 8wanting9-dominant incentive (10). Yet, to date, no research 

using human neuroscientific data has confirmed this dissociation, nor has it been shown that 

the dissociation intensifies over time. 

Recently, functional magnetic resonance imaging (fMRI) has advanced to include 

multivariate-pattern-analysis (MVPA) methods. MVPA is a machine-learning-based 

statistical technique that relates spatial patterns of neural activity across multiple brain 

regions to cognitive or behavioral processes. It can notably be used to decode the neural 

representations of various stimuli by identifying patterns of activity that are specific to a 

stimulus of interest or a psychological dimension of interest. For example, MVPA has been 

employed to decode smoking-related vs. neutral stimuli, with the interesting outcome that the 

accuracy of the classifier correlated with measures of attentional bias for smoking cues (11). 

Importantly, MVPA can detect psychological dimensions with greater sensitivity than 

traditional mass-univariate analyses, which makes this method a suitable candidate tool for 

dissociating valence-related patterns from craving-related pattern, and which is, in turn, of 
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particular interest for addressing the current gaps in human neuroscientific evidence for the 

IST.  

Our study aims to provide such empirical evidence by leveraging advantages of MVPA 

which we applied to an existing fMRI dataset (resting-state and cue-exposure task) of 

cigarette smokers with NUD. Each participant rated stimuli along craving and valence 

dimensions which serve as analogues to the wanting and liking dimensions, respectively (12). 

We then developed a multivoxel classification weight-map capable of distinguishing between 

smoking cues that induce higher craving and those that were rated with higher valence. To 

complement this analysis, we performed multivoxel regression analyses to identify separate 

regression weight-maps (13) capable of predicting levels of valence and craving 

independently. We chose to employ both a classification approach and a regression approach 

for two main purposes: first, to enhance the overall reliability and robustness of our potential 

findings. Second, to provide a mitigation strategy against the potential scenario where the 

instrument measuring craving (or valence) levels surpasses the precision or sensitivity of the 

instrument measuring valence levels. Such a discrepancy in measurement quality could 

hinder a direct and meaningful comparison between the two dimensions. 

As a second step, we employed a frame-by-frame 8reading9 method of resting-state scans that 

immediately followed the task: we applied the classification weight-map and the regression 

weight-map to each frame of the resting-state scans to estimate how much valence and 

craving are detectable when the brain is not exposed to any cues. 

Finally, we examined the relationship between craving vs. valence brain states at rest and 

smoking history, as measured by pack-year and years of smoking. In line with the IST, we 

hypothesize that the pre-post increase of craving pattern expression will escalate with 

smoking history, while we do not expect to find such correlation for the pattern expression of 

valence.  

Methods  

Participants and study design  

This study is a re-analysis of an fMRI dataset described in (14,15) and consists of N=31 

neuroimaging scans of cigarette smokers (age=25.9±5.3; 16F, 14M and 1 non-binary; average 

daily cigarette consumption=11.5±5.6 cigarettes; Fagerström score=2.8±1.8; years 

smoking=7.4±4.8; pack-year=4.6±5.2; age of smoking onset=18.5±3.1) who underwent a 

cue-reactivity task as well as two 7-minute long resting-state scans (one before and one after 
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the task). Inclusion criterium was NUD according to DSM-5. Exclusion criteria were MRI 

incompatibility, psychiatric or neurological conditions and use of nicotine substitutes.  

During the task, the participants passively watched 330 smoking-related pictures of different 

craving and valence intensities, divided into 5 runs of about 4 minutes each. After scanning, 

they underwent a picture rating task, during which they rated each stimulus on how much 

they liked it (valence or 8liking9 ratings) and on how much it induced craving (craving or 

8wanting9 ratings) (12). Questionnaires on smoking behavior (Questionnaire on Smoking 

Urges (16) and Fagerström Test for Nicotine Dependence (17) were also administered. Pack-

year was defined as daily pack consumption (daily number of cigarettes/20), multiplied by 

the number of years smoking (18).  

