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The brainstem’s red nucleus was evolutionarily upgraded to support goal-directed action
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Abstract

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in
quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of
anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek,
1907). Previously the function of the human red nucleus remained unclear at least partly due to
methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here,
we used our most advanced resting-state functional connectivity (RSFC) based precision
functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged
datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity.
Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot,
and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus
was specific to regions of the recently discovered somato-cognitive action network (SCAN;
(Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest

to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control
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(Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019),
respectively. Functional connectivity to these two networks was organized into discrete dorsal-
medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus
recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could
prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total,
our results indicate that far from being a ‘motor’ structure, the red nucleus is better understood
as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence

and action plans.

Introduction

The brainstem has been thought of an evolutionarily conserved structure, limited to
physiological (e.g., breathing) and basic motor functions (e.g., locomotion) (Baizer, 2014), with
the exception of neuromodulatory nuclei (e.g., locus coeruleus). The red nucleus, located in the
midbrain, first emerged as quadruped precursors began coordinating extremities for movement
(Basile et al., 2021; De Lange, 1912; Padel, 1993; Padel et al., 1986; Ten Donkelaar, 1988).
The red nucleus contains magno- and parvo-cellular neurons (Basile et al., 2021). In
quadrupeds, magnocellular red nucleus neurons project down the full length of the spinal cord,
forming the rubrospinal tract, which evokes limb movements when stimulated (De Lange, 1912;
Ghez, 1975). Parvocellular red nucleus neurons are smaller in diameter and do not project to
the spinal cord (Basile et al., 2021). Instead, these neurons participate in the dento-rubro-
thalamic tract (DRTT), which connects to the cerebellum’s dentate nucleus and the ventral
intermediate nucleus (VIM) of the thalamus (Basile et al., 2021; Cacciola et al., 2019; Lapresle
& Hamida, 1970). Due to the parvocellular red nucleus projection to the thalamus, clinical
neuroscience primarily studies structural connectivity of the red nucleus as a tool to identify the

VIM (Nowacki et al., 2022), which is a target for deep brain stimulation treatment of essential
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tremor and tremor predominant Parkinson’s Disease (Haubenberger & Hallett, 2018; Schlaier et

al., 2015).

In a striking example of phylogenetic refinement from quadrupeds to bipedal humans,
the proportion of red nucleus neurons has shifted strongly from magnocellular to parvocellular
(Cisek, 2019; Massion, 1967; Padel et al., 1981). For instance, the reptilian red nucleus is
almost entirely magnocellular (Massion, 1967), the feline red nucleus is approximately 2/3
magnocellular (Huisman et al., 1982), and the primate red nucleus is primarily parvocellular
(Basile et al., 2021). Furthermore, comparison of the quadrupedal baboon to the bipedal upright
gibbon shows that bipedalism coincides with a continued reduction of the rubrospinal tract
(Padel et al., 1981). In humans, there is a small rubrospinal tract that only projects to the
cervical spinal cord, indicating that it could only serve a minimal role in locomotion (Massion,
1988; Nathan & Smith, 1982). The proportion of cell types in the human red nucleus favors
parvocellular so much so that studies of the red nucleus in humans are effectively studies of the
parvocellular red nucleus (Nathan & Smith, 1982). Even though human locomotion is supported
by the cortico-spinal tract rather than the rubro-spinal tract, the expansion of parvocellular

neurons has maintained the red nucleus as the largest nucleus in the human midbrain.

Despite nearly 150 years of research, the red nucleus’s function in humans remains
unclear (Basile et al., 2021), revealing major gaps in our understanding of a clinically relevant
structure and the brainstem as a whole. Direct recordings from the parvocellular red nucleus
show activity is unrelated to free-form movement in non-human primates (Herter et al., 2015;
Kennedy et al., 1986) and humans (Lefranc et al., 2014). Interestingly, there appears to be a
relationship between parvocellular red nucleus and goal-directed actions and cognition. In an
arm fixation-maintenance study in non-human primates, arm fixation evoked no red nucleus
response except when an adaptive arm correction was required (Herter et al., 2015). Human

task fMRI indicates simple sensory stimulation and hand movements produce small red nucleus
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task activations relative to cognitive tactile discrimination tasks (Liu et al., 2000; Sung et al.,
2022), and the human red nucleus may be active during cognitive control (de Hollander et al.,
2017; Sung et al., 2022). Rodent electrophysiology recordings during a stop-signal task found
trial-to-trial adjustments in the parvocellular red nucleus firing rate that were correlated with
movement accuracy and speed, indicating proactive control signals in the red nucleus (Brockett
et al., 2020). Based on these findings, some have argued for parvocellular red nucleus
involvement in motor control (Basile et al., 2021), which is a broad concept including motor
planning, execution, and feedback (Craighero et al., 1999; Fajen, 2009; Kalaska, 2009; Latash,
2012; Stanley & Miall, 2009; Taylor & Gottlieb, 1985; Vogt et al., 2003). Owing in part to
structural connectivity to primary motor cortex, the adaptive control responses in parvocellular
red nucleus could support a mechanism for indirect control of movements based on task goals,

but the support for this hypothesis is weak.

