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A foundation model for generalizable 
disease detection from retinal images

Yukun Zhou1,2,3 ✉, Mark A. Chia2,4, Siegfried K. Wagner2,4, Murat S. Ayhan1,2,4, 

Dominic J. Williamson1,2,4, Robbert R. Struyven1,2,4, Timing Liu2, Moucheng Xu1,3, 

Mateo G. Lozano2,5, Peter Woodward-Court1,2,6, Yuka Kihara7,8, UK Biobank Eye & Vision 

Consortium*, Andre Altmann1,3, Aaron Y. Lee7,8, Eric J. Topol9, Alastair K. Denniston10,11, 

Daniel C. Alexander1,12 & Pearse A. Keane2,4 ✉

Medical artifcial intelligence (AI) ofers great potential for recognizing signs of health 

conditions in retinal images and expediting the diagnosis of eye diseases and systemic 

disorders1. However, the development of AI models requires substantial annotation 

and models are usually task-specifc with limited generalizability to diferent clinical 

applications2. Here, we present RETFound, a foundation model for retinal images that 

learns generalizable representations from unlabelled retinal images and provides a 

basis for label-eocient model adaptation in several applications. Specifcally, RETFound 

is trained on 1.6)million unlabelled retinal images by means of self-supervised learning 

and then adapted to disease detection tasks with explicit labels. We show that adapted 

RETFound consistently outperforms several comparison models in the diagnosis and 

prognosis of sight-threatening eye diseases, as well as incident prediction of complex 

systemic disorders such as heart failure and myocardial infarction with fewer labelled 

data. RETFound provides a generalizable solution to improve model performance and 

alleviate the annotation workload of experts to enable broad clinical AI applications 

from retinal imaging.

Medical artificial intelligence (AI) has achieved significant progress in 

recent years with the notable evolution of deep learning techniques1,3,4. 

For instance, deep neural networks have matched or surpassed the 

accuracy of clinical experts in various applications5, such as referral 

recommendations for sight-threatening retinal diseases6 and pathol-

ogy detection in chest X-ray images7. These models are typically devel-

oped using large volumes of high-quality labels, which requires expert 

assessment and laborious workload1,2. However, the scarcity of experts 

with domain knowledge cannot meet such an exhaustive requirement, 

leaving vast amounts of medical data unlabelled and unexploited.

Self-supervised learning (SSL) aims to alleviate data inefficiency by 

deriving supervisory signals directly from data, instead of resorting 

to expert knowledge by means of labels8311. SSL trains models to per-

form 8pretext tasks9 for which labels are not required or can be gener-

ated automatically. This process leverages formidable amounts of 

unlabelled data to learn general-purpose feature representations that 

adapt easily to more specific tasks. Following this pretraining phase, 

models are fine-tuned to specific downstream tasks, such as classifica-

tion or segmentation. The SSL model has outperformed supervised 

learning-based transfer learning (for example, pretraining the models 

with ImageNet12 and categorical labels) in various computer vision 

tasks, even when the SSL models are fine-tuned with smaller amounts 

of data13,14. Besides this label efficiency, SSL-based models perform 

better than supervised models when tested on new data from different 

domains15,16. The combined qualities of strong generalization capac-

ity of representations, and high performance achieved by fine-tuned 

models in many downstream tasks, indicate the great potential of SSL in 

medical AI in which data are abundant and healthcare tasks are diverse 

but labels are scarce1,8.

Colour fundus photography (CFP) and optical coherence tomogra-

phy (OCT) are the most common imaging modalities in ophthalmology 

and such retinal images accumulate quickly in routine clinical practice. 

In addition to illustrating clinical features associated with ocular dis-

eases, these images also provide valuable insights into systemic dis-

eases, a field that has recently been termed 8oculomics917,18. For example, 

the optic nerve and inner retinal layers provide a non-invasive view of 

central nervous system tissue19321, and thus a window into neurodegen-

eration. Similarly, retinal vascular geometry provides insights into other 

vascular organ systems22325, such as the heart and kidneys. Although 

several studies have shown that SSL can increase performance for indi-

vidual ocular disease detection tasks, such as the diagnosis of diabetic 

macular oedema26, age-related macular degeneration (AMD)27 and 

referable diabetic retinopathy28330, there has been limited work dem-

onstrating the ability of a single SSL pretrained model to generalize to a 

diverse range of complex tasks. Progress has probably been hampered 

by the challenges involved with curating a large repository of retinal 
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images with extensive linkage to several relevant disease outcomes. 

Moreover, the capabilities of different SSL approaches (contrastive SSL 

versus generative SSL) and the interpretability of SSL models in retinal 

imaging, remain relatively under-explored. Developing an understand-

ing of the specific features that SSL models learn during training is an 

important step for safe and reliable translation to clinical practice.

In this work, we present a new SSL-based foundation model for retinal 

images (RETFound) and systematically evaluate its performance and 

generalizability in adapting to many disease detection tasks. A foun-

dation model is defined as a large AI model trained on a vast quantity 

of unlabelled data at scale resulting in a model that can be adapted to 

a wide range of downstream tasks31,32. Here we construct RETFound 

from large-scale unlabelled retinal images by means of SSL and use it to 

promote the detection of many diseases. Specifically, we develop two 

separate RETFound models, one using CFP and the other using OCT, 

by means of an advanced SSL technique (masked autoencoder15) suc-

cessively on natural images (ImageNet-1k) followed by retinal images 

from the Moorfields diabetic image dataset (MEH-MIDAS) and public 

data (totalling 904,170 CFPs and 736,442 OCTs). We adapt RETFound 

to a series of challenging detection and prediction tasks by fine-tuning 

RETFound with specific task labels, and then validate its performance. 

We consider first the diagnostic classification of ocular diseases, 

including diabetic retinopathy and glaucoma; second, ocular disease 

prognosis, specifically conversion of contralateral (8fellow9) eyes to 

neovascular (8wet9) AMD in a 1-year time period and, finally, oculomic 

challenges, specifically the 3-year prediction of cardiovascular dis-

eases (ischaemic stroke, myocardial infarction and heart failure) and a 

neurodegenerative disease (Parkinson9s disease). RETFound achieves 

consistently superior performance and label efficiency in adapting to 

these tasks, compared to state-of-the-art competing models, including 

that pretrained on ImageNet-21k with traditional transfer learning. 

We also probe the interpretation of disease detection performance of  

RETFound with qualitative results and variable-controlling experi-

ments, showing that salient image regions reflect established know-

ledge from ocular and oculomic literature. Finally, we make RETFound 

publicly available so others can use it as the basis for their own down-

stream tasks, facilitating diverse ocular and oculomic research.

Figure 1 gives an overview of the construction and application of 

RETFound. For construction of RETFound, we curated 904,170 CFP 

in which 90.2% of images came from MEH-MIDAS and 9.8% from  

Kaggle EyePACS33, and 736,442 OCT in which 85.2% of them came from 

MEH-MIDAS and 14.8% from ref. 34. MEH-MIDAS is a retrospective data-

set that includes the complete ocular imaging records of 37,401 patients 

with diabetes who were seen at Moorfields Eye Hospital between  

January 2000 and March 2022. After self-supervised pretraining on these 

retinal images, we evaluated the performance and generalizability of 

RETFound in adapting to diverse ocular and oculomic tasks. We selected 

publicly available datasets for the tasks of ocular disease diagnosis. 