MRI acquisition parameters and preprocessing  

MRI acquisition parameters can be found in the supplemental file as well as in (14,15).  

Resting-state and task data underwent the same preprocessing pipeline using fMRIprep 

20.2.6 (19). Resting-state scans were further denoised using independent component analysis 

(ICA-AROMA, (20). A detailed description of the preprocessing procedure can also be found 

in the supplemental file. 

Craving vs. valence classification analysis 

Our aim is to define a model that classifies high craving pictures vs. high valence pictures. 

However, we encountered the challenge that some stimuli received similar ratings for both 

craving and valence, making the distinction between craving and valence difficult. To address 

this, we implemented this simple selection procedure: we computed the difference between 

the valence ratings and the craving ratings and sorted them in ascending order. The top 25% 

of the pictures, exhibiting more valence than craving, were categorized as 8more valence9, 

while the bottom 25%, demonstrating a higher craving than valence, were labeled as 8more 

craving9. This step discards the pictures with similar craving and valence ratings, and was 

essential for improving machine-learning performance, since supervised classification 

analyses are not robust to uncertain or ambiguous labels (21).   

We used a support vector machine to classify our brain data. This algorithm was trained using 

individual activity maps from each subject, a method that has been well-established in the 

field (22,23). We opted for this method over trial-by-trial brain response analysis to reduce 

noise levels in our relatively fast-paced design. For each participant, we ran a standard SPM-

based first-level general linear model (GLM) analysis (Wellcome Trust Centre for 

Neuroimaging, London, UK) for which we specified one regressor for all the pictures 
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labelled as 8more valence9 and one regressor for all the pictures labelled as 8more craving9. 

Finally, we defined two contrast maps per subject, one for 8more valence9 and another one for 

8more craving9. We will refer to them as 8activation maps9 (Figure 1A). See supplemental file 

for details. 

These activation maps then served as the input features of a leave-one-subject-out support 

vector machine (SVM) analysis. These input features were vectorized and standardized by 

subtracting the temporal mean value per voxel and dividing each voxel by the total standard 

deviation. For cross-validation, we partitioned the dataset into N=31 subsets, leaving out one 

test subject in each subset. We computed an optimal hyperplane from the training set and 

used the remaining subject as test set. This process was then repeated for each subject in the 

dataset, allowing us to assess how well the SVM generalizes to predict the target variable for 

unseen subjects. To evaluate the overall performance of the algorithm, we computed an 

accuracy measure for each subset and provided the average mean accuracy across all the 

subsets as a measure of model performance. This step was performed with custom MATLAB 

scripts (The MathWorks Inc, Natick, Massachusetts, USA) and analysis tools provided by the 

CanLab (https://canlab.github.io).   

Significance levels were assessed using 10000 permutation-based p-values. Each permutation 

was calculated from shuffling all the labels. See 8Permutation testing to evaluate model 

performance9 in supplemental file. 

Valence and craving regression weight-maps 

Here, instead of distinguishing valence from craving pictures, our aim is to establish 

multivoxel patterns capable of capturing valence levels and craving levels separately, i.e., 

using two independent models. Each picture of the fMRI task was evaluated on both craving 

and valence dimensions using a fine-grained scale ranging from 1 to 100. To ensure an 

adequate number of trials per rating level, we opted to discretize the ratings into 7 bins by 

using a rounding approach (1-7 levels). While binning can result in information loss, this 

approach allows for a more balanced distribution of trials for each level, which is more robust 

for the type of analysis we performed. 

We ran two separate GLM analyses, one for the craving dimension and another one for the 

valence dimension, to derive activation maps for each of the seven respective levels. See 

supplemental file for first-level GLM details. Seven contrast maps per subject and per GLM 

were then defined, each representing the brain activation associated with each of the seven 

craving (or valence) levels (Figure 1B). 
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Next, we used support vector regression (SVR) to obtain a regression weight-map that 

predicted craving ratings, following a method reported in (23), which used this approach to 

predict self-reported fear levels. We used a linear kernel (C = 1) implemented in the Spider 

toolbox (http://people.kyb.tuebingen.mpg.de/spider) with normalized individual beta maps 

(one per rating for each subject) as input features to predict ratings of the grouped pictures. 

