

1 **Comparison of software packages for detecting unannotated translated small open
2 reading frames by Ribo-seq**

3
4 **Gregory Tong¹, Nasun Hah², Thomas F. Martinez^{1,3,4,*}**

5 ¹Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA

6 ²Chapman Charitable Foundations Genomic Sequencing Core, The Salk Institute for Biological
7 Studies, La Jolla, CA, USA.

8 ³Department of Biological Chemistry, University of California, Irvine, CA 92617, USA

9 ⁴Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92617, USA

10 *Correspondence: t.martinez@uci.edu

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 **SUMMARY**

34 Accurate and comprehensive annotation of microprotein-coding small open reading frames
35 (smORFs) is critical to our understanding of normal physiology and disease. Empirical
36 identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq).
37 While effective, published Ribo-seq datasets can vary drastically in quality and different analysis
38 tools are frequently employed. Here, we examine the impact of these factors on identifying
39 translated smORFs. We compared five commonly used software tools that assess ORF
40 translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH),
41 and found surprisingly low agreement across all tools. Only ~2% of smORFs were called
42 translated by all five tools and ~15% by three or more tools when assessing the same high-
43 resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~72%
44 agreement across all five tools. We also found that some tools are strongly biased against low-
45 resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage as a
46 proxy for translation levels revealed that highly translated smORFs are more likely to be
47 detected by more than one tool. Together these results support employing multiple tools to
48 identify the most confident microprotein-coding smORFs, and choosing the tools based on the
49 quality of the dataset and planned downstream characterization experiments of predicted
50 smORFs.

51

52

53

54

55

56

57

58

59 **INTRODUCTION**

60 Early efforts to annotate eukaryotic genomes relied in part on applying expected
61 properties of coding regions, such as having an ATG/AUG start codon in frame with a
62 downstream stop codon, one protein coding region per transcript that is often the longest open
63 reading frame (ORF), and a minimum length cutoff of 100 codons to identify overlooked coding
64 regions [1]. While effective, there remained the possibility that ORFs which do not follow these
65 rules can be translated to encode functional proteins. Recent advances in genomics,
66 proteomics, and bioinformatics have allowed researchers to empirically define protein coding
67 regions within genomes with better precision. The most striking result of these new studies is
68 that thousands of small open reading frames (smORFs) containing less than 100-150 codons,
69 which were presumed to be randomly occurring and non-functional, are in fact translated into
70 small proteins dubbed microproteins. These smORFs make up the majority of unannotated
71 ORFs and represent an increasingly active area of research. Many microproteins have now
72 been shown to be critical in normal biological processes and disease.

73 One of the primary methods for re-annotation of genomes is based on ribosome profiling
74 (Ribo-seq). Ribo-seq involves stalling elongating ribosomes in cell or tissue lysates with the
75 small molecule inhibitor cycloheximide, followed by digestion of polysomes with an RNase and
76 preparation of the ribosome protected RNA fragments (RPFs) into next generation sequencing
77 libraries. Following sequencing, the resulting reads are processed and aligned to the genome to
78 determine the locations of the ribosomes in each sample at harvesting. By identifying the
79 locations of ribosomes, bioinformatic tools can then be applied to infer which open reading
80 frames are translated. However, due to the variation in Ribo-seq protocols and a variety of
81 different software tools that have been developed to analyze translation from Ribo-seq data,
82 there is no consensus on best practices within the field for predicting smORFs.

83 For the field to progress further toward functional investigation of individual microproteins
84 and exploration of their utility as therapeutic targets, confidence in which smORFs are

85 annotated as translated is needed. Previously, we showed that differences in Ribo-seq data
86 quality can strongly impact which smORFs are called translated and that analyzing biological
87 replicate datasets is helpful for separating robustly translated smORFs from noise [2]. Here, we
88 hypothesized that different software tools for interpreting Ribo-seq data can also introduce
89 inconsistencies into which smORFs are considered translated due to differences in the
90 properties of Ribo-seq data are considered in scoring, how they are weighted, and what
91 statistical methods or classifiers are applied. To understand how the choice of software tool can
92 influence smORF prediction, we evaluated the performances of several popular Ribo-seq-based
93 ORF prediction tools. We found that while all tools show high congruence when identifying
94 larger annotated ORFs as translated, they show low similarity for which unannotated smORFs
95 are predicted to be translated. Analysis of Ribo-seq coverage levels between annotated ORFs
96 and unannotated smORFs suggest that the overall lower translation levels of smORFs
97 contributes to their noisier translation predictions. In addition, we observed large differences
98 between the tools' abilities to predict smORF translation when using lower quality Ribo-seq
99 datasets versus high. We also demonstrated that incorporation of an RNA-seq-derived *de novo*
100 transcriptome assembly can add additional unannotated smORFs compared to using a standard
101 GENCODE transcriptome annotation. Altogether, these results highlight the importance of using
102 multiple tools to raise confidence in the annotation of individual ORFs for functional studies and
103 broaden the pool of potential smORFs to test in high-throughput screens.

104

105 **METHODS**

106 **Ribo-seq datasets and preprocessing**

107 Ribo-seq datasets analyzed in this study were generated in our previous study [3], and
108 can be downloaded from the Gene Expression Omnibus (GEO) database repository under
109 accession number GSE125218. The specific Sequence Read Archive (SRA) IDs for the Ribo-
110 seq datasets are as follows: high-resolution HeLaS3 - SRR8449578, low-resolution HeLaS3 -

111 SRR8449575, harringtonin (TI-seq) HeLaS3 - SRR8449585, high-resolution HEK293T -

112 SRR8449568, medium-resolution HEK293T - SRR8449567, and low-resolution HEK293T -

113 SRR8449566.

114 Ribo-seq reads were preprocessed by trimming of 3' adapter sequences

115 (AGATCGGAAGAGGCACACGTCT) using the FASTX-toolkit. Next, reads aligning to rRNA and

116 tRNA sequences were filtered out using STAR with parameters –outReadsUnmapped Fastx

117 and the remaining reads were subsequently aligned to the GENCODE hg38 version 39 genome

118 assembly using STAR with the following settings –outFilterMismatchNmax 2 –

119 outFilterMultimapNmax 4 –chimScoreSeparation 10 –chimScoreMin 20 –chimSegmentMin 15 –

120 outSAMattributes All –outSAMtype BAM SortedByCoordinate. The resulting bam file was

121 filtered for primary alignments using samtools with the following parameters -bS -F 0X100. After,

122 multimappers were removed using samtools with the following parameters -bq 255. The

123 alignment files used for RiboCode's prepare_transcripts function requires the use of the

124 quantMode option during STAR alignment. To run RiboCode, reads were processed separately

125 using author recommended settings to include —outfilterMismatchNmax 2 –outSAMtype

126 BAMSortedByCoordinate –quantMode TranscriptomeSAM Genecounts –

127 outFilterMultiMapNmax 1 –outFilterMatchNmin 16 –alignEndsType EndToEnd. Length

128 histograms were generated by sampling a million reads and sorted by length from the final

129 alignment file. Metagene plots were created using RibORFv0.1's readDist.pl function and a

130 custom script was used to calculate the fraction of in frame reads based on the total corrected

131 reads. Other tools also have the capability to generate metagene plots. To ensure the same set

132 of read lengths were used for analysis across the different workflows, the same read lengths

133 and offset corrections were used for all ORF predictions for each separate library. Ribo-seq

134 coverage was visualized by generating bedgraphs using HOMER and uploading the bedgraphs

135 to the UCSC Genome Browser.

136 For final list filtering, smORFs with a minimum length cutoff of >6 amino acids and
137 maximum length cutoff of 150 amino acids was applied to all smORF lists. Afterwards, bedtools
138 intersect was used to remove smORFs that had over 90% overlap with CDS regions of
139 canonical genes with the following commands, -f 0.9 -v -s. We chose to exclude smORFs that
140 overlap fully with annotated ORFs in our analysis as they can be difficult to accurately identify
141 by Ribo-seq, but all the tools will allow for fully internal smORFs to be scored. After filtering out
142 passing smORFs, an additional filter using BLASTP was applied to remove potential
143 pseudogenes and potentially missed RefSeq annotated microproteins. The settings for running
144 the BLASTP search was -outfmt 10 -max_target_Seqs 5 -evalue 0.0001, and microproteins with
145 BLASTP scores ≥ 40 were filtered out. For generating translation scores for annotated genes,
146 RibORFv0.1 was run using a separate refFlat containing GENCODE CDS regions. For
147 RiboCode, Ribo-TISH, ORFquant, and RibORFv1.0, annotated genes that were detected were
148 separated out from the final list of ORFs predicted.

149

150 **Tools compared in this study for microprotein-coding smORF identification**

151 *RibORFv0.1*

152 RibORFv0.1 is the oldest tool of those we compared and is the tool we have used to
153 annotate microprotein-coding smORFs in our previous studies [2,4]. RibORFv0.1 utilizes a
154 support vector machine classifier to select for translating ORFs based on fraction of A-site reads
155 aligned to the correct reading frame and read distribution uniformity over the ORF. The model
156 uses canonical ORFs and off-frame ORFs for positive and negative controls, respectively, to
157 train the classifier to predict smORFs. A final p-value score is determined based on these two
158 properties. The authors suggest a score of ≥ 0.7 as a threshold for translation. Importantly, this
159 tool requires the user to provide a list of ORFs to be scored and cannot use the Ribo-seq data
160 to help identify start and stop sites. ORFs were defined using a custom java script,
161 GTFtoFASTA [2]. Using the reference GENCODE transcriptome, all three open reading frames

162 were parsed to find the most upstream canonical ATG start codon and in frame stop. If there is
163 no canonical start codon, then the ORF is defined from stop codon to stop codon. Running
164 RibORFv0.1 for translation scoring, ORFs were filtered with a minimum length cutoff of 18 and
165 minimum read coverage cutoff of 10 using the ribORF.pl script. The resulting list of ORFs was
166 further filtered with a pvalue cutoff of ≥ 0.7 , max nucleotide length cutoff of 450, and a read
167 coverage cutoff of 10.

