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Medical artificial intelligence (Al) offers great potential for recognizing signs of health
conditions in retinal images and expediting the diagnosis of eye diseases and systemic
disorders'. However, the development of Al models requires substantial annotation
and models are usually task-specific with limited generalizability to different clinical
applications?. Here, we present RETFound, a foundation model for retinal images that
learns generalizable representations from unlabelled retinal images and provides a
basis for label-efficient model adaptationin several applications. Specifically, RETFound
is trained on 1.6 million unlabelled retinal images by means of self-supervised learning
and then adapted to disease detection tasks with explicit labels. We show that adapted
RETFound consistently outperforms several comparison models in the diagnosis and
prognosis of sight-threatening eye diseases, as well as incident prediction of complex
systemic disorders such as heart failure and myocardial infarction with fewer labelled
data. RETFound provides a generalizable solution to improve model performance and
alleviate the annotation workload of experts to enable broad clinical Al applications
fromretinalimaging.

Medical artificial intelligence (Al) has achieved significant progressin
recent years with the notable evolution of deep learning techniques™**.
For instance, deep neural networks have matched or surpassed the
accuracy of clinical experts in various applications?, such as referral
recommendations for sight-threatening retinal diseases® and pathol-
ogy detectionin chest X-ray images’. These models are typically devel-
oped usinglarge volumes of high-quality labels, which requires expert
assessment and laborious workload"?. However, the scarcity of experts
with domain knowledge cannot meet such an exhaustive requirement,
leaving vast amounts of medical data unlabelled and unexploited.
Self-supervised learning (SSL) aims to alleviate data inefficiency by
deriving supervisory signals directly from data, instead of resorting
to expert knowledge by means of labels® ™. SSL trains models to per-
form ‘pretext tasks’ for which labels are not required or can be gener-
ated automatically. This process leverages formidable amounts of
unlabelled datatolearn general-purpose feature representations that
adapt easily to more specific tasks. Following this pretraining phase,
models are fine-tuned to specific downstream tasks, such as classifica-
tion or segmentation. The SSL model has outperformed supervised
learning-based transfer learning (for example, pretraining the models
with ImageNet" and categorical labels) in various computer vision
tasks, evenwhen the SSL models are fine-tuned with smaller amounts
of data™". Besides this label efficiency, SSL-based models perform

better than supervised models when tested on new data from different
domains™’¢. The combined qualities of strong generalization capac-
ity of representations, and high performance achieved by fine-tuned
modelsin many downstreamtasks, indicate the great potential of SSLin
medical Alinwhich dataare abundant and healthcare tasks are diverse
butlabels are scarce®®,

Colour fundus photography (CFP) and optical coherence tomogra-
phy (OCT) are the most commonimaging modalities in ophthalmology
and suchretinalimages accumulate quickly in routine clinical practice.
In addition to illustrating clinical features associated with ocular dis-
eases, these images also provide valuable insights into systemic dis-
eases, afield that has recently been termed ‘oculomics™®. For example,
the optic nerve and inner retinal layers provide a non-invasive view of
central nervous system tissue’ %, and thus awindow into neurodegen-
eration. Similarly, retinal vascular geometry provides insightsinto other
vascular organ systems® %, such as the heart and kidneys. Although
several studies have shown that SSL canincrease performance for indi-
vidual ocular disease detection tasks, such as the diagnosis of diabetic
macular oedema?®, age-related macular degeneration (AMD)% and
referable diabetic retinopathy®®°, there has been limited work dem-
onstrating the ability of asingle SSL pretrained model to generalizetoa
diverse range of complex tasks. Progress has probably been hampered
by the challenges involved with curating a large repository of retinal
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images with extensive linkage to several relevant disease outcomes.
Moreover, the capabilities of different SSL approaches (contrastive SSL
versus generative SSL) and the interpretability of SSL modelsin retinal
imaging, remainrelatively under-explored. Developing an understand-
ing of the specific features that SSL models learn during training is an
important step for safe and reliable translation to clinical practice.

Inthis work, we present anew SSL-based foundation model for retinal
images (RETFound) and systematically evaluate its performance and
generalizability in adapting to many disease detection tasks. A foun-
dation model is defined as a large Al model trained on a vast quantity
ofunlabelled data at scale resulting in amodel that can be adapted to
awide range of downstream tasks®2, Here we construct RETFound
fromlarge-scale unlabelled retinalimages by means of SSL and use it to
promote the detection of many diseases. Specifically, we develop two
separate RETFound models, one using CFP and the other using OCT,
by means of an advanced SSL technique (masked autoencoder®) suc-
cessively on natural images (ImageNet-1k) followed by retinal images
from the Moorfields diabetic image dataset (MEH-MIDAS) and public
data (totalling 904,170 CFPs and 736,442 OCTs). We adapt RETFound
toaseries of challenging detection and prediction tasks by fine-tuning
RETFound with specifictask labels, and then validate its performance.
We consider first the diagnostic classification of ocular diseases,
including diabetic retinopathy and glaucoma; second, ocular disease
prognosis, specifically conversion of contralateral (‘fellow’) eyes to
neovascular (‘wet’) AMD in a1-year time period and, finally, oculomic
challenges, specifically the 3-year prediction of cardiovascular dis-
eases (ischaemic stroke, myocardial infarctionand heart failure) and a
neurodegenerative disease (Parkinson’s disease). RETFound achieves
consistently superior performance and label efficiency inadapting to
these tasks, compared to state-of-the-art competing models, including
that pretrained on ImageNet-21k with traditional transfer learning.
Wealso probe the interpretation of disease detection performance of
RETFound with qualitative results and variable-controlling experi-
ments, showing that salient image regions reflect established know-
ledge from ocular and oculomicliterature. Finally, we make RETFound
publicly available so others can use it as the basis for their own down-
stream tasks, facilitating diverse ocular and oculomic research.

Figure 1 gives an overview of the construction and application of
RETFound. For construction of RETFound, we curated 904,170 CFP
in which 90.2% of images came from MEH-MIDAS and 9.8% from
Kaggle EyePACS®, and 736,442 OCT in which 85.2% of them came from
MEH-MIDAS and 14.8% from ref.34. MEH-MIDAS is aretrospective data-
set thatincludes the complete ocularimaging records of 37,401 patients
with diabetes who were seen at Moorfields Eye Hospital between
January 2000 and March 2022. After self-supervised pretraining on these
retinal images, we evaluated the performance and generalizability of
RETFoundinadaptingtodiverse ocularand oculomic tasks. We selected
publicly available datasets for the tasks of ocular disease diagnosis.
Detailsarelisted in Supplementary Table 1. For the tasks of ocular disease
prognosis and systemic disease prediction, we used a cohort from the
Moorfields AlzEye study (MEH-AlzEye) that links ophthalmic data of
353,157 patients, who attended Moorfields Eye Hospital between 2008
and 2018, with systemic disease data from hospital admissions across
the whole of England®. We also used UK Biobank*® for external evalua-
tion in predicting systemic diseases. The validation datasets used for
ocular disease diagnosis are sourced from several countries, whereas
systemic disease prediction was solely validated on UK datasets due to
limited availability of this type of longitudinal data. Our assessment of
generalizability for systemic disease prediction was therefore based on
many tasks and datasets, but did not extend to vastly different geograph-
ical settings. Details of the clinical datasets are listed in Supplementary
Table 2 (data selectionis introduced in the Methods section).