To evaluate the performance of our algorithm, we again used a leave-one-subject-out cross-

validation procedure, which means that an optimal hyperplane was computed based on the 

multivariate pattern of 30 subjects out of 31, and tested on the remaining subject. To evaluate 

prediction performance, we used overall Pearson correlations (the 7 rating samples of 31 

subjects being pooled; 217 pairs in total) and within-subject (7 pairs per subject) between the 

cross-validated predictions and the actual ratings to indicate the effect sizes, as well as the 

mean absolute error (MAE) to illustrate overall prediction error. We also ran a permutation 

test analogous to the classification analysis to evaluate significance levels.  

Pre-vs-Post Resting-state TR-by-TR 8reading9  

We employed a TR-by-TR resting-state 8reading9 approach to detect the amount of craving 

vs. valence that can be detected during resting-state, when the brain is not exposed to any 

smoking cue. Our approach is akin to so-called fMRI 8replay analyses9 (24,25).  

To this end, from the task data, we computed a global classification weight-map from the 

whole task dataset (Figure 2). From the resting-state data, we excluded the initial five scans 

of pre and post rest runs to allow for a more stable state, applied a high-pass filter (128s) and 

removed outlier scans (FD>0.5mm). We concatenated all the functional runs and normalized 

on a subject-basis by subtracting the mean per voxel and divide by the total standard 

deviation. We then computed the dot product between the classification weight-map and each 

frame (each TR) of resting-state scans and added the model intercept (or bias), which resulted 

in one prediction measure per TR. Next, we averaged these products over all the TRs of the 

pre-task rest run, as well as for post-task rest run. The resulting values will be referred to as 

classification pattern expression (PE). Of note, for our classification analysis, a higher PE 

value indicates more craving than valence and vice-versa. 

This reading procedure was repeated using the craving regression weight-map and the 

valence regression weight-map instead of the classification weight-map (Figure 2). This 

alternative method enables us to estimate the intensity of craving and valence independently, 

contrasting with the previous method in which the valence dimension was contingent on the 

craving dimension. We will refer to the output values as craving-PE and valence-PE 
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respectively. Here, as per intuition, higher PE means higher craving (resp. valence) being 

detected in the run. 

Trial-Wise Validation of Brain Patterns Derived from Beta Maps 

As previously explained, we performed all our MVPA analyses on subject-wise beta maps as 

a means to train our model on more stable and less noisy brain responses compared to trial-

by-trial responses. To ensure that the TR-by-TR reading method still worked at identifying 

single trials, we ran a trial-wise methods validation analysis. Here, each trial of the task 

serves as our ground truth (Figure 2, methods validation). For this step, we applied the same 

ICA denoising procedure to the task scans to ensure comparability with resting-state. To 

define our true values, we labelled each frame with their corresponding trial type (craving 

level, valence level or valence vs. craving). As for our predicted values, we computed the 

dot-product (plus the model intercept) between each frame and the corresponding regression 

or classification weight-map.  

As performance metrics for the regression analyses, we used Pearson correlation between the 

true values and the predicted values and the mean absolute error. For classification, we used 

percent accuracy. Since the brain response to a stimulus is expected to occur with the 

hemodynamic delay, we computed our validation analyses with a temporal shift (from 0 to 9 

TRs) between the true and predicted values, with the expectation that the adequation between 

true and predicted values will progressively peak at a shift of about 6 seconds, which 

corresponds to a shift between 3-4 TRs. Significance levels were evaluated using permutation 

testing described in 8Permutation testing for trial-wise validation9 in the supplemental file.  

Of note, an additional verification analysis that showed greater task-PE compared to rest-PE 

(i.e., more stimuli detectability in task) can be found in the supplemental file 8Task-vs-rest 

validation analysis9, Figure S1). 