168

169 *RibORFv1.0*

170 RibORFv1.0 is an updated version of RibORF that uses a different strategy for scoring
171 translation but is otherwise similar to RibORFv0.1. Instead of a support vector machine
172 classifier, RibORFv1.0 uses a logistic regression model to determine the pvalue scores. In
173 addition, RibORFv1.0 no longer uses a pre-scored training set of known translated and non-
174 translated ORFs but uses the user's own data to train prediction parameters based on pre-
175 defined positive and negative ORFs. It also parses user provided transcriptomes to identify all
176 possible ORFs and thus does not require a user provided list. ORF scoring was processed by
177 first running the ORFannotate.pl script with default settings. After candidate ORFs are
178 generated, ribORF.pl was used to identify translated ORFs using default settings of
179 orfLengthcutoff of 6 and readlengthcutoff 11. As with RibORFv0.1, the scored ORF list was
180 filtered with a pvalue cutoff of ≥ 0.7 and max nucleotide length cutoff of 450.

181

182 *Ribo-TISH*

183 Like other tools, Ribo-TISH can assess ORFs for translation using standard Ribo-seq
184 data from samples treated with cycloheximide. In addition, it can use translation initiation
185 sequencing (TI-seq) data from cells treated with translation initiation inhibitors, e.g. harringtonin
186 or lactimidomycin, to identify translated ORFs either with TI-seq data alone or in combination
187 with Ribo-seq data. For scoring, it uses a non-parametric Wilcoxon rank-sum test for its

188 assessment of 3-nt periodicity. Ribo-TISH can also parse user provided transcriptomes to
189 identify all possible ORFs and *de novo* annotate the translatome. Ribo-TISH was run with the
190 strategy of taking the most distal start codon to stop codon with RPF coverage when defining
191 the ORF. The predict function with the parameters –longest –altcodons TTG,CTG,GTG –seq –
192 aaseq with a p-value threshold of <0.05 was used. For Ribo-TISH analysis with translation
193 initiation data, the same settings were used with the additional -t flag for the harringtonin dataset
194 input.

195

196 *RiboCode*

197 RiboCode is a *de novo* translatome annotation software that relies solely on the 3-nt
198 periodicity pattern. For scoring, RiboCode uses a modified Wilcoxon signed rank-sum test to
199 assess whether the P-site density for a particular ORF is greater than the densities in the
200 alternative reading frames. Like the other modern tools, RiboCode parses a user provided
201 transcriptome to identify all possible ORFs for scoring. RiboCode also allows for the user to
202 input non-canonical start codons to use for defining candidate ORFs. Detection of translated
203 ORFs was identified using the RiboCode function with the settings -l no -s ATG -A
204 CTG,GTG,TTG -g and the default p-value cutoff of 0.05.

205

206 *ORFquant*

207 ORFquant is also able to *de novo* annotate the translatome. It uses a multitaper test to
208 select in-frame signal showing 3-nt periodicity, similar to the older RiboTaper tool developed by
209 the same author. This tool generates a p-value and a cutoff of 0.05 is used to identify translated
210 ORFs. Importantly, ORFquant requires the average signal on each covered codon to be >50%
211 in frame and only considers AUG start codons. ORFquant was run using the authors'
212 recommended settings. First, a .2bit file and gtf are used to create a TxDb and Rdata file using
213 the prepare_annotation_files function. Next, the prepare_for_ORFquant function was used to

214 process the alignment bam file and text file containing the read lengths and cutoff for analysis.
215 Lastly, run_ORFquant was used to take the files produced in the previous steps to score ORFs
216 using a p-value threshold of 0.05.

217

218 **Ribo-seq Read Coverage and PhyloCSF Analysis**

219 Ribo-seq read coverage for candidate smORFs identified by each tool were quantified
220 alongside the top expressed isoforms for annotated genes. Coverage was quantified using
221 HOMER's analyzeRepeats function and expression was normalized by transcripts per million
222 (TPM). Average PhyloCSF scores for the 58-mammal alignment used with genome build hg38
223 were extracted for all smORFs from the UCSC genome browser's PhyloCSF Track Hub.

224

225 **Nanopore Long-read library preparation and sequencing**

226 Total RNA was isolated from HeLa-S3 using the QIAGEN RNeasy kit. RNA integrity was
227 assessed using TapeStation 4200 (Agilent) and RNA samples with RIN> 8 were used for library
228 preparation for long read sequencing. Isolated total RNA was used to generate sequencing
229 library following Oxford Nanopore Technologies protocol for cDNA-PCR sequencing kit. 50 ng of
230 total RNA was first reverse transcribed for complementary strand synthesis using strand
231 switching primers. cDNA was PCR amplified using primers that contain 5' tags, which enables
232 attachment of rapid sequencing adapters. The cDNA library was loaded onto R9.4.1 flow cells
233 according to Oxford Nanopore Technologies protocol and sequenced for 48 hours with High
234 accuracy setting on GridION system in the Salk NGS core.

235

236 **De novo transcriptome assembly**

237 For the long read RNA-seq datasets generated using the Nanopore sequencing
238 platform, reads were processed using the FLAIR pipeline. Reads were aligned using FLAIR
239 align module with minimap2 and converted to a SAM file in BED12 format. FLAIR correct was

240 used to correct misaligned splice sites using the GENCODE version 39 annotation. Finally,
241 FLAIR collapse takes the high confidence isoforms from the corrected reads to output a gtf.
242 Using the StringTie merge option, the FLAIR gtf was merged with the GENCODE reference gtf
243 to create a combined non-redundant set of transcripts used for downstream analysis.

244 For the paired-end RNA-seq datasets generated using the Illumina sequencing platform,
245 originally generated in [2], fastq files were downloaded from the SRA with accession codes
246 found in (Table S1) and trimmed of adapter sequences using TrimGalore. Reads were aligned
247 using STAR with the options –runMode alignReads –sjdbOverhang 100 –runRNGseed 133 –
248 twopassMode Basic –outSAMstrandField intronMotif –outfilterINtronMotifs Remove
249 Noncanonical –outSAMattributes All. The resulting bam file was then sorted using samtools. For
250 each library, StringTie was used to assemble transcripts from the sorted bam files using the
251 guided assembly option. The assembled transcripts were then merged using the StringTie
252 merge option with the GENCODE reference transcriptome annotation. The resulting gtf file was
253 used as the transcriptome for downstream smORF analysis. GFFCompare was used to
254 compare and evaluate the two transcriptome assemblies.