Details are listed in Supplementary Table 1. For the tasks of ocular disease 

prognosis and systemic disease prediction, we used a cohort from the 

Moorfields AlzEye study (MEH-AlzEye) that links ophthalmic data of 

353,157 patients, who attended Moorfields Eye Hospital between 2008 

and 2018, with systemic disease data from hospital admissions across  

the whole of England35. We also used UK Biobank36 for external evalua-

tion in predicting systemic diseases. The validation datasets used for 

ocular disease diagnosis are sourced from several countries, whereas 

systemic disease prediction was solely validated on UK datasets due to 

limited availability of this type of longitudinal data. Our assessment of 

generalizability for systemic disease prediction was therefore based on 

many tasks and datasets, but did not extend to vastly different geograph-

ical settings. Details of the clinical datasets are listed in Supplementary  

Table 2 (data selection is introduced in the Methods section).

We compared the performance and label efficiency of RETFound  

against three pretrained comparison models: SL-ImageNet, 

SSL-ImageNet and SSL-Retinal. All models use differing pretraining 

strategies but have the same model architecture as well as fine-tuning 

processes for downstream tasks (architecture details are introduced 

in the Methods section). SL-ImageNet uses traditional transfer learn-

ing, that is, pretraining the model by means of supervised learning on 

ImageNet-21k (about 14)million natural images with categorical labels); 

SSL-ImageNet pretrains the model by means of SSL on ImageNet-1k 

(about 1.4)million natural images) and SSL-Retinal pretrains the model 

using SSL on retinal images from scratch. RETFound uses the weights 

of SSL-ImageNet as a baseline before extending to retinal images 

(equivalent to pretraining the model by means of SSL successively on 

natural images followed by retinal images). The pretraining schemat-

ics are shown in Extended Data Fig. 1. Furthermore, we explored the 

performance of using different SSL strategies, that is, generative SSL 

versus contrastive SSL approaches, by substituting the primary SSL 

technique (that is, masked autoencoder) for SimCLR16, SwAV37, DINO38 

and MoCo-v3 (ref. 14) within the RETFound framework, respectively. 

We reported internal and external evaluation results for these mod-

els. The models were adapted to each task with labelled training data, 

and evaluated on both held-out internal test sets, as well as external 

datasets completely distinct from the training data (details are listed 

in the Methods section). Model performance was reported using the 

area under the receiver operating curve (AUROC) and area under the 

precision-recall curve (AUPR). We calculated P values with the two-sided 

t-test between RETFound and the most competitive comparison model 

for each task to check for significance.

Ocular disease diagnosis

We included eight publicly available datasets to verify the model9s 

performance on several ocular diseases and imaging conditions (Fig. 2). 

RETFound generally achieved the best performance in most datasets 

and SL-ImageNet ranked second, as shown in Fig. 2a. For instance, on 

diabetic retinopathy classification, RETFound achieved AUROC of  

0.943 (95% confidence interval (CI) 0.941, 0.944), 0.822 (95% CI 0.815, 

0.829) and 0.884 (95% CI 0.88, 0.887), respectively, on Kaggle APTOS-

2019, IDRID39 and MESSIDOR-2 (refs. 40,41) datasets, significantly out-

performing SL-ImageNet (all P)<)0.001). The superior performance can 

also be observed for glaucoma and the classification of many diseases. 

The AUPR results of RETFound were also significantly higher than the 

compared groups (Extended Data Fig. 2a). For external evaluation, 

we evaluated the performance of RETFound on diabetic retinopathy 

datasets (Kaggle APTOS-2019, IDRID and MESSIDOR-2), which were both 

labelled on the basis of the five-stage International Clinical Diabetic 

Retinopathy Severity scale. We conducted cross evaluation among the 

three datasets, that is, fine-tuned models on one dataset and evaluated 

them on the others. RETFound achieved the best performance in all 

cross evaluations, as shown in Fig. 2b. For instance, when fine-tuned 

on Kaggle APTOS-2019, RETFound achieved AUROC of 0.822 (95% CI 

0.815, 0.829) and 0.738 (95% CI 0.729, 0.747), respectively, on IDRID 

and MESSIDOR-2 datasets, statistically significantly higher than 

SL-ImageNet (P)<)0.001) on IDRID and SSL-ImageNet (P)<)0.001) on 

MESSIDOR-2. The AUPR results of all groups were low but RETFound 

achieved significantly higher performance (Extended Data Fig. 2b). All 

quantitative results are listed in Supplementary Table 3.

Ocular disease prognosis

For 1-year prognosis of fellow eye converting to wet-AMD, we evalu-

ated the internal performance on data from AlzEye (Fig. 2c). With CFP 

as the input modality, RETFound showed the best performance with 

an AUROC of 0.862 (95% CI 0.86, 0.865), significantly outperform-

ing the comparison groups (P)<)0.001). The runner-up SL-ImageNet 

achieved an AUROC of 0.83 (95% CI 0.825, 0.836). With OCT, RETFound 

scored the highest AUROC of 0.799 (95% CI 0.796, 0.802), showing a 

statistically significantly higher AUROC (P)<)0.001) than SSL-Retinal. 
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The AUPR results of RETFound are highest with CFP and comparable 

to SSL-Retinal with OCT (Extended Data Fig. 2c).

Systemic diseases prediction

We organized four oculomic tasks to evaluate the model perfor-

mance in predicting the incidence of systemic diseases with retinal 

images (Fig. 3). Although the overall performance was limited in these  

challenging tasks, RETFound has shown significant improvement in 

internal evaluation for both CFP and OCT, as shown in Fig. 3a. For the 

prediction of myocardial infarction with CFP, RETFound achieved 

AUROC of 0.737 (95% CI 0.731, 0.743). SSL-Retinal scored the second-best 

performance but was significantly worse than RETFound (P)<)0.001). 

The confusion matrix (Extended Data Table 1) shows that RETFound 

achieved the highest sensitivity of 0.7 and specificity of 0.67. Likewise, 

RETFound also ranked first for prediction of heart failure, ischaemic 

stroke and Parkinson9s disease with AUROCs of 0.794 (95% CI 0.792, 

0.797), 0.754 (95% CI 0.752, 0.756) and 0.669 (0.65, 0.688), respectively. 

RETFound also performed significantly better than the other models 

when using OCT as the input modality. It achieved significantly higher 

AUPR results in all tasks (Extended Data Fig. 3a). External evaluation 

on the UK Biobank (Fig. 3b) showed that RETFound and SSL-Retinal 

performed similarly in prediction of ischaemic stroke. For tasks of 

myocardial infarction, heart failure and Parkinson9s disease, RETFound 

achieved the best performance both with CFP and OCT. RETFound also 

showed significantly higher AUPR in most tasks when it was externally 

evaluated on UK Biobank (Extended Data Fig. 3b).

Label efficiency for disease detection

Label efficiency refers to the amount of training data and labels 

required to achieve a target performance level for a given downstream 

task, which indicates the annotation workload for medical experts.  

RETFound showed superior label efficiency across various tasks (Fig. 4).  

For heart failure prediction, RETFound outperformed the other 

pretraining strategies using only 10% of labelled training data, 

demonstrating the potential of this approach in alleviating data short-

ages. RETFound similarly showed superior label efficiency for diabetic 

retinopathy classification and myocardial infarction prediction. Fur-

thermore, RETFound showed consistently high adaptation efficiency 

(Extended Data Fig. 4), suggesting that RETFound required less time in 

adapting to downstream tasks. For example, RETFound can potentially 

save about 80% of the training time required to achieve convergence 

for the task of predicting myocardial infarction, leading to significant 

reductions in computational costs (for example, credits on Google 

Cloud Platform) when appropriate mechanisms such as early stopping  

are used.