Brain-behavior analysis 

We operationalized smoking history using two metrics: pack-years, to estimate cumulative 

nicotine exposure, and the total number of years spent smoking. This approach is based on 

the understanding that both the duration and intensity of smoking are important factors, as 

highlighted by (18). We correlated the pattern expression for craving at rest after the task, 

corrected for (i.e., by subtraction) the average pattern expression (PE) before the task (i.e., 

ΔPE), and repeated the procedure for the valence pattern expression. Spearman correlations 

were used due to violation of normality assumptions. We also correlated the average craving 

vs. valence classifier output measured at post-task resting-state, corrected for pre-task rest 
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(rest-post minus rest-pre classifier output). We applied Steiger's Z-test to verify whether the 

smoking history correlated significantly more with craving-ΔPE than valence-ΔPE.  

Again, significance levels were computed using permutation testing by applying the analysis 

from mock weight-maps so that we obtain a distribution of mock correlations (resp. mock z-

values) to which we compare our true correlation (resp. true z-values).  

The same analysis was also performed using non-duration smoking variables (Fagerström 

scores, Smoking Urges scores, daily cigarette consumption and smoking onset) to confirm 

that our results are mostly driven by time markers and not smoking severity.  

Results 

Validation of classification and regression weight-maps  

Craving vs. valence classification  

On the activation maps, the support vector classifier correctly identified all the maps as either 

valence or craving (permutation-based chance level=50%; pperm<0.0002).  

Craving regression  

The support vector-based regression model predicted craving levels significantly above 

chance levels, with an overall prediction-outcome correlation of r=0.78 (pperm<0.0002); the 

correlation was done between 217 brain maps (7 levels x 31 subjects) and their respective 

craving levels. Within-subject prediction-outcome correlation (correlations per subject, then 

averaged over the 31 subjects) was r=0.88 on average (pperm<0.0002). Overall mean absolute 

error (MAE) was 1.03 (pperm<0.0002) and averaged within-subject MAE = 1.03 

(pperm<0.0002). 

Valence regression 

For valence levels, the support vector-based regression model predicted the ratings 

significantly above chance, with overall prediction-outcome correlation of r=0.64 

(pperm<0.0002); the correlation was done between 217 brain maps (7 levels x 31 subjects) and 

their respective valence levels. Within-subject prediction-outcome correlation (correlation 

done per subject, then averaged over the 31 subjects) was r=0.77 on average (pperm<0.0002). 

Overall MAE was 1.29 (pperm<0.0002) and averaged within-subject MAE = 1.29 

(pperm<0.0002). 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 1, 2024. ; https://doi.org/10.1101/2023.12.31.573585doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.31.573585
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

Trial-Wise Validation 

For all three weight-maps, we achieved the highest prediction performance between true and 

predicted ratings around the peak of the HRF, which substantiate the validity of our brain 

reading method (Figure 3). See supplemental file 8Trial-wise methods validation results9 for 

details.  

In summary, our model validation results indicates that all three models can predict ratings or 

class labels above chance levels. The models were also performant at predicting single trials, 

and validates them as instruments for TR-by-TR reading of resting-state scans.   

Brain-behavior analysis 

With Rest Pattern-Expression  

As expected, we found that years of smoking correlated with craving-ΔPE (r=0.5707; 

pperm=0.0012) but not with valence-ΔPE (r=-0.1288; pperm=0.7427). The Steiger's Z-test 

shows that the difference is significant (Z=2.59; p=0.0047). For pack-year, the Steiger's Z-

test also showed that the difference in correlation is significant (Z=1.87; p=0.03), although 

we did not reach significance for correlations taken separately for craving (r=0.2948; 

pperm=0.0629) and valence (r=-0.1043; pperm=0.7160) (Figure 4A).  

Partial correction for age left a significant correlation between craving-ΔPE for Years 

(r=0.4000; pperm=0.0100) but not pack-years (r=0.1342; pperm=0.2350). Correlations between 

valence-ΔPE and Years (r=-0.0254; pperm=0.5587) and Pack-year (r=-0.0379; pperm=0.5913) 

remained unsignificant.  