We compared the performance and label efficiency of RETFound
against three pretrained comparison models: SL-ImageNet,
SSL-ImageNet and SSL-Retinal. All models use differing pretraining

strategies but have the same model architecture as well as fine-tuning
processes for downstream tasks (architecture details are introduced
inthe Methods section). SL-ImageNet uses traditional transfer learn-
ing, thatis, pretraining the model by means of supervised learning on
ImageNet-21k (about 14 million naturalimages with categorical labels);
SSL-ImageNet pretrains the model by means of SSL on ImageNet-1k
(about 1.4 million natural images) and SSL-Retinal pretrains the model
using SSL on retinalimages from scratch. RETFound uses the weights
of SSL-ImageNet as a baseline before extending to retinal images
(equivalent to pretraining the model by means of SSL successively on
natural images followed by retinal images). The pretraining schemat-
ics are shown in Extended Data Fig. 1. Furthermore, we explored the
performance of using different SSL strategies, that is, generative SSL
versus contrastive SSL approaches, by substituting the primary SSL
technique (that is, masked autoencoder) for SimCLR, SwAV¥, DINO*
and MoCo-v3 (ref. 14) within the RETFound framework, respectively.
We reported internal and external evaluation results for these mod-
els. The models were adapted to each task with labelled training data,
and evaluated on both held-out internal test sets, as well as external
datasets completely distinct from the training data (details are listed
in the Methods section). Model performance was reported using the
area under the receiver operating curve (AUROC) and area under the
precision-recall curve (AUPR). We calculated Pvalues with the two-sided
t-testbetween RETFound and the most competitive comparison model
for each task to check for significance.

Ocular disease diagnosis

We included eight publicly available datasets to verify the model’s
performance onseveral ocular diseases and imaging conditions (Fig.2).
RETFound generally achieved the best performance in most datasets
and SL-ImageNet ranked second, as shown in Fig. 2a. For instance, on
diabetic retinopathy classification, RETFound achieved AUROC of
0.943 (95% confidence interval (CI) 0.941, 0.944), 0.822 (95% C10.815,
0.829) and 0.884 (95% C10.88,0.887), respectively, on Kaggle APTOS-
2019, IDRID* and MESSIDOR-2 (refs. 40,41) datasets, significantly out-
performing SL-ImageNet (all P< 0.001). The superior performance can
alsobe observed for glaucoma and the classification of many diseases.
The AUPRresults of RETFound were also significantly higher than the
compared groups (Extended Data Fig. 2a). For external evaluation,
we evaluated the performance of RETFound on diabetic retinopathy
datasets (Kaggle APTOS-2019, IDRID and MESSIDOR-2), which were both
labelled on the basis of the five-stage International Clinical Diabetic
Retinopathy Severity scale. We conducted cross evaluationamong the
three datasets, thatis, fine-tuned models on one dataset and evaluated
them on the others. RETFound achieved the best performance in all
cross evaluations, as shown in Fig. 2b. For instance, when fine-tuned
on Kaggle APTOS-2019, RETFound achieved AUROC of 0.822 (95% CI
0.815, 0.829) and 0.738 (95% C1 0.729, 0.747), respectively, on IDRID
and MESSIDOR-2 datasets, statistically significantly higher than
SL-ImageNet (P < 0.001) on IDRID and SSL-ImageNet (P < 0.001) on
MESSIDOR-2. The AUPR results of all groups were low but RETFound
achieved significantly higher performance (Extended Data Fig.2b). All
quantitative results are listed in Supplementary Table 3.

Ocular disease prognosis

For 1-year prognosis of fellow eye converting to wet-AMD, we evalu-
ated theinternal performance on data from AlzEye (Fig. 2c). With CFP
as the input modality, RETFound showed the best performance with
an AUROC of 0.862 (95% CI 0.86, 0.865), significantly outperform-
ing the comparison groups (P < 0.001). The runner-up SL-ImageNet
achieved an AUROC of 0.83 (95% C10.825,0.836). With OCT, RETFound
scored the highest AUROC of 0.799 (95% C10.796, 0.802), showing a
statistically significantly higher AUROC (P < 0.001) than SSL-Retinal.
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Stage 1: Self-supervision on retinal images

Stage 2: Supervised fine-tuning for clinical tasks
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Fig.1|Schematic of development and evaluation of the foundation models (RETFound). Stage one constructs RETFound by means of SSL, using CFPand OCT
from MEH-MIDAS and public datasets. Stage two adapts RETFound to downstream tasks by means of supervised learning for internal and external evaluation.

The AUPR results of RETFound are highest with CFP and comparable
to SSL-Retinal with OCT (Extended Data Fig. 2c).

Systemic diseases prediction

We organized four oculomic tasks to evaluate the model perfor-
mance in predicting the incidence of systemic diseases with retinal
images (Fig. 3). Although the overall performance was limited in these
challenging tasks, RETFound has shown significant improvement in
internal evaluation for both CFP and OCT, as shown in Fig. 3a. For the
prediction of myocardial infarction with CFP, RETFound achieved
AUROC 0f0.737 (95% C10.731,0.743).SSL-Retinal scored the second-best
performance but was significantly worse than RETFound (P < 0.001).
The confusion matrix (Extended Data Table 1) shows that RETFound
achieved the highest sensitivity of 0.7 and specificity of 0.67. Likewise,
RETFound also ranked first for prediction of heart failure, ischaemic
stroke and Parkinson’s disease with AUROCs of 0.794 (95% C1 0.792,
0.797),0.754 (95% C10.752,0.756) and 0.669 (0.65, 0.688), respectively.
RETFound also performed significantly better than the other models
whenusing OCT as theinput modality. It achieved significantly higher
AUPR results in all tasks (Extended Data Fig. 3a). External evaluation
on the UK Biobank (Fig. 3b) showed that RETFound and SSL-Retinal
performed similarly in prediction of ischaemic stroke. For tasks of
myocardialinfarction, heart failure and Parkinson’s disease, RETFound
achieved the best performance both with CFPand OCT. RETFound also
showed significantly higher AUPRin most tasks whenit was externally
evaluated on UK Biobank (Extended Data Fig. 3b).

Label efficiency for disease detection

Label efficiency refers to the amount of training data and labels
required toachieve atarget performance level for agiven downstream
task, which indicates the annotation workload for medical experts.
RETFound showed superior label efficiency across various tasks (Fig. 4).
For heart failure prediction, RETFound outperformed the other
pretraining strategies using only 10% of labelled training data,
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demonstrating the potential of thisapproachin alleviating datashort-
ages. RETFound similarly showed superior label efficiency for diabetic
retinopathy classification and myocardial infarction prediction. Fur-
thermore, RETFound showed consistently high adaptation efficiency
(Extended DataFig.4), suggesting that RETFound required lesstimein
adapting to downstreamtasks. For example, RETFound can potentially
save about 80% of the training time required to achieve convergence
forthe task of predicting myocardial infarction, leading to significant
reductions in computational costs (for example, credits on Google
Cloud Platform) when appropriate mechanisms such as early stopping
are used.

SSL strategies for RETFound

We explored the performance of different SSL strategies, thatis, gen-
erative SSL (for example, masked autoencoder) and contrastive SSL
(for example, SIimCLR, SWAV, DINO and MoCo-v3), in the RETFound
framework. As shown in Fig. 5, RETFound with different contrastive
SSL strategies showed decent performance in downstream tasks. For
instance, RETFound with DINO achieved AUROC of 0.866 (95% C10.864,
0.869) and 0.728 (95% C10.725,0.731), respectively, on wet-AMD prog-
nosis (Extended Data Fig. 5) and ischaemic stroke prediction (Fig. 5),
outperforming the baseline SL-ImageNet (Supplementary Tables 3
and 4). This demonstrates the effectiveness of RETFound framework
with diverse SSL strategies. Among these SSL strategies, the masked
autoencoder (primary SSL strategy for RETFound) performed signifi-
cantly better than the contrastive learning approachesin most disease
detectiontasks (Fig. 5and Extended Data Fig. 5). All quantitative results
arelisted in Supplementary Table 4.