Resting state functional connectivity (RSFC) has greatly expanded our understanding of
human brain organization by revealing its subdivision into large-scale functional networks
related to specific functions such as action control, movement and salience. (Biswal et al., 1995;
Dosenbach et al., 2007; Power et al., 2011; Seeley et al., 2007; Yeo et al., 2011). With large
amounts of high quality data it is now possible to identify networks at the individual level, a
technique we have dubbed precision functional mapping (PFM (E. J. Allen et al., 2022; Gordon
et al., 2017; Laumann et al., 2015; Lynch et al., 2020)). Using PFM, we previously mapped the
functional connectivity profiles of the thalamus (Greene et al., 2020), cerebellum (Marek et al.,
2018), and hippocampus (Zheng et al., 2021). This process has allowed us to test theories of
subcortical nuclei, especially when such models argue for connectivity with specific networks.
Unfortunately, brainstem functional neuroimaging has been historically limited due to low signal-
to-noise ratio (SNR) related to head coil distance, suboptimal echo times, and unique forms of

noise owing to cerebrospinal fluid pulsations (Beissner, 2015; de Hollander et al., 2015, 2017;
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Wright & Wald, 1997). As a result, fMRI and RSFC of the red nucleus have greatly lagged the

rest of the brain, making it difficult to examine its organization in humans.

We have recently shown that the precentral gyrus (i.e. primary motor cortex) is
separated into motor-effector specific regions (foot, hand, and mouth) and somato-cognitive
action network (SCAN) regions for integrating body movement, goals, and physiology (Gordon
et al., 2023). These SCAN regions are most closely coupled to the cingulo-opercular network
(CON), which is important for executive action control (Dosenbach et al., 2007; Newbold et al.,
2021). While the parvocellular red nucleus has structural connectivity with the primary motor
cortex (Burman et al., 2000), it is unclear if this connectivity is with motor-effector or SCAN
regions, which would have a fundamentally different interpretation. Should the red nucleus
indirectly control movements based on task goals, we predict extensive connectivity with motor-
effector networks in the primary motor cortex (i.e. somatomotor hand, food, and/or mouth).
Importantly, parvocellular red nucleus structural connectivity extends far beyond the precentral
gyrus, including a robust connection with the anterior cingulate cortex (Burman et al., 2000).
The anterior cingulate contains many networks, including a large representation of the salience
network, which is important for processing reward signals and motivation (Peters et al., 2016;
Seeley, 2019; Seeley et al., 2007). Based on structural connectivity alone, it remains unknown

which networks the human red nucleus is functionally connected with.

Here, we determined individual-specific RSFC of the human red nucleus by overcoming
historically low signal-to-noise with novel denoising approaches. We verified PFM results using
group-averaged data from three large fMRI datasets (Human Connectome Project (HCP),
Adolescent Brain Cognitive Development (ABCD) study, UK Biobank (UKB); combined sample

size of nearly 45,000 participants).
Results

The red nucleus is connected to salience and action control networks
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Red nucleus (Fig 1A) functional connectivity was strongest in the dorsal anterior
cingulate, medial prefrontal, pre-supplementary motor, insula (especially anterior insula),
parietal operculum and anterior prefrontal cortex (Fig 1B, C). Functional connectivity was clearly
organized into networks, with the strongest connectivity to the CON (action control; dorsal
anterior cingulate cortex, anterior prefrontal cortex, and anterior insula (Dosenbach et al.,
2007)), and salience network (reward/motivated behavior; anterior cingulate/medial prefrontal
cortex and ventral anterior insula (Seeley et al., 2007)), but not to foot/hand/mouth effector-
specific motor regions near the central sulcus (Fig 1B, C; SFig 1:4). Functional connectivity in
the central sulcus was strongest to the SCAN regions, which are closely related to the CON
(Gordon et al., 2023). Red nucleus was not connected to the default mode network regions in
prefrontal cortex and fronto-parietal network regions in the lateral prefrontal cortex and insula.
There were no obvious and consistent differences between the left and right red nucleus (SFig
1; SFig 3), nor were the results contingent on the functional connectivity threshold (SFig 2). This
connectivity pattern was also evident in the three large group-averaged datasets totaling ~
45,000 participants (Fig 1C; SFig 1) and in additional individual-specific red nucleus seed maps

(SFig 4).