Secondly, we correlated classification-ΔPE with both measures with a positive change 

indicating more craving than valence after the task. We found a significant positive 

association for Years (r=0.4867; p=0.0055; pperm=0.0045) and a positive but not significant 

one for pack-years (r=0.3237; pperm=0.0547) (Figure 4B). Partial correction for age also left a 

significant correlation between craving-ΔPE for years (r=0.4097; pperm=0.0013) but not pack-

years (r=0.23; pperm=0.0905). The results of the classification are in line with the regression 

analysis. 

Finally, these results did not hold for smoking severity measures that are not time-related 

(FTND, urge and cigarette consumption). See supplemental file 8Brain-behavior results with 

non-temporal smoking markers9 (Figure S2).  
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Discussion 

The IST suggests that addiction is primarily driven by the sensitization of the brain reward 

system to addictive substances. A key component is that this sensitization affects how 

individual experience 8liking9 and 8wanting9 of substances: craving increases over time, while 

the hedonic experience stays stable, or even decreases. This dissociation has been evidenced 

by animal neuroscientific research (26,27) and human behavioral research (8,28) but the 

translation to humans has only been partially successful so far (29–31). The present study 

provides, to our knowledge, the first human neuroscientific evidence that the dissociation 

between craving and valence escalates over time, from a test sample of NUD individuals. 

Using advanced neuroimaging techniques and machine-learning approaches on dependent 

cigarette smokers, our study focused on evaluating the neural persistence at rest of 8craving9 

and 8valence9 patterns derived from a prior cue-reactivity task.  

Here, our patterns were defined using both an SVR-based MVPA procedure (23), to establish 

regression weight-map capable of predicting craving and valence levels separately, and an 

SVM-based procedure, to classify 8higher craving than valence9 from higher valence than 

craving9 pictures. While SVM operates on a binary classification level, SVR allowed for the 

identification of patterns associated with continuous levels of craving and valence. The 

rationale of using both approaches was to first strengthen our findings when results converge, 

but also to preventively mitigate the hypothetical issue of having one regression weight-map 

performing significantly better than the other, which might not have allowed for sufficient 

precision for distinguishing between dimensions.  

A strength of our design is the presence of both task and rest within the same session, which 

allows for higher comparability of within-subject measures, and more importantly, allows to 

make use of the task time courses as a ground truth to validate our pattern reading method 

before applying to resting-state. All models achieved higher performance when trained on 

subject-wise beta-maps than on at the single trial level. At the single-trial level, classification 

accuracy remained higher than chance and was on par with previous MVPA studies involving 

similar psychological dimensions (32–34). Regression analyses also achieved high 

performance for detecting single-trial levels of craving and valence, at similar performance 

levels as the MVPA prediction of fear levels in (23). Both approaches provided converging 

conclusions, strengthening the overall validity and reliability of the findings. Our correlation 

between the neural persistence of craving patterns at rest and the number of years spent 

smoking, as well as the dissociation between craving and valence trajectories were significant 
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for both measures of smoking history. Interestingly, this finding did not hold for measures of 

smoking severity that are not time-dependent, which emphasizes the relevance of smoking 

history on addiction development. Correcting the correlations for age of the participants 

decreased the value by a significant margin, however, this is not surprising given that the 

correlation between years of smoking and age was very high (r=0.81). Noteworthy, we did 

not find significant correlations when we analyzed post-task resting-states alone, which 

emphasizes the clinical relevance of the psychological changes from pre- to post-task (15). 

Conventionally, task-fMRI has been used to decode neural responses evoked by specific 

tasks or stimuli whereas rest-fMRI is more often used to defined connectivity-based 

biomarkers associated with psychiatric symptoms or psychological traits. In contrast, our 

study introduces an innovative combination of brain information obtained from the task to 

8read9, frame-by-frame, resting-state scans acquired during the same session. The 

interpretation of resting-state from task-derived brain activation has been used in memory 

research to detect specific replay events of stimuli during resting state (24,36), sometimes 

even in conjunction with machine-learning-based approaches (35). Here, we expand upon 

these approaches by applying state-of-the-art task-based classification brain-maps or 

regression brain-maps to evaluate the underlying psychological content of functional scans 

even in the absence of explicit cues or tasks, which offers novel perspectives within the field 

of neuroimaging research in general. Our findings may also inform the customization of 

therapeutic strategies for substance use disorders. For instance, individuals with longer 

smoking history who show a pronounced dissociation might benefit more from brain-based 

interventions specifically designed to address heightened cravings, while short-term smokers 

could target their hedonic response patterns instead.  

