

1 **Structure of a lasso peptide bound ETB receptor provides
2 insights into the mechanism of GPCR inverse agonism.**

3 Wataru Shihoya^{1*†}, Hiroaki Akasaka^{1*}, Peter A. Jordan², Anna Lechner², Bethany K.
4 Okada², Gabriella Costa Machado da Cruz², Fumiya K. Sano¹, Tatsuki Tanaka¹, Ryo
5 Kawahara¹, Rajan Chaudhari³, Hiroko Masamune², Mark J. Burk², Osamu Nureki^{1†}

6

7 ¹ Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,
8 Bunkyo-Ku, Tokyo 113-0033, Japan.

9 ² Lassogen Inc. 3030 Bunker Hill Street, San Diego, CA 92109, USA.

10 ³ Research Informatics, Eurofins Panlabs, Inc., Saint Charles, MO, 63304, USA.

11

12

13 *These authors equally contributed to this work.

14 †Correspondence to: wtrshh9@gmail.com (W.S.); nureki@bs.s.u-tokyo.ac.jp (O.N.).

15

16

17 Wataru Shihoya

18 ORCID 0000-0003-4813-5740

19 Hiroaki Akasaka

20 ORCID 0000-0003-2118-0912

21 Fumiya K. Sano

22 ORCID 0000-0002-8965-788X

23 Tatsuki Tanaka

24 0000-0001-5728-7573

25 Ryo Kawahara

26 0000-0002-2374-5588

27 Osamu Nureki

28 ORCID 0000-0003-1813-7008

29 Peter A. Jordan

30 ORCID 0000-0002-1773-3310

31 Anna Lechner

32 Bethany K. Okada

33 ORCID 0009-0002-2745-9340

34 Gabriella Costa Machado da Cruz
35 ORCID 0000-0002-6226-5472
36 Rajan Chaudhari
37 ORCID 0000-0002-6038-0098
38 Hiroko Masamune
39 ORCID 0009-0006-4313-3649
40 Mark J. Burk
41 ORCID 0000-0002-2045-2691
42

43 **Abstract**

44 Lasso peptides exhibit a unique lariat-like knotted structure imparting
45 exceptional stability and thus show promise as therapeutic agents that target cell-surface
46 receptors. One such receptor is the human endothelin ET_B receptor, which is implicated
47 in challenging cancers with poor immunotherapy responsiveness. The *Streptomyces*-
48 derived lasso peptide, RES-701-3, is a selective inhibitor for ET_B and a compelling
49 candidate for therapeutic development. However, meager production from a genetically
50 recalcitrant host has limited further structure-activity relationship studies of this potent
51 inhibitor. Here, we report cryo-electron microscopy structures of ET_B receptor in both its
52 apo form and complex with RES-701-3, facilitated by a calcineurin-fusion strategy.
53 Hydrophobic interactions between RES-701-3 and the transmembrane region of the
54 receptor, especially involving two tryptophan residues, play a crucial role in RES-701-3
55 binding. Furthermore, RES-701-3 prevents conformational changes associated with G-
56 protein coupling, explaining its inverse agonist activity. A comparative analysis with
57 other lasso peptides and their target proteins highlights the potential of lasso peptides as
58 precise drug candidates for G-protein-coupled receptors. This structural insight into RES-
59 701-3 binding to ET_B receptor offers valuable information for the development of novel
60 therapeutics targeting this receptor and provides a broader understanding of lasso peptide
61 interactions with human cell-surface receptors.

62 **Introduction**

64 Lasso peptides are ribosomally synthesized and post-translationally modified

65 peptidic natural products that display a unique lariat-like, threaded and knotted structure^{1,2}
66 ([Extended Data Fig. 1a](#)). The characteristic threaded lasso structure derives from an
67 isopeptide bond connecting the peptide N-terminus to either a glutamic or aspartic acid
68 side chain. Owing to this locked three-dimensional structure, lasso peptides exhibit
69 remarkable stability against heat and proteolytic degradation. The small characterized
70 fraction of the thousands of lasso peptides predicted in bacterial genomes display diverse
71 biological activities, such as enzyme inhibition and receptor blockade leading to
72 antimicrobial anti-cancer, and anti-HIV activities³. Lasso peptides appear to occupy a
73 unique functional space, combining the selectivity and potency of larger protein biologics
74 with the low immunogenicity, stability, tissue penetration, and bioavailability of small
75 molecules making them attractive candidates for drug discovery^{1,2}. Despite their great
76 promise, studies of lasso peptides have been hampered by the absence of efficient
77 production systems that enable lasso peptide diversification as well as large scale
78 production. Recent advances in synthetic biology have changed the prospects for lasso
79 peptide drug discovery. In particular, numerous recent studies have demonstrated the
80 heterologous production of lasso peptides in hosts including *Streptomyces*, a well-
81 established bacterial genus for natural product drugs⁴. Furthermore, in 2021, a
82 breakthrough was achieved to successfully produce lasso peptides through a cell-free
83 biosynthesis approach⁵, thus enabling the creation of extensive libraries of these peptides
84 to uncover novel variants with unique characteristics. These advances, alongside
85 structural insights into how lasso peptides target pharmacologically relevant receptors,
86 such as GPCRs, are expected to accelerate the pace of lasso peptide drug discovery.

87 RES-701 is one of the earliest identified series of naturally occurring bioactive
88 lasso peptides, and includes four variants (RES-701-1 to -4) with almost identical
89 sequences⁶. All four lasso peptide variants function as selective and potent antagonists
90 for the human endothelin ET_B receptor⁷, a G-protein coupled receptor (GPCR). ET_B
91 constitutes one of the two subtypes of endothelin receptors along with ET_A and plays an
92 essential role in vascular regulation^{8,9}. Notably, ET_B has been reported to be
93 overexpressed on tumor vascular endothelial cells, leading to immunologically “cold”
94 tumors with attenuated anti-tumor immune responses and resistance to
95 immunotherapy^{10,11}. Consequently, the inhibition of ET_B signaling holds promise as a
96 treatment strategy for challenging cancers that exhibit poor responsiveness to existing

immuno-oncology agents as a result of ET_B overexpression. However, the selectivity and pharmacokinetics of current small molecule ET_B antagonists are inadequate¹²⁻¹⁴ (ET_B/ET_A <100x). Hence, inhibitors based on the RES-701 lasso peptides have emerged as highly promising candidates. Nevertheless, our understanding of the structural interactions between lasso peptides and their target molecules is confined primarily to complex structures involving bacterial RNA polymerase bound to antimicrobial lasso peptides¹⁵, leaving a significant knowledge gap concerning the mechanisms by which lasso peptides target and influence human cell surface receptors. Here, we report the structure of the representative peptide RES-701-3 bound in the pocket of human ET_B receptor, shedding light on the mechanisms that govern how the lasso peptide acts on this important GPCR.

108

109 **Results**

110 **Production of RES-701-3 and its analogs**

111 Production of lasso peptides by their wild-type bacterial hosts is typically very
112 low (nanograms or micrograms per liter), which is common for secondary metabolites.
113 Thus, RES-701-3 was previously produced by its natural *Streptomyces* strain at 200
114 micrograms per liter under optimized fermentation conditions on a 1,000 L scale⁶. Such
115 low levels of production are inadequate for drug development and have precluded the
116 advancement of lasso peptides as a therapeutic modality. To gain sufficient quantities for
117 further discovery efforts, a heterologous production host based on *Streptomyces*
118 *venezuelae* was engineered to produce RES-701-3 and its analogs in ≥ 1 mg/L quantities
119 required to establish structure-activity relationship (SAR) data (Supplementary Table 1,
120 Supplementary Notes). The biosynthetic enzymes for RES-701-3, encoded by the *lasA*
121 (lasso peptide precursor peptide), *lasB2* (peptidase), *lasC* (cyclase), and *lasB1* (RiPP
122 recognition sequence) genes from *Streptomyces auratus* AGR001, were cloned into the
123 pDualP expression vector (Varigen Biosciences) under the control of the NitR promotor
124 (ε-caprolactam induction) and conjugated into *Streptomyces venezuelae* ATCC15439
125 (Extended Data Fig. 1b). Cultivation of this engineered strain in 2 L shaker flasks for 10
126 days afforded 12 mg/L RES-701-3 (Supplementary Notes). Similarly, single-site analogs
127 of RES-701-3 were produced by introducing the appropriate genetic mutations in the *lasA*

128 gene.