Red nucleus is functionally connected to the ventral intermediate thalamus
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Figure 1: Functional connectivity mapping of the red nucleus. A) Axial (top) and coronal (bottom)
display of the right red nucleus (white outline) overlaid on a T2w structural image for subject PFM-
Nico. B) Resting state functional connectivity (RSFC) seeded from the right red nucleus in an
exemplar highly sampled participant with multi-echo independent component analysis (MEICA)
denoising (PFM-Nico; 134 min resting-state fMRI). Individual specific functional connectivity map
shows strongest 20 percent of cortical vertices. Bar graph quantifies the average connectivity per
network. The average connectivity was significantly different from zero for the salience, cingulo-
opercular (CON) and dorsal attention (DAN) networks (two-sided t-test against null distribution, *P <
0.05, Bonferroni correction), but was only positive for salience and CON. C) Group-averaged
functional connectivity map shows strongest 20 percent of cortical vertices using previously defined
split-halves (Marek et al., 2022; n = 1964 participants each) from the Adolescent Brain Cognitive
Development (ABCD) study. For additional participants see Supplemental Figures 1:4.

Since the red nucleus is a node in the DRTT, we next examined connectivity to
subcortical structures. Within thalamus, red nucleus functional connectivity was strongest to the

ventral lateral posterior (VLP) nucleus, centered on the ventral intermediate nucleus (VIM),
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Figure 2: Thalamic connectivity of the red nucleus. Top 20% of red nucleus connections
for the thalamus (MNI space) for PFM-Nico (A), ABCD study (n = 3,928) (B), HCP (812) (C),
and UKB (n = 4,000) (D). Four different axial slices of the thalamus are shown (MNI space)
overlaid on the subject’s structural image (A only). Thresholding is based on the top 20% of
connections for the thalamus. The VIM (ventral intermediate) nucleus of the thalamus
defined in an individual subject is shown in panel A. The nucleus outline based on a
probabilistic map using THOMAS is shown in panels B-D. See supplemental figure 5 for
additional participants.

which is a major target for deep brain stimulation with a known structural connection to the red

nucleus (Schlaier et al., 2015). This was observed at the individual level using a subject specific
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thalamic segmentation (Fig 2A) and verified using large group-averaged datasets (Fig 2B-D;
UKB (n = 4,000), ABCD study (n = 3,928), HCP (n = 812)) and additional individual-specific
analyses (SFig 5). Interestingly, red nucleus connectivity tended to be stronger in more dorsal
sections of the VLP (MNI z coord. > 2 mm). Within cerebellum, red nucleus functional

connectivity was primarily to lobule VI (SFig 6).
Red nucleus is not connected to effector-specific primary motor cortex

Evaluating the red nucleus as a whole,
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Distinct ventral-lateral (salience) and dorsal-medial (cingulo-opercular) subdivisions
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Figure 4: Functional connectivity subdivisions of the red nucleus. A) Anatomical display
of dorsal-medial (hatched) and ventral-lateral (no fill) red nucleus subdivisions in exemplar
participant (PFM-Nico) overlaid on T2w image. B) Strongest 20 percent of cortical RSFC for
ventral-lateral (left) and dorsal-medial (middle) red nucleus subdivisions. Right most image
shows the difference map between these two connectivity maps with greater ventral-lateral
connectivity in red and greater dorsal-medial in blue. C) Average cortical RSFC organized by
network for dorsal-medial (hatched) and ventral-lateral (no fill) subdivisions. D) Similarity (r)
in network connectivity for each red nucleus voxel grouped into dorsal-medial and ventral-
lateral divisions. For additional subjects/analyses see supplemental figures 6:8.

Winner-take-all assignments identified two sub-populations within the red nucleus, one with
connectivity to the salience network and one to the CON/SCAN (SFig 7A). To delineate red
nucleus subdivisions, we used agglomerative hierarchical clustering which grouped voxels
based on functional connectivity with cortical networks (Gan et al., 2020; Greene et al., 2020).

