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SUMMARY

Accurate and comprehensive annotation of microprotein-coding small open reading frames
(smORFs) is critical to our understanding of normal physiology and disease. Empirical
identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq).
While effective, published Ribo-seq datasets can vary drastically in quality and different analysis
tools are frequently employed. Here, we examine the impact of these factors on identifying
translated smORFs. We compared five commonly used software tools that assess ORF
translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH),
and found surprisingly low agreement across all tools. Only ~2% of smORFs were called
translated by all five tools and ~15% by three or more tools when assessing the same high-
resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~72%
agreement across all five tools. We also found that some tools are strongly biased against low-
resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage as a
proxy for translation levels revealed that highly translated smORFs are more likely to be
detected by more than one tool. Together these results support employing multiple tools to
identify the most confident microprotein-coding smORFs, and choosing the tools based on the
quality of the dataset and planned downstream characterization experiments of predicted

smORFs.
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INTRODUCTION

Early efforts to annotate eukaryotic genomes relied in part on applying expected
properties of coding regions, such as having an ATG/AUG start codon in frame with a
downstream stop codon, one protein coding region per transcript that is often the longest open
reading frame (ORF), and a minimum length cutoff of 100 codons to identify overlooked coding
regions [1]. While effective, there remained the possibility that ORFs which do not follow these
rules can be translated to encode functional proteins. Recent advances in genomics,
proteomics, and bioinformatics have allowed researchers to empirically define protein coding
regions within genomes with better precision. The most striking result of these new studies is
that thousands of small open reading frames (smORFs) containing less than 100-150 codons,
which were presumed to be randomly occurring and non-functional, are in fact translated into
small proteins dubbed microproteins. These smORFs make up the majority of unannotated
ORFs and represent an increasingly active area of research. Many microproteins have now
been shown to be critical in normal biological processes and disease.

One of the primary methods for re-annotation of genomes is based on ribosome profiling
(Ribo-seq). Ribo-seq involves stalling elongating ribosomes in cell or tissue lysates with the
small molecule inhibitor cycloheximide, followed by digestion of polysomes with an RNase and
preparation of the ribosome protected RNA fragments (RPFs) into next generation sequencing
libraries. Following sequencing, the resulting reads are processed and aligned to the genome to
determine the locations of the ribosomes in each sample at harvesting. By identifying the
locations of ribosomes, bioinformatic tools can then be applied to infer which open reading
frames are translated. However, due to the variation in Ribo-seq protocols and a variety of
different software tools that have been developed to analyze translation from Ribo-seq data,
there is no consensus on best practices within the field for predicting smORFs.

For the field to progress further toward functional investigation of individual microproteins

and exploration of their utility as therapeutic targets, confidence in which smORFs are
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85 annotated as translated is needed. Previously, we showed that differences in Ribo-seq data
86  quality can strongly impact which smORFs are called translated and that analyzing biological
87 replicate datasets is helpful for separating robustly translated smORFs from noise [2]. Here, we
88  hypothesized that different software tools for interpreting Ribo-seq data can also introduce
89 inconsistencies into which smORFs are considered translated due to differences in the
90 properties of Ribo-seq data are considered in scoring, how they are weighted, and what
91  statistical methods or classifiers are applied. To understand how the choice of software tool can
92 influence smORF prediction, we evaluated the performances of several popular Ribo-seg-based
93  OREF prediction tools. We found that while all tools show high congruence when identifying
94  larger annotated ORFs as translated, they show low similarity for which unannotated smORFs
95 are predicted to be translated. Analysis of Ribo-seq coverage levels between annotated ORFs
96 and unannotated smORFs suggest that the overall lower translation levels of smORFs
97  contributes to their noisier translation predictions. In addition, we observed large differences
98 between the tools’ abilities to predict smORF translation when using lower quality Ribo-seq
99 datasets versus high. We also demonstrated that incorporation of an RNA-seq-derived de novo
100 transcriptome assembly can add additional unannotated smORFs compared to using a standard
101 GENCODE transcriptome annotation. Altogether, these results highlight the importance of using
102  multiple tools to raise confidence in the annotation of individual ORFs for functional studies and
103  broaden the pool of potential SmORFs to test in high-throughput screens.
104
105 METHODS
106 Ribo-seq datasets and preprocessing
107 Ribo-seq datasets analyzed in this study were generated in our previous study [3], and
108 can be downloaded from the Gene Expression Omnibus (GEO) database repository under
109  accession number GSE125218. The specific Sequence Read Archive (SRA) IDs for the Ribo-

110 seq datasets are as follows: high-resolution HeLaS3 - SRR8449578, low-resolution HeLaS3 -
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111  SRR8449575, harringtonin (Tl-seq) HeLaS3 - SRR8449585, high-resolution HEK293T -

112 SRR8449568, medium-resolution HEK293T - SRR8449567, and low-resolution HEK293T -

113  SRR8449566.

114 Ribo-seq reads were preprocessed by trimming of 3’ adapter sequences

115 (AGATCGGAAGAGCACACGTCT) using the FASTX-toolkit. Next, reads aligning to rRNA and
116  tRNA sequences were filtered out using STAR with parameters —outReadsUnmapped Fastx
117  and the remaining reads were subsequently aligned to the GENCODE hg38 version 39 genome
118  assembly using STAR with the following settings —outFilterMismatchNmax 2 —

119  outFilterMultimapNmax 4 —chimScoreSeparation 10 —chimScoreMin 20 —chimSegmentMin 15 —
120  outSAMattributes All —outSAMtype BAM SortedByCoordinate. The resulting bam file was

121 filtered for primary alignments using samtools with the following parameters -bS -F 0X100. After,
122 multimappers were removed using samtools with the following parameters -bq 255. The

123 alignment files used for RiboCode’s prepare_transcripts function requires the use of the

124  quantMode option during STAR alignment. To run RiboCode, reads were processed separately
125  using author recommended settings to include —outfilterMismatchNmax 2 —outSAMtype

126 BAMSortedByCoordinate —quantMode TranscriptomeSAM Genecounts —

127  outFilterMultiMapNmax 1 —outFilterMatchNmin 16 —alignEndsType EndToEnd. Length