SSL strategies for RETFound

We explored the performance of different SSL strategies, that is, gen-

erative SSL (for example, masked autoencoder) and contrastive SSL 

(for example, SimCLR, SwAV, DINO and MoCo-v3), in the RETFound 

framework. As shown in Fig. 5, RETFound with different contrastive 

SSL strategies showed decent performance in downstream tasks. For 

instance, RETFound with DINO achieved AUROC of 0.866 (95% CI 0.864, 

0.869) and 0.728 (95% CI 0.725, 0.731), respectively, on wet-AMD prog-

nosis (Extended Data Fig. 5) and ischaemic stroke prediction (Fig. 5), 

outperforming the baseline SL-ImageNet (Supplementary Tables 3 

and 4). This demonstrates the effectiveness of RETFound framework 

with diverse SSL strategies. Among these SSL strategies, the masked 

autoencoder (primary SSL strategy for RETFound) performed signifi-

cantly better than the contrastive learning approaches in most disease 

detection tasks (Fig. 5 and Extended Data Fig. 5). All quantitative results 

are listed in Supplementary Table 4.

Model interpretation

To gain insights into the inner-workings of RETFound leading to its 

superior performance and label efficiency in downstream tasks, 

we performed qualitative analyses of the pretext task used for 

self-supervised pretraining and task-specific decisions of RETFound 
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Fig. 1 | Schematic of development and evaluation of the foundation models (RETFound). Stage one constructs RETFound by means of SSL, using CFP and OCT 

from MEH-MIDAS and public datasets. Stage two adapts RETFound to downstream tasks by means of supervised learning for internal and external evaluation.
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(Extended Data Fig. 6). The pretext task of RETFound allows models 

to learn retina-specific context, including anatomical structures and 

disease lesions. As shown in Extended Data Fig. 6a, RETFound was able 

to reconstruct major anatomical structures, including the optic nerve 

and large vessels on CFP, and the nerve fibre layer and retinal pigment 

epithelium on OCT, despite 75% of the retinal image being masked. 

This demonstrates that RETFound has learned to identify and infer 

the representation of disease-related areas by means of SSL, which 

contributes to performance and label efficiency in downstream tasks. 

On top of the reconstruction-based interpretation, we further used an 

advanced explanation tool (RELPROP42) to visualize the salient regions 

of images conducive to classifications made by fine-tuned models in 

downstream tasks (Extended Data Fig. 6b). For ocular disease diagnosis, 

well-defined pathologies were identified and used for classification, 

such as hard exudates and haemorrhage for diabetic retinopathy and 

parapapillary atrophy for glaucoma. For oculomic tasks, we observed 
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that anatomical structures associated with systemic conditions, such 

as the optic nerve on CFP and nerve fibre layer and ganglion cell layer 

on OCT, were highlighted as areas that contributed to the incidence 

prediction of systemic diseases (Extended Data Fig. 6b).

Robustness to age distribution shifts

For ageing-associated systemic diseases, clinically relevant anatomi-

cal structures alter with both ageing43,44 and disease progression19,20,22. 

RETFound was trained to identify general structure alterations for 

detection of systemic diseases (Extended Data Fig. 6b). To further verify 

the extent to which models can learn anatomical structure changes, 

respectively, relating to ageing and disease progression, we evaluated 

performance of the models when using four different control groups 

with varying ages (mean ages 66.8, 68.5, 70.4 and 71.9)years) versus 

a fixed disease group (mean age 72.1)years) in the task of myocardial 

infarction. As shown in Extended Data Fig. 7, the models showed bet-

ter performance when the age difference is larger, indicating that age 

is indeed a confounder for studying ageing-associated diseases. The  

contribution of age can be demonstrated by the extreme case in which 

the age difference between cohorts is maximal (5.3)years in our sce-

nario), at which point a simple logistic regression with the input of age 

achieved an AUROC of 0.63, surpassing SSL-ImageNet and SL-ImageNet. 

When the age difference decreased, the models clearly outperformed 

the logistic regression. We observed that RETFound kept stable per-

formance even when the age difference decreased, which suggested 

that RETFound well identified the disease-related anatomical structure 

alteration and used the information for predicting systemic diseases.
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Fig. 3 | Performance on 3-year incidence prediction of systemic diseases  

with retinal images. a, Internal evaluation. Models are adapted to curated 

datasets from MEH-AlzEye by fine-tuning and internally evaluated on hold-out 

test data. b, External evaluation. Models are fine-tuned on MEH-AlzEye and 

externally evaluated on the UK Biobank. Data for internal and external 

evaluation are described in Supplementary Table 2. Although the overall 

performances are not high due to the difficulty of tasks, RETFound achieved 

significantly higher AUROC in all internal evaluations and most external 

evaluations. For each task, we trained the model with five different random 

seeds, determining the shuffling of training data, and evaluated the models on 

the test set to get five replicas. We derived the statistics with the five replicas. 

The error bars show 95% CI and the bar centre represents the mean value of the 

AUROC. We compare the performance of RETFound with the most competitive 

comparison model to check whether statistically significant differences exist. 

P value is calculated with the two-sided t-test and listed in the figure.
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Discussion

This work introduces a new SSL-based foundation model, RETFound, 

and evaluates its generalizability in adapting to diverse downstream 

tasks. After training on large-scale unlabelled retinal images using an 

advanced SSL technique (masked autoencoder), RETFound can be  

efficiently adapted to a broad range of disease detection tasks, resulting 

in significant performance improvements for detecting ocular diseases 

and predicting cardiovascular and neurodegenerative diseases. It is a 

medical foundation model that has been developed and assessed, and 

shows considerable promise for leveraging such multidimensional data 

without constraints of enormous high-quality labels.

RETFound enhances the performance of detecting ocular diseases 

by learning to identify disease-related lesions. Ocular diseases are 

diagnosed by the presence of well-defined pathological patterns, such 

as hard exudates and haemorrhages for diabetic retinopathy. These 

features involve abnormal variations in colour or structure, showing 

visible differences from the surrounding retina. RETFound can identify 

disease-related patterns and correctly diagnose ocular diseases (for 

example, myopia and diabetic retinopathy cases in Extended Data 

Fig. 6b). In Fig. 2, we observe that RETFound ranks first in various  

tasks, followed by SL-ImageNet. SL-ImageNet pretrains the model 

using supervised learning on ImageNet-21k, which contains 14)million 

images with 21,000 categories of natural objects with diverse shapes 

and textures, such as zebras and oranges. Such diverse characteristics 

allow models to learn abundant low-level features (for example, lines, 

curves and edges) to identify the boundary of abnormal patterns, thus 

improving disease diagnosis when the model adapts to medical tasks. 

In this paper, we demonstrate that by using SSL successively on natural 

images and unlabelled retinal images, a generalizable foundation model 

(RETFound) can be developed to further improve ocular disease diag-

nosis and prognosis, even outperforming the powerful SL-ImageNet.

RETFound learns retina-specific context by SSL on unlabelled retinal 

data to improve the prediction of systemic health states. RETFound 

and SSL-Retinal rank top 2 in both internal and external evaluation in 

predicting systemic diseases by using SSL on unlabelled retinal images 

(Fig. 3). In pretraining RETFound learns representations by perform-

ing a pretext task involving the reconstruction of an image from its 

highly masked version, requiring the model to infer masked informa-

tion with limited visible image patches. Solving such a pretext task 

in retinal images allows the model to learn retina-specific context, 

including anatomical structures such as the optic nerve and retinal 

nerve fibre layer (Extended Data Fig. 6a) that are potential markers 

in retinal images for neurodegenerative diseases and cardiovascular 

diseases17,19,21,45. The confusion matrix shows that RETFound achieves 

the highest sensitivity (Extended Data Table 1), indicating that more 

individuals with a high risk of systemic diseases are identified. The 

evaluation on oculomic tasks demonstrates the use of retinal images 

for incidence prediction and risk stratification of systemic diseases, 

significantly promoted by RETFound.