129 Receptor binding data for RES-701-3 and its analogs were obtained using CHO-
130 K1 cells expressing recombinant human ET_B and ET_A receptors. Lasso peptides were
131 tested in competition binding assays vs. radiolabeled natural ligand [¹²⁵I]-endothelin-1.
132 Inhibitory constants (Ki) for RES-701-3 and its analogs are shown in [Extended Data](#)
133 [Table 1](#). The Ki of RES-701-3 in this assay was 31.5 nM, and comparable to the literature
134 value (4 nM)⁶, while it showed no activity against ET_A. These data indicate that the RES-
135 701-3 generated in this study has the same biological activity as that produced by its
136 natural *Streptomyces* strain. RES-701-3 showed high selectivity (ET_B/ET_A >1000x),
137 which is superior to the well-known ET_B antagonist BQ788 (100x) ([Extended Data Table](#)
138 [1](#)).

139

140 Structure determination

141 Our initial attempts at obtaining diffraction quality crystals for X-ray
142 crystallography of the RES-701-3-bound human ET_B receptor were unsuccessful. Thus,
143 we adopted an alternative protein engineering strategy in which the heterodimeric protein
144 calcineurin is fused to a GPCR by three points of attachment at the cytoplasmic ends of
145 TM5, TM6 and TM7¹⁶. Calcineurin is a calcium- and calmodulin-dependent
146 serine/threonine protein phosphatase composed of the CN-A and CN-B subunits, and its
147 activity is inhibited by the immunosuppressant FK506-FKBP12¹⁷. For the structural study,
148 we used the thermostabilized ET_B receptor used in previous crystallographic studies^{14,18–}
149 ²¹, which contains five thermostabilizing mutations and is truncated after S407²². CN-B
150 was inserted into intracellular loop (ICL) 3 of the receptor, and CN-A was fused to its C-
151 terminus via a GS linker ([Fig. 1a](#)). This three-point attachment provides a more rigid link
152 with the GPCR transmembrane domain and facilitates particle alignment during data
153 processing, as shown in the structural study of the β₂AR-CN fusion protein¹⁶. We
154 successfully purified ET_B-CN in LMNG/CHS micelles and confirmed its complex
155 formation with FK506 and FKBP12 ([Fig. 1b](#)). We performed the cryo-EM structural
156 analysis of the purified ET_B-CN-FKBP12 complex, and its representative 2D class
157 average visualized all the components of the fusion protein and the FKBP12 ([Fig. 1c, d](#)).
158 Eventually, we determined the cryo-EM structures of the apo and RES-701-3-bound ET_B

159 receptors at nominal resolutions of 3.3 Å, which allowed us to build a confident model
160 for most of the receptor, CN-A, CN-B, FK506, and FKBP12 (Fig.1e, f, Extended Data
161 Table 2, Extended Data Figs. 2, 3).

162

163 **Architecture of the ETB-CN complex**

164 We first describe the structure of calcineurin and its interaction with the receptor in
165 the apo ET_B-CN-FKBP12 complex. The structure of calcineurin is essentially similar to
166 the crystal structure of the CN-FK506-FKBP12 complex, while the relative position of
167 CN-A is slightly different (Fig. 2a). Notably, some conformational changes are observed
168 at the junction with the receptor, in which the densities for the linkers between CN-B and
169 receptor are well-resolved (Fig. 2b). In the crystal structure, the area around the C-
170 terminal V169 of CN-B is closed by polar interactions between E18-K83, H13-N89, and
171 R21-V169 (C-terminal carboxylate) (Fig. 2c). In the ET_B-CN-FKBP12 complex, these
172 interactions are disrupted, and the resulting space is occupied by the ICL3 of ET_B fused
173 to the C-terminus of CN-B (Fig. 2b). These local conformational changes in calcineurin
174 allow its receptor coupling.

175 A characteristic feature of the ET_B-CN-FKBP12 complex is the acquired interaction
176 between ET_B and calcineurin. In general, receptors and fusion partners are inherently non-
177 interacting combinations and do not interact outside of the fusion point^{23,24} (Extended
178 Data Fig. 4a). The intracellular side of ET_B is positively charged according to the positive
179 inside rule, whereas CN-B is negatively charged owing to aspartic and glutamic acids
180 exposed on its surface (Fig. 2d). Thus, there are extensive electrostatic interactions
181 between calcineurin and the intracellular face of the receptor (Fig. 2e, Extended Data Fig.
182 4b). Unexpectedly, C131^{ICL1} of ET_B is proximal to C153 of CN-B, suggesting a potential
183 intermolecular disulfide bond between them (Fig. 2e). The interaction surface between
184 ET_B and calcineurin is 711 Å², which is strikingly larger than that of A2A-BRIL (307 Å²)
185 and approaching that of mSMO-PGS (1,010 Å²). The mSMO-PGS interface consists
186 primarily of hydrophobic interactions²³ (Extended Data Fig. 4c), in stark contrast to ET_B-
187 CN. These interactions stabilize the relative orientations of the receptors and their fusion-
188 partners. The receptor-CN-B interaction is not predicted by AlphaFold²⁵, resulting in a
189 large difference in the calcineurin position between the predicted and cryo-EM structures

190 (Fig. 2f–h). This comparison indicates that predicting the structures of GPCR-CN fusions
191 remains challenging.

192 The receptor structure of the apo ET_B-CN-FKBP12 complex superimposed well on
193 that of the apo crystal structure of ET_B-mT4L¹⁸ (Fig. 3a, b), with a few structural
194 differences. On the intracellular side, the orientations of TM5 and TM6 are different,
195 depending on the fusion partner at ICL3. Moreover, ICL2 is completely disordered due
196 to the steric clash with CN-B (Fig. 3c). On the extracellular side, the β sheet in ECL2
197 adopts a more open configuration and TM7 moves outwardly by 3 Å (Fig. 3a). Owing to
198 the structural differences in the extracellular regions, the cavity in the apo-ET_B-CN-
199 FKBP12 complex is wider than that in the crystal structure. The ECL2 conformation is
200 reportedly affected by crystal packing, and thus the cryo-EM structure determined in this
201 study would more accurately reflect the physiological apo state in solution.

202

203 **Binding mode of RES-701-3**

204 Within the transmembrane region in the RES-701-3-bound ET_B-CN-FKBP12
205 complex, we observed an unambiguous density, enabling us to assign the residues of
206 RES-701-3 except for the C-terminal residue W16 (Fig. 4a, b). RES-701-3 has an
207 isopeptide bond bridging the N-terminal G1 and the carboxyl side chain of D9, forming
208 a nine-residue ring. The C-terminal tail threads through this ring, with sterically locking
209 residues N13 and Y14 on opposite sides of the ring. Between D9 and the locked residue
210 N13, three aromatic residues W10, F11, and F12 create a short hydrophobic loop for
211 binding to the GPCR. Overall, RES-701-3 adopts the typical compact conformation of
212 lasso peptides.

213 In the complex structure, the loop region of RES-701-3 is oriented toward the
214 transmembrane core, while its C-terminus faces the extracellular milieu. RES-701-3
215 creates an extensive interaction network with TMs 1–3, TMs 5–7, extracellular loop 1
216 (ECL) 1 and ECL2 of the receptor (Fig. 4c, Extended Data Table 3, Extended Data Fig.
217 5a). In total, 31 residues of the receptor interact with RES-701-3 with an interacting
218 surface area of 1,078 Å², accounting for its nM order inhibitory activity and high
219 specificity. W10 and F11 in the loop region form a robust hydrophobic interaction with
220 the inner pocket at the receptor core (Fig. 4d). Moreover, W3 fits into a hydrophobic

221 pocket created by Y15 and bulky residues in TM6 and TM7 (Fig. 4e). Consistently,
222 mutations in aromatic residues W3A, W10A, F11W and Y15A reduced affinity for ET_B
223 by more than 100-fold (Supplementary Table 2). H4 and F12, the remaining aromatic
224 residues within RES-701-3, interact to a lesser extent with the receptor, consistent with
225 the relative tolerance for diverse amino acid residue substitutions at these positions.
226 Notably, T6 is in proximity to D166^{ECL1}, consistent with the 50-fold affinity reduction by
227 the T6E mutation, whereas the mutations of other residues had minimal effects. Overall,
228 the binding mode of RES-701-3 offers comprehensive explanations for prior biochemical
229 findings and our analysis of mutant peptides.

230 Comparing the apo and RES-701-3-bound ET_B-CN-FKBP12 complexes, the
231 overall pocket shrinks slightly upon binding, including the inward movements of TMs 1,
232 3, 7 and ECL2 (Extended Data Fig. 6a). This is also observed when other small molecules
233 bind to ET_B (Extended Data Fig. 6b). By contrast, the extracellular portion TM5 is
234 displaced outwardly by 3 Å, a characteristic feature observed only upon RES-701-3
235 binding. Furthermore, unlike other small molecule inhibitors, RES-701-3 binding does
236 not induce the inward movement of TM6. These structural changes are due to the
237 protrusion of the loop region between TM5 and TM6, which plays an important role in
238 the reception of RES-701-3.