128  histograms were generated by sampling a million reads and sorted by length from the final

129  alignment file. Metagene plots were created using RibORFv0.1’s readDist.pl function and a

130  custom script was used to calculate the fraction of in frame reads based on the total corrected
131  reads. Other tools also have the capability to generate metagene plots. To ensure the same set
132 of read lengths were used for analysis across the different workflows, the same read lengths
133  and offset corrections were used for all ORF predictions for each separate library. Ribo-seq

134  coverage was visualized by generating bedgraphs using HOMER and uploading the bedgraphs

135 to the UCSC Genome Browser.
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136 For final list filtering, smORFs with a minimum length cutoff of >6 amino acids and

137  maximum length cutoff of 150 amino acids was applied to all smOREF lists. Afterwards, bedtools
138 intersect was used to remove smORFs that had over 90% overlap with CDS regions of

139  canonical genes with the following commands, -f 0.9 -v -s. We chose to exclude smORFs that
140  overlap fully with annotated ORFs in our analysis as they can be difficult to accurately identify
141 by Ribo-seq, but all the tools will allow for fully internal smORFs to be scored. After filtering out
142  passing smORFs, an additional filter using BLASTP was applied to remove potential

143  pseudogenes and potentially missed RefSeq annotated microproteins. The settings for running
144  the BLASTP search was -outfmt 10 -max_target_Seqs 5 -evalue 0.0001, and microproteins with
145  BLASTP scores >40 were filtered out. For generating translation scores for annotated genes,
146  RibORFv0.1 was run using a separate refFlat containing GENCODE CDS regions. For

147  RiboCode, Ribo-TISH, ORFquant, and RibORFv1.0, annotated genes that were detected were
148  separated out from the final list of ORFs predicted.

149

150 Tools compared in this study for microprotein-coding smORF identification

151  RibORFvO0.1

152 RibORFv0.1 is the oldest tool of those we compared and is the tool we have used to
153  annotate microprotein-coding smORFs in our previous studies [2,4]. RibORFvO0.1 utilizes a

154  support vector machine classifier to select for translating ORFs based on fraction of A-site reads
155  aligned to the correct reading frame and read distribution uniformity over the ORF. The model
156  uses canonical ORFs and off-frame ORFs for positive and negative controls, respectively, to
157  train the classifier to predict smORFs. A final p-value score is determined based on these two
158  properties. The authors suggest a score of >0.7 as a threshold for translation. Importantly, this
159  tool requires the user to provide a list of ORFs to be scored and cannot use the Ribo-seq data
160 to help identify start and stop sites. ORFs were defined using a custom java script,

161  GTFtoFASTA [2]. Using the reference GENCODE transcriptome, all three open reading frames
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162  were parsed to find the most upstream canonical ATG start codon and in frame stop. If there is
163  no canonical start codon, then the ORF is defined from stop codon to stop codon. Running
164  RibORFVO0.1 for translation scoring, ORFs were filtered with a minimum length cutoff of 18 and
165  minimum read coverage cutoff of 10 using the ribORF.pl script. The resulting list of ORFs was
166 further filtered with a pvalue cutoff of >0.7, max nucleotide length cutoff of 450, and a read
167  coverage cutoff of 10.

168

169  RibORFv1.0

170 RibORFv1.0 is an updated version of RibORF that uses a different strategy for scoring
171  translation but is otherwise similar to RibORFv0.1. Instead of a support vector machine

172 classifier, RibORFv1.0 uses a logistic regression model to determine the pvalue scores. In

173 addition, RibORFv1.0 no longer uses a pre-scored training set of known translated and non-
174  translated ORFs but uses the user’s own data to train prediction parameters based on pre-
175  defined positive and negative ORFs. It also parses user provided transcriptomes to identify all
176  possible ORFs and thus does not require a user provided list. ORF scoring was processed by
177  first running the ORFannotate.pl script with default settings. After candidate ORFs are

178  generated, ribORF.pl was used to identify translated ORFs using default settings of

179  orfLengthcutoff of 6 and readlengthcutoff 11. As with RibORFvO0.1, the scored ORF list was
180 filtered with a pvalue cutoff of >0.7 and max nucleotide length cutoff of 450.

181

182  Ribo-TISH

183 Like other tools, Ribo-TISH can assess ORFs for translation using standard Ribo-seq
184  data from samples treated with cycloheximide. In addition, it can use translation initiation

185  sequencing (Tl-seq) data from cells treated with translation initiation inhibitors, e.g. harringtonin
186  or lactimidomycin, to identify translated ORFs either with Tl-seq data alone or in combination

187  with Ribo-seq data. For scoring, it uses a non-parametric Wilcoxon rank-sum test for its
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188  assessment of 3-nt periodicity. Ribo-TISH can also parse user provided transcriptomes to

189 identify all possible ORFs and de novo annotate the translatome. Ribo-TISH was run with the
190 strategy of taking the most distal start codon to stop codon with RPF coverage when defining
191 the ORF. The predict function with the parameters —longest —altcodons TTG,CTG,GTG —seq —
192  aaseq with a p-value threshold of <0.05 was used. For Ribo-TISH analysis with translation

193 initiation data, the same settings were used with the additional -t flag for the harringtonin dataset
194  input.

195

196  RiboCode

197 RiboCode is a de novo translatome annotation software that relies solely on the 3-nt
198  periodicity pattern. For scoring, RiboCode uses a modified Wilcoxon signed rank-sum test to
199  assess whether the P-site density for a particular ORF is greater than the densities in the

200 alternative reading frames. Like the other modern tools, RiboCode parses a user provided

201 transcriptome to identify all possible ORFs for scoring. RiboCode also allows for the user to
202  input non-canonical start codons to use for defining candidate ORFs. Detection of translated
203  ORFs was identified using the RiboCode function with the settings -I no -s ATG -A

204 CTG,GTG,TTG -g and the default p-value cutoff of 0.05.

205

206  ORFquant

207 ORFquant is also able to de novo annotate the translatome. It uses a multitaper test to
208  select in-frame signal showing 3-nt periodicity, similar to the older RiboTaper tool developed by
209 the same author. This tool generates a p-value and a cutoff of 0.05 is used to identify translated
210  ORFs. Importantly, ORFquant requires the average signal on each covered codon to be >50%
211 in frame and only considers AUG start codons. ORFquant was run using the authors’

212 recommended settings. First, a .2bit file and gtf are used to create a TxDb and Rdata file using

213 the prepare_annotation_files function. Next, the prepare_for ORFquant function was used to
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process the alignment bam file and text file containing the read lengths and cutoff for analysis.
Lastly, run_ORFquant was used to take the files produced in the previous steps to score ORFs

using a p-value threshold of 0.05.