These analyses identified a dorsal-medial and ventral-lateral division of the red nucleus (Fig 4A,
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SFig 7:8, STable1). Comparing the functional connectivity of these two sub-divisions ((ventral-
lateral [salience preference] - dorsal-medial [CON preference]); Zheng et al., 2021)
demonstrated that the ventral-lateral division had stronger connectivity to the salience and
parietal memory network (Gilmore et al., 2021; Zheng et al., 2021), while the dorsal-medial red
nucleus had stronger connectivity to the CON and to SCAN regions within the precentral gyrus
(Fig 4B,C, SFig 8A). Using preference for Salience or CON connectivity alone in a forced choice
was able to identify the two red nucleus partitions (AUC>0.9). In support of this dorsal-
medial/ventral-lateral partition of red nucleus, we also examined the correlation between red
nucleus connectivity and specific cortical networks, revealing an obvious divide in network
connectivity between CON and salience (Fig 4C:D, SFig 7B, SFig 8D). Neither subdivision
displayed effector-specific motor connectivity, and as with connectivity of the entire red nucleus,
dorsal-medial red nucleus precentral gyrus connectivity was strongest to SCAN regions (Fig
4B,C). Using the preference for salience or CON in group average datasets identified a similar

ventral-lateral (salience) and dorsal-medial (CON/SCAN) division (SFig 7B, SFig 9).

Given that there were two discrete subdivisions within the red nucleus favoring the
salience network (ventral-lateral) or CON (dorsal-medial), we used each as separate seeds
when determining subcortical connectivity. The ventral-lateral salience network favoring red
nucleus partition was functionally connected to the VIM (SFig 10A). The ventral-lateral partition
had peak cerebellar connectivity in lobule VI (SFig 10A). The dorsal-medial CON favoring
partition was functionally connected to the mediodorsal nucleus of the thalamus (SFig 10B).
This dorsal-medial red nucleus partition also had connectivity peaks in cerebellar lobule VIII,

especially in VIlIb (SFig 10B).
Discussion
The human red nucleus is no longer a motor structure

The red nucleus is functionally connected to action-control (cingulo-opercular) and
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motivated behavior (salience) networks, but not to motor-effector networks. These results,
combined with the reduction in the rubrospinal pathway in humans (Massion, 1988; Nathan &
Smith, 1982), suggest that the red nucleus no longer controls movements in humans, arguing
against the motor-control hypothesis. In fact, the red nucleus displayed no functional
connectivity (or negative functional connectivity) with motor-effector networks, and motor cortex
connectivity was restricted to SCAN regions (Gordon et al., 2023). The evolutionary principle of
‘exaptation’, where a trait serves a new function other than its original purpose, may be useful in
understanding the red nucleus. The original function was coordinated extremity movement for
locomotion, but the pyramidal system emerged and bipedalism made the rubrospinal pathway
outdated for its prior functions (Ten Donkelaar, 1988). Instead of gradually disappearing, the

once motor red nucleus was ultimately repurposed.

Multiple non-human primate studies have shown red nucleus structural connectivity to the
motor cortex using tract tracing (Burman et al., 2000; H. G. Kuypers & Lawrence, 1967).
Somewhat surprisingly, human red nucleus functional connectivity to effector-specific regions of
motor cortex was small or negative. Instead, red nucleus functional connectivity to motor cortex
appeared limited to the SCAN regions. This conflicts with motor-control models that position the
red nucleus (and potentially the entire DRTT) as a system for the modification of motor-effectors
in the cortex. Instead, the observed functional connectivity to SCAN is more consistent with the
red nucleus’ original role in whole body coordination, an operation that activates SCAN (Gordon
et al., 2023). One could predict that a re-analysis of non-human primate red nucleus tract
tracing studies that factor in SCAN homologues in precentral gyrus would show red nucleus

motor cortex connectivity to be specific to SCAN homologues, instead of motor-effector regions.
Red nucleus is positioned to integrate reward and action

It remains an open question whether the salience and CON subdivisions of the red nucleus

are strictly parallel or whether they might support the integration of reward/motivated-behaviors
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(hence salience network connectivity) and action-control (hence CON connectivity), allowing
action plans to be regulated by motivation, even in the brainstem. This general framework is
consistent with emerging perspectives that the brain must produce specific behavior in the
context of motivated states (W. E. Allen et al., 2019). The red nucleus could serve as a tool to
guide and rapidly adapt action execution based on changing salience information. In either
scenario, it appears human action control includes repurposed motor nuclei, and highlights an
evolutionary link between thinking/planning and movement (Gyérgy Buzsaki, 2019; Llinas,