239 The structure of bound RES-701-3 also provides insights into the activity of
240 previously reported variants of RES-701 isolated from wild type *Streptomyces* cultures.
241 (Extended Data Fig. 5b). As with the C-terminal modifications mentioned earlier, the
242 absence (RES-701-1, -3) versus presence (RES-701-2 and -4) of hydroxylation at W16
243 only imparts a modest 2-fold impact on receptor binding. This is consistent with the
244 structure where W16 is presented to the extracellular milieu with no specific interactions
245 with the receptor. Similarly, serine 7 (RES-701-3 and -4), compared to alanine 7 (RES-
246 701-1 and -2), imparts a 2-fold improved inhibitory potency. While the structure of RES-
247 701-3 bound ET_B-CN-FKBP12 suggests a hydrogen bond between serine 7 and K182 of
248 ETB in the current structure this is still quite modest in magnitude.

249

250 **Mechanistic insight into inverse agonism**

251 RES-701-3 is not evolutionarily related to the endogenous agonist ligand

252 endothelin-1 (ET-1). Indeed, a structural comparison of the binding modes of ET-1^{18,27}
253 and RES-701-3 reveals marked differences in the overall binding configurations (Fig. 5a,
254 b). The intramolecular cyclic architecture of ET-1 is mainly recognized in the
255 extracellular region including ECL2, whereas that of RES-701-3 is in the transmembrane
256 region. The C-terminal W21 of ET-1 penetrates into the bottom of the binding pocket,
257 whereas the C-terminal W16 of RES-701-3 is assumed to face the extracellular milieu
258 and is reportedly non-essential for activity. Taken together, the overall binding modes of
259 RES-701-3 and ET-1 are structurally distinct (C-terminus down for ET-1 vs. C-terminus
260 up in RES-701-3). Intriguingly, instead of W16, W10 of RES-701-3 extends to the same
261 depth and position in the binding pocket as W21 of ET-1. Furthermore, the essential W3
262 interacts with three leucines in TM7, similar to F10 of ET-1. Thus, there is some
263 correspondence between RES-701-3 and ET-1 in terms of the local hydrophobic
264 interactions that are essential for receptor binding.

265 Although previous studies have reported that RES-701 lasso peptides function
266 as antagonists for ET_B, a biochemical analysis using vesicles reconstituted with the
267 purified wild-type ET_B showed that they function as inverse agonists⁷. To examine the
268 mechanism of the inverse agonism, we compared the conformational changes upon RES-
269 701-3 binding relative to other drugs (Fig. 5a–d). The binding of the agonist ET-1 induces
270 the inward motions of the extracellular halves of TM6 and TM7, followed by the
271 downward rotation of the W336^{6,48} side chain (Fig. 5a). This rotation of W336^{6,48} induces
272 and propagates the outward rotation of F332^{6,44} within the P^{5,50}I/V^{3,40}F^{6,44} motif,
273 ultimately resulting in the intracellular opening^{27,28}. The binding of the antagonist
274 bosentan induces only a minor inward movement in TM6¹⁴ and sterically prevents the
275 rotamer change of W336^{6,48} (Fig. 5c). The inverse agonist IRL2500 sandwiches the
276 W336^{6,48} side chain via its aromatic groups, tightly preventing its inward rotation²⁰ (Fig.
277 5d). RES-701-3 occupies the binding pocket more extensively than the small molecule
278 inhibitors, and thereby robustly prevents the conformational change of the receptor.
279 Furthermore, W10 in RES-701-3 rotates the W336^{6,48} side chain outward and away from
280 F332^{6,44} by a direct interaction (Fig. 5b), and thus RES-701-3 binding does not induce the
281 outward rotation of F332^{6,44}. Overall, RES-701-3 binding stabilizes the inactive state and
282 prevents the structural transitions of W336^{6,48} and F332^{6,44}, plausibly lowering the
283 constitutive activity of the receptor relative to its apo state.

284

285 **Insight into ET_B selectivity**

286 The RES-701-3 binding site within the transmembrane region is completely
287 conserved between ET_A and ET_B (Extended Data Fig. 7a). By contrast, the amino acid
288 sequences of ECL1 and ECL2 differ, featuring five inserted residues in ECL1 of ET_A
289 (Extended Data Fig. 7a, b). Previous agonist structures indicated that ET_A and ET_B adopt
290 distinct secondary structures within ECL1 and ECL2, implying their significance in
291 endogenous ligand selectivity^{19,29}. While no antagonist-bound ET_A structures have been
292 reported, our findings suggest that RES-701-3 selectively binds to ET_B by recognizing
293 the differences in ECL1 and ECL2, in a manner comparable to the endogenous ET_B-
294 selective ligand ET-3.

295

296 **Discussion**

297 In this study, we employed the calcineurin fusion strategy to solve the structure
298 of the RES-701-3-bound ET_B receptor. Although this strategy has only been fruitful with
299 β_2 AR, the success described herein with ET_B demonstrates that it could be universally
300 applied to structural analyses of GPCRs. Moreover, this fusion strategy allowed the
301 determination of the binding mode of the novel compound RES-701-3, which could not
302 be obtained by X-ray crystallography, showing the utility of the calcineurin fusion
303 strategy for structural determination. RES-701-3 binds differently and has many more
304 points of contact with the receptor, providing an explanation for the very high selectivity
305 of this compound (ET_B/ET_A >1000x) relative to the small molecule BQ-788 (Extended
306 Data Table. 1), which display significantly lower selectivity for ET_B receptor (100x).
307 Efficient and highly selective binding to large complex cell surface receptors like GPCRs
308 tends to be challenging for small molecules, underscoring an important advantage for
309 uniquely folded lasso peptides.

310 Prior to this study, the structures of lasso peptide-target complexes had only been
311 reported for the complex of the antimicrobial peptide MccJ25 with bacterial RNA
312 polymerase¹⁵ or the siderophore receptor FhuAref³⁰. Thus, we compared the binding
313 mode of RES-701-3 with those of the MccJ25-target complexes (Fig. 6a–c), to examine
314 the conserved features of the interactions between lasso peptides and their target proteins.

315 In all the complexes, the lasso peptide becomes entrapped within the binding pocket of
316 the target. In the case of the RNA polymerase-MccJ25 complex, the lasso peptide
317 accesses the secondary channel in a manner typical of substrate binding, with an essential
318 electrostatic interaction between the C-terminal carboxylic acid and a positively charged
319 residue (Fig. 6b). This contrasts with RES-701-3, where the hydrophobic aromatic
320 residues within the loop region play a critical role in the inverse agonist activity. This
321 observation suggests that various segments of the lasso peptide harbor potentials for
322 exerting biological activities. It is noteworthy that comparable cyclic peptides are
323 relatively flat structures that tend to establish superficial interactions with protein surfaces,
324 such as in the crystal structures of thioether-macrocyclic peptides bound to the multidrug
325 and toxic compound extrusion (MATE) transporter³¹(Fig. 6d). The compact structure of
326 lasso peptides renders them exceptionally well-suited for precise targeting of binding
327 pockets, rather than the protein surface. In this context, GPCRs are ideal drug targets for
328 lasso peptides, which offer potential advantages over thioether-macrocyclic peptides. In
329 particular, peptide-activated GPCRs generally have a wider ligand-binding cavity than
330 small molecule-activated GPCRs (e.g., aminergic GPCRs and lipid GPCRs) (Extended
331 Data Fig. 8), making them attractive targets for lasso peptides.

332

333 **Figures**

334 **Fig. 1. Cryo-EM structure determination of ET_B using a three-point fusion strategy.**

335 **a**, Concept design of the three-point fusion strategy. **b**, Purification of the ET_B-CN-
336 FKBP12 complex. **c, d**, Representative 2D cryo-EM averages of the ET_B-CN-FKBP12
337 complex in the apo state (**c**) and bound to RES-701-3 (**d**). **e, f**, Cryo-EM density maps
338 and 3D models of the ET_B-CN-FKBP12 complexes in the apo state (**e**) and complex with
339 RES-701-3 (**f**), viewed from the side and top.

340

341 **Fig. 2. Interactions between ET_B and calcineurin.**

342 **a**, Structural comparison of the crystal structure of the calcineurin-FKBP12 complex
343 (PDB 1TCO) and the current apo ET_B-CN-FKBP12 complex. **b, c**, Close-up views of the

344 N-terminus and C-terminus of calcineurin. **d**, Electrostatic surface potentials of ET_B and
345 calcineurin in the apo-ET_B-CN-FKBP12 complex. **e**, Charged residues at the interface of
346 ET_B and calcineurin. **f–h**, Structural comparison of the apo-ET_B-CN-FKBP12 complex
347 and the AF-predicted ET_B-CN structure. The AF-predicted structure is colored according
348 to PLDDT scores, with higher scores being magenta and lower scores being cyan.