Ribo-seq Read Coverage and PhyloCSF Analysis

Ribo-seq read coverage for candidate smORFs identified by each tool were quantified
alongside the top expressed isoforms for annotated genes. Coverage was quantified using
HOMER'’s analyzeRepeats function and expression was normalized by transcripts per million
(TPM). Average PhyloCSF scores for the 58-mammal alignment used with genome build hg38

were extracted for all smORFs from the UCSC genome browser’s PhyloCSF Track Hub.

Nanopore Long-read library preparation and sequencing

Total RNA was isolated from HeLa-S3 using the QIAGEN RNeasy kit. RNA integrity was
assessed using TapeStation 4200 (Agilent) and RNA samples with RIN> 8 were used for library
preparation for long read sequencing. Isolated total RNA was used to generate sequencing
library following Oxford Nanopore Technologies protocol for cDNA-PCR sequencing kit. 50 ng of
total RNA was first reverse transcribed for complementary strand synthesis using strand
switching primers. cDNA was PCR amplified using primers that contain 5’ tags, which enables
attachment of rapid sequencing adapters. The cDNA library was loaded onto R9.4.1 flow cells
according to Oxford Nanopore Technologies protocol and sequenced for 48 hours with High

accuracy setting on GridlON system in the Salk NGS core.

De novo transciptome assembly
For the long read RNA-seq datasets generated using the Nanopore sequencing
platform, reads were processed using the FLAIR pipeline. Reads were aligned using FLAIR

align module with minimap2 and converted to a SAM file in BED12 format. FLAIR correct was
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used to correct misaligned splice sites using the GENCODE version 39 annotation. Finally,
FLAIR collapse takes the high confidence isoforms from the corrected reads to output a gtf.
Using the StringTie merge option, the FLAIR gtf was merged with the GENCODE reference gtf
to create a combined non-redundant set of transcripts used for downstream analysis.

For the paired-end RNA-seq datasets generated using the lllumina sequencing platform,
originally generated in [2], fastq files were downloaded from the SRA with accession codes
found in (Table S1) and trimmed of adapter sequences using TrimGalore. Reads were aligned
using STAR with the options —runMode alignReads —sjdbOverhang 100 —-runRNGseed 133 —
twopassMode Basic —outSAMstrandField intronMotif —outfilterINtronMotifs Remove
Noncanonical —outSAMattributes All. The resulting bam file was then sorted using samtools. For
each library, StringTie was used to assemble transcripts from the sorted bam files using the
guided assembly option. The assembled transcripts were then merged using the StringTie
merge option with the GENCODE reference transcriptome annotation. The resulting gtf file was
used as the transcriptome for downstream smORF analysis. GFFCompare was used to

compare and evaluate the two transcriptome assemblies.

RESULTS AND DISCUSSION
Tools for detecting translated open reading frames from Ribo-seq

We compared five popular tools for analyzing individual open reading frames for
translation using Ribo-seq data, including RibORF version 0.1 (RibORFv0.1) [5], RibORF
version 1.0 (RibORFv1.0) [6], Ribo-TISH [7], RiboCode [8], and ORFquant [9]. These tools were
published between 2015 and 2020 and have been applied frequently to identify novel translated
OREFs, including smORFs, in the years since. Each tool includes an assessment of the 3
nucleotide (3-nt) periodicity of aligned ribosomal A-site or P-site reads that are in-frame with a
particular ORF to aid in scoring translation. This feature is a hallmark of active translation as the

ribosome scans ORFs translating 3-nt codons from the start codon to the stop codon [10].

10
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266  Higher resolution datasets have a higher percentage of reads in-frame with annotated ORFs.
267  However, the statistical methods applied for assessing whether the fraction of in-frame reads is
268  significant differs widely. For example, RibORFvO0.1 utilizes a support vector machine approach
269 to classify and score ORFs, while RiboCode uses a modified Wilcoxon signed-rank sum test to
270  determine the significance in-frame versus out-of-frame read enrichment within the tested ORF
271 (Fig. 1A). In addition, whether tools allow for ORFs initiating from near-cognate start codons,
272 such as CUG or GUG, or consider other features such as percent ORF coverage differs among
273 the tools. More details on how each tool scores translation is included in the Methods section.
. . Remove ;
Adapter trimming A Read Alignment to
using FASTX Toolkit > Contjv'imng;‘;r;ads > | hg38 with STAR >
Translated smORF Remove fully CDS Remove high Compare Predicted
Identification with —> overlapping — | similarity MPs with — Translated smORFs
Ribo-seq Tools smORFs blastp RefSeq db Lists
Parse g
: Metagene Offset non-AUG | Start Site
Tool Method Transcriptome b _ L
Input Data for ong Plots Correction | Start Sites Bias
i i First A
RibORFO.1 sup:\sl);:h?:]eector Ribo-seq No Yes User Input Yes St(;rpStto gtcc;)p
RiboCode g%ﬁgz%‘gﬂii’;ﬁ Ribo-seq Yes Yes GEZT:;IS: Yes Longest Frame
) Non-parametric ) Automatic/
Ribo-TISH Wil Ribo-seq/Tl- Ye Yes Yes Longest Frame
' Ranksum Test | o e User Input 9
Multitaper Spectral . Yes, Automatic/
ORFquant Analysis Ribo-seq Yes Ribo-s6QC User Input No AUG only
RibORF1.0 R‘L‘;’gzg%n Ribo-seq Yes Yes User Input Yes Longest Frame
274
275
276  Figure 1. Workflow of smORF Annotation and Ribo-seq Tool Features. (A) Workflow for
277  processing and filtering of Ribo-seq datasets that were used for ORF identification and
278  comparison of translated unannotated smOREF lists. (B) Properties of the computational
279  methods compared in this study.
280