2002).
Neural networks are an organizing principle in the brainstem

The realization that the red nucleus function seems to have shifted its role from
quadrupedal locomotion to reward and action processes has broader implications. The
brainstem has often been conceptualized as participating in two rigid hierarchies: a top-down
control hierarchy where it passively receives and transmits top-down signals originating from the
cortex (often motor commands); and a bottom-up sensory hierarchy where it passively receives
and transmits sensory signals originating from the periphery. Instead, tract tracing indicates that
neither of these perspectives are fully applicable to the red nucleus, given the small connection
with the spinal cord. We speculate that the dominant representation of two cortical networks in
the red nucleus indicates that neural networks are a principle of whole brain organization, and
not just the cerebral cortex, in keeping with recent findings and perspectives (Chin et al., 2023;
Gordon et al., 2020; Raut et al., 2021). How specific networks interact with the body,
establishing the brain-body relationship (Chiel & Beer, 1997; Dum et al., 2019), is a topic that
warrants further investigation and would likely have important implications to studies of affect

and motivated behavior.
Clinical targeting can benefit from red nucleus heterogeneity

Our improved understanding of human red nucleus connectivity and organization could
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reveal new targeting approaches for neuromodulation. Despite indications of red nucleus
pathology in illnesses like Parkinson’s disease (Guan et al., 2017), we are aware of less than a
half dozen studies that investigate red nucleus stimulation for disease, such as essential tremor
or tremor-predominant Parkinson’s Disease. In one case, an electrophysiologic profile of the red
nucleus was developed with the goal of avoiding the red nucleus in brain stimulation (Micieli et
al., 2017). This is not without reason, as the side effect profile for red nucleus stimulation is
alarming, because axons of the third cranial nerve pass through the red nucleus and red
nucleus damage/stimulation can result in ocular disturbances (Lefranc et al., 2014; Leys et al.,
1992). This proximity to oculomotor nuclei/axons may help to explain red nucleus functional
connectivity with visual cortex (Fig 1B). Interestingly, the insertion of a macro-electrode into the
red nucleus transiently reduced postural tremor in a single patient (Lefranc et al., 2014). Our
findings suggest that using whole red nucleus connectivity (functional and potentially structural)
could be a suboptimal approach for identifying thalamic targets. Instead, using the functional
connectivity of each red nucleus division to the thalamus could prove to be an effective strategy
for fine-tuning VIM or mediodorsal stimulation sites at an individual level for the treatment of

tremor or pain (Meda et al., 2019) respectively.
Salience and action control loops converge in the red nucleus

In conclusion, the absence of motor-effector functional connectivity and strong salience and
cingulo-opercular network (CON) connectivity argues against the human red nucleus being a
motor-control nucleus that indirectly influences motor-effector neurons in M1 to modify
movement. The human red nucleus may form a node in a loop between the cortex and the
cerebellum to integrate motivated behavior into action control, facilitating goal-directed behavior.
The functional coupling of brainstem nuclei with higher-order action control networks indicates
that neuroscience can benefit from taking a holistic approach to investigations of the brain (Chin

et al., 2023).
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Methods
Washington University participant for precision functional mapping (PFM-Nico)

The participant was 37 year old healthy adult male used in both the Midnight Scan Club
((Gordon et al., 2017); MSC02) and limb immobilization studies ((Newbold et al., 2020) ;SIC01),
and the senior investigator of this current project (N.U.F.D.). This participant is referred to as

precision functional mapping (PFM)-Nico.
Cornell University participants for precision functional mapping

Four healthy adult participants (ages 29, 38, 24, and 31; all male) from a previously
published study were used (Lynch et al., 2020). These participants are referred to as participant
1:4 in the manuscript. The previous study was approved by the Weill Cornell Medicine
Instructional Review Board and each participant provided written informed consent. For additional

details please see ref. (Lynch et al., 2020).
UK Biobank (UKB)

We downloaded the group-averaged weighted eigenvectors from an initial group of
4,100 UKB participants aged 40-69 years (53% female) with 6-minute resting-state scans
(https://www.fmrib.ox.ac.uk/ukbiobank/). Details of the acquisition and processing can be found

at https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/brain_mri.pdf (Miller et al., 2016). This

eigenvector file was mapped to the Conte69 surface template (Van Essen et al., 2012) using the
ribbon-constrained method in Connectome Workbench (Glasser et al., 2013), following which

the eigenvector time courses were cross-correlated.