349

350 **Fig. 3. Structural comparison of inactive ET_B structures.**

351 **a–c**, Superimposition of the apo ET_B-CN-FKBP12 complex and the apo-crystal structure
352 of ET_B-mT4L (PDB 5GLI), viewed from the extracellular side (**a**) and the membrane
353 plane (**b and c**). The mT4L and CN-B fusions into ICL3 are shown in (**c**).

354

355 **Fig. 4. RES-701-3 binding mode.**

356 **a**, Schematic illustration of the lasso peptide RES-701-3. **b**, Cryo-EM map of RES-701-
357 3. **c**, Residues involved in RES-701-3 binding within 4.5 Å. Black dashed lines indicate
358 hydrogen bonds. **d**, **e**, Close-up views of W10 (**d**) and W3 (**e**). Bulky residues are shown
359 as CPK models.

360

361 **Fig. 5. Structural comparison of the ET_B receptors.**

362 **a–d**, Structural changes upon binding of ET-1 (**a**, PDB 8IY5), RES-701-3 (**b**), bosentan
363 (**c**, PDB 5X93), and IRL2500 (**d**, PDB 6KIQ), focused on TM6. Apo state and compound-
364 bound structures are colored gray and light-green, respectively. Black arrows indicate
365 conformational changes upon drug binding.

366

367 **Fig. 6. Binding modes of cyclic peptides.**

368 **a**, Cavity for RES-701-3. The ET_B receptor is shown as a molecular surface. **b, c**, Cavities
369 for MccJ25 in bacterial RNA polymerase (PBD 6N60) (**b**) and the siderophore receptor
370 FhuA (PBD 4CU4) (**c**). **d**, Crystal structures of the *P. furiosus* MATE transporter bound
371 to the thioether-macrocyclic peptides MaD3S (PBD 3VVS) and MaL6 (PBD 3WBN).

372

373 **Methods**

374 **Competition Binding Experiments**

375 CHO cells were maintained in Kaighn's F-12K medium supplemented with 10%
376 FB Essence and 2 mM glutamate, under a humidified 5% CO₂-95% air atmosphere. Cell
377 lines transiently expressing ET_B (CHO-ET_B) were obtained using a mammalian HA-
378 epitope tag expression vector, pHM6 (Roche Applied Science), which carries a cDNA
379 encoding the recombinant human ET_B receptor. Each expression vector was introduced
380 into CHO cells by lipofection, using Lipofectamine 2000 (Thermo Fisher, Carlsbad, CA,
381 USA) according to the manufacturer's instructions. Confirmation of ET_B gene expression
382 was confirmed in cell populations by surface staining with antibodies (anti-HA tag
383 AlexaFluor 488 conjugated mouse IgG, R&D Systems, cat # IC6875G) in combination
384 with flow cytometry. Binding experiments were conducted with membranes prepared
385 from the transiently transfected CHO-ET_B cells.

386 CHO-K1 cells expressing recombinant ET_B receptors were cultured under
387 standard conditions at 37 °C/5% CO₂. Cells were collected in ice-cold phosphate buffered
388 saline, pH 7.4 (PBS), and subsequently centrifuged at 500 x g for 5 min at 4 °C. The
389 resulting cell pellet was resuspended in cell lysis buffer containing 5 mM HEPES, pH
390 7.4, 10 mM EDTA, and 2 mM EGTA, homogenized on ice by Dounce homogenization,
391 and centrifuged (48,000 x g for 15 min at 4 °C). The initial pellet was washed twice by
392 resuspension in 20 mM HEPES, pH 7.4, on ice, and centrifugation (48,000 x g for 15 min
393 at 4 °C). Crude membrane pellets were aliquoted and stored at -80°C prior to use in
394 radioligand binding assays.

395 The total assay volume in each well of the 96-well microwell plates was 200 µL.
396 Reagent volumes consisted of 3 µL/well of DMSO containing various lasso peptides
397 (with the amino acid sequences described in Extended Data Table 3) prepared at a range
398 of concentrations, 50 µL/well of [¹²⁵I]-endothelin-1 diluted in assay buffer (20 mM
399 HEPES, 10 mM MgCl₂, 0.2% bovine serum albumin (BSA), pH 7.4), and 150 µL/well of
400 diluted ETAR- or ETBR-expressing membranes prepared in assay buffer. All reagents
401 were combined and incubated for 2 hours at room temperature. Assay incubations were
402 terminated by rapid filtration through Perkin Elmer GF/C filtration plates under vacuum
403 pressure using a 96-well Packard filtration apparatus, followed by washing the filter

404 plates five times with ice-cold assay buffer. Plates were then dried at 45 °C for a minimum
405 of four hours. Finally, 25 µL of BetaScint scintillation cocktail was added to each well
406 and the plates were counted in a Packard TopCount NXT scintillation counter.

407 Total and non-specific binding were measured in the presence and absence of 10
408 µM BQ-788. Non-linear regression was used for the analysis of competitive inhibition
409 curves of lasso peptides, and experimentally determined IC₅₀ values were used to
410 calculate the dissociation constant (Ki) for each compound, using the Cheng-Prusoff
411 equation.

412 **Saturation binding studies for determination of radioligand affinity constant (K_d).**

413 First, 3 µL/well of either DMSO or DMSO containing BQ-788 at a final
414 concentration of 10 µM were added to define total and non-specific binding, respectively.
415 Second, 50 µL/well of assay buffer with serially diluted [¹²⁵I]-endothelin-1 was added.
416 The final concentration of radioligand ranged from 0.015 to 5 nM, calculated based on
417 the stock radioactivity concentration and the specific activity (2200 Ci/mmol). Third, 10
418 µg/well of diluted membranes were added to initiate the assay. Quadruplicate wells were
419 used for each concentration in the assay. Wells were incubated for 2 hours at room
420 temperature. Assay incubations were terminated by rapid filtration through Perkin Elmer
421 GF/C filtration plates under vacuum pressure using a 96-well Packard filtration apparatus,
422 as described above. The dissociation constant (K_d) of [¹²⁵I]-endothelin-1 was calculated
423 using non-linear regression analysis of the specific amount of radioactivity bound to the
424 membrane as a function of the radioligand concentration.

425

426 **Expression and purification of the ET_B-CN fusion**

427 The human ET_B gene (UniProtKB, Q92633) containing five thermostabilizing
428 mutations¹⁸ was used as a template. CN-B was inserted in ICL3 between K304 and H313,
429 and CN-A was fused to its C-terminus via a GS linker. The ET_B-CN fusion was subcloned
430 into a modified pFastBac vector²³, with an N-terminal haemagglutinin signal peptide and
431 a C-terminal 3C protease recognition site followed by an EGFP-His₈ tag. The
432 recombinant baculovirus was prepared using the Bac-to-Bac baculovirus expression
433 system (Thermo Fisher Scientific). *Spodoptera frugiperda* Sf9 insect cells (Thermo

434 Fisher Scientific) were infected with the virus at a cell density of 4.0×10^6 cells per
435 milliliter in Sf900 II medium (Gibco), and grown for 48 h at 27 °C. The harvested cells
436 were disrupted by sonication, in buffer containing 20 mM Tris-HCl, pH 8.0, 200 mM
437 NaCl, and 10% glycerol. The crude membrane fraction was collected by
438 ultracentrifugation at 180,000g for 1 h. The membrane fraction was solubilized in buffer,
439 containing 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% n-dodecyl-beta-D-
440 maltopyranoside (DDM) (Calbiochem), 0.2% CHS, 10% glycerol, and 2 μ M RES-701-3,
441 for 2 h at 4 °C. The supernatant was separated from the insoluble material by
442 ultracentrifugation at 180,000g for 30 min, and incubated with TALON resin (Clontech)
443 for 30 min. The resin was washed with ten column volumes of buffer, containing 20 mM
444 Tris-HCl, pH 8.0, 500 mM NaCl, 0.1% lauryl maltose neopentyl glycerol (LMNG)
445 (Anatrace), 0.1% CHS, 0.1 μ M RES-701-3, and 15 mM imidazole. After the overnight
446 incubation with the 3C protease (home made), the receptor was concentrated and loaded
447 onto a Superdex200 10/300 Increase size-exclusion column, equilibrated in buffer
448 containing 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.01% LMNG, 0.001% CHS and 0.1
449 μ M RES-701-3. FKBP12 was expressed in *E.coli* and purified by nickel-chromatography,
450 as described previously¹⁷. The receptor and FKBP12 were mixed at a mol ratio of 1:3.
451 CaCl₂, FK506, and RES-701-3 were added to achieve final concentrations of 5 mM, 10
452 μ M, and 20 μ M, respectively. the receptor was concentrated and loaded onto a
453 Superdex200 10/300 Increase size-exclusion column, equilibrated in buffer containing
454 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.01% LMNG, 0.001% CHS, 5 mM CaCl₂, 5
455 μ M FK506, and 0.1 μ M RES-701-3. The peak fractions of the ET_B-CN-FKBP12 complex
456 were collected and concentrated to 12 mg/ml using a centrifugal filter device (Millipore
457 50 kDa MW cutoff)