Modelinterpretation

To gain insights into the inner-workings of RETFound leading to its
superior performance and label efficiency in downstream tasks,
we performed qualitative analyses of the pretext task used for
self-supervised pretraining and task-specific decisions of RETFound
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Fig.2|Performance onocular disease diagnostic classification. a, Internal
evaluation. Models are adapted to each dataset by fine-tuning and internally
evaluated onhold-out test datain the tasks of diagnosing ocular diseases, such
asdiabetic retinopathy and glaucoma. The disease category and dataset
characteristics arelisted in Supplementary Table 1. b, External evaluation.
Models are fine-tuned on one diabeticretinopathy dataset and externally
evaluated on the others. ¢, Performance on ocular disease prognosis. The
modelsare fine-tuned to predict the conversion of fellow eye to wet-AMD in

(Extended Data Fig. 6). The pretext task of RETFound allows models
to learn retina-specific context, including anatomical structures and
diseaselesions. Asshownin Extended DataFig. 6a, RETFound was able
toreconstruct major anatomical structures, including the opticnerve
and large vessels on CFP,and the nerve fibre layer and retinal pigment
epithelium on OCT, despite 75% of the retinal image being masked.
This demonstrates that RETFound has learned to identify and infer
the representation of disease-related areas by means of SSL, which

Diabetic retinopathy Glaucoma
MESSIDOR-2 Glaucoma fundus
P < 0.001
1.0 P < 0.001 _
O&?O o,
Q | Q
Q gic Q
o x
=) =]
< <
Multicategory Multicategory
JSIEC OCTID
P < 0.001 P < 0.001
feices)
[®) Q
] @]
e oo
o) -]
< <
> o O O
& ° & QQ&\Q <<°\§\
s SR
& &
<
Fine-tune on MESSIDOR-2 c
Evaluate on IDRID Wet-AMD, CFP
1.0 1.0 P < 0.001
P < 0.001
©
S 08" ®
e
-]
<
0.6
Fine-tune on MESSIDOR-2
Evaluate on APTOS-2019 Wet-AMD, OCT
1.0
P < 0.001
Q
o
T
=]
<
N
)

lyearandevaluatedinternally. RETFound performsbestin all tasks. Foreach
task, we trained the model with five different random seeds, determining the
shuffling of training data, and evaluated the models on the test set to get five
replicas. We derived the statistics with the five replicas. The error bars show
95% Cland the bar centre represents the mean value of the AUROC. We compare
the performance of RETFound with the most competitive comparison model to
check whether statistically significant differences exist. Pvalueiis calculated
withthe two-sided t-testand listed in the figure.

contributes to performance and label efficiency in downstream tasks.
Ontop of the reconstruction-based interpretation, we further used an
advanced explanation tool (RELPROP*) to visualize the salient regions
of images conducive to classifications made by fine-tuned models in
downstreamtasks (Extended DataFig. 6b). For ocular disease diagnosis,
well-defined pathologies were identified and used for classification,
suchas hard exudates and haemorrhage for diabetic retinopathy and
parapapillary atrophy for glaucoma. For oculomic tasks, we observed

Nature | Vol 622 | 5 October 2023 | 159



Article

a Myocardial infarction, CFP Heart failure, CFP
1.0 1.01
P < 0.001 P < 0.001
<0. =
8 08 = 8 o081
o o
o] =) oow PO
<< <
0.69 ¢ 0.6 1
Myocardial infarction, OCT Heart failure, OCT
1.0 1.01
o o P < 0.001
e} P < 0.001 le)
o o
=) =)
< <
N eV N eV
oL i

1.0 1.0
g os g o8 P <0.001
o o
2 o)
< 06 <
0.4
Heart failure, OCT
1.0
(&) (©]
S g o8 P < 0.001
o o
o) o)
< <
2 S %6\’

Fig.3|Performance on3-yearincidence prediction of systemic diseases
withretinalimages. a, Internal evaluation. Models are adapted to curated
datasets from MEH-AlzEye by fine-tuning and internally evaluated on hold-out
testdata. b, External evaluation. Models are fine-tuned on MEH-AlzEye and
externally evaluated on the UK Biobank. Data for internal and external
evaluation are describedin Supplementary Table 2. Although the overall
performances are not high due to the difficulty of tasks, RETFound achieved
significantly higher AUROC in all internal evaluations and most external

that anatomical structures associated with systemic conditions, such
asthe optic nerve on CFP and nerve fibre layer and ganglion cell layer
on OCT, were highlighted as areas that contributed to the incidence
prediction of systemic diseases (Extended Data Fig. 6b).

Robustness to age distribution shifts

For ageing-associated systemic diseases, clinically relevant anatomi-
cal structures alter with both ageing**** and disease progression'?*%,
RETFound was trained to identify general structure alterations for
detection of systemic diseases (Extended Data Fig. 6b). To further verify
the extent to which models can learn anatomical structure changes,
respectively, relating to ageing and disease progression, we evaluated
performance of the models when using four different control groups
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evaluations. For each task, we trained the model with five different random
seeds, determining the shuffling of training data, and evaluated the models on
thetestsettogetfivereplicas. We derived the statistics with the five replicas.
Theerrorbarsshow 95% Cland the bar centre represents the mean value of the
AUROC. We compare the performance of RETFound with the most competitive
comparison model to check whether statistically significant differences exist.
Pvalueis calculated with the two-sided t-test and listed in the figure.

with varying ages (mean ages 66.8, 68.5, 70.4 and 71.9 years) versus
afixed disease group (mean age 72.1 years) in the task of myocardial
infarction. As shown in Extended Data Fig. 7, the models showed bet-
ter performance when the age difference s larger, indicating that age
isindeed a confounder for studying ageing-associated diseases. The
contribution of age can be demonstrated by the extreme case in which
the age difference between cohorts is maximal (5.3 years in our sce-
nario), at which pointasimple logistic regression with the input of age
achieved an AUROC of 0.63, surpassing SSL-ImageNet and SL-ImageNet.
Whenthe age difference decreased, the models clearly outperformed
the logistic regression. We observed that RETFound kept stable per-
formance even when the age difference decreased, which suggested
that RETFound wellidentified the disease-related anatomical structure
alteration and used the information for predicting systemic diseases.
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Discussion

This work introduces a new SSL-based foundation model, RETFound,
and evaluates its generalizability in adapting to diverse downstream
tasks. After training on large-scale unlabelled retinal images using an
advanced SSL technique (masked autoencoder), RETFound can be
efficiently adapted to abroad range of disease detection tasks, resulting
insignificant performanceimprovements for detecting ocular diseases
and predicting cardiovascular and neurodegenerative diseases. Itisa
medical foundation model that hasbeen developed and assessed, and
shows considerable promise for leveraging such multidimensional data
without constraints of enormous high-quality labels.

RETFound enhances the performance of detecting ocular diseases
by learning to identify disease-related lesions. Ocular diseases are
diagnosed by the presence of well-defined pathological patterns, such
as hard exudates and haemorrhages for diabetic retinopathy. These
features involve abnormal variations in colour or structure, showing
visible differences fromthe surrounding retina. RETFound canidentify
disease-related patterns and correctly diagnose ocular diseases (for
example, myopia and diabetic retinopathy cases in Extended Data
Fig. 6b). In Fig. 2, we observe that RETFound ranks first in various
tasks, followed by SL-ImageNet. SL-ImageNet pretrains the model
using supervised learning on ImageNet-21k, which contains 14 million
images with 21,000 categories of natural objects with diverse shapes
and textures, such as zebras and oranges. Such diverse characteristics
allow models to learn abundant low-level features (for example, lines,
curves and edges) toidentify the boundary of abnormal patterns, thus
improving disease diagnosis when the model adapts to medical tasks.
Inthis paper, we demonstrate that by using SSL successively on natural
images and unlabelled retinalimages, ageneralizable foundation model
(RETFound) canbe developed to furtherimprove ocular disease diag-
nosis and prognosis, even outperforming the powerful SL-ImageNet.
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Fig.5|Comparison of different SSL strategiesin RETFound frameworkon
exemplar applications. We show AUROC of predicting diabetic retinopathy,
ischaemic stroke and heart failure by the models pretrained with different SSL
strategies, including the masked autoencoder (MAE), SWAV, SimCLR, MoCo-v3
and DINO. The data for systemic disease tasks come from the MEH-AlzEye
dataset. RETFound with MAE achieved significantly higher AUROC in most
tasks. The corresponding quantitative results for the contrastive SSL approaches
arelistedin Supplementary Table 4. For each task, we trained the model with
five different random seeds, determining the shuffling of training data, and
evaluated the models onthe test setto get five replicas. We derived the
statistics with the five replicas. The error bars show 95% Cland the bar centre
represents the mean value of the AUPR. We compare the performance of
RETFound with the most competitive comparison model tocheck whether
statistically significant differences exist. Pvalueis calculated with the
two-sided t-testand listed in the figure.