11
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281 To compare the tools, we developed a standardized workflow to take unprocessed Ribo-
282  seq data and generated a filtered list of predicted novel smORFs (Fig. 1B). To summarize, 3'-
283  adapter sequences are trimmed and reads aligning to rRNA and tRNA sequences are filtered
284  out. The remaining reads are mapped to the hg38 genome using STAR [11] and the resulting
285  alignment file of only uniquely mapped reads is used as the input for each tool to score ORFs
286 for translation. Each tool was also given either a list of all possible ORFs to score, which we
287  generated from the GENCODE comprehensive set of human transcripts, or the entire

288  GENCODE transcriptome file for the software to parse into ORFs for scoring. The Ribo-seq
289  datasets analyzed in our tool comparison were generated in our previous study [2] and include
290 low- and high-resolution datasets collected from HeLa-S3 and HEK293T cell lines

291  (Supplementary Fig. 1). The high-resolution datasets show greater than 70% in-frame RPF
292 read alignment with known coding regions across all read lengths retained for analysis, while
293  low-resolution data show only ~50% of in-frame RPF reads (Supplementary Fig. 2). These
294  datasets allowed us to assess any differences between the tools in handling varying quality data
295 and ensure that any observed trends are not cell line specific. Following scoring by each tool,
296  smORFs that were found to fully overlap within annotated CDS regions were removed. These
297 internal smORFs can be difficult to accurately score by Ribo-seq as reads aligned to each ORF
298 inherently lowers the score of the other ORF. The list of remaining unannotated smORFs were
299  then used for comparison across tools.

300

301 Comparing Predicted Translated smORFs Across Tools

302 In our previous study, we showed that there was a high overlap in the detection of

303 annotated coding regions from Ribo-seq data across different resolutions, but that the list of
304 smORFs called translated was noisy and showed low overlap across datasets [2]. This study
305 only used RibORFVO0.1 to analyze smORF translation, leaving an open question as to whether

306 the poor overlap was an artifact of the software tool or a result of smORF translation being

12
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307 generally noisier and more difficult to assess relative to larger annotated coding regions. To test
308 this, we initially examined a high-resolution HeLa-S3 Ribo-seq data for differences in identifying
309 translated ORFs across the different tools. We observed high overlap in the number of total

310 annotated genes detected across all five tools with 8,781 (71.6%) called translated and a similar
311  number identified by each tool (Fig. 2A). Pairwise comparisons of the number of annotated

312  ORFs found in one tool compared to each other tool, as well as the proportion of matched

313  ORFs, showed similar performance between all tools and that RibORFv0.1 was the least

314 sensitive (Figs. 2B, C). Next, we examined the prediction of novel translated smORFs from

315 each tool (Fig. 2D). Compared to annotated ORFs, there is little overlap in the total number of
316  smORFs predicted with only 235 (2.3%) found across all tools and 1,549 (15.4%) smORFs

317 found in at least three out of five tools. The performance of the tools differentiated into two

318  groups. RiboCode, RibORFv0.1, and RibORFv1.0 called 2.3-4.8 times as many smORFs

319 translated as ORFquant and Ribo-TISH. Pairwise analysis of the number and proportion of

320 matched smORFs revealed additional differences between the tools (Fig. 2E, F). First, despite
321 identifying less than half the number of translated smORFs as RiboCode and RibORFv1.0, only
322  ~40% of Ribo-TISH hits overlapped with RiboCode and RibORFv1.0. This contrasted with

323  ORFquant, which also identified a lower amount of translated smORFs (1,124) but had 68% and
324  81% of its calls overlap with those of RibORFv1.0 and RiboCode, respectively. In addition, Ribo-
325  TISH had the smallest proportion of ORFquant calls matched (30%). These data demonstrate
326  that Ribo-TISH is an outlier compared to the other tools that identifies both a smaller number
327  and more unique set of smORFs as translated. Meanwhile, the majority of ORFquant’s hits can

328  be captured by using the tools that predict larger numbers of translated smORFs.

13


https://doi.org/10.1101/2023.12.30.573709
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.30.573709; this version posted December 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

HeLa-S3 HiRes Translated Annotated ORF Overlap Number of Matched Annotated ORFs Proportion of Matched Annotated ORFs
i N N ) O > N N N N Q)
RiboCode q.;s" \g‘,g’ ,&'\« & & 9‘,'3"" & & Q& &
2 N 3 N QO 2 Q N N\ O
R SR O N SR
RibORFO0.1 °Q3 & S @‘0 & & & 8 QQ& &
(0132) & & & & & &S
Ribo-TISH 11000
(11017) RibORF0.1 9068 | 8963 | 8846 | 9038 RibORFO.1
0.95
RiboCode | 9068 10500 RiboCode
0.90
Ribo-TISH { 8963 10000 Ribo-TISH
RibORF1.0 ORFquant{ 8846 9500 ORFquant 0.85
1
11545
¢ ) ORFquant RibORF1.0{ 9038 9000  RIDORF1.0 0.80
(10834)
HeLa-S3 HiRes Translated smORFs Overlap Number of Matched smORFs Proportion of Matched smORFs
RiboCode I N N N LR S S N
& N & S & S
(4135) R & & & e@ & & & \\& &
. <2 & > .
RibORF0.1 & & & oQg" Oqs“ 0(,o" A o‘{'(\
(3144) & & & S L & & S
& & & oF & & & & F
Ribo-TISH 0.80
(1755) RibORF0.1 1302 | 436 633 | 1294 2000 RibORF0.1 0.31 | 0.25 | 0.56 | 0.24
RiboCode 4 1302 692 | 911 RiboCode 4 0.41 0.39 0.41 0.60
1500
Ribo-TISH4 436 692 337 659 Ribo-TISH{ 0.14 | 0.17 0.30 | 0.12
0.40
1000
RibORF1.0 ORFquantq{ 633 911 337 764 ORFquant4 0.20 | 0.22 | 0.19 0.14
{ i
(5403)
329 0T1F1q21:‘z)mt RibORF1.0{ 1294 659 | 764 500 RibORF1.04 0.41 | 0.53 | 0.38 0.20

330 Figure 2. Comparison of detected annotated ORFs and predicted smORFs in the high-
331 resolution HeLa-S3 Ribo-seq dataset. (A) Venn diagram showing the overlap of annotated
332  genes called translated across the different tools. The total number of annotated genes detected
333 is displayed next to the names of each tool in parentheses. (B) Heat map showing the pairwise
334  comparison of matching annotated genes between the different tools. (C) Heat map showing the
335  proportion of annotated genes identified by the tool in the column that are also detected by the
336  tool in the row. (D-E) The same plots are shown as in (A-C) for the analysis of unannotated

337 smOREFs.