Adolescent Brain Cognitive Development (ABCD) Study
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3,928 9-10-year-old participants (51% female), with at least 8 minutes of low-motion resting
state data were used. In cases (e.g. Fig 1C) these subjects were split into two equal halves as
described previously (Marek et al., 2022). Data processing was done with the ABCD-BIDS

pipeline (NDA collection 3165; https://github.com/DCAN-Labs/abcd-hcp-pipeline). For additional

details see: (Casey et al., 2018; Feczko et al., 2021; Marek et al., 2022).
Human Connectome Project (HCP)

The group-averaged dense functional connectivity matrix for the HCP 1200 participants
release, consisting of functional connectivity data for all 812 participants aged 22-35 years (410
female) with 60 minutes of resting-state fMRI, was downloaded from

https://db.humanconnectome.org. For more information on the acquisition and processing see:

(Glasser, Coalson, et al., 2016; Glasser et al., 2013; Glasser, Smith, et al., 2016; Smith et al.,

2013).
Preprocessing of PFM-Nico

PFM-Nico refers to a single participant (N.U.F.D) collected at Washington University in St.
Louis. Imaging was performed using a Siemens TRIO 3T MRI scanner. Structural MRI was
consisted of four T1-weighted images (sagittal acquisition, 224 slices, 0.8 mm isotropic resolution,
[TE etc]) and four T2-weigthed images (sagittal [details]). Structural data were processed using
previously described methods (Newbold et al., 2020) in which all T1w and T2w were separately
averaged into a single structural file for functional processing and registration. Functional data
acquisition was done using a multi-echo gradient-echo sequence consisting of nine 15-minute
runs ([parameters]). In addition, 3 noise frames were acquired per run for noise reduction with
distribution corrected (NORDIC) PCA, which was used to reduce thermal noise in functional data

(Dowdle et al., 2023).
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Optimal combination of multi-echo data and multi-echo independent component analysis
(MEICA) denoising were performed using the tedana package version 0.0.11 (DuPre et al.,
2021; Kundu et al., 2012, 2013). To promote reproducibility, we copy the automated methods
description writeup as follows. TE-dependence analysis was performed on input data. An initial
mask was generated from the first echo using nilearn's compute_epi_mask function. An
adaptive mask was then generated, in which each voxel's value reflects the number of echoes
with 'good' data. A two-stage masking procedure was applied, in which a liberal mask (including
voxels with good data in at least the first echo) was used for optimal combination, T2*/S0
estimation, and denoising, while a more conservative mask (restricted to voxels with good data
in at least the first three echoes) was used for the component classification procedure. A
monoexponential model was fit to the data at each voxel using log-linear regression in order to
estimate T2* and SO maps. For each voxel, the value from the adaptive mask was used to
determine which echoes would be used to estimate T2* and S0. Multi-echo data were then
optimally combined using the T2* combination method (Posse et al., 1999).

Principal component analysis based on the PCA component estimation with a Moving
Average(stationary Gaussian) process (Li et al., 2007) was applied to the optimally combined
data for dimensionality reduction. The following metrics were calculated: kappa, rho, countnoise,
countsigFT2, countsigFSO0, dice_FT2, dice_FSO0, signal-noise_t, variance explained, normalized
variance explained, d_table_score. Kappa (kappa) and Rho (rho) were calculated as measures
of TE-dependence and TE-independence, respectively. A t-test was performed between the
distributions of T2*-model F-statistics associated with clusters (i.e., signal) and non-cluster
voxels (i.e., noise) to generate a t-statistic (metric signal-noise_z) and p-value (metric signal-
noise_p) measuring relative association of the component to signal over noise. The number of
significant voxels not from clusters was calculated for each component. Independent component
analysis was then used to decompose the dimensionally reduced dataset. The following metrics

were calculated: kappa, rho, countnoise, countsigFT2, countsigFS0, dice_FT2, dice_FSO,
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signal-noise_t, variance explained, normalized variance explained, d_table_score. Kappa
(kappa) and Rho (rho) were calculated as measures of TE-dependence and TE-independence,
respectively. A t-test was performed between the distributions of T2*-model F-statistics
associated with clusters (i.e., signal) and non-cluster voxels (i.e., noise) to generate a t-statistic
(metric signal-noise_z) and p-value (metric signal-noise_p) measuring relative association of the
component to signal over noise. The number of significant voxels not from clusters was
calculated for each component. Next, component selection was performed to identify BOLD
(TE-dependent), non-BOLD (TE-independent), and uncertain (low-variance) components using
the Kundu decision tree (v2.5 (Kundu et al., 2013)). This workflow used numpy (Van Der Walt et
al., 2011), scipy (Jones et al., 2001), pandas (McKinney, 2010), scikit-learn (Pedregosa et al.,
2011), nilearn, and nibabel (Brett et al., 2019). This workflow also used the Dice similarity index

(Dice, 1945; Sorensen, 1948).

