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 2 

SUMMARY 33 

Accurate and comprehensive annotation of microprotein-coding small open reading frames 34 

(smORFs) is critical to our understanding of normal physiology and disease. Empirical 35 

identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). 36 

While effective, published Ribo-seq datasets can vary drastically in quality and different analysis 37 

tools are frequently employed. Here, we examine the impact of these factors on identifying 38 

translated smORFs. We compared five commonly used software tools that assess ORF 39 

translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH), 40 

and found surprisingly low agreement across all tools. Only ~2% of smORFs were called 41 

translated by all five tools and ~15% by three or more tools when assessing the same high-42 

resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~72% 43 

agreement across all five tools. We also found that some tools are strongly biased against low-44 

resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage as a 45 

proxy for translation levels revealed that highly translated smORFs are more likely to be 46 

detected by more than one tool. Together these results support employing multiple tools to 47 

identify the most confident microprotein-coding smORFs, and choosing the tools based on the 48 

quality of the dataset and planned downstream characterization experiments of predicted 49 

smORFs. 50 
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INTRODUCTION 59 

Early efforts to annotate eukaryotic genomes relied in part on applying expected 60 

properties of coding regions, such as having an ATG/AUG start codon in frame with a 61 

downstream stop codon, one protein coding region per transcript that is often the longest open 62 

reading frame (ORF), and a minimum length cutoff of 100 codons to identify overlooked coding 63 

regions [1]. While effective, there remained the possibility that ORFs which do not follow these 64 

rules can be translated to encode functional proteins. Recent advances in genomics, 65 

proteomics, and bioinformatics have allowed researchers to empirically define protein coding 66 

regions within genomes with better precision. The most striking result of these new studies is 67 

that thousands of small open reading frames (smORFs) containing less than 100-150 codons, 68 

which were presumed to be randomly occurring and non-functional, are in fact translated into 69 

small proteins dubbed microproteins. These smORFs make up the majority of unannotated 70 

ORFs and represent an increasingly active area of research.  Many microproteins have now 71 

been shown to be critical in normal biological processes and disease. 72 

One of the primary methods for re-annotation of genomes is based on ribosome profiling 73 

(Ribo-seq). Ribo-seq involves stalling elongating ribosomes in cell or tissue lysates with the 74 

small molecule inhibitor cycloheximide, followed by digestion of polysomes with an RNase and 75 

preparation of the ribosome protected RNA fragments (RPFs) into next generation sequencing 76 

libraries. Following sequencing, the resulting reads are processed and aligned to the genome to 77 

determine the locations of the ribosomes in each sample at harvesting. By identifying the 78 

locations of ribosomes, bioinformatic tools can then be applied to infer which open reading 79 

frames are translated. However, due to the variation in Ribo-seq protocols and a variety of 80 

different software tools that have been developed to analyze translation from Ribo-seq data, 81 

there is no consensus on best practices within the field for predicting smORFs.  82 

For the field to progress further toward functional investigation of individual microproteins 83 

and exploration of their utility as therapeutic targets, confidence in which smORFs are 84 
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annotated as translated is needed. Previously, we showed that differences in Ribo-seq data 85 

quality can strongly impact which smORFs are called translated and that analyzing biological 86 

replicate datasets is helpful for separating robustly translated smORFs from noise [2]. Here, we 87 

hypothesized that different software tools for interpreting Ribo-seq data can also introduce 88 

inconsistencies into which smORFs are considered translated due to differences in the 89 

properties of Ribo-seq data are considered in scoring, how they are weighted, and what 90 

statistical methods or classifiers are applied. To understand how the choice of software tool can 91 

influence smORF prediction, we evaluated the performances of several popular Ribo-seq-based 92 

ORF prediction tools. We found that while all tools show high congruence when identifying 93 

larger annotated ORFs as translated, they show low similarity for which unannotated smORFs 94 

are predicted to be translated. Analysis of Ribo-seq coverage levels between annotated ORFs 95 

and unannotated smORFs suggest that the overall lower translation levels of smORFs 96 

contributes to their noisier translation predictions. In addition, we observed large differences 97 

between the tools9 abilities to predict smORF translation when using lower quality Ribo-seq 98 

datasets versus high. We also demonstrated that incorporation of an RNA-seq-derived de novo 99 

transcriptome assembly can add additional unannotated smORFs compared to using a standard 100 

GENCODE transcriptome annotation. Altogether, these results highlight the importance of using 101 

multiple tools to raise confidence in the annotation of individual ORFs for functional studies and 102 

broaden the pool of potential smORFs to test in high-throughput screens.  103 

 104 

METHODS 105 

Ribo-seq datasets and preprocessing 106 

Ribo-seq datasets analyzed in this study were generated in our previous study [3], and 107 

can be downloaded from the Gene Expression Omnibus (GEO) database repository under 108 

accession number GSE125218. The specific Sequence Read Archive (SRA) IDs for the Ribo-109 

seq datasets are as follows: high-resolution HeLaS3 - SRR8449578, low-resolution HeLaS3 - 110 
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SRR8449575, harringtonin (TI-seq) HeLaS3 - SRR8449585, high-resolution HEK293T - 111 

SRR8449568, medium-resolution HEK293T - SRR8449567, and low-resolution HEK293T - 112 

SRR8449566. 113 

Ribo-seq reads were preprocessed by trimming of 39 adapter sequences 114 

(AGATCGGAAGAGCACACGTCT) using the FASTX-toolkit. Next, reads aligning to rRNA and 115 

tRNA sequences were filtered out using STAR with parameters 3outReadsUnmapped Fastx 116 

and the remaining reads were subsequently aligned to the GENCODE hg38 version 39 genome 117 

assembly using STAR with the following settings 3outFilterMismatchNmax 2 3118 

outFilterMultimapNmax 4 3chimScoreSeparation 10 3chimScoreMin 20 3chimSegmentMin 15 3119 

outSAMattributes All 3outSAMtype BAM SortedByCoordinate.  The resulting bam file was 120 

filtered for primary alignments using samtools with the following parameters -bS -F 0X100. After, 121 

multimappers were removed using samtools with the following parameters -bq 255. The 122 

alignment files used for RiboCode9s prepare_transcripts function requires the use of the 123 

quantMode option during STAR alignment. To run RiboCode, reads were processed separately 124 

using author recommended settings to include 4outfilterMismatchNmax 2 3outSAMtype 125 