As for limitations, it should be noted that, although the dataset employed was suitable for 

testing our hypotheses, it was not tailored to this particular analysis. To strengthen the study 

design, one could implement longer interstimulus interval and constraining the ratings scales 

to a 7-point Likert scale to avoid information loss by rounding. Additionally, the study 

focused on cigarette smokers, and it remains unclear whether the observed dissociation 

between craving and valence extends to other substance use disorders. Future research should 

aim to replicate and expand upon these findings using larger samples and wider distributions 

of measures of smoking history.  

Also, one should note that the instrument for 8craving9 was slightly better than the instrument 

for 8valence9, albeit not significantly, which may have confounded the detection of brain 

patterns during resting-state. This issue was partly mitigated by performing an additional 
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classification analysis to ensure that our results would also hold using an analogous but 

distinct analysis. Apart from potential technical or methodological causes, differences in 

sensor performance may have been psychological. Our stimuli were rated outside the scanner 

on craving and valence dimensions, and although the cues were likely able to trigger 

experiences of craving during the rating task, liking, which we called 8valence9 in this 

analysis to avoid confusion with the actual hedonic experience, may have involved some 

form of projection to the presented stimuli, making our liking dimension slightly different 

from the hedonic experience during smoking itself. 

In conclusion, this study takes advantages of advanced machine-learning tools, to provide, to 

our knowledge, the first human neuroscientific evidence that the dissociation between craving 

and valence amplifies over time for NUD. Moreover, we introduce an original neuroimaging 

methodology to decode resting brain states from task-evoked patterns. This dual contribution 

supplies both the neuroimaging and the addiction research field which are essential for the 

development of future precision medicine therapeutic tools for substance use disorders. 
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Figure 1 – A) Definition of a craving vs. valence classification weight map. Our set of 

smoking stimuli was divided into two classes: 1) the ones that trigger more valence than 

craving (valence class) and 2) the ones that trigger more craving than valence (craving class). 

We ran a GLM analysis with each class being modelled as one regressor to obtain one 

activation map (or 8beta map9) per class per subject. B) Definition of independent regression 

weight maps for craving levels and for valence levels. From the same set of stimuli, we 

defined one activation map (or 8beta map9) for seven rating levels per subject and for each 

dimension separately. The activation maps were then vectorized to serve as input features of 

a support-vector machine (SVM) (1A) or support-vector regression (SVR) (1B) analysis. 
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Figure 2 – Task-informed 8reading9 of resting brain states. A smoking cue-reactivity task was 

used for the definition of multivoxel pattern weight maps that captures craving and valence. 

The weight maps are then applied to each (pre and post) resting-state frame to evaluate how 

much this brain pattern is expressed at rest. The same reading procedure was also applied to 

the task to evaluate how this method performs at predicting single trials. 
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Figure 3 – Trial-wise methods validation results. Evaluation of A) the SVM-based craving vs. 

valence classifier weight map, B) the SVR-based valence regression weight map, and C) the 

SVR-based craving regression weight map for detecting single-trial levels or class. 

Hemodynamic response delay was accounted for by including Repetition Time (TR)-based 

shifts, with maximum prediction performance being expected at the peak of the HRF around 

6 seconds (TR=~3-4). For A, classifier performance was measured with classification 

accuracy. For B and C, regression performance was measured with mean absolute error 

(MAE) and Pearson correlation between the predicted rating and true rating. 
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Figure 4 – A) Change in craving vs. valence classification output after exposure to smoking 

cues is linked to smoking history. B) Increase of craving, but not valence, pattern expression 

(PE) after exposure to smoking cues is linked to smoking history.  
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