338

339 We next explored whether these trends would remain consistent after analyzing low-

340 resolution HeLa-S3 Ribo-seq data. Compared to the detection of annotated genes in the high-
341  resolution dataset, we observed a large drop in the number of smORFs called translated by

342  ORFquant (3,525) and Ribo-TISH (5,894) resulting in only 2,104 (18.4%) in common across all
343  tools (Fig. 3A). Pairwise comparisons of the tools showed that both RibORFv1.0 and RiboCode
344 identified the most annotated genes as translated and >90% of those identified in all the other
345  tools (Fig. 3B, C). ORFquant was impacted the most by the low-resolution data, identifying only
346 3,525 annotated genes as translated. This is consistent with ORFquant’s requirement to have

347  >50% reads in-frame for each codon within an ORF to be called translated [9]. Similarly, Ribo-
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348  TISH and ORFquant were greatly affected by the lower resolution when predicting novel

349  smOREFs, predicting 13 and 203 smORFs, respectively (Fig. 3D). Despite the low number of
350 smORFs predicted, we observed the same trend that the highest proportional overlap of

351  smORFs were relative to ORFquant predictions. We repeated the comparison analysis on

352 HEK293T Ribo-seq data with varying resolutions and found similar trends with annotated genes
353  (Supplementary Fig. 3) and unannotated smORFs (Supplementary Fig. 4), validating the

354  conclusion that ORFquant and Ribo-TISH are less noise tolerant for calling translation of both

355  annotated genes and translated smORFs compared to the other three pipelines.

HeLa-S3 LowRes Translated Annotated ORF Overlap Number of Matched Annotated ORFs Proportion of Matched Annotated ORFs
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358 Figure 3. Comparison of detected annotated ORFs and predicted smORFs in low-

359 resolution HeLa-S3 Ribo-seq dataset. (A) Venn diagram showing the overlap of annotated
360 genes called translated across the different tools. The total number of annotated genes detected
361 is displayed next to the names of each tool in parentheses. (B) Heat map showing the pairwise
362  comparison of matching annotated genes between the different tools. (C) Heat map showing the
363  proportion of annotated genes identified by the tool in the column that are also detected by the
364  tool in the row. (D-E) The same plots are shown as in (A-C) for the analysis of unannotated

365 smORFs.

366
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We also directly compared smORF predictions across the low- and high-resolution
HelLa-S3 datasets (Supplementary Fig. 5). Despite using lower quality Ribo-seq data, both
versions of RibORF and RiboCode were all able to identify a small fraction of smORFs
(between 10-25%) that were also called translated by each of the five tools when using high
resolution data. These results suggest that RibORF and RiboCode can identify smORFs that
are highly likely to be translated despite the use of lower resolution data, though many of the
smORFs called translated are still likely to be noise. For ORFquant, only 1-5% of ORFs called
translated using low-resolution dataset were also observed by other tools when using high
resolution data, while Ribo-TISH only identified 1-3 total hits in common when comparing low
versus high resolution data. Overall, RibORF and RiboCode demonstrate more sensitive

detection of translated smORFs than ORFquant and Ribo-TISH regardless of data quality.

Accounting for Isoform Differences in smORF Predictions

In our initial comparisons between the tools, we restricted the matches to smORFs that
have the same genomic coordinates. However, given that smORFs can use alternative start
codons and can be spliced like larger ORFs, it is possible that the tools predict isoforms of the
same smORF. To account for this, we looked for any additional smORFs identified by each tool
that have the same start coordinate but different stop coordinates and vice versa using our
HelLa-S3 datasets. Each tool was pairwise compared against RibORFv1.0, which predicted the
largest number of smORFs. For the high-resolution dataset, allowing for stop site matches (start
site isoforms) resulted in an additional 79 to 411 smORFs in common, while allowing for start
site matches (stop site isoforms) resulted in an additional 6 to 48 smORFs in common (Fig. 4A).
The high number of start site isoforms called between the different tools is expected due to how
the different pipelines handle AUG versus near cognate start codons as well as ORFs where
multiple possible start codons are present. For example, ORFquant will only allow for AUG start

codons in its predictions. For the low-resolution HeLa-S3 dataset, additional matching smORFs
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393  were found for RibORF and RiboCode, but very few additional hits were observed for ORFquant
394  and Ribo-TISH due to the overall lower number of smORFs called translated by these tools

395 (Fig. 4B). Examples of predicted smORF isoforms that have matched start or stop coordinates
396 can be observed in the 5-UTRs of CES and ANGEL2, respectively (Fig. 4C).