RETFound learns retina-specific context by SSL on unlabelled retinal
data to improve the prediction of systemic health states. RETFound
and SSL-Retinal rank top 2 in both internal and external evaluation in
predicting systemic diseases by using SSL on unlabelled retinal images
(Fig. 3). In pretraining RETFound learns representations by perform-
ing a pretext task involving the reconstruction of an image from its
highly masked version, requiring the model to infer masked informa-
tion with limited visible image patches. Solving such a pretext task
in retinal images allows the model to learn retina-specific context,
including anatomical structures such as the optic nerve and retinal
nerve fibre layer (Extended Data Fig. 6a) that are potential markers
in retinal images for neurodegenerative diseases and cardiovascular
diseases™**, The confusion matrix shows that RETFound achieves
the highest sensitivity (Extended Data Table 1), indicating that more
individuals with a high risk of systemic diseases are identified. The
evaluation on oculomic tasks demonstrates the use of retinal images
for incidence prediction and risk stratification of systemic diseases,
significantly promoted by RETFound.

Compared to SSL-Retinal and SSL-ImageNet, RETFound shows con-
sistently better performance for disease detection (Figs. 2 and 3 and
Supplementary Table 3), thus demonstrating SSL onretinal and natural
images is complementary to developing the powerful foundation
model. The strategy of combining natural images and medical datain
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model development has also been validated in other medical fields, such
as chest X-rays®and dermatology imaging*¢. We also conducted calibra-
tionanalyses for prediction modelsin oculomic tasks, which examines
the agreement between predicted probabilities and real incidence.
Awell-calibrated model can provide ameaningful and reliable disease
prediction as the predicted probability indicates the real likelihood
of disease occurrence, enabling the risk stratification of diseases*’*5,
We observed that RETFound was better calibrated compared to other
models and showed the lowest expected calibration error in the reliabil-
ity diagram (Extended Data Fig. 8). This verifies that RETFound gener-
ates reliable predicted probabilities, rather than overconfident ones.

The experiments show that both modalities of CFP and OCT have
unique ocular and systemic information encoded that is valuable
in predicting future health states. For ocular diseases, some image
modalities are commonly used for a diagnosis in which the specific
lesions can be well observed, such as OCT for wet-AMD. However, such
knowledge is relatively vague in oculomic tasks as (1) the markers for
oculomicresearch on different modalities are under exploration and
(2)itrequires afair comparison between many modalities with identi-
cal evaluation settings. In this work, we investigate and compare the
efficacy of CFPand OCT for oculomic tasks with identical training and
evaluation details (for example, train, validation and/or test data split-
ting is aligned by anonymous patient IDs). We notice that the models
with CFP and OCT achieve unequal performancesin predicting systemic
diseases (Fig. 3 and Supplementary Table 3), suggesting that CFP and
OCT contain different levels of information for oculomic tasks. For
instance, in 3-year incidence prediction of ischaemic stroke, RETFound
with CFP performs better than with OCT on both MEH-AIzEye (inter-
nal evaluation) and UK Biobank (external evaluation). For the task of
Parkinson’s disease, RETFound with OCT shows significantly better
performanceininternal evaluation. These observations may indicate
that various disorders of ageing (for example, stroke and Parkinson’s
disease) manifest different early markers onretinalimages. A practical
implication for health service providers and imaging device manu-
facturers is to recognize that CFP has continuing value, and should
be retained as part of the standard retinal assessment in eye health
settings. This observation also encourages oculomicresearch toinves-
tigate the strength of association between systemic health with the
information contained in several image modalities.

There is a significant fall in performance when adapted models are
tested against new cohorts that differin the demographic profile, and
evenontheimaging devices that were used (external evaluation phase).
This phenomenonis observed bothin the external evaluation of ocular
disease diagnosis (Fig. 2b) and systemic disease prediction (Fig. 3b).
Forexample, the performance onischaemic stroke drops (RETFound’s
AUROC decreases by 0.16 with CFP and 0.19 with OCT). In the challeng-
ing oculomic tasks, the age and ethnicity profile of the internal and
external validation cohorts (MEH-AlzEye and UK Biobank) as well asthe
imaging devices are significantly different (Supplementary Table 2),
andthisislikely to be reflected inthe drop in performance when exter-
nally evaluatedinthe UK Biobank cohort. Compared to other models,
RETFound achieves significantly higher performance in external evalu-
ation in most tasks (Fig. 3b) as well as different ethnicities (Extended
Data Figs. 9-11), showing good generalizability.

We observe that RETFound maintains competitive performance for
disease detection tasks, even when substituting various contrastive
SSL approaches into the framework (Fig. 5 and Extended Data Fig. 5).
It seems that the generative approach using the masked autoencoder
generally outperforms the contrastive approaches, including SwAV,
SimCLR, MoCo-v3 and DINO. However, it is worth noting that assert-
ing the superiority of the masked autoencoder requires caution, given
the presence of several variables across all models, such as network
architectures (for example, ResNet-50 for SWAV and SimCLR, Trans-
formers for the others) and hyperparameters (for example, learning
rate scheduler). Our comparison demonstrates that the combination of
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powerful network architecture and complex pretext tasks can produce
effective and general-purpose medical foundation models, aligning
with theinsights derived fromlarge language models in healthcare*°,
Furthermore, the comparison further supports the notion that the
retinal-specific context learned from the masked autoencoder’s pre-
text task, whichincludes anatomical structures suchas the optic nerve
head and retinal nerve fibre layer (as shown in Extended Data Fig. 6a),
indeed provides discriminative information for the detection of ocular
and systemic diseases.

We believe that research on medical foundation models, such as
RETFound, has the potential to democratize access to medical Aland
accelerate progress towards widespread clinical implementation.
To this end, foundation models must learn powerful representations
fromenormous volumes of medical data (1.6 million retinalimagesin
our case), whichis often only accessible to large institutions with effi-
cient dataset curation workflows. Also, SSL pretraining of foundation
models requires many computational resources to achieve training
convergence. We used eight NVIDIA Tesla A100 (40 GB) graphical pro-
cessing units (GPUs) on the Google Cloud Platform, requiring 2 weeks
of developing time. By contrast, the data and computational require-
ments required to fine-tune RETFound to downstream tasks are com-
paratively small and therefore more achievable for most institutions.
We required only one NVIDIA Tesla T4 (16 GB) GPU, requiring about
1.2 h with a dataset of 1,000 images. Moreover, foundational models
offer the potential to raise the general quality of healthcare Almodels.
Their adoption may help avoid superficially impressive models that
rarely affect clinical care. These poorly generalizable models consume
significant resources and can feed scepticism about the benefits of
Alin healthcare. By making RETFound publicly available, we hope to
accelerate the progress of Al in medicine by enabling researchers to
useour large dataset to design models for use in their own institutions
or to explore alternative downstream applications.

Although this work systematically evaluates RETFound in detecting
and predicting diverse diseases, there are several limitations and chal-
lenges requiring exploration in future work. First, most data used to
develop RETFound came from UK cohorts, therefore it is worth explor-
ingtheimpactofintroducingalarger dataset by incorporatingretinal
images worldwide, with more diverse and balanced data distribution.
Second, although we study the performance with modalities of CFP
and OCT, the multimodal information fusion between CFP and OCT
has not been investigated, which might lead to further improvement
in performance. Finally, some clinically relevant information, such as
demographics and visual acuity that may work as potent covariates for
ocular and oculomic research, has not been included in SSL models.
Combining these, we propose to further enhance the strength of
RETFound in subsequent iterations by introducing even larger quan-
tities of images, exploring further modalities and enabling dynamic
interaction across multimodal data. While we are optimistic about
the broad scope of RETFound to be used for a range of Al tasks, we
also acknowledge that enhanced human-Al integration is critical to
achieving true diversity in healthcare Al applications.