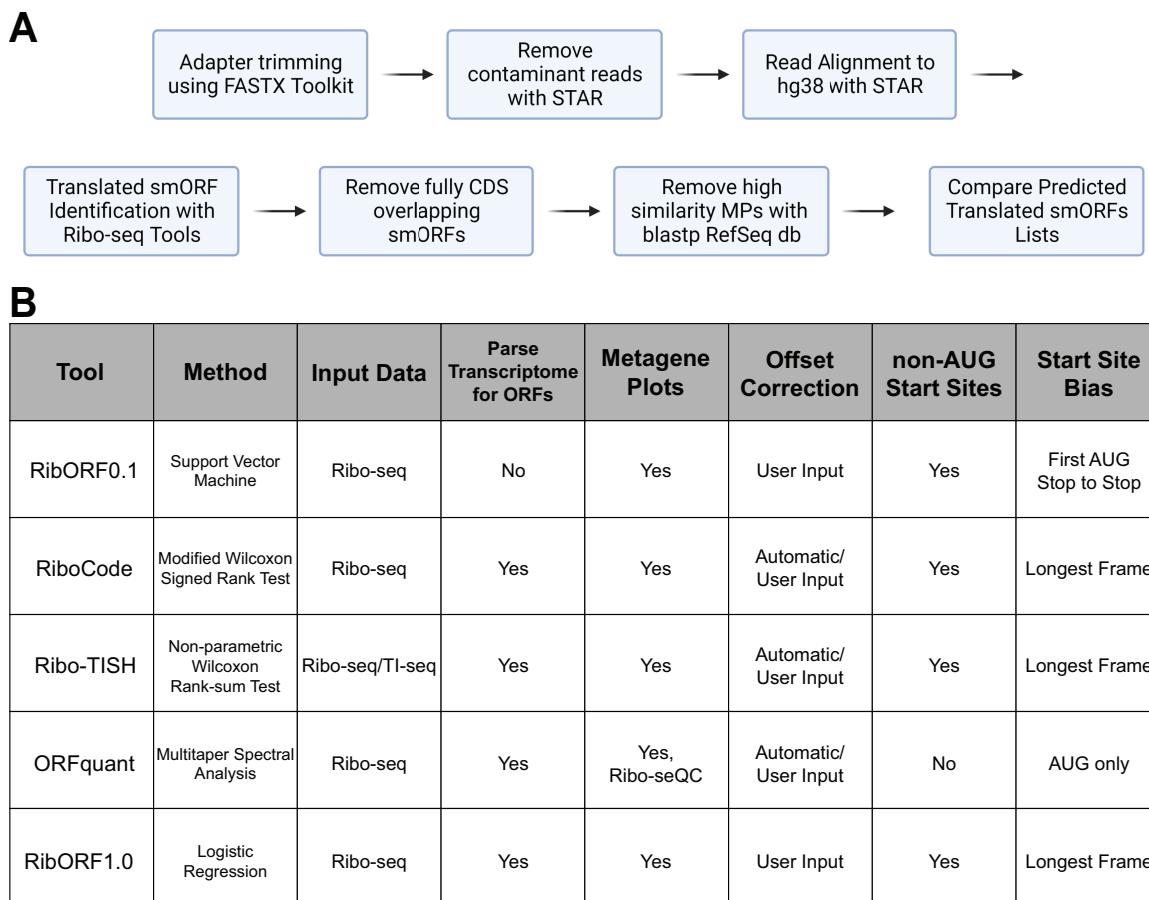
255

256 **RESULTS AND DISCUSSION**

257 **Tools for detecting translated open reading frames from Ribo-seq**

258 We compared five popular tools for analyzing individual open reading frames for
259 translation using Ribo-seq data, including RibORF version 0.1 (RibORFv0.1) [5], RibORF
260 version 1.0 (RibORFv1.0) [6], Ribo-TISH [7], RiboCode [8], and ORFquant [9]. These tools were
261 published between 2015 and 2020 and have been applied frequently to identify novel translated
262 ORFs, including smORFs, in the years since. Each tool includes an assessment of the 3
263 nucleotide (3-nt) periodicity of aligned ribosomal A-site or P-site reads that are in-frame with a
264 particular ORF to aid in scoring translation. This feature is a hallmark of active translation as the
265 ribosome scans ORFs translating 3-nt codons from the start codon to the stop codon [10].

266 Higher resolution datasets have a higher percentage of reads in-frame with annotated ORFs.
267 However, the statistical methods applied for assessing whether the fraction of in-frame reads is
268 significant differs widely. For example, RibORFv0.1 utilizes a support vector machine approach
269 to classify and score ORFs, while RiboCode uses a modified Wilcoxon signed-rank sum test to
270 determine the significance in-frame versus out-of-frame read enrichment within the tested ORF
271 (**Fig. 1A**). In addition, whether tools allow for ORFs initiating from near-cognate start codons,
272 such as CUG or GUG, or consider other features such as percent ORF coverage differs among
273 the tools. More details on how each tool scores translation is included in the Methods section.



274
275
276 **Figure 1. Workflow of smORF Annotation and Ribo-seq Tool Features. (A)** Workflow for
277 processing and filtering of Ribo-seq datasets that were used for ORF identification and
278 comparison of translated unannotated smORF lists. **(B)** Properties of the computational
279 methods compared in this study.
280

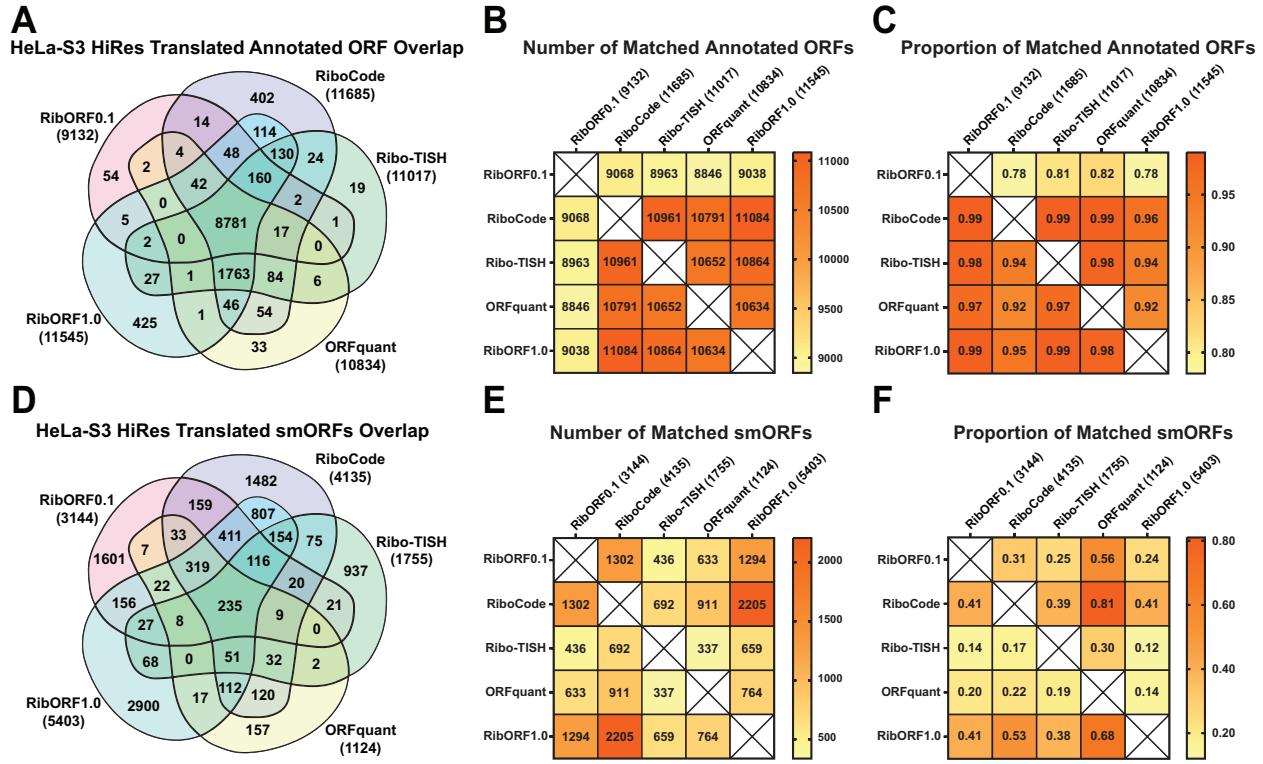
281 To compare the tools, we developed a standardized workflow to take unprocessed Ribo-
282 seq data and generated a filtered list of predicted novel smORFs (**Fig. 1B**). To summarize, 3'-
283 adapter sequences are trimmed and reads aligning to rRNA and tRNA sequences are filtered
284 out. The remaining reads are mapped to the hg38 genome using STAR [11] and the resulting
285 alignment file of only uniquely mapped reads is used as the input for each tool to score ORFs
286 for translation. Each tool was also given either a list of all possible ORFs to score, which we
287 generated from the GENCODE comprehensive set of human transcripts, or the entire
288 GENCODE transcriptome file for the software to parse into ORFs for scoring. The Ribo-seq
289 datasets analyzed in our tool comparison were generated in our previous study [2] and include
290 low- and high-resolution datasets collected from HeLa-S3 and HEK293T cell lines
291 (**Supplementary Fig. 1**). The high-resolution datasets show greater than 70% in-frame RPF
292 read alignment with known coding regions across all read lengths retained for analysis, while
293 low-resolution data show only ~50% of in-frame RPF reads (**Supplementary Fig. 2**). These
294 datasets allowed us to assess any differences between the tools in handling varying quality data
295 and ensure that any observed trends are not cell line specific. Following scoring by each tool,
296 smORFs that were found to fully overlap within annotated CDS regions were removed. These
297 internal smORFs can be difficult to accurately score by Ribo-seq as reads aligned to each ORF
298 inherently lowers the score of the other ORF. The list of remaining unannotated smORFs were
299 then used for comparison across tools.

300

301 **Comparing Predicted Translated smORFs Across Tools**

302 In our previous study, we showed that there was a high overlap in the detection of
303 annotated coding regions from Ribo-seq data across different resolutions, but that the list of
304 smORFs called translated was noisy and showed low overlap across datasets [2]. This study
305 only used RibORFv0.1 to analyze smORF translation, leaving an open question as to whether
306 the poor overlap was an artifact of the software tool or a result of smORF translation being

307 generally noisier and more difficult to assess relative to larger annotated coding regions. To test
308 this, we initially examined a high-resolution HeLa-S3 Ribo-seq data for differences in identifying
309 translated ORFs across the different tools. We observed high overlap in the number of total
310 annotated genes detected across all five tools with 8,781 (71.6%) called translated and a similar
311 number identified by each tool (**Fig. 2A**). Pairwise comparisons of the number of annotated
312 ORFs found in one tool compared to each other tool, as well as the proportion of matched
313 ORFs, showed similar performance between all tools and that RibORFv0.1 was the least
314 sensitive (**Figs. 2B, C**). Next, we examined the prediction of novel translated smORFs from
315 each tool (**Fig. 2D**). Compared to annotated ORFs, there is little overlap in the total number of
316 smORFs predicted with only 235 (2.3%) found across all tools and 1,549 (15.4%) smORFs
317 found in at least three out of five tools. The performance of the tools differentiated into two
318 groups. RiboCode, RibORFv0.1, and RibORFv1.0 called 2.3-4.8 times as many smORFs
319 translated as ORFquant and Ribo-TISH. Pairwise analysis of the number and proportion of
320 matched smORFs revealed additional differences between the tools (**Fig. 2E, F**). First, despite
321 identifying less than half the number of translated smORFs as RiboCode and RibORFv1.0, only
322 ~40% of Ribo-TISH hits overlapped with RiboCode and RibORFv1.0. This contrasted with
323 ORFquant, which also identified a lower amount of translated smORFs (1,124) but had 68% and
324 81% of its calls overlap with those of RibORFv1.0 and RiboCode, respectively. In addition, Ribo-
325 TISH had the smallest proportion of ORFquant calls matched (30%). These data demonstrate
326 that Ribo-TISH is an outlier compared to the other tools that identifies both a smaller number
327 and more unique set of smORFs as translated. Meanwhile, the majority of ORFquant's hits can
328 be captured by using the tools that predict larger numbers of translated smORFs.