Compared to SSL-Retinal and SSL-ImageNet, RETFound shows con-

sistently better performance for disease detection (Figs. 2 and 3 and 

Supplementary Table 3), thus demonstrating SSL on retinal and natural  

images is complementary to developing the powerful foundation 

model. The strategy of combining natural images and medical data in 
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the performance with different fractions of training data to understand the 

amount of data required to achieve a target performance level. The dashed 

grey lines highlight the difference in training data between RETFound and the 

most competitive comparison model. RETFound performs better than the 

comparison groups with 10% of training data in 3-year incidence prediction of 

heart failure and myocardial infarction with modality of CFP and comparable to 

other groups with 45% of data in diabetic retinopathy MESSIDOR-2 and 50% of 

data on IDRID. The 95% CI of AUROC are plotted in colour bands and the centre 

points of the bands indicate the mean value of AUROC.
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Fig. 5 | Comparison of different SSL strategies in RETFound framework on 

exemplar applications. We show AUROC of predicting diabetic retinopathy, 

ischaemic stroke and heart failure by the models pretrained with different SSL 

strategies, including the masked autoencoder (MAE), SwAV, SimCLR, MoCo-v3 

and DINO. The data for systemic disease tasks come from the MEH-AlzEye 

dataset. RETFound with MAE achieved significantly higher AUROC in most 

tasks. The corresponding quantitative results for the contrastive SSL approaches 

are listed in Supplementary Table 4. For each task, we trained the model with 

five different random seeds, determining the shuffling of training data, and 

evaluated the models on the test set to get five replicas. We derived the 

statistics with the five replicas. The error bars show 95% CI and the bar centre 

represents the mean value of the AUPR. We compare the performance of 

RETFound with the most competitive comparison model to check whether 

statistically significant differences exist. P value is calculated with the 

two-sided t-test and listed in the figure.
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model development has also been validated in other medical fields, such 

as chest X-rays6 and dermatology imaging46. We also conducted calibra-

tion analyses for prediction models in oculomic tasks, which examines 

the agreement between predicted probabilities and real incidence.  

A well-calibrated model can provide a meaningful and reliable disease 

prediction as the predicted probability indicates the real likelihood 

of disease occurrence, enabling the risk stratification of diseases47,48.  

We observed that RETFound was better calibrated compared to other 

models and showed the lowest expected calibration error in the reliabil-

ity diagram (Extended Data Fig. 8). This verifies that RETFound gener-

ates reliable predicted probabilities, rather than overconfident ones.

The experiments show that both modalities of CFP and OCT have 

unique ocular and systemic information encoded that is valuable 

in predicting future health states. For ocular diseases, some image 

modalities are commonly used for a diagnosis in which the specific 

lesions can be well observed, such as OCT for wet-AMD. However, such 

knowledge is relatively vague in oculomic tasks as (1) the markers for 

oculomic research on different modalities are under exploration and 

(2) it requires a fair comparison between many modalities with identi-

cal evaluation settings. In this work, we investigate and compare the 

efficacy of CFP and OCT for oculomic tasks with identical training and 

evaluation details (for example, train, validation and/or test data split-

ting is aligned by anonymous patient IDs). We notice that the models 

with CFP and OCT achieve unequal performances in predicting systemic 

diseases (Fig. 3 and Supplementary Table 3), suggesting that CFP and 

OCT contain different levels of information for oculomic tasks. For 

instance, in 3-year incidence prediction of ischaemic stroke, RETFound 

with CFP performs better than with OCT on both MEH-AlzEye (inter-

nal evaluation) and UK Biobank (external evaluation). For the task of 

Parkinson9s disease, RETFound with OCT shows significantly better 

performance in internal evaluation. These observations may indicate 

that various disorders of ageing (for example, stroke and Parkinson9s 

disease) manifest different early markers on retinal images. A practical 

implication for health service providers and imaging device manu-

facturers is to recognize that CFP has continuing value, and should 

be retained as part of the standard retinal assessment in eye health 

settings. This observation also encourages oculomic research to inves-

tigate the strength of association between systemic health with the 

information contained in several image modalities.

There is a significant fall in performance when adapted models are 

tested against new cohorts that differ in the demographic profile, and 

even on the imaging devices that were used (external evaluation phase). 

This phenomenon is observed both in the external evaluation of ocular 

disease diagnosis (Fig. 2b) and systemic disease prediction (Fig. 3b). 

For example, the performance on ischaemic stroke drops (RETFound9s 

AUROC decreases by 0.16 with CFP and 0.19 with OCT). In the challeng-

ing oculomic tasks, the age and ethnicity profile of the internal and 

external validation cohorts (MEH-AlzEye and UK Biobank) as well as the 

imaging devices are significantly different (Supplementary Table 2), 

and this is likely to be reflected in the drop in performance when exter-

nally evaluated in the UK Biobank cohort. Compared to other models, 

RETFound achieves significantly higher performance in external evalu-

ation in most tasks (Fig. 3b) as well as different ethnicities (Extended 

Data Figs. 9311), showing good generalizability.

We observe that RETFound maintains competitive performance for 

disease detection tasks, even when substituting various contrastive 

SSL approaches into the framework (Fig. 5 and Extended Data Fig. 5). 

It seems that the generative approach using the masked autoencoder 

generally outperforms the contrastive approaches, including SwAV, 

SimCLR, MoCo-v3 and DINO. However, it is worth noting that assert-

ing the superiority of the masked autoencoder requires caution, given 

the presence of several variables across all models, such as network 

architectures (for example, ResNet-50 for SwAV and SimCLR, Trans-

formers for the others) and hyperparameters (for example, learning 

rate scheduler). Our comparison demonstrates that the combination of 

powerful network architecture and complex pretext tasks can produce 

effective and general-purpose medical foundation models, aligning 

with the insights derived from large language models in healthcare49,50. 

Furthermore, the comparison further supports the notion that the 

retinal-specific context learned from the masked autoencoder9s pre-

text task, which includes anatomical structures such as the optic nerve 

head and retinal nerve fibre layer (as shown in Extended Data Fig. 6a), 

indeed provides discriminative information for the detection of ocular 

and systemic diseases.

We believe that research on medical foundation models, such as 

RETFound, has the potential to democratize access to medical AI and 

accelerate progress towards widespread clinical implementation.  

To this end, foundation models must learn powerful representations 

from enormous volumes of medical data (1.6)million retinal images in 

our case), which is often only accessible to large institutions with effi-

cient dataset curation workflows. Also, SSL pretraining of foundation 

models requires many computational resources to achieve training 

convergence. We used eight NVIDIA Tesla A100 (40)GB) graphical pro-

cessing units (GPUs) on the Google Cloud Platform, requiring 2)weeks 

of developing time. By contrast, the data and computational require-

ments required to fine-tune RETFound to downstream tasks are com-

paratively small and therefore more achievable for most institutions. 

We required only one NVIDIA Tesla T4 (16)GB) GPU, requiring about 

1.2)h with a dataset of 1,000 images. Moreover, foundational models 

offer the potential to raise the general quality of healthcare AI models. 

Their adoption may help avoid superficially impressive models that 

rarely affect clinical care. These poorly generalizable models consume 

significant resources and can feed scepticism about the benefits of 

AI in healthcare. By making RETFound publicly available, we hope to 

accelerate the progress of AI in medicine by enabling researchers to 

use our large dataset to design models for use in their own institutions 

or to explore alternative downstream applications.

Although this work systematically evaluates RETFound in detecting 

and predicting diverse diseases, there are several limitations and chal-

lenges requiring exploration in future work. First, most data used to 

develop RETFound came from UK cohorts, therefore it is worth explor-

ing the impact of introducing a larger dataset by incorporating retinal 

images worldwide, with more diverse and balanced data distribution. 