In conclusion, we have verified the efficacy and efficiency of
RETFound in adapting to diverse healthcare applications, showing
high performance and generalizability in detecting ocular diseases and
significantimprovement in predicting systemic diseases. By overcom-
ing current barriers to clinical Al applications—notably, the extent of
labelled data and limited performance and generalizability—SSL-based
foundation models openthe door toaccelerated, data-efficient devices
that may transform care for patients with ocular or systemic diseases.
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Methods

Datasets for developing RETFound

We curatelarge collections of unannotated retinal images for SSL, total-
ling 904,170 CFPs and 736,442 OCT scans. Of these, 815,468 (90.2%)
CFPs and 627,133 (85.2%) OCTs are from Moorfields Diabetic imAge
dataSet (MEH-MIDAS), and 88,702 (9.8%) CFPs are Kaggle EyePACS and
109,309 (14.8%) OCTs that come from ref. 34. MEH-MIDAS is a retrospec-
tive dataset thatincludes the complete ocularimaging records of 37,401
patients (16,429 female, 20,966 male and six unknown) with diabetes
who were seen at Moorfields Eye Hospital, London, UK between 2000
and 2022. The age distribution has a mean value of 64.5 and standard
deviation of 13.3. The ethnicity distributes diversly: British (13.7%),
Indian (14.9%), Caribbean (5.2%), African (3.9%), other ethnicity (37.9%)
and not stated (24.4%). MEH-MIDAS includes various imaging devices,
suchastopcon3DOCT-2000SA (Topcon), CLARUS (ZEISS) and Triton
(Topcon). EyePACS includes images devices of Centervue DRS
(Centervue), OptovueiCam (Optovue), Canon CR1/DGi/CR2(Canon)and
Topcon NW (Topcon). Reference 34 containsimages from SPECTRALIS
(Heidelberg).

Data for ocular disease diagnosis

We evaluate the model performance on three different categories of
disease detection tasks. The first category of tasks involves diagnostic
classification of ocular diseases with publicly available ophthalmic data.
For diabeticretinopathy diagnosis, Kaggle APTOS-2019 (India), IDRID
(India) and MESSIDOR-2 (France) are used. The labels for diabetic retin-
opathy are based on the International Clinical Diabetic Retinopathy
Severity scale, indicating five stages from no diabetic retinopathy to
proliferative diabetic retinopathy. For glaucoma, PAPILA® (Spain) and
Glaucoma Fundus®? (SouthKorea) areincluded. Glaucoma Fundus and
PAPILA have three categorical labels, non-glaucoma, early glaucoma
(suspected glaucoma) and advanced glaucoma. For datasets with sev-
eral diseases,JSIEC® (China), Retinaand OCTID** (India) are included.
JSIEC includes 1,000 images with 39 categories of common referable
fundus diseases and conditions. Retina has labels of normal, glaucoma,
cataractandretinadisease. OCTID includes 470 OCT scans with labels
of normal, macular hole, AMD, central serous retinopathy and diabetic
retinopathy. The grading protocols for the public datasets are summa-
rized as: IDRiD, two medical experts provided adjudicated consensus
grades; MESSIDOR-2, adjudicated by a panel of three retinaspecialists
inaccordance with a published protocol®’; APTOS-2019, Kaggle dataset
with limited informationbut possibly asingle cliniciangrader; PAPILA,
labelling and segmentation by two experts following extensive clinical
examination and testing procedure including a retrospective clinical
record review; Glaucoma Fundus, agreement of two specialists based
onvisual fields and extensive imaging and JSIEC, labelled by ophthal-
mologists and confirmed by senior retina specialists. Disagreements
resolved by panel of five senior retina specialists were as follows: Retina,
details not available and OCTID, describes image labelling based on
the diagnosis of retinal clinical experts but does not specify duplicate
adjudication. The details of datasets, such asimaging devices, country
and label category, are listed in Supplementary Table 1.

Datafor disease prognosis and prediction

For disease prognosis of fellow eye converting towet-AMD in1 year, we
use data from the Moorfields AlzEye study (MEH-AlzEye). MEH-AlzEye
is a retrospective cohort study linking ophthalmic data of 353,157
patients, who attended Moorfields Eye Hospital between 2008 and
2018, with systemic health data from hospital admissions across the
whole of England. Systemic health data are derived from Hospital
Episode Statistics (HES) data relating to admitted patient care, with
afocus on cardiovascular disease and all-cause dementia. Diagnostic
codesin HES admitted patient care are reported according to the tenth
revision of the ICD (International Statistical Classification of Diseases)®.

In line with previous reports, we selected the study cohort using ICD
code: stroke (123-124), myocardial infarction (121-122), heart failure
(150) and Parkinson’s disease (G20). Among 186,651 patients with HES,
6,504 patients are diagnosed with wet-AMD in at least one eye, 819
patients have retinalimaging within 1 year before their fellow eyes con-
vert to wet-AMD and 747 patients with their fellow eyes not converting
wet-AMD, after excluding other eye diseases. The final category of
tasks studies the 3-year prediction of systemic diseases, with afocus
on cardiovascular and neurodegenerative dysfunctions, using the
MEH-AlzEye and UK Biobank. The UK Biobank includes 502,665 UK
residents aged between 40 and 69 years who are registered with the
National Health Service. Among all participants, 82,885 get CFP and
OCT examinations and a total of 171,500 retinal images are collected.
For each patient, we only include the retinal image from the left eye in
one visit, to avoid potential bias by inconsistent individual visits. For
internal evaluation, we split the patient groupsinto training, validation
and test sets at a ratio of 55:15:30%. The training set is used to revise
model parameters to achieve objective function. The validation setis
for monitoring training converge and checkpoint selection. The test
setisused to test the saved model checkpoint and evaluate the internal
performance. For external validation, all patient data are used for
evaluating the saved model checkpoint. The detailed data flowcharts
are listed in Supplementary Figs. 1-5.

Data processing and augmentation for SSL

For CFPimage preprocessing, we use AutoMorph*, an automated reti-
nalimage analysis tool, to exclude the background and keep the retinal
area. All images are resized to 256 x 256 with cubic interpolation. For
OCT, weextract the middle slices and resize them to 256 x 256. We fol-
low the same data augmentation as the masked autoencoder in model
training, includingrandom crop (lower bounds 20% of the whole image
and upper bounds100%) and resizing the cropped patchesto 224 x 224,
random horizontal flipping and image normalization.

RETFound architecture and implementation

We use a specific configuration of the masked autoencoder', which
consists of anencoder and adecoder. The architecture detail is shown
inSupplementary Fig. 6. The encoder uses alarge vision Transformer*®
(ViT-large) with 24 Transformer blocks and an embedding vector size
0f1,024, whereas the decoder is asmall vision Transformer (Vit-small)
witheight Transformer blocks and anembedding vector size of 512. The
encoder takes unmasked patches (patch size of 16 x 16) as input and
projectsitinto afeature vector with asize of1,024. The 24 Transformer
blocks, comprising multiheaded self-attention and multilayer percep-
tron, take feature vectors as input and generate high-level features.
Thedecoder inserts masked dummy patchesinto extracted high-level
features as the model input and then reconstructs the image patch
after a linear projection. In model training, the objective is to recon-
struct retinal images from the highly masked version, with a mask
ratio of 0.75 for CFP and 0.85 for OCT. The batch size is 1,792 (8 GPUs x
224 per GPU). The total training epoch is 800 and the first 15 epochs
are for learning rate warming up (from O to a learning rate of 1 x 107%).
The model weights at the final epoch are saved as the checkpoint for
adapting to downstream tasks.