458

459 **Sample vitrification and cryo-EM single particle analysis**

460 The purified complex was applied onto freshly glow-discharged holey carbon
461 grids (Quantifoil Au 300 mesh R1.2/1.3), which were then immediately plunge-frozen in
462 liquid ethane, using a Vitrobot Mark IV (Thermo Fisher Scientific). Data collections were
463 performed on a 300kV Titan Krios G3i microscope (Thermo Fisher Scientific) equipped
464 with a BioQuantum K3 imaging filter and a K3 direct electron detector (Gatan). Cryo-

465 EM images were collected on a Titan Krios at 300 kV, using a Gatan K3 Summit detector
466 and the EPU software (Thermo Fisher's single-particle data collection software). Images
467 of the apo state were obtained at an exposure of about $49.983 \text{ e}^- \text{ \AA}^{-2}$ at the grid, with a
468 defocus range from -0.8 to $-1.6 \mu\text{m}$. The total exposure time was 2.0 s, with 48 frames
469 recorded per micrograph. A total of 8,547 movies were collected. Images of the RES-
470 701-3-bound state were obtained at an exposure of about $49.236 \text{ e}^- \text{ \AA}^{-2}$ at the grid, with a
471 defocus range from -0.8 to $-1.6 \mu\text{m}$. The total exposure time was 2.94 s, with 48 frames
472 recorded per micrograph. A total of 17,005 videos were collected. All acquired movies in
473 super-resolution mode were $2\times$ binned, dose-fractionated, and subjected to beam-induced
474 motion correction implemented in RELION 3.1^{32,33}. The contrast transfer function (CTF)
475 parameters were estimated using patch CTF estimation in cryoSPARC³⁴. Particles were
476 initially picked from a small fraction with Gaussian blob picking and subjected to 2D
477 classification. Selected particles were used for training of topaz models³⁵. For each full
478 dataset, particles were picked and extracted with a pixel size of 3.32 \AA , followed by
479 several rounds of 2D classification to remove 'junk' particles. The particles were re-
480 extracted with the pixel size of 1.66 or 1.16 \AA and subjected to ab-intio reconstruction
481 and several rounds of hetero refinement in cryoSPARC. Next, two models were obtained
482 by 3D Variability Analysis. These models were used as the initial model, the particles
483 were subjected to several rounds of hetero refinement and non-uniform refinement. For
484 the apo state, the refinement was performed on a further group of particles at an earlier
485 stage, and the 134,931 particles in the best class were reconstructed using non-uniform
486 refinement. For the RES-701-3-bound state, the 95,937 particles in the best class were
487 reconstructed using non-uniform refinement. Those particles were subjected to Bayesian
488 polishing in RELION 3.1³⁶, resulting in a 3.33 \AA and 3.30 \AA resolution reconstruction in
489 the apo state and RES-701-3-bound state, respectively, with the gold-standard Fourier
490 shell correlation (FSC = 0.143). Moreover, the RES-701-3-bound model was refined with
491 a mask on the receptor. As a result, the receptor has a 3.5 \AA resolution with a nominal
492 resolution. The overall and receptor focused maps were combined by phenix³⁷. The
493 processing strategy is described in [Extended Data Fig. 2 and 3](#).

494

495 **Model building and refinement**

496 The quality of the map was sufficient to build a model manually in Coot^{38,39}. The
497 model building was facilitated by the crystal structures of calcineurin (PDB 1TCO)¹⁷ and
498 apo ET_B (PDB 5GLH)¹⁸. RES-701-3 was manually modeled based on the density. After
499 the model was manually readjusted into the density maps with Coot, it was refined using
500 phenix.real_space_refine (v.1.19)⁴⁰.

501

502 **Reference**

- 503 1. Maksimov, M. O., Pan, S. J. & James Link, A. Lasso peptides: structure, function,
504 biosynthesis, and engineering. *Nat. Prod. Rep.* **29**, 996–1006 (2012).
- 505 2. Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Lasso Peptides: An
506 Intriguing Class of Bacterial Natural Products. *Acc. Chem. Res.* **48**, 1909–1919
507 (2015).
- 508 3. Tietz, J. I. *et al.* A new genome-mining tool redefines the lasso peptide biosynthetic
509 landscape. *Nat. Chem. Biol.* **13**, 470–478 (2017).
- 510 4. Cheng, C. & Hua, Z.-C. Lasso Peptides: Heterologous Production and Potential
511 Medical Application. *Front. Bioeng. Biotechnol.* **8**, 571165 (2020).
- 512 5. Si, Y., Kretsch, A. M., Daigh, L. M., Burk, M. J. & Mitchell, D. A. Cell-Free
513 Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme–Substrate Tolerance.
514 *J. Am. Chem. Soc.* **143**, 5917–5927 (2021).
- 515 6. Ogawa, T. *et al.* RES-701-2, -3 and -4, novel and selective endothelin type B receptor
516 antagonists produced by *Streptomyces* sp. I. Taxonomy of producing strains,
517 fermentation, isolation, and biochemical properties. *J. Antibiot. (Tokyo)* **48**, 1213–
518 1220 (1995).

519 7. Doi, T., Sugimoto, H., Arimoto, I., Hiroaki, Y. & Fujiyoshi, Y. Interactions of
520 Endothelin Receptor Subtypes A and B with Gi, Go, and Gq in Reconstituted
521 Phospholipid Vesicles. *Biochemistry* **38**, 3090–3099 (1999).

522 8. Shihoya, W., Sano, F. K. & Nureki, O. Structural insights into endothelin receptor
523 signalling. *J. Biochem. (Tokyo)* **174**, 317–325 (2023).

524 9. Barton, M. & Yanagisawa, M. Endothelin: 30 Years From Discovery to Therapy.
525 *Hypertens. Dallas Tex 1979* **74**, 1232–1265 (2019).

526 10. Kandalaft, L. E., Facciabene, A., Buckanovich, R. J. & Coukos, G. Endothelin B
527 Receptor, a New Target in Cancer Immune Therapy. *Clin. Cancer Res. Off. J. Am.*
528 *Assoc. Cancer Res.* **15**, 4521–4528 (2009).

529 11. Rosanò, L., Spinella, F. & Bagnato, A. Endothelin 1 in cancer: biological implications
530 and therapeutic opportunities. *Nat. Rev. Cancer* **13**, 637–651 (2013).

531 12. Davenport, A. P. International Union of Pharmacology. XXIX. Update on endothelin
532 receptor nomenclature. *Pharmacol. Rev.* **54**, 219–226 (2002).

533 13. Ishikawa, K. *et al.* Biochemical and pharmacological profile of a potent and selective
534 endothelin B-receptor antagonist, BQ-788. *Proc. Natl. Acad. Sci. U. S. A.* **91**, 4892–
535 4896 (1994).

536 14. Shihoya, W. *et al.* X-ray structures of endothelin ETB receptor bound to clinical
537 antagonist bosentan and its analog. *Nat. Struct. Mol. Biol.* **24**, 758–764 (2017).

538 15. Braffman, N. R. *et al.* Structural mechanism of transcription inhibition by lasso
539 peptides microcin J25 and capistruin. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 1273–1278
540 (2019).

541 16. Xu, J. *et al.* Calcineurin-fusion facilitates Cryo-EM Structure Determination of a
542 Family A GPCR. 2022.03.27.485993 Preprint at

543 https://doi.org/10.1101/2022.03.27.485993 (2022).

544 17. Griffith, J. P. *et al.* X-ray structure of calcineurin inhibited by the immunophilin-
545 immuno-suppressant FKBP12-FK506 complex. *Cell* **82**, 507–522 (1995).

546 18. Shihoya, W. *et al.* Activation mechanism of endothelin ETB receptor by endothelin-
547 1. *Nature* **537**, 363–368 (2016).

548 19. Shihoya, W. *et al.* Crystal structures of human ETB receptor provide mechanistic
549 insight into receptor activation and partial activation. *Nat. Commun.* **9**, 4711 (2018).