BAMSortedByCoordinate 3quantMode TranscriptomeSAM Genecounts 3126 

outFilterMultiMapNmax 1 3outFilterMatchNmin 16 3alignEndsType EndToEnd.  Length 127 

histograms were generated by sampling a million reads and sorted by length from the final 128 

alignment file. Metagene plots were created using RibORFv0.19s readDist.pl function and a 129 

custom script was used to calculate the fraction of in frame reads based on the total corrected 130 

reads. Other tools also have the capability to generate metagene plots. To ensure the same set 131 

of read lengths were used for analysis across the different workflows, the same read lengths 132 

and offset corrections were used for all ORF predictions for each separate library. Ribo-seq 133 

coverage was visualized by generating bedgraphs using HOMER and uploading the bedgraphs 134 

to the UCSC Genome Browser. 135 
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For final list filtering, smORFs with a minimum length cutoff of >6 amino acids and 136 

maximum length cutoff of 150 amino acids was applied to all smORF lists. Afterwards, bedtools 137 

intersect was used to remove smORFs that had over 90% overlap with CDS regions of 138 

canonical genes with the following commands, -f 0.9 -v -s. We chose to exclude smORFs that 139 

overlap fully with annotated ORFs in our analysis as they can be difficult to accurately identify 140 

by Ribo-seq, but all the tools will allow for fully internal smORFs to be scored. After filtering out 141 

passing smORFs, an additional filter using BLASTP was applied to remove potential 142 

pseudogenes and potentially missed RefSeq annotated microproteins. The settings for running 143 

the BLASTP search was -outfmt 10 -max_target_Seqs 5 -evalue 0.0001, and microproteins with 144 

BLASTP scores ³40 were filtered out.  For generating translation scores for annotated genes, 145 

RibORFv0.1 was run using a separate refFlat containing GENCODE CDS regions. For 146 

RiboCode, Ribo-TISH, ORFquant, and RibORFv1.0, annotated genes that were detected were 147 

separated out from the final list of ORFs predicted. 148 

 149 

Tools compared in this study for microprotein-coding smORF identification 150 

RibORFv0.1 151 

RibORFv0.1 is the oldest tool of those we compared and is the tool we have used to 152 

annotate microprotein-coding smORFs in our previous studies [2,4]. RibORFv0.1 utilizes a 153 

support vector machine classifier to select for translating ORFs based on fraction of A-site reads 154 

aligned to the correct reading frame and read distribution uniformity over the ORF. The model 155 

uses canonical ORFs and off-frame ORFs for positive and negative controls, respectively, to 156 

train the classifier to predict smORFs. A final p-value score is determined based on these two 157 

properties. The authors suggest a score of g0.7 as a threshold for translation. Importantly, this 158 

tool requires the user to provide a list of ORFs to be scored and cannot use the Ribo-seq data 159 

to help identify start and stop sites. ORFs were defined using a custom java script, 160 

GTFtoFASTA [2]. Using the reference GENCODE transcriptome, all three open reading frames 161 
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were parsed to find the most upstream canonical ATG start codon and in frame stop. If there is 162 

no canonical start codon, then the ORF is defined from stop codon to stop codon. Running 163 

RibORFv0.1 for translation scoring, ORFs were filtered with a minimum length cutoff of 18 and 164 

minimum read coverage cutoff of 10 using the ribORF.pl script. The resulting list of ORFs was 165 

further filtered with a pvalue cutoff of  g0.7, max nucleotide length cutoff of 450, and a read 166 

coverage cutoff of 10. 167 

 168 

RibORFv1.0 169 

RibORFv1.0 is an updated version of RibORF that uses a different strategy for scoring 170 

translation but is otherwise similar to RibORFv0.1. Instead of a support vector machine 171 

classifier, RibORFv1.0 uses a logistic regression model to determine the pvalue scores. In 172 

addition, RibORFv1.0 no longer uses a pre-scored training set of known translated and non-173 

translated ORFs but uses the user9s own data to train prediction parameters based on pre-174 

defined positive and negative ORFs. It also parses user provided transcriptomes to identify all 175 

possible ORFs and thus does not require a user provided list. ORF scoring was processed by 176 

first running the ORFannotate.pl script with default settings. After candidate ORFs are 177 

generated, ribORF.pl was used to identify translated ORFs using default settings of 178 

orfLengthcutoff of 6 and readlengthcutoff 11. As with RibORFv0.1, the scored ORF list was 179 

filtered with a pvalue cutoff of g0.7 and max nucleotide length cutoff of 450. 180 

 181 

Ribo-TISH 182 

Like other tools, Ribo-TISH can assess ORFs for translation using standard Ribo-seq 183 

data from samples treated with cycloheximide. In addition, it can use translation initiation 184 

sequencing (TI-seq) data from cells treated with translation initiation inhibitors, e.g. harringtonin 185 

or lactimidomycin, to identify translated ORFs either with TI-seq data alone or in combination 186 

with Ribo-seq data. For scoring, it uses a non-parametric Wilcoxon rank-sum test for its 187 
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assessment of 3-nt periodicity. Ribo-TISH can also parse user provided transcriptomes to 188 

identify all possible ORFs and de novo annotate the translatome. Ribo-TISH was run with the 189 

strategy of taking the most distal start codon to stop codon with RPF coverage when defining 190 

the ORF. The predict function with the parameters 3longest 3altcodons TTG,CTG,GTG 3seq 3191 

aaseq with a p-value threshold of <0.05 was used. For Ribo-TISH analysis with translation 192 

initiation data, the same settings were used with the additional -t flag for the harringtonin dataset 193 

input. 194 

 195 

RiboCode 196 

RiboCode is a de novo translatome annotation software that relies solely on the 3-nt 197 

periodicity pattern. For scoring, RiboCode uses a modified Wilcoxon signed rank-sum test to 198 

assess whether the P-site density for a particular ORF is greater than the densities in the 199 

alternative reading frames. Like the other modern tools, RiboCode parses a user provided 200 

transcriptome to identify all possible ORFs for scoring. RiboCode also allows for the user to 201 

input non-canonical start codons to use for defining candidate ORFs. Detection of translated 202 

ORFs was identified using the RiboCode function with the settings -l no -s ATG -A 203 

CTG,GTG,TTG -g and the default p-value cutoff of 0.05. 204 

 205 

ORFquant 206 

 ORFquant is also able to de novo annotate the translatome. It uses a multitaper test to 207 

select in-frame signal showing 3-nt periodicity, similar to the older RiboTaper tool developed by 208 

the same author. This tool generates a p-value and a cutoff of 0.05 is used to identify translated 209 