Adaptation to downstream tasks

Inadapting to downstreamtasks, we only need the encoder (ViT-large)
of the foundation model and discard the decoder. The encoder
generates high-level features from retinal images. A multilayer per-
ceptron takes the features as input and outputs the probability of
disease categories. The category with the highest probability will be
defined as the final classification. The number of categories decides
the neuron of the final layer of the multilayer perceptron. We include
label smoothing to regulate the output distribution thus prevent-
ing overfitting of the model by softening the ground-truth labels



in the training data. The training objective is to generate the same
categorical output as the label. The batch size is 16. The total training
epochis 50 and the first ten epochs are for learning rate warming up
(from O to alearning rate of 5 x107*), followed by a cosine annealing
schedule (fromlearning rates of 5x10™*to1x10"®in the rest of the 40
epochs). After each epoch training, the model will be evaluated on
the validation set. The model weights with the highest AUROC on the
validation set will be saved as the model checkpoint for internal and
external evaluation.

Contrastive SSLimplementation

We replace the primary SSL approach (that is, masked autoencoder)
with SimCLR', SwAV¥, DINO*® and MoCo-v3 (ref. 14) in the RETFound
framework to produce variants of the pretrained model for comparison.
For SSL training with each contrastive learning approach, we follow the
recommended network architectures and hyperparameter settings
fromthe published papers for optimal performance. We first load the
pretrained weights on ImageNet-1k to the models and further train the
models with 1.6 million retinal images with each contrastive learning
approach to obtain pretrained models. We then follow the identical
process of transferring the masked autoencoder to fine-tune those
pretrained models for the downstream disease detection tasks.

Explanations for fine-tuned models

We use RELPROP** specified for Transformer-based networks. The
method uses layer-wise relevance propagation to compute relevancy
scores for each attention head in each layer and thenintegrates them
throughoutthe attention graph, by combiningrelevancy and gradient
information. Asaresult, it visualizes the areas of inputimages that lead
to a certain classification. RELPROP has been shown to outperform
other well-known explanation techniques, such as GradCam®’.

Computational resources

SSL typically benefits from a large batch size for training and extract-
ing context from data, which requires powerful GPUs for computa-
tion. We use eight NVIDIA Tesla A100 (40 GB) on the Google Cloud
Platform. It takes about 14 days to develop RETFound. We allocate an
equal computational cost to each SSL approach for pretraining. For
fine-tuning RETFound to downstream tasks, we use NVIDIA Tesla T4
(16 GB). Fine-tuning takes about 70 min for every 1,000 images.

Evaluation and statistical analysis

Alltask performances are evaluated by the classification metrics known
as AUROC and AUPR, computed from the receiver operating charac-
teristics and precision-recall curves of classifiers, respectively. For
ocular prognosis and oculomic prediction tasks, the AUROC and AUPR
arecalculatedinabinary setting. For multiclass classification, such as
five-stage diabetic retinopathy and multicategory disease diagnosis,
we calculate the AUROC and AUPR for each disease category and then
average them to get the general AUROC and AUPR. For each task, we
train the model with five different random seeds, determining the
shuffling of training data. We calculate the mean and standard
deviation of the performance over the five iterations and calculate the
standard error by (standard deviation/-/5). We obtain the 95% Cl by
means of 1.96 x standard error. We use the two-sided ¢-tests between
the performance of RETFound and the most competitive comparison
model to show whether significant differences exist.

Ethics statement

This study involves human participants and was approved by the
London-Central Research Ethics Committee (18/LO/1163, approved
1 August 2018), Advanced statistical modelling of multimodal data
of genetic and acquired retinal diseases (20/HRA/2158, approved
5 May 2020) and the Confidential Advisory Group for Section 251
support (18/CAG/0111, approved 13 September 2018). The National

Health Service Health Research Authority gave final approval on 13
September 2018. Moorfields Eye Hospital NHS Foundation Trust vali-
dated the de-identifications. Only de-identified retrospective data
were used for research, without the active involvement of patients.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The MIDAS dataset consists of routinely collected healthcare data.
Owingtoitssensitive nature and therisk of reidentification, the dataset
issubject to controlled access by means of a structured application
process. Data access enquiries may be made to enquiries@insight.
hdrhub.org and we will aim to respond within 2 weeks. Further details
about the data request pipeline may be found on the INSIGHT Health
DataResearch Hub website https:/www.insight.hdrhub.org. The AlzEye
dataset is subject to the contractual restrictions of the data sharing
agreements between National Health Service Digital, Moorfields Eye
Hospitaland University College London, and is not available for access
beyond the AlzEye research team. National and international collabora-
tions are welcomed, although restrictions on access to the cohort mean
that only the AlzEye researchers can directly analyse individual-level
systemic health data. More details can be found at https://reading-
centre.org/studies/artificial_intelligence/alzeye. UK Biobank dataare
available at https://www.ukbiobank.ac.uk/. Data for ocular disease
experimentsare publicly available online and can be accessed through
the following links: IDRID (https://ieee-dataport.org/open-access/
indian-diabetic-retinopathy-image-dataset-idrid), MESSIDOR-2 (https://
www.adcis.net/en/third-party/messidor2/), APTOS-2019 (https://
www.kaggle.com/competitions/aptos2019-blindness-detection/data),
PAPILA (https://figshare.com/articles/dataset/PAPILA/14798004/1),
Glaucoma Fundus (https://dataverse.harvard.edu/dataset.
xhtml?persistentld=doi:10.7910/DVN/1YRRAC),JSIEC (https://zenodo.
org/record/3477553), Retina (https://www.kaggle.com/datasets/jr2ngb/
cataractdataset) and OCTID (https://borealisdata.ca/dataverse/OCTID).

Code availability

The code used to train, fine-tune and evaluate RETFound from Y.Z.
is available at https://github.com/rmaphoh/RETFound_MAE, which
is based on PyTorch. Furthermore, a Keras version implemented by
Y.K.is available at https://github.com/uw-biomedical-ml/RETFound_
MAE. Please note that the reported results are obtained from PyTorch
models. Images were processed withautomated retinal image analysis
tool AutoMorph v.1.0 (https://github.com/rmaphoh/AutoMorph).
Image data were extracted from Dicom files with Pydicom v.2.3.0.
Results were further analysed and visualized with Python v.3.6, NumPy
v.1.19.5,SciPy v.1.5.4, seaborn v.0.12.0, Matplotlibv.3.6.1, pandas v.1.5.0,
Scikit-Learn v.1.1.3 and Pillow v.9.2.0. Heatmaps were generated with
RELPROP (https://github.com/hila-chefer/Transformer-Explainability).
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Extended DataFig.1|Illustration of training pipeline of RETFound and
comparisonbaselines. The compared baselinesinclude SL-ImageNet,
SSL-ImageNet, and SSL-Retinal. SL-ImageNet trains the model viasupervised
learning onImageNet-21k (14 millionimages and categorical labels);
SSL-ImageNet trains the model on ImageNet-1k (1.4 million images) viaSSL;
SSL-Retinal trains the model onretinal images via SSL from scratch; RETFound
trains the model on retinal images via SSL from the weights of SSL-ImageNet.
*kayak pictureis used toillustrate the method pipeline.
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Extended DataFig.2|Performance (AUPR) on ocular disease diagnostic
classification. a, internal evaluation, models are adapted to each dataset via
fine-tuning and internally evaluated on hold-out test data. The dataset details
arelistedin Supplementary Table 1. b, external evaluation, models are fine-
tuned ononediabeticretinopathy dataset and externally evaluated onthe
others. ¢, performance onocular disease prognosis. The models are fine-tuned
to predict the conversion of fellow eye to wet-AMD in1year and evaluated

internally. For each task, we trained the model with S different random seeds,
determining the shuffling of training data, and evaluated the models on the
testsettogetSreplicas. We derived the statistics with the Sreplicas. Theerror
barsshow 95% confidenceintervals and the bars’ centre represents the mean
value of the AUPR. We compare the performance of RETFound with the most
competitive comparison model to check if statistically significant differences
exist. p-valueis calculated with the two-sided t-test and listed in the figure.
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Extended DataFig. 3 | Performance (AUPR) on 3-yearincidence prediction
of systemic diseases with retinalimages. a, internal evaluation, models are
adaptedto curated datasets from MEH-AlzEye via fine-tuning and internally
evaluated onhold-out testdata. b, external evaluation, models are fine-tuned
onMEH-AlzEye and externally evaluated on UK Biobank. Data for internal and
external evaluationis described in Supplementary Table 2. For each task, we
trained the model with S different random seeds, determining the shuffling of
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training data, and evaluated the models on the test set to get Sreplicas.