550 20. Nagiri, C. *et al.* Crystal structure of human endothelin ETB receptor in complex with
551 peptide inverse agonist IRL2500. *Commun. Biol.* **2**, 236 (2019).

552 21. Izume, T., Miyauchi, H., Shihoya, W. & Nureki, O. Crystal structure of human
553 endothelin ETB receptor in complex with sarafotoxin S6b. *Biochem. Biophys. Res.*
554 *Commun.* **528**, 383–388 (2020).

555 22. Okuta, A., Tani, K., Nishimura, S., Fujiyoshi, Y. & Doi, T. Thermostabilization of
556 the Human Endothelin Type B Receptor. *J. Mol. Biol.* **428**, 2265–2274 (2016).

557 23. Zhang, K., Wu, H., Hoppe, N., Manglik, A. & Cheng, Y. Fusion protein strategies for
558 cryo-EM study of G protein-coupled receptors. *Nat. Commun.* **13**, 4366 (2022).

559 24. Guo, Q. *et al.* A method for structure determination of GPCRs in various states. *Nat.*
560 *Chem. Biol.* (2023) doi:10.1038/s41589-023-01389-0.

561 25. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*
562 **596**, 583–589 (2021).

563 26. Shibata, K. *et al.* Hybrid peptides constructed from RES-701-1, an endothelin B
564 receptor antagonist, and endothelin; binding selectivity for endothelin receptors and
565 their pharmacological activity. *Bioorg. Med. Chem.* **6**, 2459–2467 (1998).

566 27. Sano, F. K., Akasaka, H., Shihoya, W. & Nureki, O. Cryo-EM structure of the

567 endothelin-1-ETB-Gi complex. *eLife* **12**, e85821 (2023).

568 28. Oshima, H. S. *et al.* Optimizing cryo-EM structural analysis of Gi-coupling receptors
569 via engineered Gt and Nb35 application. *Biochem. Biophys. Res. Commun.* **149361**
570 (2023) doi:10.1016/j.bbrc.2023.149361.

571 29. Ji, Y. *et al.* Structural basis of peptide recognition and activation of endothelin
572 receptors. *Nat. Commun.* **14**, 1268 (2023).

573 30. Mathavan, I. *et al.* Structural basis for hijacking siderophore receptors by
574 antimicrobial lasso peptides. *Nat. Chem. Biol.* **10**, 340–342 (2014).

575 31. Tanaka, Y. *et al.* Structural basis for the drug extrusion mechanism by a MATE
576 multidrug transporter. *Nature* **496**, 247–251 (2013).

577 32. Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for
578 improved cryo-electron microscopy. *Nat. Methods* **14**, 331–332 (2017).

579 33. Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure
580 determination in RELION-3. *eLife* **7**, e42166 (2018).

581 34. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms
582 for rapid unsupervised cryo-EM structure determination. *Nat. Methods* **14**, 290–296
583 (2017).

584 35. Bepler, T. *et al.* Positive-unlabeled convolutional neural networks for particle picking
585 in cryo-electron micrographs. *Nat. Methods* **16**, 1153–1160 (2019).

586 36. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced
587 motion correction in cryo-EM single-particle analysis. *IUCrJ* **6**, 5–17 (2019).

588 37. Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for
589 macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213–
590 221 (2010).

591 38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta*
592 *Crystallogr. D Biol. Crystallogr.* **60**, 2126–2132 (2004).

593 39. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of
594 Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486–501 (2010).

595 40. Afonine, P. V. *et al.* Real-space refinement in PHENIX for cryo-EM and
596 crystallography. *Acta Crystallogr. Sect. Struct. Biol.* **74**, 531–544 (2018).

597

598 **Data Availability**

599 Cryo-EM density maps and structure coordinates have been deposited in the
600 Electron Microscopy Data Bank (EMDB) and the PDB, with the respective accession
601 codes EDM-XXX and PDB YYYY for the apo-state ET_B-CN-FKBP12 complex, and
602 EMD-XXXX and PDB YYYY for the RES-701-3-bound ET_B-CN-FKBP12 complex.