397

398

399
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402  Figure 4. Accounting for smORF isoform variance across different ORF prediction

403  pipelines. (A-B) Bar plots showing the number of exact smORF matches (left), start site

404  isoform smORF matches (middle), and stop site isoform smORF matches (right) between each
405 tool and RibORFv1.0 when analyzing either the high-resolution (A) or low-resolution (B)

406 HelLaS3 Ribo-seq datasets. (C) Bedgraph tracks showing Ribo-seq coverage on the 5-UTRs of
407 CES2 and ANGELZ2. In the top track, an alternatively spliced smORF on the positive strand was
408 identified by both ORFquant and RibORFv0.1 with a matching start site but different the stop
409  site. In the bottom track, Ribo-TISH and RibORFv0.1 detect a smORF on the negative strand
410  with the same stop location but different canonical start codons.
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Incorporating Translation Initiation Sequencing (TI-Seq) Data into smORF Prediction

To aid in the prediction of novel ORFs, some newer tools like Ribo-TISH allow
integration of translation initiation sequencing (Tl-seq). Tl-seq is a modified version of Ribo-seq
that includes a short pretreatment with translation initiation inhibitors such as harringtonin or
lactimidomycin in order to enrich for ribosome coverage on ORF start sites, providing additional
evidence of their translation [12]. Using matched Tl-seq HeLa-S3 data from harringontin treated
cells, we compared annotated genes and smORFs called translated when using both Tl-seq
and standard Ribo-seq datasets to those identified by Ribo-seq alone. There was a high overlap
of annotated genes detected (~73%), though fewer total genes were called translated when TI-
seq data was included due to the extra requirement of having an initiation peak
(Supplementary Fig. 6A). For smORFs, the overlap between the two analyses was much lower
(~10%, Supplementary Fig. 6B). In some instances, the lack of overlap was due to different
translation start sites predicted based on whether Tl-seq data was incorporated or not. We
highlight one example of two smORF isoforms on the TXNRD1 transcript, with one smORF
starting at an AUG start codon that shows enrichment by Tl-seq and the other starting at an
upstream near cognate start codon that is predicted when using Ribo-seq alone
(Supplementary Fig. 6C). While differing start site predictions can explain some of the
differences, some of the smORFs identified by Ribo-seq alone using Ribo-TISH might in fact not
be translated since they did not show start site enrichment by TI-seq. Ribo-TISH also predicts
unique smORFs found only with integration of initiation site data, such as the smORF within the
5’-UTR of the PIGW transcript (Supplementary Fig. 6D). Thus, the inclusion of initiation site

data can introduce another variable to smORF predictions.

Impact of de novo Assembled Transcriptome Annotation on smORF Identification
Analyzing Ribo-seq data for translated smORFs requires the use of a transcriptome to

create a database of all possible smORFs present in a given sample. While most studies use
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439  transcriptomes sourced from reference databases like GENCODE [13] or Ensembl [14], de novo
440 assembled transcriptomes can also be used. By incorporating de novo transcriptome

441  assemblies, one can identify smORFs on transcript isoforms that are otherwise missing from
442  these public reference databases. We previously used transcriptomes assembled from Illlumina-
443  based short read RNA-seq data to identify smORFs on cell line specific transcript isoforms [3],
444  but use of long-read sequencing technologies may aid in the identification of additional

445  smORFs. To evaluate the two sequencing methods’ effects on smORF identification, we

446  assembled HelLa-S3 transcriptomes from both Nanopore long-read and lllumina short-read

447  RNA-seq datasets using StringTie [15], a more modern assembly tool than what we had used in
448  our original study. After assembly, the resulting transcriptome was merged with the GENCODE
449  reference to create a comprehensive transcriptome that includes additional transcripts identified
450 by each RNA-seq strategy. This resulted in an additional 40 transcripts using lllumina RNA-seq
451  data and an additional 1,106 transcripts using Nanopore RNA-seq data that were not included in
452  the GENCODE transcriptome (Fig. 5A). Using RibORFVO0.1 to identify translated smORFs in the
453  high-resolution HeLaS3 dataset with each de novo assembled transcriptome revealed a high
454  degree of overlap (~94%, Fig. 5B). However, unique predicted translated smORFs were found
455  for each transcriptome, with 127 predicted smORFs found only when using the Nanopore

456  assembly and 69 specifically from the lllumina assembly. Using RiboCode for translation calling
457  yielded similar results (Supplementary Fig. 7). An example smORF that both RibORFv0.1 and
458  RiboCode call translated from a transcript specifically identified when using Nanopore long-read
459  RNA-seq data can be found antisense to ADARB2 (Fig. 5C). These data show that

460  incorporating de novo transcriptome assembly into smORF prediction workflows can identify
461  additional hits, but the overall benefit over using the GENCODE reference transcriptome alone

462  is marginal.
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463

464

465  Figure 5: De novo transcriptome assembly enables additional smORFs to be predicted.
466  (A) Comparison of the Nanopore long read- and lllumina short read-based de novo assembled
467  transcriptomes and GENCODE reference using GffCompare. (B) Venn diagram showing the
468  overlap of predicted smORFs identified by RibORFv0.1 when using the de novo transcriptome
469  assemblies along either high-resolution (left) or low-resolution (right) HeLa-S3 Ribo-seq

470  datasets. The total number of annotated genes detected is using each assembly is shown in
471  parentheses. (C) Bedgraph tracks showing Ribo-seq coverage on a region antisense to

472  ADARB?2 as well as transcripts present in GENCODE and the de novo transcriptome

473  assembles. An assembled transcript for this region is only found when using the Nanopore-
474  based de novo assembly.

475

476  Comparing Tool Accuracy with a High Confidence Community smORF Dataset

477 Comparing predicted translated smORFs across tools showed high variability, leading
478  one to question which tool is better at identifying bona fide microprotein-coding smORFs. To
479  address this point, we compared the predicted smORFs from each tool to a community set of
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3,085 smORFs from different human samples that were reproducibly detected across multiple
Ribo-seq-based smORF annotation studies and using different tools [16]. These high
confidence smORF annotations are publicly available through GENCODE. Using the HeLa-S3
datasets, we determined the number of smORFs matching the GENCODE smOREF set for each
tool. For the high-resolution HeLa-S3 dataset, 155 of these high confidence GENCODE
smORFs were predicted by all tools, and each was able to identify a subset of these smORFs
missed by the other tools (Fig. 6A). RibORFv0.1, RibORFv1.0, and RiboCode had the highest
number of matches, consistent with their overall greater number of smORFs called translated
compared to Ribo-TISH and ORFquant (Fig. 6B). However, ORFquant had the highest
proportion of its smORF calls overlap with the GENCODE set. Similar trends are observed
when using the low-resolution HeLa-S3 dataset, with the exception that Ribo-TISH and
ORFquant call far fewer smORFs than the other tools when using poorer quality data
(Supplementary Fig. 8). Overall, these results further demonstrate that RibORF and RiboCode
are more sensitive than ORFquant, while ORFquant is the most accurate of the tools and Ribo-

TISH suffers from both lower sensitivity and accuracy.
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501 Figure 6. Comparison of the GENCODE Phase | high-confidence smORFs predicted by
502 each tool in the HeLa-S3 high-resolution dataset. (A) Venn diagram showing the overlap of
503 GENCODE smORFs detected by each tool in the high-resolution HeLaS3 Ribo-seq dataset.