Second, although we study the performance with modalities of CFP 

and OCT, the multimodal information fusion between CFP and OCT 

has not been investigated, which might lead to further improvement 

in performance. Finally, some clinically relevant information, such as 

demographics and visual acuity that may work as potent covariates for 

ocular and oculomic research, has not been included in SSL models.  

Combining these, we propose to further enhance the strength of  

RETFound in subsequent iterations by introducing even larger quan-

tities of images, exploring further modalities and enabling dynamic 

interaction across multimodal data. While we are optimistic about 

the broad scope of RETFound to be used for a range of AI tasks, we 

also acknowledge that enhanced human3AI integration is critical to 

achieving true diversity in healthcare AI applications.

In conclusion, we have verified the efficacy and efficiency of  

RETFound in adapting to diverse healthcare applications, showing 

high performance and generalizability in detecting ocular diseases and 

significant improvement in predicting systemic diseases. By overcom-

ing current barriers to clinical AI applications4notably, the extent of 

labelled data and limited performance and generalizability4SSL-based 

foundation models open the door to accelerated, data-efficient devices 

that may transform care for patients with ocular or systemic diseases.
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Methods

Datasets for developing RETFound

We curate large collections of unannotated retinal images for SSL, total-

ling 904,170 CFPs and 736,442 OCT scans. Of these, 815,468 (90.2%) 

CFPs and 627,133 (85.2%) OCTs are from Moorfields Diabetic imAge 

dataSet (MEH-MIDAS), and 88,702 (9.8%) CFPs are Kaggle EyePACS and 

109,309 (14.8%) OCTs that come from ref. 34. MEH-MIDAS is a retrospec-

tive dataset that includes the complete ocular imaging records of 37,401 

patients (16,429 female, 20,966 male and six unknown) with diabetes 

who were seen at Moorfields Eye Hospital, London, UK between 2000 

and 2022. The age distribution has a mean value of 64.5 and standard 

deviation of 13.3. The ethnicity distributes diversly: British (13.7%), 

Indian (14.9%), Caribbean (5.2%), African (3.9%), other ethnicity (37.9%) 

and not stated (24.4%). MEH-MIDAS includes various imaging devices, 

such as topcon 3DOCT-2000SA (Topcon), CLARUS (ZEISS) and Triton  

(Topcon). EyePACS includes images devices of Centervue DRS  

(Centervue), Optovue iCam (Optovue), Canon CR1/DGi/CR2 (Canon) and 

Topcon NW (Topcon). Reference 34 contains images from SPECTRALIS  

(Heidelberg).

Data for ocular disease diagnosis

We evaluate the model performance on three different categories of 

disease detection tasks. The first category of tasks involves diagnostic 

classification of ocular diseases with publicly available ophthalmic data. 

For diabetic retinopathy diagnosis, Kaggle APTOS-2019 (India), IDRID 

(India) and MESSIDOR-2 (France) are used. The labels for diabetic retin-

opathy are based on the International Clinical Diabetic Retinopathy 

Severity scale, indicating five stages from no diabetic retinopathy to 

proliferative diabetic retinopathy. For glaucoma, PAPILA51 (Spain) and 

Glaucoma Fundus52 (South Korea) are included. Glaucoma Fundus and 

PAPILA have three categorical labels, non-glaucoma, early glaucoma 

(suspected glaucoma) and advanced glaucoma. For datasets with sev-

eral diseases, JSIEC53 (China), Retina and OCTID54 (India) are included. 

JSIEC includes 1,000 images with 39 categories of common referable 

fundus diseases and conditions. Retina has labels of normal, glaucoma, 

cataract and retina disease. OCTID includes 470 OCT scans with labels 

of normal, macular hole, AMD, central serous retinopathy and diabetic 

retinopathy. The grading protocols for the public datasets are summa-

rized as: IDRiD, two medical experts provided adjudicated consensus 

grades; MESSIDOR-2, adjudicated by a panel of three retina specialists 

in accordance with a published protocol55; APTOS-2019, Kaggle dataset 

with limited information but possibly a single clinician grader; PAPILA, 

labelling and segmentation by two experts following extensive clinical 

examination and testing procedure including a retrospective clinical 

record review; Glaucoma Fundus, agreement of two specialists based 

on visual fields and extensive imaging and JSIEC, labelled by ophthal-

mologists and confirmed by senior retina specialists. Disagreements 

resolved by panel of five senior retina specialists were as follows: Retina, 

details not available and OCTID, describes image labelling based on 

the diagnosis of retinal clinical experts but does not specify duplicate 

adjudication. The details of datasets, such as imaging devices, country 

and label category, are listed in Supplementary Table 1.

Data for disease prognosis and prediction

For disease prognosis of fellow eye converting to wet-AMD in 1)year, we 

use data from the Moorfields AlzEye study (MEH-AlzEye). MEH-AlzEye 

is a retrospective cohort study linking ophthalmic data of 353,157 

patients, who attended Moorfields Eye Hospital between 2008 and 

2018, with systemic health data from hospital admissions across the 

whole of England. Systemic health data are derived from Hospital 

Episode Statistics (HES) data relating to admitted patient care, with 

a focus on cardiovascular disease and all-cause dementia. Diagnostic  

codes in HES admitted patient care are reported according to the tenth 

revision of the ICD (International Statistical Classification of Diseases)56. 

In line with previous reports, we selected the study cohort using ICD 

code: stroke (I23-I24), myocardial infarction (I21-I22), heart failure 

(I50) and Parkinson9s disease (G20). Among 186,651 patients with HES, 

6,504 patients are diagnosed with wet-AMD in at least one eye, 819 

patients have retinal imaging within 1)year before their fellow eyes con-

vert to wet-AMD and 747 patients with their fellow eyes not converting  

wet-AMD, after excluding other eye diseases. The final category of 

tasks studies the 3-year prediction of systemic diseases, with a focus 

on cardiovascular and neurodegenerative dysfunctions, using the 

MEH-AlzEye and UK Biobank. The UK Biobank includes 502,665 UK 

residents aged between 40 and 69)years who are registered with the 

National Health Service. Among all participants, 82,885 get CFP and 

OCT examinations and a total of 171,500 retinal images are collected. 

For each patient, we only include the retinal image from the left eye in 

one visit, to avoid potential bias by inconsistent individual visits. For 

internal evaluation, we split the patient groups into training, validation 

and test sets at a ratio of 55:15:30%. The training set is used to revise 

model parameters to achieve objective function. The validation set is 

for monitoring training converge and checkpoint selection. The test 

set is used to test the saved model checkpoint and evaluate the internal  

performance. For external validation, all patient data are used for 

evaluating the saved model checkpoint. The detailed data flowcharts 

are listed in Supplementary Figs. 135.

Data processing and augmentation for SSL

For CFP image preprocessing, we use AutoMorph57, an automated reti-

nal image analysis tool, to exclude the background and keep the retinal 

area. All images are resized to 256)×)256 with cubic interpolation. For 

OCT, we extract the middle slices and resize them to 256)×)256. We fol-

low the same data augmentation as the masked autoencoder in model 

training, including random crop (lower bounds 20% of the whole image 

and upper bounds 100%) and resizing the cropped patches to 224)×)224, 

random horizontal flipping and image normalization.

RETFound architecture and implementation

We use a specific configuration of the masked autoencoder15, which 

consists of an encoder and a decoder. The architecture detail is shown 

in Supplementary Fig. 6. The encoder uses a large vision Transformer58 

(ViT-large) with 24 Transformer blocks and an embedding vector size 

of 1,024, whereas the decoder is a small vision Transformer (Vit-small) 

with eight Transformer blocks and an embedding vector size of 512. The 

encoder takes unmasked patches (patch size of 16)×)16) as input and 

projects it into a feature vector with a size of 1,024. The 24 Transformer 

blocks, comprising multiheaded self-attention and multilayer percep-

tron, take feature vectors as input and generate high-level features. 