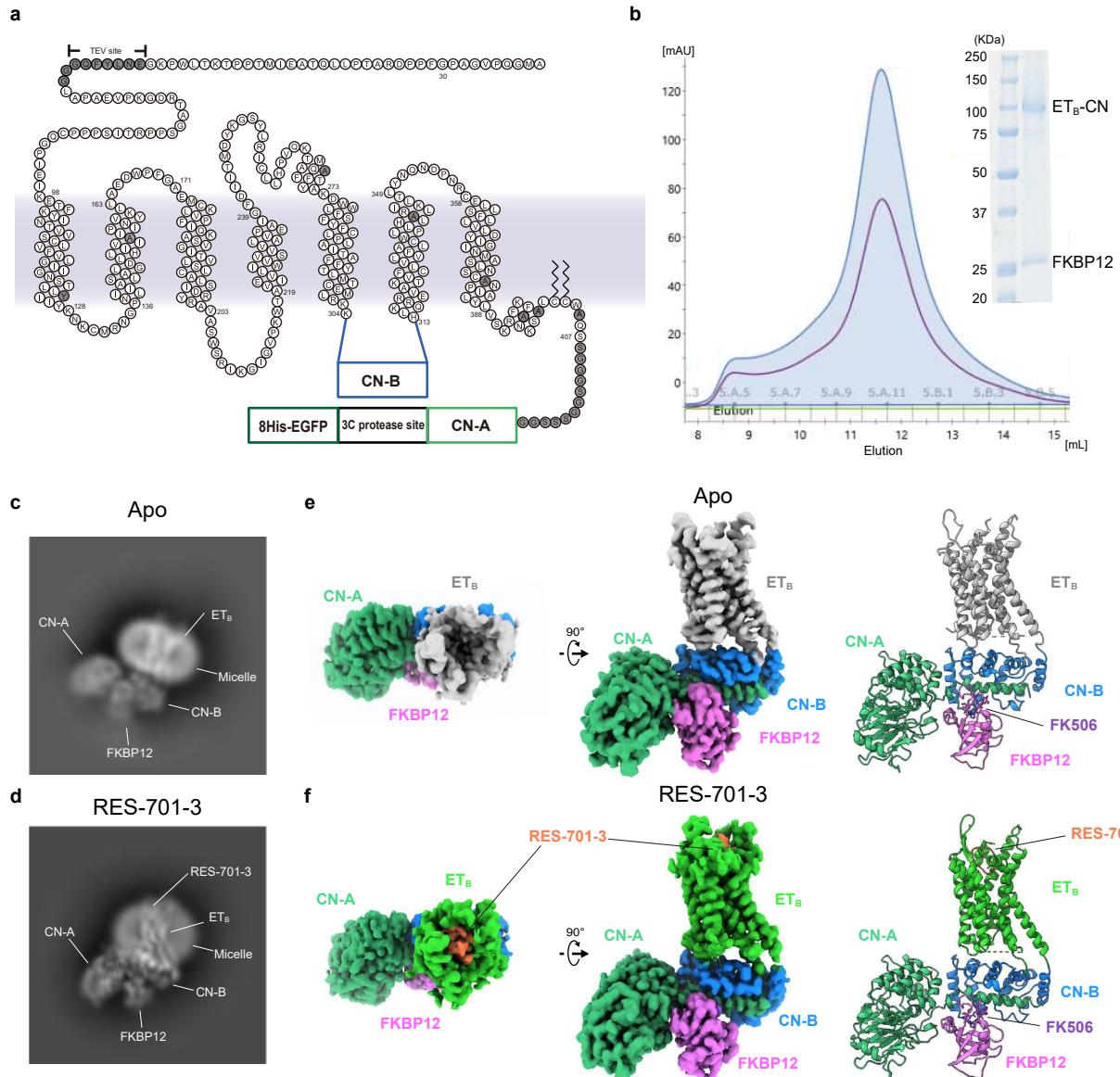
603

604 **Acknowledgements**

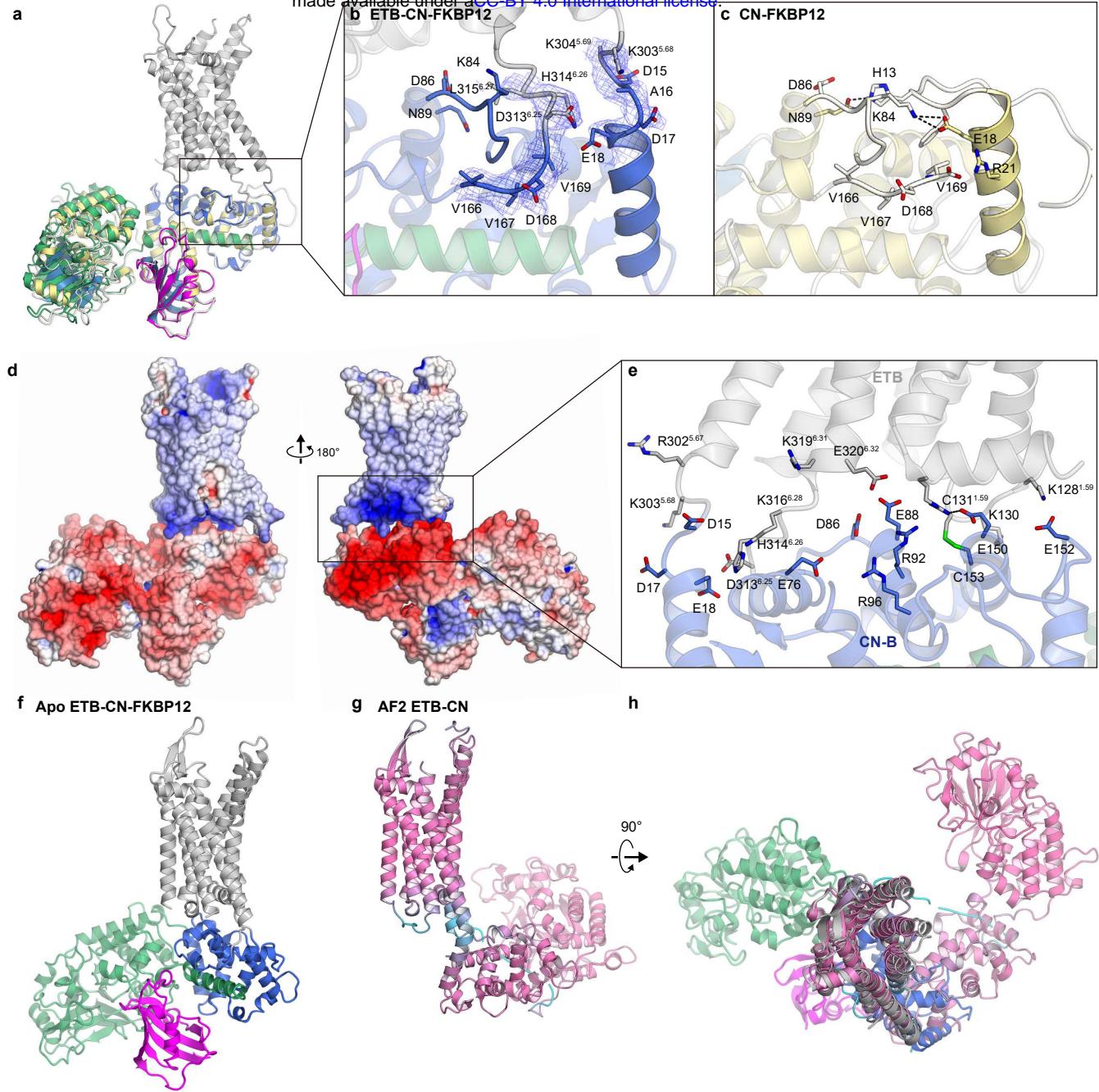
605 We thank K. Ogomori and C. Harada for technical assistance. This work was
606 supported by grants from the Platform for Drug Discovery, Informatics and Structural
607 Life Science by the Ministry of Education, Culture, Sports, Science and Technology
608 (MEXT), and JSPS KAKENHI grants 21H05037 (O.N.), 22K19371 and 22H02751
609 (W.S.), and 21J20692 (T.T.); ONO Medical Research Foundation (W.S.); The Kao
610 Foundation for Arts and Sciences (W.S.); The Takeda Science Foundation (W.S.); The
611 Uehara Memorial Foundation (W.S.); AMED under Grant Number JP233fa627001
612 (O.N.); the Platform Project for Supporting Drug Discovery and Life Science Research
613 (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS))
614 from AMED, under grant numbers JP23ama121002 (support number 3272, O.N.) and
615 JP23ama121012 (O.N.).