504  Total number of GENCODE smORFs detected by each tool is shown in parentheses. (B) Bar
505 plot showing the total number of matched smORFs with the GENCODE set for each tool (top).
506  Heat map showing the proportion of smORFs identified by each tool that are also included in the
507 GENCODE smORF set (bottom).

508

509 Translation Levels Correlate with smORF Detectability by Multiple Tools

510 Given the high overlap of annotated genes called translated across the different tools but
511  low overlap of predicted translated smORFs, we wanted to identify properties that influence this
512  difference. Ribo-seq read coverage for a given ORF correlates with translation levels and is a
513  critical factor in predicting translation for each of these tools. Therefore, we compared Ribo-seq
514  read coverage of annotated genes and smORFs called translated by each tool. Using the high-
515  resolution HeLaS3 dataset, annotated genes called translated showed significantly higher in all
516  tools except Ribo-TISH (Supplementary Fig. 9). These same patterns were observed when
517  analyzing the low-resolution Ribo-seq dataset using RiboCode and RibORF (Supplementary
518 Fig. 10). These data suggest that overall higher translation levels are likely driving the greater
519 overlap in annotated gene detection across the different tools. We therefore hypothesized that
520 smORFs that are reproducibly detected across the different tools are also more likely to have
521  higher translation levels. Comparing smORFs called translated by all five, at least three, and

522 less than three tools showed that smORFs detected by more tools are translated at significantly
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higher levels in both high- and low-resolution datasets (Supplementary Fig. 11A). These
results suggest that smORFs are more difficult to detect in part because of their overall lower
translation levels than larger annotated ORFs.

Most human microprotein-coding smORFs show conservation only to other primates or
are entirely de novo occurrences in our genome [17—19]. However, there are many examples of
functionally characterized microproteins that are well conserved across mammals [20,21].
Therefore, we next assessed whether smORFs detected by multiple tools are not only
translated at higher levels but also more conserved. Using PhyloCSF [22], we observed no
significant difference in average scores between smORFs detected by three or more tools and
those detected by fewer than three tools (Supplementary Figure 11B). Thus, conservation is

not a major determinant of high confidence smORF detection by Ribo-seq.

CONCLUSIONS

Ribo-seq has revolutionized our ability to de novo annotate translated open reading
frames. Still, it is only as effective as the bioinformatic tools used to interpret the data to identify
bone fide translation events. By comparing several popular tools, we found that each can
identify a similar set of translated annotated genes as intended when high-resolution data is
used. When attempting to identify unannotated translated smORFs, however, the tools vary
widely in the number called translated and show little overlap. We found a clear split between
RibORFv0.1, RibORFv1.0, and RiboCode, which consistently predict more translated smORFs
than ORFquant and Ribo-TISH. Moreover, RiboCode and RibORFv1.0 identify a large fraction
of the same smORFs called by ORFquant, while Ribo-TISH identifies a subset of smORFs that
is more unique than all the other tools. When low-resolution Ribo-seq data is used, ORFquant
and Ribo-TISH are further separated from the other tools, identifying a relatively small number
smORFs as translated and reflecting differences in stringency. When comparing the smORFs

predicted by each tool with a high confidence set included in GENCODE, we found that
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RiboCode and RibORF had the highest sensitivity but ORFquant the highest accuracy. Given
these results, we suggest that RiboCode and both versions of RibORF are better suited for
identifying smOREFs to test in high-throughput screens like CRISPR dropout assays where the
aim is to identify large sets of functional smORFs. These tools are also good choices when only
lower quality Ribo-seq data is available, though caution must be exercised as lower-resolution
data will inherently lead to noisier calls overall. ORFquant, meanwhile, is an excellent choice
when attempting to identify confidently translated smORFs with AUG start sites from high-
resolution data, as when planning low-throughput functional characterization studies of encoded
microproteins. Finally, we suggest that regardless of the purpose it is prudent to use multiple
Ribo-seq analysis tools in addition to analyzing biological replicates to identify the most
confident microprotein-coding smORFs, particularly for ongoing annotation efforts for reference