The decoder inserts masked dummy patches into extracted high-level 

features as the model input and then reconstructs the image patch 

after a linear projection. In model training, the objective is to recon-

struct retinal images from the highly masked version, with a mask 

ratio of 0.75 for CFP and 0.85 for OCT. The batch size is 1,792 (8 GPUs)×) 

224 per GPU). The total training epoch is 800 and the first 15 epochs 

are for learning rate warming up (from 0 to a learning rate of 1)×)1023). 

The model weights at the final epoch are saved as the checkpoint for 

adapting to downstream tasks.

Adaptation to downstream tasks

In adapting to downstream tasks, we only need the encoder (ViT-large) 

of the foundation model and discard the decoder. The encoder  

generates high-level features from retinal images. A multilayer per-

ceptron takes the features as input and outputs the probability of 

disease categories. The category with the highest probability will be 

defined as the final classification. The number of categories decides 

the neuron of the final layer of the multilayer perceptron. We include 

label smoothing to regulate the output distribution thus prevent-

ing overfitting of the model by softening the ground-truth labels 



in the training data. The training objective is to generate the same  

categorical output as the label. The batch size is 16. The total training 

epoch is 50 and the first ten epochs are for learning rate warming up 

(from 0 to a learning rate of 5)×)1024), followed by a cosine annealing 

schedule (from learning rates of 5)×)1024 to 1)×)1026 in the rest of the 40 

epochs). After each epoch training, the model will be evaluated on 

the validation set. The model weights with the highest AUROC on the 

validation set will be saved as the model checkpoint for internal and  

external evaluation.

Contrastive SSL implementation

We replace the primary SSL approach (that is, masked autoencoder) 

with SimCLR16, SwAV37, DINO38 and MoCo-v3 (ref. 14) in the RETFound 

framework to produce variants of the pretrained model for comparison. 

For SSL training with each contrastive learning approach, we follow the 

recommended network architectures and hyperparameter settings 

from the published papers for optimal performance. We first load the 

pretrained weights on ImageNet-1k to the models and further train the 

models with 1.6)million retinal images with each contrastive learning 

approach to obtain pretrained models. We then follow the identical 

process of transferring the masked autoencoder to fine-tune those 

pretrained models for the downstream disease detection tasks.

Explanations for fine-tuned models

We use RELPROP42 specified for Transformer-based networks. The 

method uses layer-wise relevance propagation to compute relevancy 

scores for each attention head in each layer and then integrates them 

throughout the attention graph, by combining relevancy and gradient 

information. As a result, it visualizes the areas of input images that lead 

to a certain classification. RELPROP has been shown to outperform 

other well-known explanation techniques, such as GradCam59.

Computational resources

SSL typically benefits from a large batch size for training and extract-

ing context from data, which requires powerful GPUs for computa-

tion. We use eight NVIDIA Tesla A100 (40)GB) on the Google Cloud 

Platform. It takes about 14)days to develop RETFound. We allocate an 

equal computational cost to each SSL approach for pretraining. For 

fine-tuning RETFound to downstream tasks, we use NVIDIA Tesla T4 

(16)GB). Fine-tuning takes about 70)min for every 1,000 images.

Evaluation and statistical analysis

All task performances are evaluated by the classification metrics known 

as AUROC and AUPR, computed from the receiver operating charac-

teristics and precision-recall curves of classifiers, respectively. For 

ocular prognosis and oculomic prediction tasks, the AUROC and AUPR 

are calculated in a binary setting. For multiclass classification, such as 

five-stage diabetic retinopathy and multicategory disease diagnosis, 

we calculate the AUROC and AUPR for each disease category and then 

average them to get the general AUROC and AUPR. For each task, we 

train the model with five different random seeds, determining the 

shuffling of training data. We calculate the mean and standard  

deviation of the performance over the five iterations and calculate the 

standard error by (standard deviation/ 5). We obtain the 95% CI by 

means of 1.96)×)standard error. We use the two-sided t-tests between 

the performance of RETFound and the most competitive comparison 

model to show whether significant differences exist.

Ethics statement

This study involves human participants and was approved by the 

London-Central Research Ethics Committee (18/LO/1163, approved 

1 August 2018), Advanced statistical modelling of multimodal data 

of genetic and acquired retinal diseases (20/HRA/2158, approved 

5 May 2020) and the Confidential Advisory Group for Section 251  

support (18/CAG/0111, approved 13 September 2018). The National 

Health Service Health Research Authority gave final approval on 13 

September 2018. Moorfields Eye Hospital NHS Foundation Trust vali-

dated the de-identifications. Only de-identified retrospective data 

were used for research, without the active involvement of patients.

Reporting summary

Further information on research design is available in the Nature  

Portfolio Reporting Summary linked to this article.

Data availability

The MIDAS dataset consists of routinely collected healthcare data. 

Owing to its sensitive nature and the risk of reidentification, the dataset 

is subject to controlled access by means of a structured application 

process. Data access enquiries may be made to enquiries@insight.

hdrhub.org and we will aim to respond within 2)weeks. Further details 

about the data request pipeline may be found on the INSIGHT Health 

Data Research Hub website https://www.insight.hdrhub.org. The AlzEye 

dataset is subject to the contractual restrictions of the data sharing 

agreements between National Health Service Digital, Moorfields Eye 

Hospital and University College London, and is not available for access 

beyond the AlzEye research team. National and international collabora-

tions are welcomed, although restrictions on access to the cohort mean 

that only the AlzEye researchers can directly analyse individual-level 

systemic health data. More details can be found at https://reading-

centre.org/studies/artificial_intelligence/alzeye. UK Biobank data are 

available at https://www.ukbiobank.ac.uk/. Data for ocular disease 

experiments are publicly available online and can be accessed through 

the following links: IDRID (https://ieee-dataport.org/open-access/

indian-diabetic-retinopathy-image-dataset-idrid), MESSIDOR-2 (https://

www.adcis.net/en/third-party/messidor2/), APTOS-2019 (https://

www.kaggle.com/competitions/aptos2019-blindness-detection/data), 

PAPILA (https://figshare.com/articles/dataset/PAPILA/14798004/1), 

Glaucoma Fundus (https://dataverse.harvard.edu/dataset.

xhtml?persistentId=doi:10.7910/DVN/1YRRAC), JSIEC (https://zenodo.

org/record/3477553), Retina (https://www.kaggle.com/datasets/jr2ngb/

cataractdataset) and OCTID (https://borealisdata.ca/dataverse/OCTID).

Code availability

The code used to train, fine-tune and evaluate RETFound from Y.Z. 

is available at https://github.com/rmaphoh/RETFound_MAE, which 

is based on PyTorch. Furthermore, a Keras version implemented by 

Y.K. is available at https://github.com/uw-biomedical-ml/RETFound_

MAE. Please note that the reported results are obtained from PyTorch  

models. Images were processed with automated retinal image analysis 

tool AutoMorph v.1.0 (https://github.com/rmaphoh/AutoMorph). 

Image data were extracted from Dicom files with Pydicom v.2.3.0. 