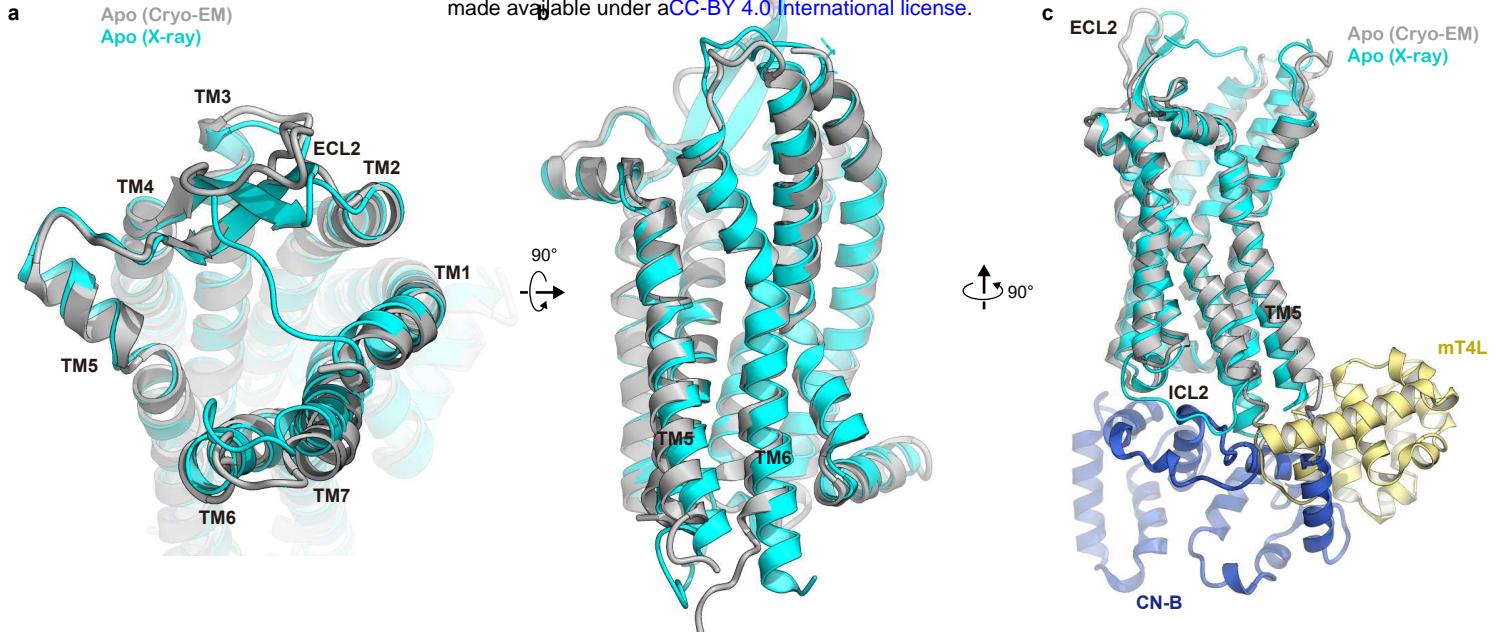
616

617 **Author contribution**

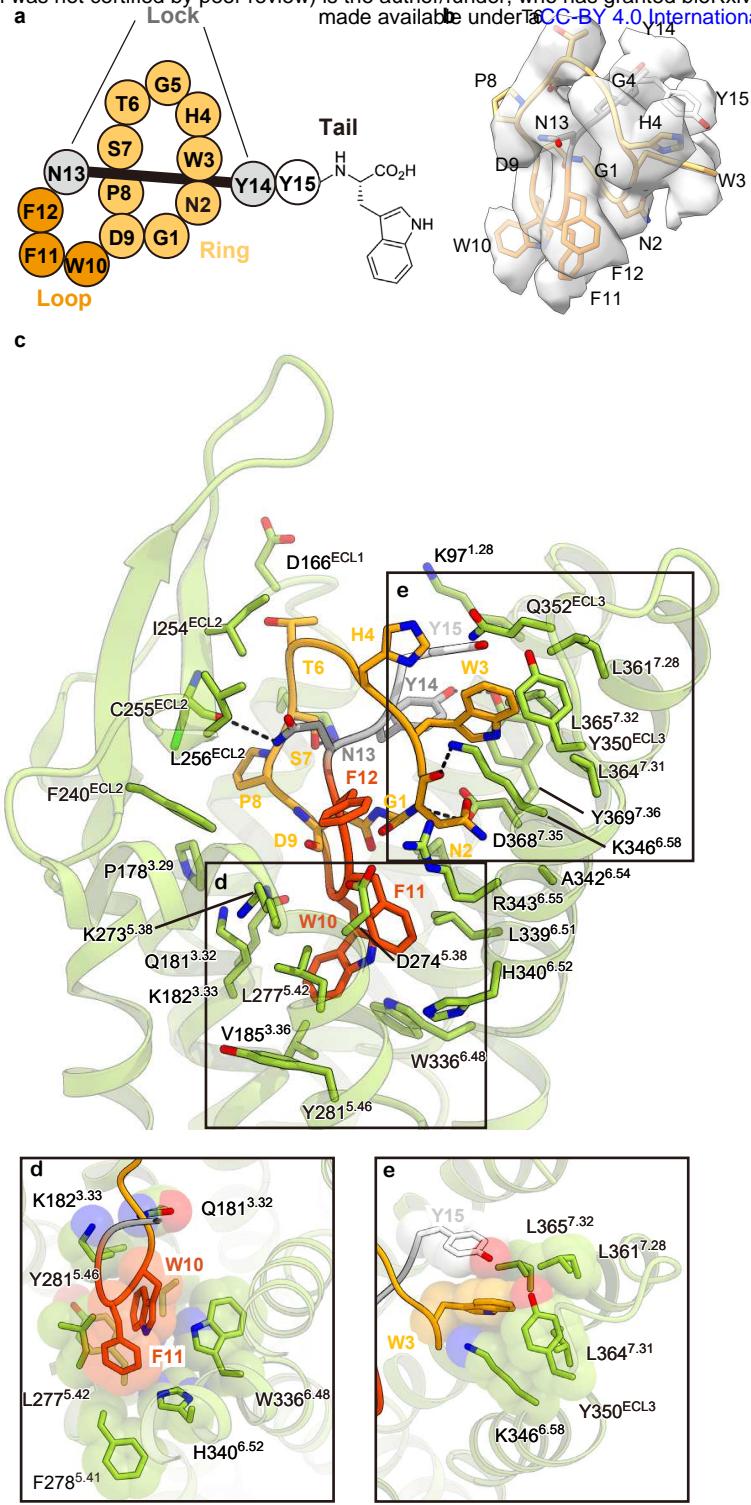

618 W.S. performed the sample preparation and model building. H.A. performed the

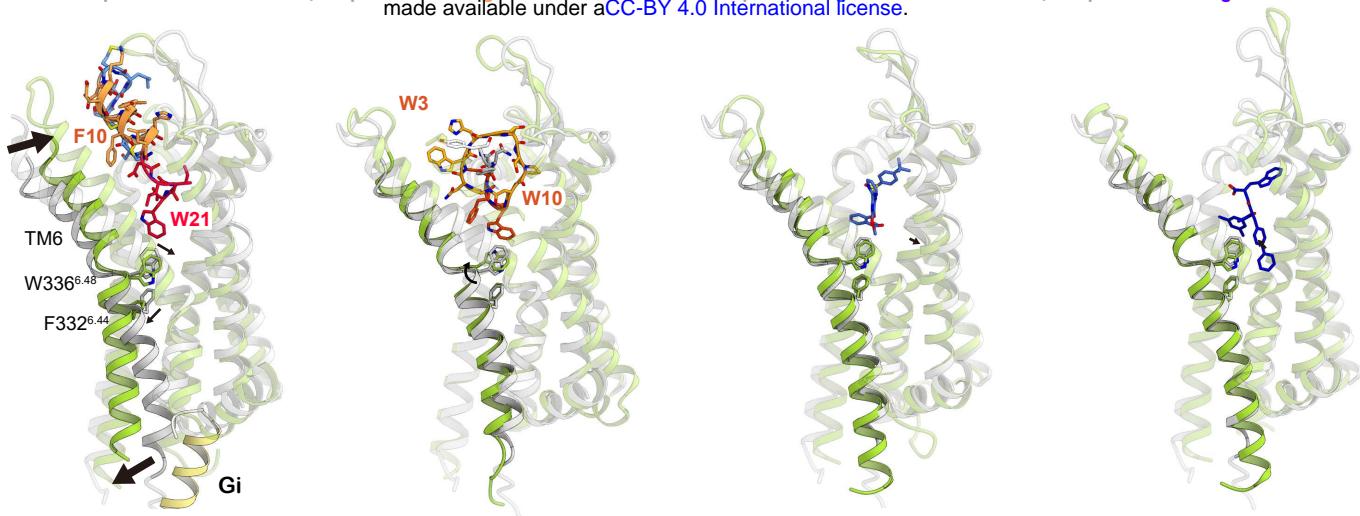
619 grid preparation, the cryo-EM data collection, and the single particle analysis, with the
620 assistance by F.K.S. and T.T. R.K purified the FKBP12 protein. P.A.J., A.L., B.K.O.,
621 G.C.M.C., R.C., H.M., and M.J.B. performed the production and functional analysis of
622 the lasso peptides. The manuscript was mainly prepared by W.S., H.A., P.A.J., and M.J.B.
623 with assistance from O.N. W.S. and O.N. supervised the project.

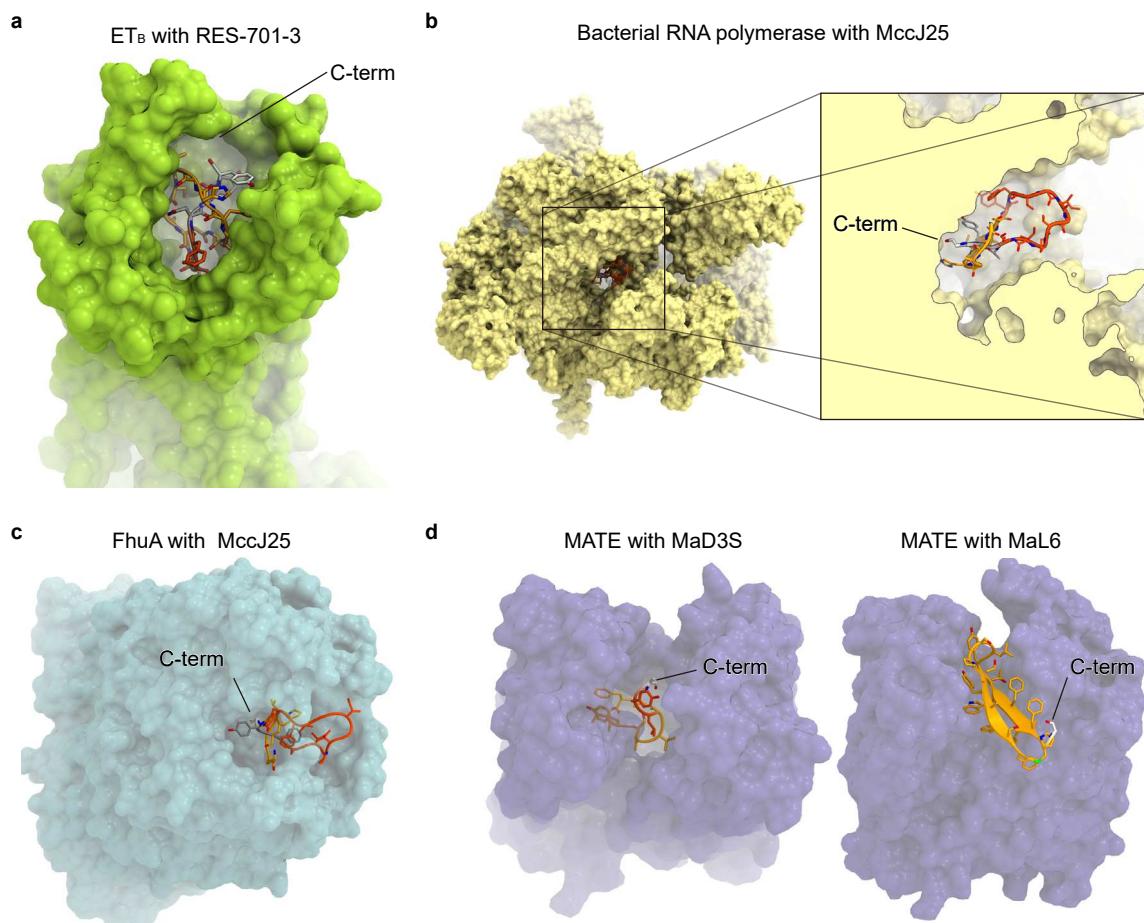

624 **Competing interests**


625 O.N. is a co-founder and scientific advisor for Curreio. P.A.J., A.L., B.K.O.,
626 G.C.M.C., H.M., and M.J.B. are employed by Lassogen Inc. All other authors declare no
627 competing interests.

628




Shihoya et al., Figure 1



Shihoya et al., Figure 3

Shihoya et al., Figure 5

Shihoya et al., Figure 6