databases, and consider Ribo-seq read coverage in their prioritization.
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Supplementary Figure 1. Percentage of in-frame reads for the highest abundance RPF
read length for each Ribo-seq dataset. For each Ribo-seq dataset analyzed, the fraction of in-
frame reads after the start site was calculated for the most abundant RPF read length after
offset correction to align to the ribosomal A-site. The read lengths analyzed for each dataset
were: HelLa-S3 HiRes - 28 nt, 293T HiRes - 28 nt, 293T MedRes - 30 nt, HeLa-S3 LowRes — 32
nt, and 293T LowRes - 31 nt.
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Supplementary Figure 2. Quality control of HeLa-S3 Ribo-seq datasets. (A) Metagene plots
of the high-resolution HeLa-S3 dataset displaying the A-site read distribution around the start
and stop sites (left). The 5’-end of each RPF read was adjusted to the ribosomal A-site after
mapping to hg38 canonical genes. The coding regions are in reading frame 1, while reading
frames 2 and 3 are out of frame. Line graph of the RPF read length frequency distribution peaks
at 28 nt (right). Read lengths 25-29 nt were used for downstream analysis (B) Metagene plots of
the low-resolution HeLa-S3 dataset displaying the A-site read distribution around the start and
stop sites (left). Line graph of the RPF read length frequency distribution peaks at 32 nt. Read
lengths 31-35 nt were used for downstream analysis.
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Supplementary Figure 3. Comparison of detected annotated ORFs in HEK293T Ribo-seq
datasets of varying resolution. (A-C) Venn diagram showing the overlap of annotated genes
called translated across the different tools (left). The total number of annotated genes detected
is displayed next to the names of each tool. Heat map showing the pairwise comparison of
matching annotated genes between the different tools (middle). Heat map showing the
proportion of annotated genes identified by the tool in the column that are also detected by the
tool in the row (right). HEK293T datasets analyzed are categorized by their resolution: high (A),
medium (B), and low (C).
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Supplementary Figure 4. Comparison of predicted smORFs in HEK293T Ribo-seq
datasets of varying resolution. (A-C) Venn diagram showing the overlap of unannotated
smORFs called translated across the different tools (left). The total number of smORFs detected
is displayed next to the names of each tool. Heat map showing the pairwise comparison of
matching annotated genes between the different tools (middle). Heat map showing the
proportion of unannotated smORFs identified by the tool in the column that are also detected by
the tool in the row (right). HEK293T datasets analyzed are categorized by their resolution: high
(A), medium (B), and low (C).
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Supplementary Figure 5. Comparison of predicted smORFs from high- and low-
resolution HeLa-S3 Ribo-seq datasets. (A) Heat map showing the pairwise comparison of
matching smORFs predicted in both high- and low-resolution HeLa-S3 Ribo-seq datasets. (B)
Heat map showing the proportion of unannotated smORFs identified by the tool in the column
using high-resolution data that are also detected by the tool in the row using low-resolution data.
The total number of smORFs detected by each tool is shown in parentheses.
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Supplementary Figure 6. Comparison of predicted smORFs using Ribo-TISH with
translation initiation (Tl-seq) data included and Ribo-seq data alone. (A) Venn diagram
showing the overlap of annotated ORFs detected by Ribo-TISH including or excluding Tl-seq
HelLa-S3 data along with high-resolution Ribo-seq data. Total number of annotated ORFs
identified is displayed next to each condition analyzed in parentheses. (B) Same analysis as in
(A) for predicted smORFs. (C) Bedgraph tracks showing Tl-seq and Ribo-seq coverage for
smORFs called translated within the 5’-UTR of the TXNRD1 transcript on the positive strand.
Both smORFs share the same stop site but have different starts called if Tl-seq data is
considered. (D) Bedgraph tracks showing a smOREF identified within the 5’-UTR of PIGW only
when running Ribo-TISH with both Tl-seq and Ribo-seq data.
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RiboCode HeLa-S3 HiRes Novel smORFs RiboCode HeLa-S3 LoRes Novel smORFs
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(3030) (3105) (1038) (1073)

Suplementary Figure 7: Comparison of smORFs predicted by RiboCode when
incorporating Nanopore- and lllumina-based de novo assembled transcriptomes. Venn
diagram showing the overlap of predicted smORFs identified by RiboCode when using the de
novo transcriptome assemblies along either high-resolution (left) or low-resolution (right) HeLa-
S3 Ribo-seq datasets.
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Supplementary Figure 8. Comparison of the GENCODE Phase | high-confidence smORFs
predicted by each tool in the HeLa-S3 low-resolution dataset. (A) Venn diagram showing
the overlap of GENCODE smORFs detected by each tool in the low-resolution HeLaS3 Ribo-
seq dataset. Total number of GENCODE smORFs detected by each tool is shown in
parentheses. (B) Bar plot showing the total number of matched smORFs with the GENCODE
set for each tool (top). Heat map showing the proportion of smORFs identified by each tool that
are also included in the GENCODE smORF set (bottom).
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775

776  Supplementary Figure 9. Comparison of Ribo-seq coverage in annotated genes and

777 smORFs called translated in HeLa-S3 high-resolution dataset. (A-E) Quantification of Ribo-
778  seq read coverage for both annotated gene ORFs and smORFs called translated by each tool in
779  the HelLaS3 high-resolution dataset: RibORFv0.1 (A), RiboCode (B), Ribo-TISH (C), ORFquant
780 (D), and RibORFv1.0 (E). Coverage is calculated as transcripts per million (TPM) and are

781  shown in Box-and-whisker plots. The box is bounded by the first and third quartiles, centerline
782  shows the median, and whiskers represent the min and max values. Two-tailed Mann Whitney
783  test was used to determine significant differences in coverage between annotated ORFs and
784  smORFs (ns — not significant; ***, p < 0.001; ****, p < 0.0001).
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Supplementary Figure 10. Comparison of Ribo-seq coverage in annotated genes and
smORFs called translated in HeLa-S3 low-resolution dataset. (A-C) Quantification of Ribo-
seq read coverage for both annotated gene ORFs and smORFs called translated by each tool in
the HeLaS3 high-resolution dataset: RibORFv0.1 (A), RiboCode (B), and RibORFv1.0 (C).
Coverage is calculated as transcripts per million (TPM) and are shown in Box-and-whisker plots.
The box is bounded by the first and third quartiles, centerline shows the median, and whiskers
represent the min and max values. Two-tailed Mann Whitney test was used to determine
significant differences in coverage between annotated ORFs and smORFs (****, p < 0.0001).
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811  Supplementary Figure 11. smORFs with higher Ribo-seq coverage are more likely to be
812  predicted by multiple tools (A) Ribo-seq read coverage for smORFs predicted in high- and
813  low-resolution HeLa-S3 datasets were categorized as identified in all five tools, in greater than
814 three tools, and less than three tools. Coverage is calculated as transcripts per million (TPM)
815 and are shown in Box-and-whisker plots. The box is bounded by the first and third quartiles,
816  centerline shows the median, and whiskers represent the min and max values. For the low-

817 resolution dataset analyses, no smORFs were found in common across all five tools. Two-tailed
818  Mann Whitney test was used to determine significant differences in the Ribo-seq coverage (ns —
819  not significant; ***, p < 0.001; ****, p < 0.0001). (B) Average PhyloCSF scores of smORFs

820  predicted in high- and low-resolution HeLa-S3 datasets categorized by smORFs found in

821  greater than three tools or less than three tools.

822

823

824

825

38


https://doi.org/10.1101/2023.12.30.573709
http://creativecommons.org/licenses/by-nc-nd/4.0/