ORFs. Importantly, ORFquant requires the average signal on each covered codon to be >50% 210 

in frame and only considers AUG start codons. ORFquant was run using the authors9 211 

recommended settings. First, a .2bit file and gtf are used to create a TxDb and Rdata file using 212 

the prepare_annotation_files function. Next, the prepare_for_ORFquant function was used to 213 
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process the alignment bam file and text file containing the read lengths and cutoff for analysis. 214 

Lastly, run_ORFquant was used to take the files produced in the previous steps to score ORFs 215 

using a p-value threshold of 0.05. 216 

 217 

Ribo-seq Read Coverage and PhyloCSF Analysis 218 

Ribo-seq read coverage for candidate smORFs identified by each tool were quantified 219 

alongside the top expressed isoforms for annotated genes. Coverage was quantified using 220 

HOMER9s analyzeRepeats function and expression was normalized by transcripts per million 221 

(TPM).  Average PhyloCSF scores for the 58-mammal alignment used with genome build hg38 222 

were extracted for all smORFs from the UCSC genome browser9s PhyloCSF Track Hub. 223 

 224 

Nanopore Long-read library preparation and sequencing 225 

Total RNA was isolated from HeLa-S3 using the QIAGEN RNeasy kit. RNA integrity was 226 

assessed using TapeStation 4200 (Agilent) and RNA samples with RIN> 8 were used for library 227 

preparation for long read sequencing. Isolated total RNA was used to generate sequencing 228 

library following Oxford Nanopore Technologies protocol for cDNA-PCR sequencing kit. 50 ng of 229 

total RNA was first reverse transcribed for complementary strand synthesis using strand 230 

switching primers. cDNA was PCR amplified using primers that contain 59 tags, which enables 231 

attachment of rapid sequencing adapters. The cDNA library was loaded onto R9.4.1 flow cells 232 

according to Oxford Nanopore Technologies protocol and sequenced for 48 hours with High 233 

accuracy setting on GridION system in the Salk NGS core. 234 

 235 

De novo transciptome assembly 236 

For the long read RNA-seq datasets generated using the Nanopore sequencing 237 

platform, reads were processed using the FLAIR pipeline. Reads were aligned using FLAIR 238 

align module with minimap2 and converted to a SAM file in BED12 format. FLAIR correct was 239 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.30.573709doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.30.573709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

used to correct misaligned splice sites using the GENCODE version 39 annotation. Finally, 240 

FLAIR collapse takes the high confidence isoforms from the corrected reads to output a gtf. 241 

Using the StringTie merge option, the FLAIR gtf was merged with the GENCODE reference gtf 242 

to create a combined non-redundant set of transcripts used for downstream analysis. 243 

For the paired-end RNA-seq datasets generated using the Illumina sequencing platform, 244 

originally generated in [2], fastq files were downloaded from the SRA with accession codes 245 

found in (Table S1) and trimmed of adapter sequences using TrimGalore. Reads were aligned 246 

using STAR with the options 3runMode alignReads 3sjdbOverhang 100 3runRNGseed 133 3247 

twopassMode Basic 3outSAMstrandField intronMotif 3outfilterINtronMotifs Remove 248 

Noncanonical 3outSAMattributes All. The resulting bam file was then sorted using samtools. For 249 

each library, StringTie was used to assemble transcripts from the sorted bam files using the 250 

guided assembly option. The assembled transcripts were then merged using the StringTie 251 

merge option with the GENCODE reference transcriptome annotation. The resulting gtf file was 252 

used as the transcriptome for downstream smORF analysis. GFFCompare was used to 253 

compare and evaluate the two transcriptome assemblies. 254 

 255 

RESULTS AND DISCUSSION 256 

Tools for detecting translated open reading frames from Ribo-seq 257 

We compared five popular tools for analyzing individual open reading frames for 258 

translation using Ribo-seq data, including RibORF version 0.1 (RibORFv0.1) [5], RibORF 259 

version 1.0 (RibORFv1.0) [6], Ribo-TISH [7], RiboCode [8], and ORFquant [9]. These tools were 260 

published between 2015 and 2020 and have been applied frequently to identify novel translated 261 

ORFs, including smORFs, in the years since. Each tool includes an assessment of the 3 262 

nucleotide (3-nt) periodicity of aligned ribosomal A-site or P-site reads that are in-frame with a 263 

particular ORF to aid in scoring translation. This feature is a hallmark of active translation as the 264 

ribosome scans ORFs translating 3-nt codons from the start codon to the stop codon [10]. 265 
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Higher resolution datasets have a higher percentage of reads in-frame with annotated ORFs. 266 

However, the statistical methods applied for assessing whether the fraction of in-frame reads is 267 

significant differs widely. For example, RibORFv0.1 utilizes a support vector machine approach 268 

to classify and score ORFs, while RiboCode uses a modified Wilcoxon signed-rank sum test to 269 

determine the significance in-frame versus out-of-frame read enrichment within the tested ORF 270 

(Fig. 1A). In addition, whether tools allow for ORFs initiating from near-cognate start codons, 271 

such as CUG or GUG, or consider other features such as percent ORF coverage differs among 272 

the tools. More details on how each tool scores translation is included in the Methods section. 273 

 274 

 275 

Figure 1. Workflow of smORF Annotation and Ribo-seq Tool Features. (A) Workflow for 276 

processing and filtering of Ribo-seq datasets that were used for ORF identification and 277 

comparison of translated unannotated smORF lists. (B) Properties of the computational 278 

methods compared in this study. 279 
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To compare the tools, we developed a standardized workflow to take unprocessed Ribo-281 

seq data and generated a filtered list of predicted novel smORFs (Fig. 1B). To summarize, 39-282 

adapter sequences are trimmed and reads aligning to rRNA and tRNA sequences are filtered 283 

out. The remaining reads are mapped to the hg38 genome using STAR [11] and the resulting 284 

alignment file of only uniquely mapped reads is used as the input for each tool to score ORFs 285 

for translation. Each tool was also given either a list of all possible ORFs to score, which we 286 

generated from the GENCODE comprehensive set of human transcripts, or the entire 287 

GENCODE transcriptome file for the software to parse into ORFs for scoring. The Ribo-seq 288 

datasets analyzed in our tool comparison were generated in our previous study [2] and include 289 

low- and high-resolution datasets collected from HeLa-S3 and HEK293T cell lines 290 