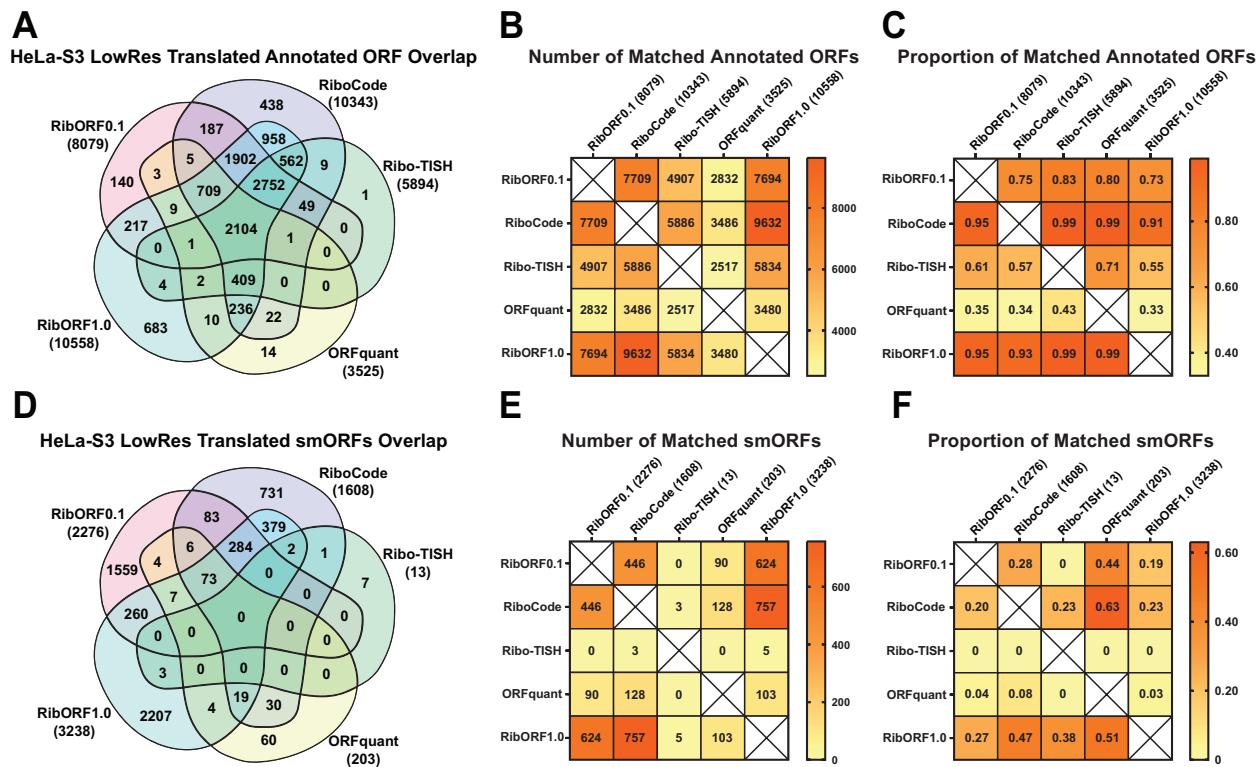
329

330 **Figure 2. Comparison of detected annotated ORFs and predicted smORFs in the high-**
331 **resolution HeLa-S3 Ribo-seq dataset. (A)** Venn diagram showing the overlap of annotated
332 genes called translated across the different tools. The total number of annotated genes detected
333 is displayed next to the names of each tool in parentheses. **(B)** Heat map showing the pairwise
334 comparison of matching annotated genes between the different tools. **(C)** Heat map showing the
335 proportion of annotated genes identified by the tool in the column that are also detected by the
336 tool in the row. **(D-E)** The same plots are shown as in **(A-C)** for the analysis of unannotated
337 smORFs.

338

339 We next explored whether these trends would remain consistent after analyzing low-
340 resolution HeLa-S3 Ribo-seq data. Compared to the detection of annotated genes in the high-
341 resolution dataset, we observed a large drop in the number of smORFs called translated by
342 ORFquant (3,525) and Ribo-TISH (5,894) resulting in only 2,104 (18.4%) in common across all
343 tools (**Fig. 3A**). Pairwise comparisons of the tools showed that both RibORFv1.0 and RiboCode
344 identified the most annotated genes as translated and >90% of those identified in all the other
345 tools (**Fig. 3B, C**). ORFquant was impacted the most by the low-resolution data, identifying only
346 3,525 annotated genes as translated. This is consistent with ORFquant's requirement to have
347 >50% reads in-frame for each codon within an ORF to be called translated [9]. Similarly, Ribo-

348 TISH and ORFquant were greatly affected by the lower resolution when predicting novel
 349 smORFs, predicting 13 and 203 smORFs, respectively (**Fig. 3D**). Despite the low number of
 350 smORFs predicted, we observed the same trend that the highest proportional overlap of
 351 smORFs were relative to ORFquant predictions. We repeated the comparison analysis on
 352 HEK293T Ribo-seq data with varying resolutions and found similar trends with annotated genes
 353 (**Supplementary Fig. 3**) and unannotated smORFs (**Supplementary Fig. 4**), validating the
 354 conclusion that ORFquant and Ribo-TISH are less noise tolerant for calling translation of both
 355 annotated genes and translated smORFs compared to the other three pipelines.



356
 357
**Figure 3. Comparison of detected annotated ORFs and predicted smORFs in low-
 358 resolution HeLa-S3 Ribo-seq dataset. (A)** Venn diagram showing the overlap of annotated
 359 genes called translated across the different tools. The total number of annotated genes detected
 360 is displayed next to the names of each tool in parentheses. **(B)** Heat map showing the pairwise
 361 comparison of matching annotated genes between the different tools. **(C)** Heat map showing the
 362 proportion of annotated genes identified by the tool in the column that are also detected by
 363 the tool in the row. **(D-E)** The same plots are shown as in **(A-C)** for the analysis of unannotated
 364 smORFs.
 365
 366

367 We also directly compared smORF predictions across the low- and high-resolution
368 HeLa-S3 datasets (**Supplementary Fig. 5**). Despite using lower quality Ribo-seq data, both
369 versions of RibORF and RiboCode were all able to identify a small fraction of smORFs
370 (between 10-25%) that were also called translated by each of the five tools when using high
371 resolution data. These results suggest that RibORF and RiboCode can identify smORFs that
372 are highly likely to be translated despite the use of lower resolution data, though many of the
373 smORFs called translated are still likely to be noise. For ORFquant, only 1-5% of ORFs called
374 translated using low-resolution dataset were also observed by other tools when using high
375 resolution data, while Ribo-TISH only identified 1-3 total hits in common when comparing low
376 versus high resolution data. Overall, RibORF and RiboCode demonstrate more sensitive
377 detection of translated smORFs than ORFquant and Ribo-TISH regardless of data quality.

378

379 **Accounting for Isoform Differences in smORF Predictions**

380 In our initial comparisons between the tools, we restricted the matches to smORFs that
381 have the same genomic coordinates. However, given that smORFs can use alternative start
382 codons and can be spliced like larger ORFs, it is possible that the tools predict isoforms of the
383 same smORF. To account for this, we looked for any additional smORFs identified by each tool
384 that have the same start coordinate but different stop coordinates and vice versa using our
385 HeLa-S3 datasets. Each tool was pairwise compared against RibORFv1.0, which predicted the
386 largest number of smORFs. For the high-resolution dataset, allowing for stop site matches (start
387 site isoforms) resulted in an additional 79 to 411 smORFs in common, while allowing for start
388 site matches (stop site isoforms) resulted in an additional 6 to 48 smORFs in common (**Fig. 4A**).
389 The high number of start site isoforms called between the different tools is expected due to how
390 the different pipelines handle AUG versus near cognate start codons as well as ORFs where
391 multiple possible start codons are present. For example, ORFquant will only allow for AUG start
392 codons in its predictions. For the low-resolution HeLa-S3 dataset, additional matching smORFs

393 were found for RibORF and RiboCode, but very few additional hits were observed for ORFquant
394 and Ribo-TISH due to the overall lower number of smORFs called translated by these tools
395 (**Fig. 4B**). Examples of predicted smORF isoforms that have matched start or stop coordinates
396 can be observed in the 5'-UTRs of CES and ANGEL2, respectively (**Fig. 4C**).