We derived the statistics with the Sreplicas. Theerror bars show 95%
confidenceintervals and the bars’ centre represents the mean value of the
AUPR.We compare the performance of RETFound with the most competitive
comparison model to check if statistically significant differences exist. p-value
iscalculated with the two-sided t-test and listed in the figure.
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Extended DataFig. 4 | Adaptation efficiency in exemplar applications.
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model checkpointissaved and the time difference between RETFound and the

Diabetic retinopathy MESSIDOR-2
0.9 1

0.8 1
3
€ 0.7 /
o)
<
0.6 ://M/\/ 46% saving
0.5 r T
0 20 40
Training time (epoch)
= SSL-ImageNet SL-ImageNet

most competitive comparison modelis calculated. RETFound saves 80% of
training time inadapting to 3-year incidence prediction of myocardial
infarction and 46% in diabetic retinopathy MESSIDOR-2. 95% confidence
intervals of AUROC are plotted in colour bands and the mean values are shown
ascentrelines.
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Extended DataFig.5|Comparison of different SSL strategiesin RETFound evaluated the models onthe testset to get Sreplicas. We derived the statistics

framework. We show AUROC of predicting ocular diseases and systemic withthe Sreplicas. Theerror bars show 95% confidence intervals and the bars’
diseases by the models pretrained with different SSL strategies, including centrerepresents the mean value of the AUPR. We compare the performance of
the masked autoencoder (MAE), SWAV, SimCLR, MoCo-v3, and DINO. The RETFound with the most competitive comparison model to check if statistically
corresponding quantitative results for the contrastive SSL approaches are significant differences exist. p-value s calculated with the two-sided t-test and
listed in Supplementary Table 4. For each task, we trained the model with 5 listedin the figure.

differentrandomseeds, determining the shuffling of training data, and
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Extended DataFig. 6 | Qualitative results of RETFound. a, Reconstructed ofthe modelsinvarious downstream tasks. Red colour indicates high
colour fundus photographs and optical coherent tomography scans from contribution. The well-defined pathologies of ocular diseases areidentified
highly masked images in pretext task. Although with few patches visible, and used for classification. For the prediction of systemic diseases, some
RETFound inferstheretina-specificanatomical structures (e.g.opticnerveand  anatomical structuresassociated with systemic conditions, e.g. opticnerve
retinal nerve fibre layer) and disease lesions, which are markers for multiple and vasculature on CFP and ganglion cell layer and macular areaon OCT, are

diseases. b, Heatmaps highlighting the areas that contribute to the classification  highlighted.
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Extended DataFig.7|Performance onvarious age distributionsin
predicting myocardial infarction. The disease group remains unchanged
(mean value of age is 72.1) while the four control groups are sampled with
various age distributions (meanvalues of age arerespectively 66.8, 68.5,70.4,
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robust to age difference while that of compared models drops when the age
difference decreases. Logistic regression uses age asinput. The logistic
regression performs well when age difference is large (about 6) but clearly
worse than SSL models when the difference becomes smaller. 95% confidence
intervalsare plottedin colour bands and the mean value of performances are
shownastheband centres.
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indicates a perfectly calibrated model and the deviation represents the
miscalibration. RETFound s closest to diagonal lines and the ECE is lowest
among all models.

Extended DataFig. 8| Reliability diagrams and expected calibration error
(ECE) for prediction models. Reliability diagrams measure the consistency
between the prediction probabilities of an event (e.g. myocardial infarction)
with theactual chance of observing the event. The dashed line (diagonal line)
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Extended DataFig.9|Performancein predicting heartfailure across
ethnicities. We show AUROC of predicting 3-year heart failure in subsets with
different ethnicity, including White, Asian or Asian British, and Black or Black
British subgroups, the three largest major categories of ethnicity as described
by the UK Government’s Office for National Statistics. Datais from MEH-AlzEye
testset. The first column shows the performance on all test data, followed by
resultsonthree subgroups. The cohort quantity s listed in titles. We trained

Asian or Asian British n=472  Black or Black British n=217

P<0.001

themodel with Sdifferentrandom seeds, determining the shuffling of training
data, and evaluated the models on the test set to get Sreplicas. We derived the
statistics with the 5replicas. The error bars show 95% confidence intervals and
thebars’ centre represents the mean value of the AUPR. We compare the
performance of RETFound with the most competitive comparison model to
checkif statistically significant differences exist. p-valueis calculated with the
two-sided t-testand listed in the figure.
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Extended DataFig.10|Performancein predicting myocardial infarction
across ethnicities. We show AUROC of predicting 3-year myocardial infarction
insubsets with different ethnicity. Datais from MEH-AlzEye test set. The first
column shows the performance onalltest data, followed by results on White,
Asian or Asian British, and Black or Black British cohorts. The cohort quantity is
listedintitles. We trained the model with 5differentrandomseeds, determining
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the shuffling of training data, and evaluated the models on the test set to get 5
replicas. We derived the statistics with the Sreplicas. The error bars show 95%
confidenceintervals and the bars’ centre represents the mean value of the
AUPR. We compare the performance of RETFound with the most competitive
comparison model to checkif statistically significant differences exist. p-value
iscalculated with the two-sided t-test and listed in the figure.
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Extended DataFig.11|Performancein predictingischaemicstroke across shuffling of training data, and evaluated the modelson the test set to get 5
ethnicities. We show AUROC of predicting 3-year ischaemic stroke in subsets replicas. We derived the statistics with the Sreplicas. The error bars show 95%
with different ethnicity. Datais from MEH-AlzEye test set. The first column confidenceintervals and the bars’ centre represents the mean value of the
shows the performanceonall test data, followed by results on White, Asian or AUPR. We compare the performance of RETFound with the most competitive

Asian British, and Black or Black British cohorts. The cohort quantityislistedin ~ comparison model to checkif statistically significant differences exist. p-value
titles. We trained the model with 5different random seeds, determining the iscalculated with the two-sided t-test and listed in the figure.
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Extended Data Table 1| Confusion matrix on 3-year prediction of myocardial infarction

a SL-ImageNet Predicted SSL-ImageNet Predicted
3-year 3-year 3-year 3-year
no Ml Mi no Mi Mi
_ 3-year TN FP _ SB-year TN FP
2 noMi 227 (27%) 189 (23%) 2 noMi 266 (32%) 150 (17%)
8 S
3-year FN TP 3-year FN TP
Ml 165 (20%) 251 (30%) Ml 191 (23%) 225 (27%)
Sensitivity: 0.6 Specificity: 0.54 Sensitivity: 0.54 Specificity: 0.64
SSL-Retinal Predicted RETFound Predicted
3-year 3-year 3-year 3-year
no Ml Mi no Ml Mi
_ 3-year TN FP _ 3-year TN FP
2 noMi 258 (31%) 158 (19%) 2  noMi 280 (34%) 136 (16%)
S S
3-year FN TP 3-year FN TP
Ml 150 (18%) 266 (32%) MI 123 (15%) 293 (35%)
Sensitivity: 0.64 Specificity: 0.62 Sensitivity: 0.7 Specificity: 0.67
b SL-ImageNet Predicted SSL-ImageNet Predicted
3-year 3-year 3-year 3-year
no Ml Mi no Ml Mi
_ 3-year TN FP _ 3-year TN FP
2 noMi 241 (29%) 175 (21%) 2  noMi 258 (31%) 158 (19%)
5 8
3-year FN TP 3-year FN TP
Ml 158 (19%) 258 (31%) MI 200 (24%) 216 (26%)
Sensitivity: 0.62 Specificity: 0.58 Sensitivity: 0.52 Specificity: 0.62
SSL-Retinal Predicted RETFound Predicted
3-year 3-year 3-year 3-year
no Ml M no Ml Mi
_ 3-year TN FP _ 3-year TN FP
é no Mi 250 (30%) 166 (20%) % no Ml 272 (33%) 144 (17%)
- -
3-year FN TP 3-year FN TP
Ml 150 (18%) 266 (32%) Mi 123 (15%) 293 (35%)
Sensitivity: 0.64 Specificity: 0.6 Sensitivity: 0.7