(Supplementary Fig. 1). The high-resolution datasets show greater than 70% in-frame RPF 291 

read alignment with known coding regions across all read lengths retained for analysis, while 292 

low-resolution data show only ~50% of in-frame RPF reads (Supplementary Fig. 2). These 293 

datasets allowed us to assess any differences between the tools in handling varying quality data 294 

and ensure that any observed trends are not cell line specific. Following scoring by each tool, 295 

smORFs that were found to fully overlap within annotated CDS regions were removed. These 296 

internal smORFs can be difficult to accurately score by Ribo-seq as reads aligned to each ORF 297 

inherently lowers the score of the other ORF. The list of remaining unannotated smORFs were 298 

then used for comparison across tools.  299 

 300 

Comparing Predicted Translated smORFs Across Tools 301 

 In our previous study, we showed that there was a high overlap in the detection of 302 

annotated coding regions from Ribo-seq data across different resolutions, but that the list of 303 

smORFs called translated was noisy and showed low overlap across datasets [2]. This study 304 

only used RibORFv0.1 to analyze smORF translation, leaving an open question as to whether 305 

the poor overlap was an artifact of the software tool or a result of smORF translation being 306 
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generally noisier and more difficult to assess relative to larger annotated coding regions. To test 307 

this, we initially examined a high-resolution HeLa-S3 Ribo-seq data for differences in identifying 308 

translated ORFs across the different tools. We observed high overlap in the number of total 309 

annotated genes detected across all five tools with 8,781 (71.6%) called translated and a similar 310 

number identified by each tool (Fig. 2A).  Pairwise comparisons of the number of annotated 311 

ORFs found in one tool compared to each other tool, as well as the proportion of matched 312 

ORFs, showed similar performance between all tools and that RibORFv0.1 was the least 313 

sensitive (Figs. 2B, C). Next, we examined the prediction of novel translated smORFs from 314 

each tool (Fig. 2D). Compared to annotated ORFs, there is little overlap in the total number of 315 

smORFs predicted with only 235 (2.3%) found across all tools and 1,549 (15.4%) smORFs 316 

found in at least three out of five tools. The performance of the tools differentiated into two 317 

groups. RiboCode, RibORFv0.1, and RibORFv1.0 called 2.3-4.8 times as many smORFs 318 

translated as ORFquant and Ribo-TISH. Pairwise analysis of the number and proportion of 319 

matched smORFs revealed additional differences between the tools (Fig. 2E, F). First, despite 320 

identifying less than half the number of translated smORFs as RiboCode and RibORFv1.0, only 321 

~40% of Ribo-TISH hits overlapped with RiboCode and RibORFv1.0. This contrasted with 322 

ORFquant, which also identified a lower amount of translated smORFs (1,124) but had 68% and 323 

81% of its calls overlap with those of RibORFv1.0 and RiboCode, respectively. In addition, Ribo-324 

TISH had the smallest proportion of ORFquant calls matched (30%). These data demonstrate 325 

that Ribo-TISH is an outlier compared to the other tools that identifies both a smaller number 326 

and more unique set of smORFs as translated. Meanwhile, the majority of ORFquant9s hits can 327 

be captured by using the tools that predict larger numbers of translated smORFs. 328 
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 329 

Figure 2. Comparison of detected annotated ORFs and predicted smORFs in the high-330 

resolution HeLa-S3 Ribo-seq dataset. (A) Venn diagram showing the overlap of annotated 331 

genes called translated across the different tools. The total number of annotated genes detected 332 

is displayed next to the names of each tool in parentheses. (B) Heat map showing the pairwise 333 

comparison of matching annotated genes between the different tools. (C) Heat map showing the 334 

proportion of annotated genes identified by the tool in the column that are also detected by the 335 

tool in the row. (D-E) The same plots are shown as in (A-C) for the analysis of unannotated 336 

smORFs. 337 

 338 

We next explored whether these trends would remain consistent after analyzing low-339 

resolution HeLa-S3 Ribo-seq data. Compared to the detection of annotated genes in the high-340 

resolution dataset, we observed a large drop in the number of smORFs called translated by 341 

ORFquant (3,525) and Ribo-TISH (5,894) resulting in only 2,104 (18.4%) in common across all 342 

tools (Fig. 3A). Pairwise comparisons of the tools showed that both RibORFv1.0 and RiboCode 343 

identified the most annotated genes as translated and >90% of those identified in all the other 344 

tools (Fig. 3B, C). ORFquant was impacted the most by the low-resolution data, identifying only 345 

3,525 annotated genes as translated. This is consistent with ORFquant9s requirement to have 346 

>50% reads in-frame for each codon within an ORF to be called translated [9]. Similarly, Ribo-347 

A

D

HeLa-S3 HiRes Translated Annotated ORF Overlap Number of Matched Annotated ORFs

9068

8963

8846

9038

9068

10961

10791

11084

8963

10961

10652

10864

8846

10791

10652

10634

9038

11084

10864

10634

RiboCode

Ribo-TISH

ORFquant

9000

9500

10000

10500

11000

R
ib

O
R
F0.

1 
(9

13
2)

R
ib

oC
ode 

(1
16

85
)

R
ib

o-T
IS

H
 (1

10
17

)

O
R
Fquan

t (
10

83
4)

R
ib

O
R
F1.

0 
(1

15
45

)

RibORF0.1

RibORF1.0

Number of Matched smORFs

1302

436

633

1294

1302

692

911

2205

436

692

337

659

633

911

337

764

1294

2205

659

764

RiboCode

Ribo-TISH

ORFquant

500

1000

1500

2000

R
ib

O
R
F0.

1 
(3

14
4)

R
ib

oC
ode 

(4
13

5)

R
ib

o-T
IS

H
 (1

75
5)

O
R
Fquan

t (
11

24
)

R
ib

O
R
F1.

0 
(5

40
3)

RibORF0.1

RibORF1.0

B C

E F

RibORF0.1

(3144)

RibORF1.0

(5403)

RiboCode

(4135)

Ribo-TISH

(1755)

ORFquant

(1124)

HeLa-S3 HiRes Translated smORFs Overlap

RiboCode

Ribo-TISH

ORFquant

Proportion of Matched Annotated ORFs

0.99

0.98

0.97

0.99

0.78

0.94

0.92

0.95

0.81

0.99

0.97

0.99

0.82

0.99

0.98

0.98

0.78

0.96

0.94

0.92

0.80

0.85

0.90

0.95

RibORF0.1

RibORF1.0

R
ib

O
R
F0.