397

398

399

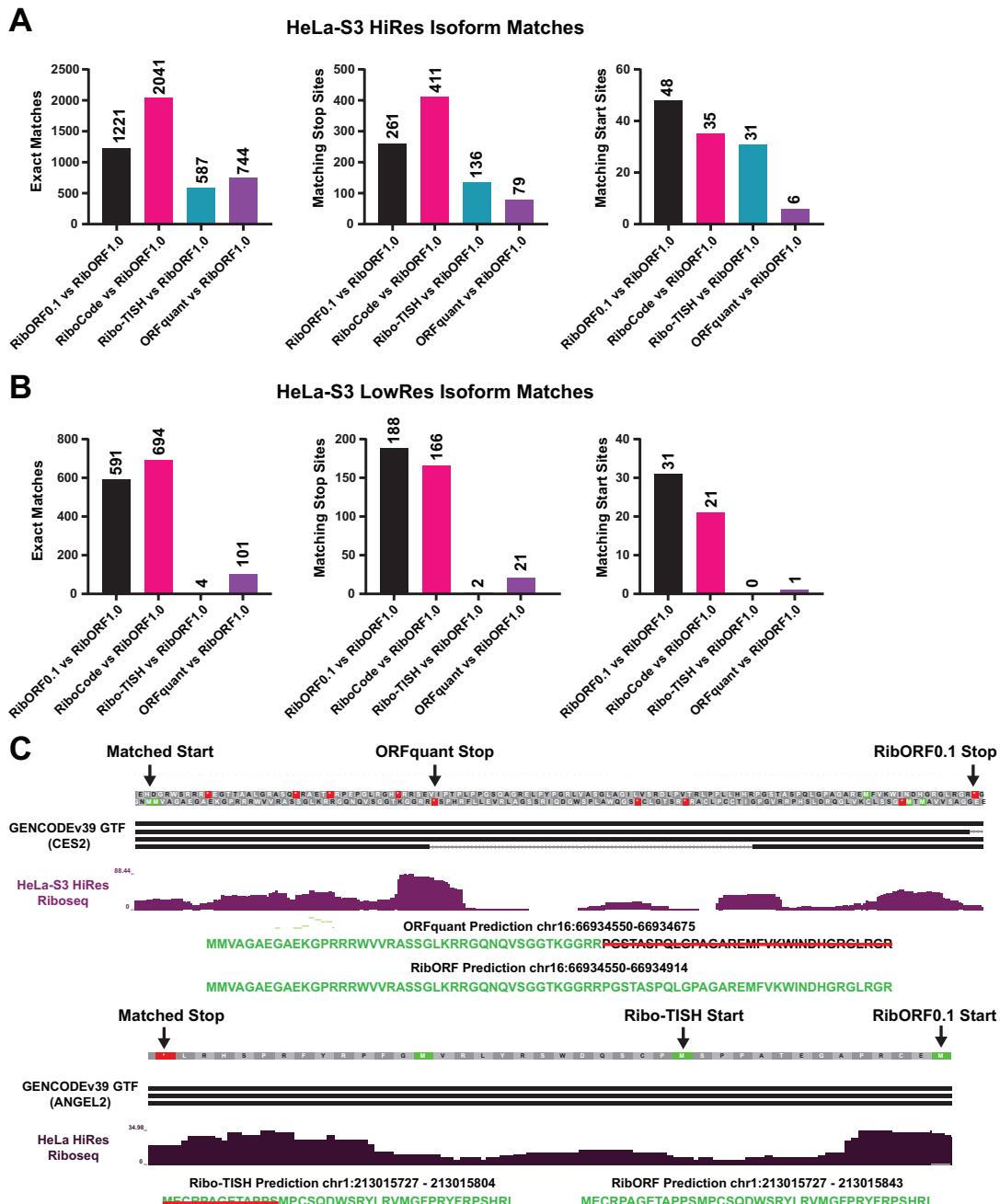


Figure 4. Accounting for smORF isoform variance across different ORF prediction pipelines. (A-B) Bar plots showing the number of exact smORF matches (left), start site isoform smORF matches (middle), and stop site isoform smORF matches (right) between each tool and RibORFv1.0 when analyzing either the high-resolution (A) or low-resolution (B) HeLaS3 Ribo-seq datasets. (C) Bedgraph tracks showing Ribo-seq coverage on the 5'-UTRs of CES2 and ANGEL2. In the top track, an alternatively spliced smORF on the positive strand was identified by both ORFquant and RibORFv0.1 with a matching start site but different the stop site. In the bottom track, Ribo-TISH and RibORFv0.1 detect a smORF on the negative strand with the same stop location but different canonical start codons.

413 **Incorporating Translation Initiation Sequencing (TI-Seq) Data into smORF Prediction**

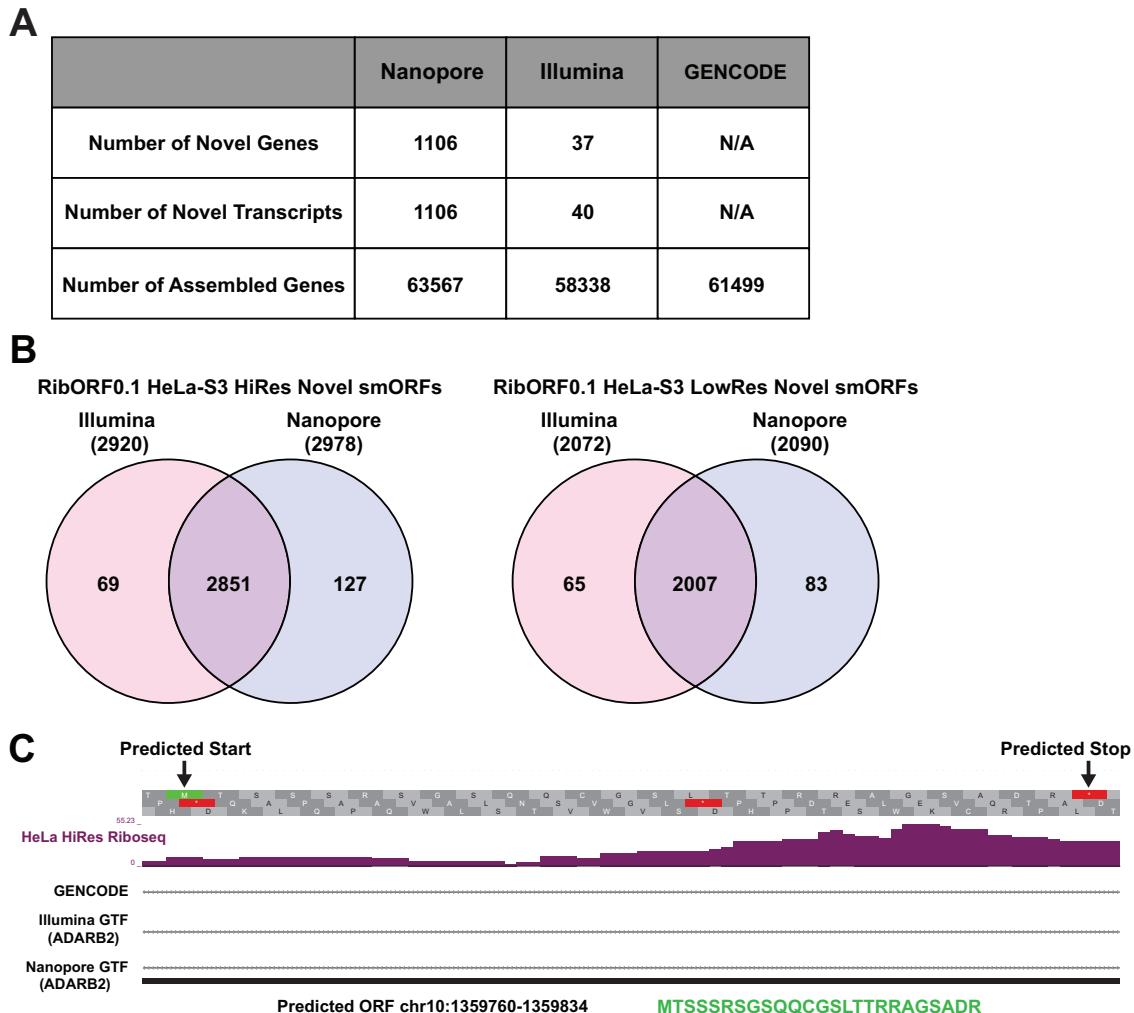
414 To aid in the prediction of novel ORFs, some newer tools like Ribo-TISH allow
415 integration of translation initiation sequencing (TI-seq). TI-seq is a modified version of Ribo-seq
416 that includes a short pretreatment with translation initiation inhibitors such as harringtonin or
417 lactimidomycin in order to enrich for ribosome coverage on ORF start sites, providing additional
418 evidence of their translation [12]. Using matched TI-seq HeLa-S3 data from harringtonin treated
419 cells, we compared annotated genes and smORFs called translated when using both TI-seq
420 and standard Ribo-seq datasets to those identified by Ribo-seq alone. There was a high overlap
421 of annotated genes detected (~73%), though fewer total genes were called translated when TI-
422 seq data was included due to the extra requirement of having an initiation peak
423 (**Supplementary Fig. 6A**). For smORFs, the overlap between the two analyses was much lower
424 (~10%, **Supplementary Fig. 6B**). In some instances, the lack of overlap was due to different
425 translation start sites predicted based on whether TI-seq data was incorporated or not. We
426 highlight one example of two smORF isoforms on the TXNRD1 transcript, with one smORF
427 starting at an AUG start codon that shows enrichment by TI-seq and the other starting at an
428 upstream near cognate start codon that is predicted when using Ribo-seq alone
429 (**Supplementary Fig. 6C**). While differing start site predictions can explain some of the
430 differences, some of the smORFs identified by Ribo-seq alone using Ribo-TISH might in fact not
431 be translated since they did not show start site enrichment by TI-seq. Ribo-TISH also predicts
432 unique smORFs found only with integration of initiation site data, such as the smORF within the
433 5'-UTR of the PIGW transcript (**Supplementary Fig. 6D**). Thus, the inclusion of initiation site
434 data can introduce another variable to smORF predictions.