For every run of BOLD data, we manually inspected the noise/signal classification from
MEICA and adjusted classification where needed. This strategy of manual inspection is viable in
the context of small sample studies like ours, and is a major strength of the PFM approach. Only
components classified as signal were used for all analyses. Based on the 6 rigid body
parameters derived via retrospective motion correction, we calculated frame-wise displacement
(FD (Power et al., 2012)). Motion parameters were low-pass filtered (threshold set at 0.1 Hz)
before FD computation so as to reduce the impact of respiratory artifact of estimates of head
motion (Fair et al., 2020). To identify high motion frames, we set a threshold of 0.08 mm on the
FD vector. Global signal was calculated as the average of all voxels within a brain mask.
Following optimal combination and MEICA, data underwent temporal bandpass filtering with
frequencies between 0.005 Hz and 0.1 Hz being retained. Global signal and its first derivative
constituted the only nuisance regressors. Following noise correction, cortical data were

projected onto a surface using a previously described approach (Gordon et al., 2017). Data
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were smoothed with a geodesic 2D (surface) or Euclidean 3D (volumetric) Gaussian kernel of
0 =2.55mm. Volumetric smoothing was done within each subvolume including bilateral red

nuclei (described in manual tracing of the red nucleus).

Improving brainstem signal-to-noise ratio

The brainstem is the most difficult part of the brain to acquire high quality functional
neuroimaging data. Distance from the head coils inherently makes the SNR lower here than in
the cortex. Additionally, the optimal echo time is different in the brainstem (and varies across the
brainstem) than the cerebral cortex, in part due to high concentration of iron. Given that most
studies optimize scanning parameters for the cortex, common scanning parameters are poorly
suited for the brainstem. Also, we encountered sources of noise at the individual level that were
difficult to characterize with standard denoising with motion and anatomical regressors. In total,
these limitations with current brainstem imaging required a specialized denoising strategy that
would allow us to acquire high quality cortical data along with brainstem data. The first part of
this strategy was the implementation of a recently developed thermal denoising approach called
NORDIC (Dowdle et al., 2023), which greatly reduces noise. By acquiring multi-echo data and
employing optimal combination of echoes on a voxelwise manner, we were able to have an
optimized echo time for both cortical and brainstem data. Also, MEICA allows for a substantial
improvement in SNR (Lynch et al., 2020). We utilized MEICA and manually modified noise
components on a run-by-run level, in a process that would be excessively burdensome for large
sample size studies, but is viable in a PFM framework. Finally, we collected a far greater
amount of data on an individual level than the vast majority of groups, allowing for a ‘brute force’
approach for SNR improvement. When we were incapable of applying these denoising
strategies (in the case of group averaged datasets and single echo datasets) we relied on
massive sample sizes to improve SNR. In total, our results allowed us to overcome the most

pressing issue on brainstem functional imaging, namely, the low SNR. The strategies employed
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in the paper demonstrate the feasibility of brainstem neuroimaging and can be used to

investigate clinically relevant structures like the substantia nigra and periaqueductal grey.

Defining the red nucleus

Unlike many brainstem nuclei, the red nucleus is clearly visible on T2-weighted images as
a hypo-intensity (Fig 1A). Individual level red nucleus was hand drawn on T2-weighted native
space images (Fig 1A) by a single experimenter (S.R.K.) and transformed to MNI space for
subsequent analyses. Publicly available brainstem atlases were used as a reference for the red
nucleus to assist in manual drawing (brainstem navigator atlas

https://www.nitrc.org/projects/brainstemnavig (Bianciardi et al., 2015)). For group average

datasets, the red nucleus was again hand drawn but on a high resolution T2-weighted MNI

template image.
Cortical network identification

The Infomap algorithm (Rosvall & Bergstrom, 2008 : https://www.mapequation.org/) was
used to assign vertices to communities, and the resulting communities were then assigned a
network identity based on similarity to known group-average networks. The consensus network
assignment, computed by aggregating across thresholds, was used as the cortical resting state
networks (see SFig 2 for example assignments). The original 17 networks set described in MSC

(ref to msc paper) was recently amended to account for the SCAN (Gordon et al., 2023).
Red nucleus functional connectivity