1 
(9

13
2)

R
ib

oC
ode 

(1
16

85
)

R
ib

o-T
IS

H
 (1

10
17

)

O
R
Fquan

t (
10

83
4)

R
ib

O
R
F1.

0 
(1

15
45

)

RiboCode

Ribo-TISH

ORFquant

Proportion of Matched smORFs

0.41

0.14

0.20

0.41

0.31

0.17

0.22

0.53

0.25

0.39

0.19

0.38

0.56

0.81

0.30

0.68

0.24

0.41

0.12

0.14

0.20

0.40

0.60

0.80

R
ib

O
R
F0.

1 
(3

14
4)

R
ib

oC
ode 

(4
13

5)

R
ib

o-T
IS

H
 (1

75
5)

O
R
Fquan

t (
11

24
)

R
ib

O
R
F1.

0 
(5

40
3)

RibORF0.1

RibORF1.0

8781
17

48

160

402

14
114

1304 24

19
2

1

0

42

0

54

5

2 0

425

27 1

1

33

5446

1763 84 6

2

RibORF0.1

(9132)

RibORF1.0

(11545)

RiboCode

(11685)

Ribo-TISH

(11017)

ORFquant

(10834)

235
9

411

116

1482

159
807

15433 75

937
20

21

0

319

22

1601

156

27 8

2900

68 0

17

157

120112

51 32 2

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.30.573709doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.30.573709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

TISH and ORFquant were greatly affected by the lower resolution when predicting novel 348 

smORFs, predicting 13 and 203 smORFs, respectively (Fig. 3D). Despite the low number of 349 

smORFs predicted, we observed the same trend that the highest proportional overlap of 350 

smORFs were relative to ORFquant predictions. We repeated the comparison analysis on 351 

HEK293T Ribo-seq data with varying resolutions and found similar trends with annotated genes 352 

(Supplementary Fig. 3) and unannotated smORFs (Supplementary Fig. 4), validating the 353 

conclusion that ORFquant and Ribo-TISH are less noise tolerant for calling translation of both 354 

annotated genes and translated smORFs compared to the other three pipelines. 355 

 356 

 357 

Figure 3. Comparison of detected annotated ORFs and predicted smORFs in low-358 

resolution HeLa-S3 Ribo-seq dataset. (A) Venn diagram showing the overlap of annotated 359 

genes called translated across the different tools. The total number of annotated genes detected 360 

is displayed next to the names of each tool in parentheses. (B) Heat map showing the pairwise 361 

comparison of matching annotated genes between the different tools. (C) Heat map showing the 362 

proportion of annotated genes identified by the tool in the column that are also detected by the 363 

tool in the row. (D-E) The same plots are shown as in (A-C) for the analysis of unannotated 364 

smORFs. 365 
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We also directly compared smORF predictions across the low- and high-resolution 367 

HeLa-S3 datasets (Supplementary Fig. 5). Despite using lower quality Ribo-seq data, both 368 

versions of RibORF and RiboCode were all able to identify a small fraction of smORFs 369 

(between 10-25%) that were also called translated by each of the five tools when using high 370 

resolution data. These results suggest that RibORF and RiboCode can identify smORFs that 371 

are highly likely to be translated despite the use of lower resolution data, though many of the 372 

smORFs called translated are still likely to be noise. For ORFquant, only 1-5% of ORFs called 373 

translated using low-resolution dataset were also observed by other tools when using high 374 

resolution data, while Ribo-TISH only identified 1-3 total hits in common when comparing low 375 

versus high resolution data. Overall, RibORF and RiboCode demonstrate more sensitive 376 

detection of translated smORFs than ORFquant and Ribo-TISH regardless of data quality. 377 

 378 

Accounting for Isoform Differences in smORF Predictions 379 

In our initial comparisons between the tools, we restricted the matches to smORFs that 380 

have the same genomic coordinates. However, given that smORFs can use alternative start 381 

codons and can be spliced like larger ORFs, it is possible that the tools predict isoforms of the 382 

same smORF. To account for this, we looked for any additional smORFs identified by each tool 383 

that have the same start coordinate but different stop coordinates and vice versa using our 384 

HeLa-S3 datasets. Each tool was pairwise compared against RibORFv1.0, which predicted the 385 

largest number of smORFs. For the high-resolution dataset, allowing for stop site matches (start 386 

site isoforms) resulted in an additional 79 to 411 smORFs in common, while allowing for start 387 

site matches (stop site isoforms) resulted in an additional 6 to 48 smORFs in common (Fig. 4A). 388 

The high number of start site isoforms called between the different tools is expected due to how 389 

the different pipelines handle AUG versus near cognate start codons as well as ORFs where 390 

multiple possible start codons are present. For example, ORFquant will only allow for AUG start 391 

codons in its predictions. For the low-resolution HeLa-S3 dataset, additional matching smORFs 392 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.30.573709doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.30.573709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

were found for RibORF and RiboCode, but very few additional hits were observed for ORFquant 393 

and Ribo-TISH due to the overall lower number of smORFs called translated by these tools 394 

(Fig. 4B). Examples of predicted smORF isoforms that have matched start or stop coordinates 395 

can be observed in the 59-UTRs of CES and ANGEL2, respectively (Fig. 4C). 396 

 397 

 398 

 399 
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 400 

 401 

Figure 4. Accounting for smORF isoform variance across different ORF prediction 402 

pipelines. (A-B) Bar plots showing the number of exact smORF matches (left), start site 403 

isoform smORF matches (middle), and stop site isoform smORF matches (right) between each 404 

tool and RibORFv1.0 when analyzing either the high-resolution (A) or low-resolution (B) 405 

HeLaS3 Ribo-seq datasets. (C) Bedgraph tracks showing Ribo-seq coverage on the 59-UTRs of 406 

CES2 and ANGEL2. In the top track, an alternatively spliced smORF on the positive strand was 407 

identified by both ORFquant and RibORFv0.1 with a matching start site but different the stop 408 

site. In the bottom track, Ribo-TISH and RibORFv0.1 detect a smORF on the negative strand 409 

with the same stop location but different canonical start codons. 410 

 411 
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Incorporating Translation Initiation Sequencing (TI-Seq) Data into smORF Prediction 413 