435

436 **Impact of *de novo* Assembled Transcriptome Annotation on smORF Identification**

437 Analyzing Ribo-seq data for translated smORFs requires the use of a transcriptome to
438 create a database of all possible smORFs present in a given sample. While most studies use

439 transcriptomes sourced from reference databases like GENCODE [13] or Ensembl [14], *de novo*
440 assembled transcriptomes can also be used. By incorporating *de novo* transcriptome
441 assemblies, one can identify smORFs on transcript isoforms that are otherwise missing from
442 these public reference databases. We previously used transcriptomes assembled from Illumina-
443 based short read RNA-seq data to identify smORFs on cell line specific transcript isoforms [3],
444 but use of long-read sequencing technologies may aid in the identification of additional
445 smORFs. To evaluate the two sequencing methods' effects on smORF identification, we
446 assembled HeLa-S3 transcriptomes from both Nanopore long-read and Illumina short-read
447 RNA-seq datasets using StringTie [15], a more modern assembly tool than what we had used in
448 our original study. After assembly, the resulting transcriptome was merged with the GENCODE
449 reference to create a comprehensive transcriptome that includes additional transcripts identified
450 by each RNA-seq strategy. This resulted in an additional 40 transcripts using Illumina RNA-seq
451 data and an additional 1,106 transcripts using Nanopore RNA-seq data that were not included in
452 the GENCODE transcriptome (**Fig. 5A**). Using RibORFv0.1 to identify translated smORFs in the
453 high-resolution HeLaS3 dataset with each *de novo* assembled transcriptome revealed a high
454 degree of overlap (~94%, **Fig. 5B**). However, unique predicted translated smORFs were found
455 for each transcriptome, with 127 predicted smORFs found only when using the Nanopore
456 assembly and 69 specifically from the Illumina assembly. Using RiboCode for translation calling
457 yielded similar results (**Supplementary Fig. 7**). An example smORF that both RibORFv0.1 and
458 RiboCode call translated from a transcript specifically identified when using Nanopore long-read
459 RNA-seq data can be found antisense to ADARB2 (**Fig. 5C**). These data show that
460 incorporating *de novo* transcriptome assembly into smORF prediction workflows can identify
461 additional hits, but the overall benefit over using the GENCODE reference transcriptome alone
462 is marginal.



463
464

465 **Figure 5: De novo transcriptome assembly enables additional smORFs to be predicted.**
466 (A) Comparison of the Nanopore long read- and Illumina short read-based *de novo* assembled
467 transcriptomes and GENCODE reference using GffCompare. (B) Venn diagram showing the
468 overlap of predicted smORFs identified by RibORFv0.1 when using the *de novo* transcriptome
469 assemblies along either high-resolution (left) or low-resolution (right) HeLa-S3 Ribo-seq
470 datasets. The total number of annotated genes detected is using each assembly is shown in
471 parentheses. (C) Bedgraph tracks showing Ribo-seq coverage on a region antisense to
472 ADARB2 as well as transcripts present in GENCODE and the *de novo* transcriptome
473 assemblies. An assembled transcript for this region is only found when using the Nanopore-
474 based *de novo* assembly.

475

476 Comparing Tool Accuracy with a High Confidence Community smORF Dataset

477 Comparing predicted translated smORFs across tools showed high variability, leading
478 one to question which tool is better at identifying *bona fide* microprotein-coding smORFs. To
479 address this point, we compared the predicted smORFs from each tool to a community set of

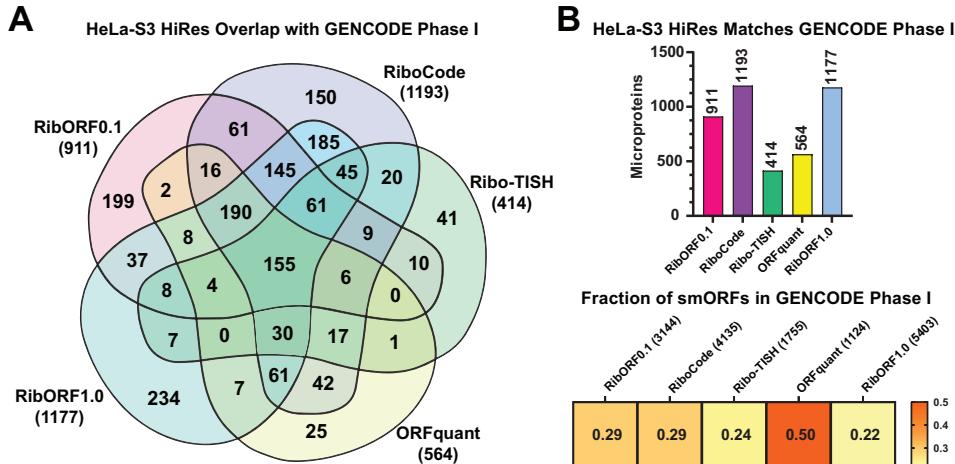
480 3,085 smORFs from different human samples that were reproducibly detected across multiple
481 Ribo-seq-based smORF annotation studies and using different tools [16]. These high
482 confidence smORF annotations are publicly available through GENCODE. Using the HeLa-S3
483 datasets, we determined the number of smORFs matching the GENCODE smORF set for each
484 tool. For the high-resolution HeLa-S3 dataset, 155 of these high confidence GENCODE
485 smORFs were predicted by all tools, and each was able to identify a subset of these smORFs
486 missed by the other tools (**Fig. 6A**). RibORFv0.1, RibORFv1.0, and RiboCode had the highest
487 number of matches, consistent with their overall greater number of smORFs called translated
488 compared to Ribo-TISH and ORFquant (**Fig. 6B**). However, ORFquant had the highest
489 proportion of its smORF calls overlap with the GENCODE set. Similar trends are observed
490 when using the low-resolution HeLa-S3 dataset, with the exception that Ribo-TISH and
491 ORFquant call far fewer smORFs than the other tools when using poorer quality data
492 (**Supplementary Fig. 8**). Overall, these results further demonstrate that RibORF and RiboCode
493 are more sensitive than ORFquant, while ORFquant is the most accurate of the tools and Ribo-
494 TISH suffers from both lower sensitivity and accuracy.

495

496

497

498



499
500
501 **Figure 6. Comparison of the GENCODE Phase I high-confidence smORFs predicted by**
502 **each tool in the HeLa-S3 high-resolution dataset. (A)** Venn diagram showing the overlap of
503 GENCODE smORFs detected by each tool in the high-resolution HeLaS3 Ribo-seq dataset.
504 Total number of GENCODE smORFs detected by each tool is shown in parentheses. **(B)** Bar
505 plot showing the total number of matched smORFs with the GENCODE set for each tool (top).
506 Heat map showing the proportion of smORFs identified by each tool that are also included in the
507 GENCODE smORF set (bottom).

508
509 **Translation Levels Correlate with smORF Detectability by Multiple Tools**

510 Given the high overlap of annotated genes called translated across the different tools but
511 low overlap of predicted translated smORFs, we wanted to identify properties that influence this
512 difference. Ribo-seq read coverage for a given ORF correlates with translation levels and is a
513 critical factor in predicting translation for each of these tools. Therefore, we compared Ribo-seq
514 read coverage of annotated genes and smORFs called translated by each tool. Using the high-
515 resolution HeLaS3 dataset, annotated genes called translated showed significantly higher in all
516 tools except Ribo-TISH (**Supplementary Fig. 9**). These same patterns were observed when
517 analyzing the low-resolution Ribo-seq dataset using RiboCode and RibORF (**Supplementary**
518 **Fig. 10**). These data suggest that overall higher translation levels are likely driving the greater
519 overlap in annotated gene detection across the different tools. We therefore hypothesized that
520 smORFs that are reproducibly detected across the different tools are also more likely to have
521 higher translation levels. Comparing smORFs called translated by all five, at least three, and
522 less than three tools showed that smORFs detected by more tools are translated at significantly

523 higher levels in both high- and low-resolution datasets (**Supplementary Fig. 11A**). These
524 results suggest that smORFs are more difficult to detect in part because of their overall lower
525 translation levels than larger annotated ORFs.

526 Most human microprotein-coding smORFs show conservation only to other primates or
527 are entirely *de novo* occurrences in our genome [17–19]. However, there are many examples of
528 functionally characterized microproteins that are well conserved across mammals [20,21].
529 Therefore, we next assessed whether smORFs detected by multiple tools are not only
530 translated at higher levels but also more conserved. Using PhyloCSF [22], we observed no
531 significant difference in average scores between smORFs detected by three or more tools and
532 those detected by fewer than three tools (**Supplementary Figure 11B**). Thus, conservation is
533 not a major determinant of high confidence smORF detection by Ribo-seq.