Specificity: 0.65

a, confusion matrix with CFP. b, confusion matrix with OCT. RETFound shows the highest sensitivity and specificity.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed
|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

L OO

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

X X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

[ [

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OO0 X X OO

XX X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The code used to train, fine-tune, and evaluate RETFound from Yukun Zhou is available at https://github.com/rmaphoh/RETFound_MAE
which bases on PyTorch. Additionally, a Keras version implemented by Yuka Kihara is available at https://github.com/uw-biomedical-ml/
RETFound_MAE. Please note that the reported results are obtained from PyTorch models. Image data was extracted from Dicom files with
Pydicom v2.3.0 (https://pydicom.github.io). Images were processed with automated retinal image analysis tool AutoMorph v1.0 (https://
github.com/rmaphoh/AutoMorph).

Data analysis Data was analysed with Python v3.6 (https://www.python.org/), NumPy v1.19.5 (https://github.com/numpy/numpy), SciPy v1.5.4 (https://
www.scipy.org/), seaborn v0.12.0 (https://github.com/mwaskom/seaborn), Matplotlib v3.6.1 (https://github.com/matplotlib/matplotlib),
pandas v1.5.0 (https://github.com/pandas-dev/pandas), Scikit-Learn v1.1.3 (https://scikit-learn.org/stable), Pillow v9.2.0 (https://pypi.org/
project/Pillow). Heatmaps were generated with RELPROP (https://github.com/hila-chefer/Transformer-Explainability).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The MIDAS dataset consists of routinely collected healthcare data. Due to its sensitive nature and the risk of reidentification, the dataset is subject to controlled
access via a structured application process. Data access enquiries may be made to enquiries@insight.hdrhub.org and we will aim to respond within two weeks.
Further details about the data request pipeline may be found on the INSIGHT Health Data Research Hub website https://www.insight.hdrhub.org. The AlzEye
dataset is subject to the contractual restrictions of the data sharing agreements between National Health Service Digital, Moorfields Eye Hospital and University
College London and are not available for access beyond the AlzEye research team. National and international collaborations are welcomed though restrictions on
access to the cohort mean that only the AlzEye researchers can directly analyse individual-level systemic health data. More details can be found at https://
readingcentre.org/studies/artificial_intelligence/alzeye. UK Biobank data is available at https://www.ukbiobank.ac.uk/.

Data for ocular disease experiments are publicly available online and can be accessed via the links: IDRID (https://ieee-dataport.org/open-access/indian-diabetic-
retinopathy-image-dataset-idrid), MESSIDOR-2 (https://www.adcis.net/en/third-party/messidor2/), APTOS-2019 (https://www.kaggle.com/competitions/
aptos2019-blindness-detection/data), PAPILA (https://figshare.com/articles/dataset/PAPILA/14798004/1), Glaucoma Fundus (https://dataverse.harvard.edu/
dataset.xhtml?persistentld=doi:10.7910/DVN/1YRRAC), JSIEC (https://zenodo.org/record/3477553), Retina (https://www.kaggle.com/datasets/jr2ngb/
cataractdataset), OCTID (https://borealisdata.ca/dataverse/OCTID).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Biological sex information for MEH-MIDAS and MEH-AlzEye was collected via self-report. MEH-MIDAS includes 37,401
patients (16,429 female, 20,966 male, and 6 unknown) and MEH-AIzEye includes 353,157 patients (190,494 female and
162,663 male). Experiments were conducted both on female and male. We used all MEH-MIDAS data to develop RETFound
models and subsets of MEH-AlzEye for downstream validation (detailed in Supplementary Table 2).

Population characteristics MEH-MIDAS is a retrospective dataset which includes the complete ocular imaging records of 37,401 patients with diabetes
who were seen at Moorfields Eye Hospital, London, United Kingdom between 2000 and 2022. The age distribution has a
mean value of 64.5 and standard deviation of 13.3. The ethnicity distributes diversly: British (13.7%), Indian (14.9%),
Caribbean (5.2%), African (3.9%), other ethnicity (37.9%), not stated (24.4%). MEH-MIDAS includes various imaging devices,
such as topcon 3DOCT-2000SA (Topcon), CLARUS (ZEISS), and Triton (Topcon).

MEH-AlzEye is a retrospective cohort study linking ophthalmic data of 353,157 patients, who attended Moorfields Eye
Hospital between 2008 and 2018, with systemic health data from hospital admissions across the whole of England. Systemic
health data are derived from Hospital Episode Statistics (HES) data relating to admitted patient care (APC), with a focus on
cardiovascular disease and all-cause dementia. More details can be found in the method section. Selections of study cohort
were shown in Supplementary Figure 2-6 and characteristics were listed in Supplementary Table 2.

The UK Biobank includes 502,665 UK residents aged between 40 and 69 years who are registered with the National Health
Service. Among all participants, 82,885 get CFP and OCT examinations and a total of 171,500 retinal images are collected.

Selections of study cohort were shown in Supplementary Figure 2-6 and characteristics were listed in Supplementary Table 2.

Recruitment MEH-MIDAS is a retrospective dataset which includes the complete ocular imaging records of 37,401 patients with diabetes
who were seen at Moorfields Eye Hospital, London, United Kingdom between 2000 and 2022. MEH-AlzEye is a retrospective
cohort study linking ophthalmic data of 353,157 patients who attended Moorfields Eye Hospital between 2008 and 2018.

Ethics oversight This study involves human participants and was approved by the London-Central Research Ethics Committee (18/L0O/1163,
approved 01/08/2018), Advanced statistical modelling of multimodal data of genetic and acquired retinal diseases (20/
HRA/2158, approved 05/05/2020), and the Confidential Advisory Group for Section 251 support (18/CAG/0111, approved
13/09/2018). The National Health Service Health Research Authority gave final approval on 13 September 2018. Moorfields
Eye Hospital NHS Foundation Trust validated the de-identifications. Only de-identified retrospective data was used for
research, without the active involvement of patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Data for developing RETFound model was from Moorflelds Diabetic imAge dataSet (MEH-MIDAS) and public data (totalling 904,170 CFPs and
736,442 OCTs). Data for ocular disease diagnosis were from public datasets, detailed in Supplementary Table 1. Data for systemic disease
prediction were from Moorfields AlzEye project and selected cohorts were introduced in Supplementary Table 2. Datasets were chosen based
on the availability of labels that would permit external validation of the different fine-tuned RETFound models, which is dependent on the
specific clinical task being evaluated. The chosen external validation datasets were deemed to be suitable based on their parameters, which
are summarised Supplementary Information Table 1 Dataset characteristics. Formal sample size calculations were not performed due to the
lack of established methods when applied to machine-learning classification studies.

Data exclusions  Data failed image processing with AutoMorph were excluded. Data without systemic health labels were excluded. For more details please
refer to the method section.

Replication All patients were randomly selected and were not correlated in any way. The replication of experiment results were confirmed in 5 times with
5 different random seeds.
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Randomization  The training/validation/testing data for downstream tasks were randomly splitted in ratio of 55%:15%:30%. For each patient, we only included
the left eye data from one visit to avoid potential bias by inconsistent individual visits.

Blinding When assigning patients randomly to training, validation and testing groups investigators were blinded to patient covariates and all features in
the dataset not required to perform the research.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies IZI D ChlIP-seq
|:| Eukaryotic cell lines IZI D Flow cytometry
|:| Palaeontology and archaeology IZI D MRI-based neuroimaging

|:| Animals and other organisms
[] clinical data

[ ] Dual use research of concern
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