To aid in the prediction of novel ORFs, some newer tools like Ribo-TISH allow 414 

integration of translation initiation sequencing (TI-seq). TI-seq is a modified version of Ribo-seq 415 

that includes a short pretreatment with translation initiation inhibitors such as harringtonin or 416 

lactimidomycin in order to enrich for ribosome coverage on ORF start sites, providing additional 417 

evidence of their translation [12]. Using matched TI-seq HeLa-S3 data from harringontin treated 418 

cells, we compared annotated genes and smORFs called translated when using both TI-seq 419 

and standard Ribo-seq datasets to those identified by Ribo-seq alone. There was a high overlap 420 

of annotated genes detected (~73%), though fewer total genes were called translated when TI-421 

seq data was included due to the extra requirement of having an initiation peak 422 

(Supplementary Fig. 6A). For smORFs, the overlap between the two analyses was much lower 423 

(~10%, Supplementary Fig. 6B). In some instances, the lack of overlap was due to different 424 

translation start sites predicted based on whether TI-seq data was incorporated or not. We 425 

highlight one example of two smORF isoforms on the TXNRD1 transcript, with one smORF 426 

starting at an AUG start codon that shows enrichment by TI-seq and the other starting at an 427 

upstream near cognate start codon that is predicted when using Ribo-seq alone 428 

(Supplementary Fig. 6C). While differing start site predictions can explain some of the 429 

differences, some of the smORFs identified by Ribo-seq alone using Ribo-TISH might in fact not 430 

be translated since they did not show start site enrichment by TI-seq. Ribo-TISH also predicts 431 

unique smORFs found only with integration of initiation site data, such as the smORF within the 432 

59-UTR of the PIGW transcript (Supplementary Fig. 6D). Thus, the inclusion of initiation site 433 

data can introduce another variable to smORF predictions. 434 

 435 

Impact of de novo Assembled Transcriptome Annotation on smORF Identification 436 

Analyzing Ribo-seq data for translated smORFs requires the use of a transcriptome to 437 

create a database of all possible smORFs present in a given sample. While most studies use 438 
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transcriptomes sourced from reference databases like GENCODE [13] or Ensembl [14], de novo 439 

assembled transcriptomes can also be used. By incorporating de novo transcriptome 440 

assemblies, one can identify smORFs on transcript isoforms that are otherwise missing from 441 

these public reference databases. We previously used transcriptomes assembled from Illumina-442 

based short read RNA-seq data to identify smORFs on cell line specific transcript isoforms [3], 443 

but use of long-read sequencing technologies may aid in the identification of additional 444 

smORFs. To evaluate the two sequencing methods9 effects on smORF identification, we 445 

assembled HeLa-S3 transcriptomes from both Nanopore long-read and Illumina short-read 446 

RNA-seq datasets using StringTie [15], a more modern assembly tool than what we had used in 447 

our original study. After assembly, the resulting transcriptome was merged with the GENCODE 448 

reference to create a comprehensive transcriptome that includes additional transcripts identified 449 

by each RNA-seq strategy. This resulted in an additional 40 transcripts using Illumina RNA-seq 450 

data and an additional 1,106 transcripts using Nanopore RNA-seq data that were not included in 451 

the GENCODE transcriptome (Fig. 5A). Using RibORFv0.1 to identify translated smORFs in the 452 

high-resolution HeLaS3 dataset with each de novo assembled transcriptome revealed a high 453 

degree of overlap (~94%, Fig. 5B). However, unique predicted translated smORFs were found 454 

for each transcriptome, with 127 predicted smORFs found only when using the Nanopore 455 

assembly and 69 specifically from the Illumina assembly. Using RiboCode for translation calling 456 

yielded similar results (Supplementary Fig. 7). An example smORF that both RibORFv0.1 and 457 

RiboCode call translated from a transcript specifically identified when using Nanopore long-read 458 

RNA-seq data can be found antisense to ADARB2 (Fig. 5C). These data show that 459 

incorporating de novo transcriptome assembly into smORF prediction workflows can identify 460 

additional hits, but the overall benefit over using the GENCODE reference transcriptome alone 461 

is marginal. 462 
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 463 

 464 

Figure 5: De novo transcriptome assembly enables additional smORFs to be predicted. 465 

(A) Comparison of the Nanopore long read- and Illumina short read-based de novo assembled 466 

transcriptomes and GENCODE reference using GffCompare. (B) Venn diagram showing the 467 

overlap of predicted smORFs identified by RibORFv0.1 when using the de novo transcriptome 468 

assemblies along either high-resolution (left) or low-resolution (right) HeLa-S3 Ribo-seq 469 

datasets. The total number of annotated genes detected is using each assembly is shown in 470 

parentheses. (C) Bedgraph tracks showing Ribo-seq coverage on a region antisense to 471 

ADARB2 as well as transcripts present in GENCODE and the de novo transcriptome 472 

assembles. An assembled transcript for this region is only found when using the Nanopore-473 

based de novo assembly. 474 

 475 

Comparing Tool Accuracy with a High Confidence Community smORF Dataset  476 

Comparing predicted translated smORFs across tools showed high variability, leading 477 

one to question which tool is better at identifying bona fide microprotein-coding smORFs. To 478 

address this point, we compared the predicted smORFs from each tool to a community set of 479 
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3,085 smORFs from different human samples that were reproducibly detected across multiple 480 

Ribo-seq-based smORF annotation studies and using different tools [16]. These high 481 

confidence smORF annotations are publicly available through GENCODE. Using the HeLa-S3 482 

datasets, we determined the number of smORFs matching the GENCODE smORF set for each 483 

tool. For the high-resolution HeLa-S3 dataset, 155 of these high confidence GENCODE 484 

smORFs were predicted by all tools, and each was able to identify a subset of these smORFs 485 

missed by the other tools (Fig. 6A). RibORFv0.1, RibORFv1.0, and RiboCode had the highest 486 

number of matches, consistent with their overall greater number of smORFs called translated 487 

compared to Ribo-TISH and ORFquant (Fig. 6B). However, ORFquant had the highest 488 

proportion of its smORF calls overlap with the GENCODE set. Similar trends are observed 489 

when using the low-resolution HeLa-S3 dataset, with the exception that Ribo-TISH and 490 

ORFquant call far fewer smORFs than the other tools when using poorer quality data 491 

(Supplementary Fig. 8). Overall, these results further demonstrate that RibORF and RiboCode 492 

are more sensitive than ORFquant, while ORFquant is the most accurate of the tools and Ribo-493 