534

535 CONCLUSIONS

536

537 Ribo-seq has revolutionized our ability to *de novo* annotate translated open reading
538 frames. Still, it is only as effective as the bioinformatic tools used to interpret the data to identify
539 *bona fide* translation events. By comparing several popular tools, we found that each can
540 identify a similar set of translated annotated genes as intended when high-resolution data is
541 used. When attempting to identify unannotated translated smORFs, however, the tools vary
542 widely in the number called translated and show little overlap. We found a clear split between
543 RibORFv0.1, RibORFv1.0, and RiboCode, which consistently predict more translated smORFs
544 than ORFquant and Ribo-TISH. Moreover, RiboCode and RibORFv1.0 identify a large fraction
545 of the same smORFs called by ORFquant, while Ribo-TISH identifies a subset of smORFs that
546 is more unique than all the other tools. When low-resolution Ribo-seq data is used, ORFquant
547 and Ribo-TISH are further separated from the other tools, identifying a relatively small number
548 smORFs as translated and reflecting differences in stringency. When comparing the smORFs
549 predicted by each tool with a high confidence set included in GENCODE, we found that

550 RiboCode and RibORF had the highest sensitivity but ORFquant the highest accuracy. Given
551 these results, we suggest that RiboCode and both versions of RibORF are better suited for
552 identifying smORFs to test in high-throughput screens like CRISPR dropout assays where the
553 aim is to identify large sets of functional smORFs. These tools are also good choices when only
554 lower quality Ribo-seq data is available, though caution must be exercised as lower-resolution
555 data will inherently lead to noisier calls overall. ORFquant, meanwhile, is an excellent choice
556 when attempting to identify confidently translated smORFs with AUG start sites from high-
557 resolution data, as when planning low-throughput functional characterization studies of encoded
558 microproteins. Finally, we suggest that regardless of the purpose it is prudent to use multiple
559 Ribo-seq analysis tools in addition to analyzing biological replicates to identify the most
560 confident microprotein-coding smORFs, particularly for ongoing annotation efforts for reference
561 databases, and consider Ribo-seq read coverage in their prioritization.

562

563 **ACKNOWLEDGEMENTS**

564 We thank members of the Martinez lab for thoughtful suggestions and comments throughout the
565 study. We also thank Dr. Jorge Ruiz Orera for helpful advice on running ORFquant.

566

567 **FUNDING**

568 T.F.M. acknowledges financial support from NIH grant K01CA249038 and the UC Drug
569 Discovery Consortium.

570

571 **DECLARATION OF INTERESTS**

572 T.F.M. is a paid consultant and shareholder of Velia Therapeutics. N.H. is a current employee of
573 Altos Labs.

574

575

576 **AUTHOR CONTRIBUTIONS**

577 G.T. and T.F.M. conducted the computational experiments and analyzed the results; N.H.
578 prepared Nanopore long-read RNA-seq data; T.F.M. conceived, organized, and managed the
579 project implementation; all authors wrote and reviewed the manuscript.

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602 **REFERENCES**

603

604 1. Basrai MA, Hieter P, Boeke JD. Small Open Reading Frames: Beautiful Needles in the
605 Haystack. *Genome Res.* 1997; 7:768–771

606 2. Martinez TF, Chu Q, Donaldson C, et al. Accurate annotation of human protein-coding small
607 open reading frames. *Nat. Chem. Biol.* 2020; 16:458–468

608 3. Martinez TF, Chu Q, Donaldson C, et al. Accurate annotation of human protein-coding small
609 open reading frames. *Nat. Chem. Biol.* 2020; 16:458–468

610 4. Martinez TF, Lyons-Abbott S, Bookout AL, et al. Profiling mouse brown and white adipocytes
611 to identify metabolically relevant small ORFs and functional microproteins. *Cell Metab.* 2023;
612 35:166–183.e11

613 5. Ji Z, Song R, Regev A, et al. Many lncRNAs, 5'UTRs, and pseudogenes are translated and
614 some are likely to express functional proteins. *eLife* 2015; 4:e08890

615 6. Ji Z. RibORF: Identifying Genome-Wide Translated Open Reading Frames Using Ribosome
616 Profiling. *Curr. Protoc. Mol. Biol.* 2018; 124:e67

617 7. Zhang P, He D, Xu Y, et al. Genome-wide identification and differential analysis of
618 translational initiation. *Nat. Commun.* 2017; 8:1749

619 8. Xiao Z, Huang R, Xing X, et al. De novo annotation and characterization of the translatome
620 with ribosome profiling data. *Nucleic Acids Res.* 2018; 46:e61–e61

621 9. Calviello L, Hirsekorn A, Ohler U. Quantification of translation uncovers the functions of the
622 alternative transcriptome. *Nat. Struct. Mol. Biol.* 2020; 27:717–725

623 10. Ingolia NT, Ghaemmaghami S, Newman JRS, et al. Genome-Wide Analysis in Vivo of
624 Translation with Nucleotide Resolution Using Ribosome Profiling. *Science* 2009; 324:218–223

625 11. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner.
626 *Bioinformatics* 2013; 29:15–21

627 12. Ingolia NT, Lareau LF, Weissman JS. Ribosome Profiling of Mouse Embryonic Stem Cells
628 Reveals the Complexity and Dynamics of Mammalian Proteomes. *Cell* 2011; 147:789–802

629 13. Frankish A, Diekhans M, Jungreis I, et al. GENCODE 2021. *Nucleic Acids Res.* 2021;
630 49:D916–D923

631 14. Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. *Nucleic Acids Res.* 2022; 50:D988–
632 D995

633 15. Pertea M, Pertea GM, Antonescu CM, et al. StringTie enables improved reconstruction of a
634 transcriptome from RNA-seq reads. *Nat. Biotechnol.* 2015; 33:290–295

635 16. Mudge JM, Ruiz-Orera J, Prensner JR, et al. Standardized annotation of translated open
636 reading frames. *Nat. Biotechnol.* 2022; 40:994–999

637 17. Schlesinger D, Elsässer SJ. Revisiting sORFs: overcoming challenges to identify and
638 characterize functional microproteins. *FEBS J.* 2022; 289:53–74

639 18. Vakirlis N, Vance Z, Duggan KM, et al. De novo birth of functional microproteins in the
640 human lineage. *Cell Rep.* 2022; 41:111808

641 19. Broeils LA, Ruiz-Orera J, Snel B, et al. Evolution and implications of de novo genes in
642 humans. *Nat. Ecol. Evol.* 2023; 7:804–815

643 20. Rathore A, Chu Q, Tan D, et al. MIEF1 Microprotein Regulates Mitochondrial Translation.
644 *Biochemistry* 2018; 57:5564–5575

645 21. Chu Q, Martinez TF, Novak SW, et al. Regulation of the ER stress response by a
646 mitochondrial microprotein. *Nat. Commun.* 2019; 10:4883

647 22. Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish
648 protein coding and non-coding regions. *Bioinformatics* 2011; 27:i275–i282

649

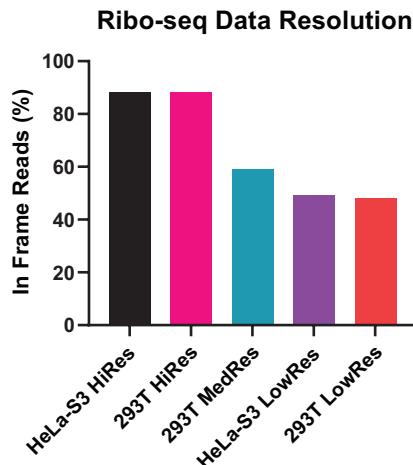
650

651

652

653 **SUPPLEMENTARY DATA**

654



655

656

657 **Supplementary Figure 1. Percentage of in-frame reads for the highest abundance RPF**
658 **read length for each Ribo-seq dataset.** For each Ribo-seq dataset analyzed, the fraction of in-
659 frame reads after the start site was calculated for the most abundant RPF read length after
660 offset correction to align to the ribosomal A-site. The read lengths analyzed for each dataset
661 were: HeLa-S3 HiRes - 28 nt, 293T HiRes - 28 nt, 293T MedRes - 30 nt, HeLa-S3 LowRes – 32
662 nt, and 293T LowRes - 31 nt.