Results were further analysed and visualized with Python v.3.6, NumPy 

v.1.19.5, SciPy v.1.5.4, seaborn v.0.12.0, Matplotlib v.3.6.1, pandas v.1.5.0, 

Scikit-Learn v.1.1.3 and Pillow v.9.2.0. Heatmaps were generated with 

RELPROP (https://github.com/hila-chefer/Transformer-Explainability).
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Extended Data Fig. 1 | Illustration of training pipeline of RETFound and 

comparison baselines. The compared baselines include SL-ImageNet, 

SSL-ImageNet, and SSL-Retinal. SL-ImageNet trains the model via supervised 

learning on ImageNet-21k (14 million images and categorical labels); 

SSL-ImageNet trains the model on ImageNet-1k (1.4 million images) via SSL; 

SSL-Retinal trains the model on retinal images via SSL from scratch; RETFound 

trains the model on retinal images via SSL from the weights of SSL-ImageNet. 

*kayak picture is used to illustrate the method pipeline.
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Extended Data Fig. 2 | Performance (AUPR) on ocular disease diagnostic 

classification. a, internal evaluation, models are adapted to each dataset via 

fine-tuning and internally evaluated on hold-out test data. The dataset details 

are listed in Supplementary Table 1. b, external evaluation, models are fine- 

tuned on one diabetic retinopathy dataset and externally evaluated on the 

others. c, performance on ocular disease prognosis. The models are fine-tuned 

to predict the conversion of fellow eye to wet-AMD in 1 year and evaluated 

internally. For each task, we trained the model with 5 different random seeds, 

determining the shuffling of training data, and evaluated the models on the 

test set to get 5 replicas. We derived the statistics with the 5 replicas. The error 

bars show 95% confidence intervals and the bars9 centre represents the mean 

value of the AUPR. We compare the performance of RETFound with the most 

competitive comparison model to check if statistically significant differences 

exist. p-value is calculated with the two-sided t-test and listed in the figure.



Extended Data Fig. 3 | Performance (AUPR) on 3-year incidence prediction  

of systemic diseases with retinal images. a, internal evaluation, models are 

adapted to curated datasets from MEH-AlzEye via fine-tuning and internally 

evaluated on hold-out test data. b, external evaluation, models are fine-tuned 

on MEH-AlzEye and externally evaluated on UK Biobank. Data for internal and 

external evaluation is described in Supplementary Table 2. For each task, we 

trained the model with 5 different random seeds, determining the shuffling of 

training data, and evaluated the models on the test set to get 5 replicas.  

We derived the statistics with the 5 replicas. The error bars show 95% 

confidence intervals and the bars9 centre represents the mean value of the 

AUPR. We compare the performance of RETFound with the most competitive 

comparison model to check if statistically significant differences exist. p-value 

is calculated with the two-sided t-test and listed in the figure.
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Extended Data Fig. 4 | Adaptation efficiency in exemplar applications. 

Adaptation efficiency refers to the time required to achieve training convergence. 

We show the performance on validation sets with the same hyperparameters 

such as learning rate. The gray dash lines highlight the time point when the 

model checkpoint is saved and the time difference between RETFound and the 

most competitive comparison model is calculated. RETFound saves 80% of 

training time in adapting to 3-year incidence prediction of myocardial 

infarction and 46% in diabetic retinopathy MESSIDOR-2. 95% confidence 

intervals of AUROC are plotted in colour bands and the mean values are shown 

as centre lines.



Extended Data Fig. 5 | Comparison of different SSL strategies in RETFound 

framework. We show AUROC of predicting ocular diseases and systemic 

diseases by the models pretrained with different SSL strategies, including  

the masked autoencoder (MAE), SwAV, SimCLR, MoCo-v3, and DINO. The 

corresponding quantitative results for the contrastive SSL approaches are 

listed in Supplementary Table 4. For each task, we trained the model with 5 

different random seeds, determining the shuffling of training data, and 

evaluated the models on the test set to get 5 replicas. We derived the statistics 

with the 5 replicas. The error bars show 95% confidence intervals and the bars9 

centre represents the mean value of the AUPR. We compare the performance of 

RETFound with the most competitive comparison model to check if statistically 

significant differences exist. p-value is calculated with the two-sided t-test and 

listed in the figure.
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Extended Data Fig. 6 | Qualitative results of RETFound. a, Reconstructed 

colour fundus photographs and optical coherent tomography scans from 

highly masked images in pretext task. Although with few patches visible, 

RETFound infers the retina-specific anatomical structures (e.g. optic nerve and 

retinal nerve fibre layer) and disease lesions, which are markers for multiple 

diseases. b, Heatmaps highlighting the areas that contribute to the classification  

of the models in various downstream tasks. Red colour indicates high 

contribution. The well-defined pathologies of ocular diseases are identified 

and used for classification. For the prediction of systemic diseases, some 

anatomical structures associated with systemic conditions, e.g. optic nerve 

and vasculature on CFP and ganglion cell layer and macular area on OCT, are 

highlighted.



Extended Data Fig. 7 | Performance on various age distributions in 

predicting myocardial infarction. The disease group remains unchanged 

(mean value of age is 72.1) while the four control groups are sampled with 

various age distributions (mean values of age are respectively 66.8, 68.5, 70.4, 

and 71.9). The X axis shows the age difference between disease group and 

control groups. With each control group, we evaluate the performance of 

predicting myocardial infarction. The performance of RETFound remains 

robust to age difference while that of compared models drops when the age 

difference decreases. Logistic regression uses age as input. The logistic 

regression performs well when age difference is large (about 6) but clearly 

worse than SSL models when the difference becomes smaller. 95% confidence 

intervals are plotted in colour bands and the mean value of performances are 

shown as the band centres.



Article

Extended Data Fig. 8 | Reliability diagrams and expected calibration error 

(ECE) for prediction models. Reliability diagrams measure the consistency 

between the prediction probabilities of an event (e.g. myocardial infarction) 

with the actual chance of observing the event. The dashed line (diagonal line) 

indicates a perfectly calibrated model and the deviation represents the 

miscalibration. RETFound is closest to diagonal lines and the ECE is lowest 

among all models.



Extended Data Fig. 9 | Performance in predicting heart failure across 

ethnicities. We show AUROC of predicting 3-year heart failure in subsets with 

different ethnicity, including White, Asian or Asian British, and Black or Black 

British subgroups, the three largest major categories of ethnicity as described 

by the UK Government9s Office for National Statistics. Data is from MEH-AlzEye 

test set. The first column shows the performance on all test data, followed by 

results on three subgroups. The cohort quantity is listed in titles. We trained 

the model with 5 different random seeds, determining the shuffling of training 

data, and evaluated the models on the test set to get 5 replicas. We derived the 

statistics with the 5 replicas. The error bars show 95% confidence intervals and 

the bars9 centre represents the mean value of the AUPR. We compare the 

performance of RETFound with the most competitive comparison model to 

check if statistically significant differences exist. p-value is calculated with the 

two-sided t-test and listed in the figure.
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Extended Data Fig. 10 | Performance in predicting myocardial infarction 

across ethnicities. We show AUROC of predicting 3-year myocardial infarction 

in subsets with different ethnicity. Data is from MEH-AlzEye test set. The first 

column shows the performance on all test data, followed by results on White, 

Asian or Asian British, and Black or Black British cohorts. The cohort quantity is 

listed in titles. We trained the model with 5 different random seeds, determining  

the shuffling of training data, and evaluated the models on the test set to get 5 

replicas. We derived the statistics with the 5 replicas. The error bars show 95% 

confidence intervals and the bars9 centre represents the mean value of the 

AUPR. We compare the performance of RETFound with the most competitive 

comparison model to check if statistically significant differences exist. p-value 

is calculated with the two-sided t-test and listed in the figure.