TISH suffers from both lower sensitivity and accuracy. 494 

 495 

 496 

 497 

 498 
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 499 

 500 

Figure 6. Comparison of the GENCODE Phase I high-confidence smORFs predicted by 501 

each tool in the HeLa-S3 high-resolution dataset. (A) Venn diagram showing the overlap of 502 

GENCODE smORFs detected by each tool in the high-resolution HeLaS3 Ribo-seq dataset. 503 

Total number of GENCODE smORFs detected by each tool is shown in parentheses. (B) Bar 504 

plot showing the total number of matched smORFs with the GENCODE set for each tool (top). 505 

Heat map showing the proportion of smORFs identified by each tool that are also included in the 506 

GENCODE smORF set (bottom). 507 

 508 

Translation Levels Correlate with smORF Detectability by Multiple Tools 509 

Given the high overlap of annotated genes called translated across the different tools but 510 

low overlap of predicted translated smORFs, we wanted to identify properties that influence this 511 

difference. Ribo-seq read coverage for a given ORF correlates with translation levels and is a 512 

critical factor in predicting translation for each of these tools. Therefore, we compared Ribo-seq 513 

read coverage of annotated genes and smORFs called translated by each tool. Using the high-514 

resolution HeLaS3 dataset, annotated genes called translated showed significantly higher in all 515 

tools except Ribo-TISH (Supplementary Fig. 9). These same patterns were observed when 516 

analyzing the low-resolution Ribo-seq dataset using RiboCode and RibORF (Supplementary 517 

Fig. 10). These data suggest that overall higher translation levels are likely driving the greater 518 

overlap in annotated gene detection across the different tools. We therefore hypothesized that 519 

smORFs that are reproducibly detected across the different tools are also more likely to have 520 

higher translation levels. Comparing smORFs called translated by all five, at least three, and 521 

less than three tools showed that smORFs detected by more tools are translated at significantly 522 
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higher levels in both high- and low-resolution datasets (Supplementary Fig. 11A). These 523 

results suggest that smORFs are more difficult to detect in part because of their overall lower 524 

translation levels than larger annotated ORFs.  525 

Most human microprotein-coding smORFs show conservation only to other primates or 526 

are entirely de novo occurrences in our genome [17319]. However, there are many examples of 527 

functionally characterized microproteins that are well conserved across mammals [20,21]. 528 

Therefore, we next assessed whether smORFs detected by multiple tools are not only 529 

translated at higher levels but also more conserved. Using PhyloCSF [22], we observed no 530 

significant difference in average scores between smORFs detected by three or more tools and 531 

those detected by fewer than three tools (Supplementary Figure 11B). Thus, conservation is 532 

not a major determinant of high confidence smORF detection by Ribo-seq. 533 

 534 

CONCLUSIONS 535 

 536 

 Ribo-seq has revolutionized our ability to de novo annotate translated open reading 537 

frames. Still, it is only as effective as the bioinformatic tools used to interpret the data to identify 538 

bone fide translation events. By comparing several popular tools, we found that each can 539 

identify a similar set of translated annotated genes as intended when high-resolution data is 540 

used. When attempting to identify unannotated translated smORFs, however, the tools vary 541 

widely in the number called translated and show little overlap. We found a clear split between 542 

RibORFv0.1, RibORFv1.0, and RiboCode, which consistently predict more translated smORFs 543 

than ORFquant and Ribo-TISH. Moreover, RiboCode and RibORFv1.0 identify a large fraction 544 

of the same smORFs called by ORFquant, while Ribo-TISH identifies a subset of smORFs that 545 

is more unique than all the other tools. When low-resolution Ribo-seq data is used, ORFquant 546 

and Ribo-TISH are further separated from the other tools, identifying a relatively small number 547 

smORFs as translated and reflecting differences in stringency. When comparing the smORFs 548 

predicted by each tool with a high confidence set included in GENCODE, we found that 549 
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RiboCode and RibORF had the highest sensitivity but ORFquant the highest accuracy. Given 550 

these results, we suggest that RiboCode and both versions of RibORF are better suited for 551 

identifying smORFs to test in high-throughput screens like CRISPR dropout assays where the 552 

aim is to identify large sets of functional smORFs. These tools are also good choices when only 553 

lower quality Ribo-seq data is available, though caution must be exercised as lower-resolution 554 

data will inherently lead to noisier calls overall. ORFquant, meanwhile, is an excellent choice 555 

when attempting to identify confidently translated smORFs with AUG start sites from high-556 

resolution data, as when planning low-throughput functional characterization studies of encoded 557 

microproteins. Finally, we suggest that regardless of the purpose it is prudent to use multiple 558 

Ribo-seq analysis tools in addition to analyzing biological replicates to identify the most 559 

confident microprotein-coding smORFs, particularly for ongoing annotation efforts for reference 560 

databases, and consider Ribo-seq read coverage in their prioritization. 561 
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SUPPLEMENTARY DATA 653 

 654 

 655 

 656 

Supplementary Figure 1. Percentage of in-frame reads for the highest abundance RPF 657 

read length for each Ribo-seq dataset. For each Ribo-seq dataset analyzed, the fraction of in-658 

frame reads after the start site was calculated for the most abundant RPF read length after 659 

offset correction to align to the ribosomal A-site. The read lengths analyzed for each dataset 660 

were: HeLa-S3 HiRes - 28 nt, 293T HiRes - 28 nt, 293T MedRes - 30 nt, HeLa-S3 LowRes 3 32 661 

nt, and 293T LowRes - 31 nt.    662 
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 668 

 669 

Supplementary Figure 2. Quality control of HeLa-S3 Ribo-seq datasets. (A) Metagene plots 670 

of the high-resolution HeLa-S3 dataset displaying the A-site read distribution around the start 671 

and stop sites (left). The 59-end of each RPF read was adjusted to the ribosomal A-site after 672 

mapping to hg38 canonical genes. The coding regions are in reading frame 1, while reading 673 

frames 2 and 3 are out of frame. Line graph of the RPF read length frequency distribution peaks 674 

at 28 nt (right). Read lengths 25-29 nt were used for downstream analysis (B) Metagene plots of 675 

the low-resolution HeLa-S3 dataset displaying the A-site read distribution around the start and 676 

stop sites (left). Line graph of the RPF read length frequency distribution peaks at 32 nt. Read 677 

lengths 31-35 nt were used for downstream analysis. 678 
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 680 