Using the red nucleus as a seed we averaged the timeseries of red nucleus voxels to
create a red nucleus timeseries and correlated this to brain. In cases of HCP and UKB, we instead

averaged over rows in the dense connectivity file corresponding to the red nucleus. When
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determining functional connectivity to red nucleus subdivisions, we simply repeated this process,

but for the subdivision instead of the whole red nucleus.
Winner-take-all analysis of red nucleus voxels

We used a previously established approach for assigning red nucleus voxels to bilateral
cortical networks (Zheng et al., 2021). Described briefly, a voxel was assigned to the network that
it had the largest correlation to, so long as that correlation was greater than zero. We excluded
three sensory networks, two visual and one auditory, from possible assignment, because the red
nucleus is not believed to be involved in these processes, and because potential assignment to
these three networks would be likely artifactual potentially owing to partial volume effects with the
third cranial nerve which passes through the red nucleus. Additionally, inconsistent and small
Infomap cortical assignment to the anterior and posterior medial temporal networks led us to
exclude these two networks as well. In total, there were 13 networks that red nucleus voxels could

be assigned.
Clustering

Clustering of the red nucleus was based on cortical connectivity, specifically the
correlation between each red nucleus voxel and the 13 bilateral resting state networks similar to
previous clustering approaches to other subcortical structures (Greene et al., 2020). We used
hierarchical clustering on the Euclidean distance between cortical connectivity strength with
Ward’s method (Murtagh & Legendre, 2014; Ward Jr, 1963). Using the NBclust R package we
assessed clustering performance with the number of clusters ranging from 2 to 13 using more
than 20 metrics (Charrad et al., 2014). For each number of clusters, a score for all clustering
metrics was computed, and cluster performance was ranked (e.g. the number of clusters with the
largest silhouette index scored a rank of 1). For each metric, a number of clusters “won” when it

had the best performance for that specific clustering metric. The number of clusters chosen was
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based on a majority rule where the number of clusters with the most total victories (first place for

each metric) was determined to be the best overall.
Thalamus segmentation

The Thalamus-Optimized Multi-Atlas Segmentation (THOMAS v 2.1) (Jh et al., 2019) is a
method for identification of nuclei, particularly the ventral intermediate nucleus that has been
colocalized with the segment labelled the ventral part of the Ventro-Lateral-Posterior nucleus (Su

et al., 2020).

To segment the thalamic nuclei on our precision mapping participant, we used the
hips_thomas.csh function from the version 2. 1 that has been validated for use of T1 acquisition
only  (Pfefferbaum et al, 2023) and that is available on  docker
(https://github.com/thalamicseg/hipsthomasdocker). We used the average T1 acquisition that has
been produced for the registration of all functional data. For group averaged data we used an MNI
space transformation of a probabilistic THOMAS segmentation

(https://zenodo.org/record/5499504).

Projecting to the cerebellum

Cerebellar connectivity values were mapped onto a cerebellar flat map with the SUIT

toolbox (Diedrichsen & Zotow, 2015).
Statistics

We used a rotation-based null model to test if red nucleus connectivity was selective for
networks or random (e.g. Fig 2B). In this approach, cortical resting state networks were rotated
by a random amount around a spherical expansion of the cortical surface 1000 times (Gordon et
al., 2016). For each rotation, we calculated the measure of interest (e.g. red nucleus connectivity

strength to the rotated network). A p-value was calculated by comparing the true value against
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the values obtained through random rotations. When multiple comparisons across networks was

performed, a Bonferroni correction for network number was used to control the false positive rate.
Visualization

The distribution of functional connectivity values differs based on dataset, in part owing to
different denoising decisions. Therefore, direct numerical comparisons across datasets is not
appropriate. Thus, to facilitate comparison, in almost all figures, RSFC values were thresholded
to be the top 20 percent of the given image. Supplemental Figure 2 demonstrates that this
threshold does not obscure red nucleus connectivity. In group averaged subcortical data we
noticed a pattern in which the edges of structures (e.g. thalamus) were the most likely to contain
extreme values. Even an inspection of dense connectivity matrices shows an obvious effect of
extreme values around the edge of volume structures. It is not entirely clear why this is the case.
One possibility is that sub-volume constrained averaging may cause edge voxels to be noisier
because they are averaged with fewer voxels, thus promoting extreme values. Thus, we excluded
edge voxels from the thalamus exclusively for group average datasets. We accomplished this by
minimally eroding the thalamus ROI by 3 mm. When examining Cornell data in the thalamus, we
noticed that red nucleus signal was being smoothed into the ventral thalamus, leading to
extremely large and erroneous connectivity values. To address this, we masked out thalamus

voxels that were included in a 5 mm dilation of the bilateral red nucleus.
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