Extended Data Fig. 11 | Performance in predicting ischaemic stroke across 

ethnicities. We show AUROC of predicting 3-year ischaemic stroke in subsets 

with different ethnicity. Data is from MEH-AlzEye test set. The first column 

shows the performance on all test data, followed by results on White, Asian or 

Asian British, and Black or Black British cohorts. The cohort quantity is listed in 

titles. We trained the model with 5 different random seeds, determining the 

shuffling of training data, and evaluated the models on the test set to get 5 

replicas. We derived the statistics with the 5 replicas. The error bars show 95% 

confidence intervals and the bars9 centre represents the mean value of the 

AUPR. We compare the performance of RETFound with the most competitive 

comparison model to check if statistically significant differences exist. p-value 

is calculated with the two-sided t-test and listed in the figure.
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Extended Data Table 1 | Confusion matrix on 3-year prediction of myocardial infarction

a, confusion matrix with CFP. b, confusion matrix with OCT. RETFound shows the highest sensitivity and specificity.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The code used to train, fine-tune, and evaluate RETFound from Yukun Zhou is available at https://github.com/rmaphoh/RETFound_MAE 
which bases on PyTorch. Additionally, a Keras version implemented by Yuka Kihara is available at https://github.com/uw-biomedical-ml/
RETFound_MAE. Please note that the reported results are obtained from PyTorch models. Image data was extracted from Dicom files with 
Pydicom v2.3.0 (https://pydicom.github.io). Images were processed with automated retinal image analysis tool AutoMorph v1.0 (https://
github.com/rmaphoh/AutoMorph). 

Data analysis Data was analysed with Python v3.6 (https://www.python.org/), NumPy v1.19.5 (https://github.com/numpy/numpy), SciPy v1.5.4 (https:// 
www.scipy.org/), seaborn v0.12.0 (https://github.com/mwaskom/seaborn), Matplotlib v3.6.1 (https://github.com/matplotlib/matplotlib), 
pandas v1.5.0 (https://github.com/pandas-dev/pandas), Scikit-Learn v1.1.3 (https://scikit-learn.org/stable), Pillow v9.2.0 (https://pypi.org/
project/Pillow). Heatmaps were generated with RELPROP (https://github.com/hila-chefer/Transformer-Explainability).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The MIDAS dataset consists of routinely collected healthcare data. Due to its sensitive nature and the risk of reidentification, the dataset is subject to controlled 
access via a structured application process. Data access enquiries may be made to enquiries@insight.hdrhub.org and we will aim to respond within two weeks. 
Further details about the data request pipeline may be found on the INSIGHT Health Data Research Hub website https://www.insight.hdrhub.org. The AlzEye 
dataset is subject to the contractual restrictions of the data sharing agreements between National Health Service Digital, Moorfields Eye Hospital and University 
College London and are not available for access beyond the AlzEye research team. National and international collaborations are welcomed though restrictions on 
access to the cohort mean that only the AlzEye researchers can directly analyse individual-level systemic health data. More details can be found at https://
readingcentre.org/studies/artificial_intelligence/alzeye. UK Biobank data is available at https://www.ukbiobank.ac.uk/. 
 
Data for ocular disease experiments are publicly available online and can be accessed via the links: IDRID (https://ieee-dataport.org/open-access/indian-diabetic-
retinopathy-image-dataset-idrid), MESSIDOR-2 (https://www.adcis.net/en/third-party/messidor2/), APTOS-2019 (https://www.kaggle.com/competitions/
aptos2019-blindness-detection/data), PAPILA (https://figshare.com/articles/dataset/PAPILA/14798004/1), Glaucoma Fundus (https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:10.7910/DVN/1YRRAC), JSIEC (https://zenodo.org/record/3477553), Retina (https://www.kaggle.com/datasets/jr2ngb/
cataractdataset), OCTID (https://borealisdata.ca/dataverse/OCTID). 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Biological sex information for MEH-MIDAS and MEH-AlzEye was collected via self-report. MEH-MIDAS includes 37,401 
patients (16,429 female, 20,966 male, and 6 unknown) and MEH-AlzEye includes 353,157 patients (190,494 female and 
162,663 male). Experiments were conducted both on female and male. We used all MEH-MIDAS data to develop RETFound 
models and subsets of MEH-AlzEye for downstream validation (detailed in Supplementary Table 2).

Population characteristics MEH-MIDAS is a retrospective dataset which includes the complete ocular imaging records of 37,401 patients with diabetes 
who were seen at Moorfields Eye Hospital, London, United Kingdom between 2000 and 2022. The age distribution has a 
mean value of 64.5 and standard deviation of 13.3. The ethnicity distributes diversly: British (13.7%), Indian (14.9%), 
Caribbean (5.2%), African (3.9%), other ethnicity (37.9%), not stated (24.4%). MEH-MIDAS includes various imaging devices, 
such as topcon 3DOCT-2000SA (Topcon), CLARUS (ZEISS), and Triton (Topcon). 
 
MEH-AlzEye is a retrospective cohort study linking ophthalmic data of 353,157 patients, who attended Moorfields Eye 
Hospital between 2008 and 2018, with systemic health data from hospital admissions across the whole of England. Systemic 
health data are derived from Hospital Episode Statistics (HES) data relating to admitted patient care (APC), with a focus on 
cardiovascular disease and all-cause dementia. More details can be found in the method section. Selections of study cohort 
were shown in Supplementary Figure 2-6 and characteristics were listed in Supplementary Table 2.  
 
The UK Biobank includes 502,665 UK residents aged between 40 and 69 years who are registered with the National Health 
Service. Among all participants, 82,885 get CFP and OCT examinations and a total of 171,500 retinal images are collected. 
Selections of study cohort were shown in Supplementary Figure 2-6 and characteristics were listed in Supplementary Table 2.

Recruitment MEH-MIDAS is a retrospective dataset which includes the complete ocular imaging records of 37,401 patients with diabetes 
who were seen at Moorfields Eye Hospital, London, United Kingdom between 2000 and 2022. MEH-AlzEye is a retrospective 
cohort study linking ophthalmic data of 353,157 patients who attended Moorfields Eye Hospital between 2008 and 2018. 

Ethics oversight This study involves human participants and was approved by the London-Central Research Ethics Committee (18/LO/1163, 
approved 01/08/2018), Advanced statistical modelling of multimodal data of genetic and acquired retinal diseases (20/
HRA/2158, approved 05/05/2020), and the Confidential Advisory Group for Section 251 support (18/CAG/0111, approved 
13/09/2018). The National Health Service Health Research Authority gave final approval on 13 September 2018. Moorfields 
Eye Hospital NHS Foundation Trust validated the de-identifications. Only de-identified retrospective data was used for 
research, without the active involvement of patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Data for developing RETFound model was from MoorfIelds Diabetic imAge dataSet (MEH-MIDAS) and public data (totalling 904,170 CFPs and 
736,442 OCTs). Data for ocular disease diagnosis were from public datasets, detailed in Supplementary Table 1. Data for systemic disease 
prediction were from Moorfields AlzEye project and selected cohorts were introduced in Supplementary Table 2. Datasets were chosen based 
on the availability of labels that would permit external validation of the different fine-tuned RETFound models, which is dependent on the 
specific clinical task being evaluated. The chosen external validation datasets were deemed to be suitable based on their parameters, which 
are summarised Supplementary Information Table 1 Dataset characteristics. Formal sample size calculations were not performed due to the 
lack of established methods when applied to machine-learning classification studies.

Data exclusions Data failed image processing with AutoMorph were excluded. Data without systemic health labels were excluded. For more details please 
refer to the method section.

Replication All patients were randomly selected and were not correlated in any way. The replication of experiment results were confirmed in 5 times with 
5 different random seeds.

Randomization The training/validation/testing data for downstream tasks were randomly splitted in ratio of 55%:15%:30%. For each patient, we only included 
the left eye data from one visit to avoid potential bias by inconsistent individual visits.

Blinding When assigning patients randomly to training, validation and testing groups investigators were blinded to patient covariates and all features in 
the dataset not required to perform the research. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