 681 

Supplementary Figure 3. Comparison of detected annotated ORFs in HEK293T Ribo-seq 682 

datasets of varying resolution. (A-C) Venn diagram showing the overlap of annotated genes 683 

called translated across the different tools (left). The total number of annotated genes detected 684 

is displayed next to the names of each tool. Heat map showing the pairwise comparison of 685 

matching annotated genes between the different tools (middle). Heat map showing the 686 

proportion of annotated genes identified by the tool in the column that are also detected by the 687 

tool in the row (right). HEK293T datasets analyzed are categorized by their resolution: high (A), 688 

medium (B), and low (C). 689 
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 691 

 692 

Supplementary Figure 4. Comparison of predicted smORFs in HEK293T Ribo-seq 693 

datasets of varying resolution. (A-C) Venn diagram showing the overlap of unannotated 694 

smORFs called translated across the different tools (left). The total number of smORFs detected 695 

is displayed next to the names of each tool. Heat map showing the pairwise comparison of 696 

matching annotated genes between the different tools (middle). Heat map showing the 697 

proportion of unannotated smORFs identified by the tool in the column that are also detected by 698 

the tool in the row (right). HEK293T datasets analyzed are categorized by their resolution: high 699 

(A), medium (B), and low (C). 700 
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 703 

 704 

Supplementary Figure 5. Comparison of predicted smORFs from high- and low-705 

resolution HeLa-S3 Ribo-seq datasets. (A) Heat map showing the pairwise comparison of 706 

matching smORFs predicted in both high- and low-resolution HeLa-S3 Ribo-seq datasets. (B) 707 

Heat map showing the proportion of unannotated smORFs identified by the tool in the column 708 

using high-resolution data that are also detected by the tool in the row using low-resolution data. 709 

The total number of smORFs detected by each tool is shown in parentheses. 710 
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 715 

 716 

Supplementary Figure 6. Comparison of predicted smORFs using Ribo-TISH with 717 

translation initiation (TI-seq) data included and Ribo-seq data alone. (A) Venn diagram 718 

showing the overlap of annotated ORFs detected by Ribo-TISH including or excluding TI-seq 719 

HeLa-S3 data along with high-resolution Ribo-seq data. Total number of annotated ORFs 720 

identified is displayed next to each condition analyzed in parentheses. (B) Same analysis as in 721 

(A) for predicted smORFs. (C) Bedgraph tracks showing TI-seq and Ribo-seq coverage for 722 

smORFs called translated within the 59-UTR of the TXNRD1 transcript on the positive strand. 723 

Both smORFs share the same stop site but have different starts called if TI-seq data is 724 

considered. (D) Bedgraph tracks showing a smORF identified within the 59-UTR of PIGW only 725 

when running Ribo-TISH with both TI-seq and Ribo-seq data. 726 
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 729 

 730 

Suplementary Figure 7: Comparison of smORFs predicted by RiboCode when 731 

incorporating Nanopore- and Illumina-based de novo assembled transcriptomes. Venn 732 

diagram showing the overlap of predicted smORFs identified by RiboCode when using the de 733 

novo transcriptome assemblies along either high-resolution (left) or low-resolution (right) HeLa-734 

S3 Ribo-seq datasets. 735 
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 758 

 759 

Supplementary Figure 8. Comparison of the GENCODE Phase I high-confidence smORFs 760 

predicted by each tool in the HeLa-S3 low-resolution dataset. (A) Venn diagram showing 761 

the overlap of GENCODE smORFs detected by each tool in the low-resolution HeLaS3 Ribo-762 

seq dataset. Total number of GENCODE smORFs detected by each tool is shown in 763 

parentheses. (B) Bar plot showing the total number of matched smORFs with the GENCODE 764 

set for each tool (top). Heat map showing the proportion of smORFs identified by each tool that 765 

are also included in the GENCODE smORF set (bottom). 766 
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 774 

 775 

Supplementary Figure 9. Comparison of Ribo-seq coverage in annotated genes and 776 

smORFs called translated in HeLa-S3 high-resolution dataset. (A-E) Quantification of Ribo-777 

seq read coverage for both annotated gene ORFs and smORFs called translated by each tool in 778 

the HeLaS3 high-resolution dataset: RibORFv0.1 (A), RiboCode (B), Ribo-TISH (C), ORFquant 779 

(D), and RibORFv1.0 (E). Coverage is calculated as transcripts per million (TPM) and are 780 

shown in Box-and-whisker plots. The box is bounded by the first and third quartiles, centerline 781 

shows the median, and whiskers represent the min and max values. Two-tailed Mann Whitney 782 

test was used to determine significant differences in coverage between annotated ORFs and 783 

smORFs (ns 3 not significant; ***, p < 0.001; ****, p < 0.0001). 784 
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 792 

Supplementary Figure 10. Comparison of Ribo-seq coverage in annotated genes and 793 

smORFs called translated in HeLa-S3 low-resolution dataset. (A-C) Quantification of Ribo-794 

seq read coverage for both annotated gene ORFs and smORFs called translated by each tool in 795 

the HeLaS3 high-resolution dataset: RibORFv0.1 (A), RiboCode (B), and RibORFv1.0 (C). 796 

Coverage is calculated as transcripts per million (TPM) and are shown in Box-and-whisker plots. 797 

The box is bounded by the first and third quartiles, centerline shows the median, and whiskers 798 

represent the min and max values. Two-tailed Mann Whitney test was used to determine 799 

significant differences in coverage between annotated ORFs and smORFs (****, p < 0.0001).  800 
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 810 

Supplementary Figure 11. smORFs with higher Ribo-seq coverage are more likely to be 811 

predicted by multiple tools (A) Ribo-seq read coverage for smORFs predicted in high- and 812 

low-resolution HeLa-S3 datasets were categorized as identified in all five tools, in greater than 813 

three tools, and less than three tools. Coverage is calculated as transcripts per million (TPM) 814 

and are shown in Box-and-whisker plots. The box is bounded by the first and third quartiles, 815 

centerline shows the median, and whiskers represent the min and max values. For the low-816 

resolution dataset analyses, no smORFs were found in common across all five tools. Two-tailed 817 

Mann Whitney test was used to determine significant differences in the Ribo-seq coverage (ns 3 818 

not significant; ***, p < 0.001; ****, p < 0.0001). (B) Average PhyloCSF scores of smORFs 819 

predicted in high- and low-resolution HeLa-S3 datasets categorized by smORFs found in 820 

greater than three tools or less than three tools.  821 
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