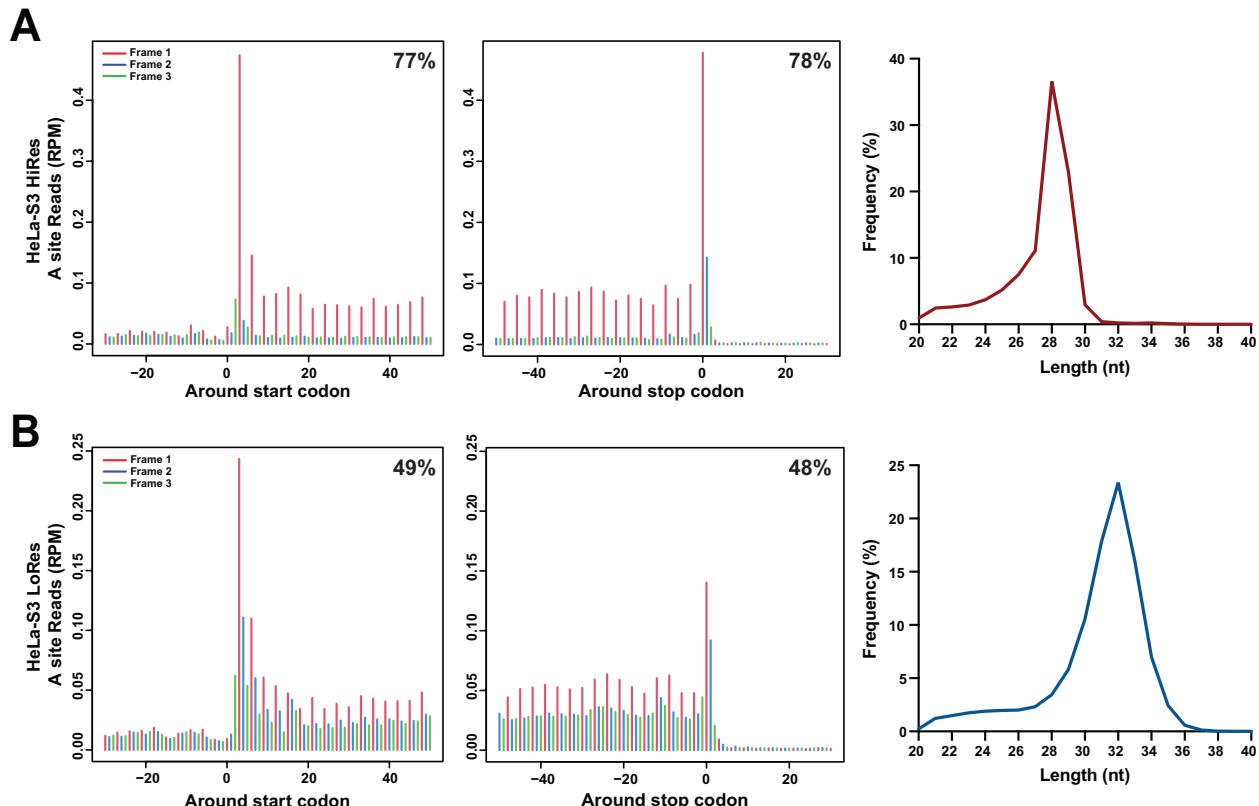
663

664

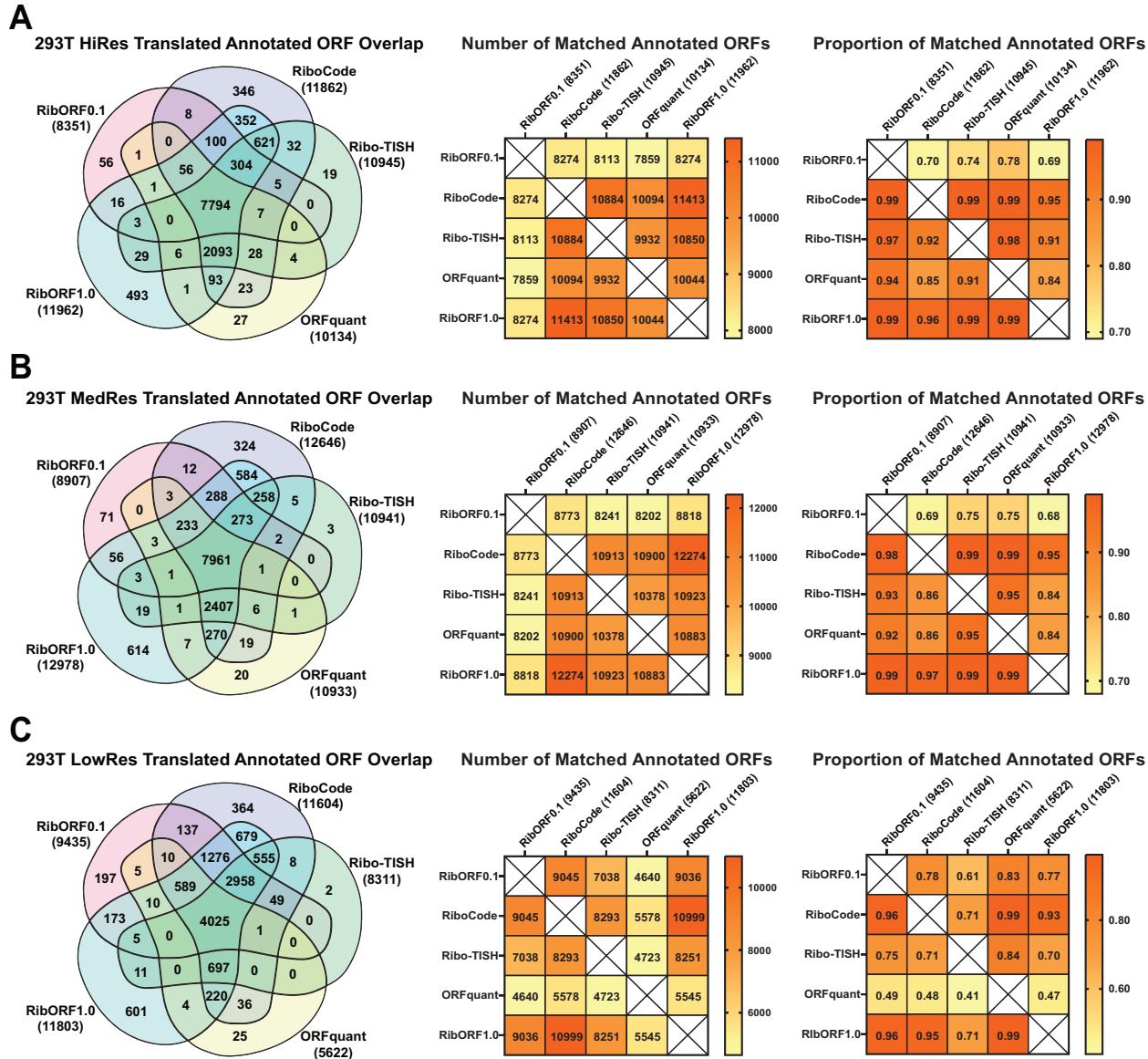
665

666

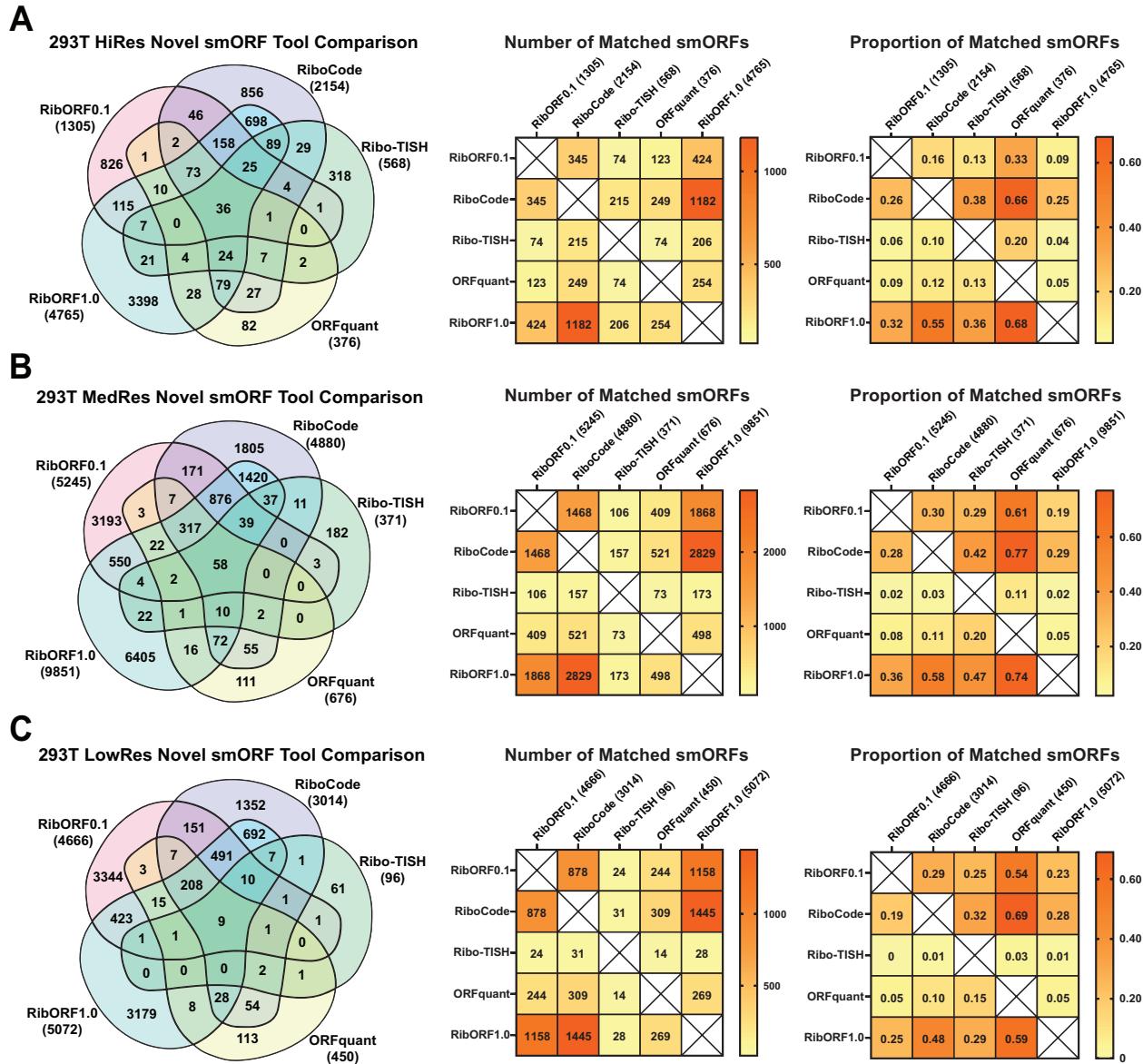
667



668
669
670 **Supplementary Figure 2. Quality control of HeLa-S3 Ribo-seq datasets. (A)** Metagene plots
671 of the high-resolution HeLa-S3 dataset displaying the A-site read distribution around the start
672 and stop sites (left). The 5'-end of each RPF read was adjusted to the ribosomal A-site after
673 mapping to hg38 canonical genes. The coding regions are in reading frame 1, while reading
674 frames 2 and 3 are out of frame. Line graph of the RPF read length frequency distribution peaks
675 at 28 nt (right). Read lengths 25-29 nt were used for downstream analysis **(B)** Metagene plots of
676 the low-resolution HeLa-S3 dataset displaying the A-site read distribution around the start and
677 stop sites (left). Line graph of the RPF read length frequency distribution peaks at 32 nt. Read
678 lengths 31-35 nt were used for downstream analysis.
679

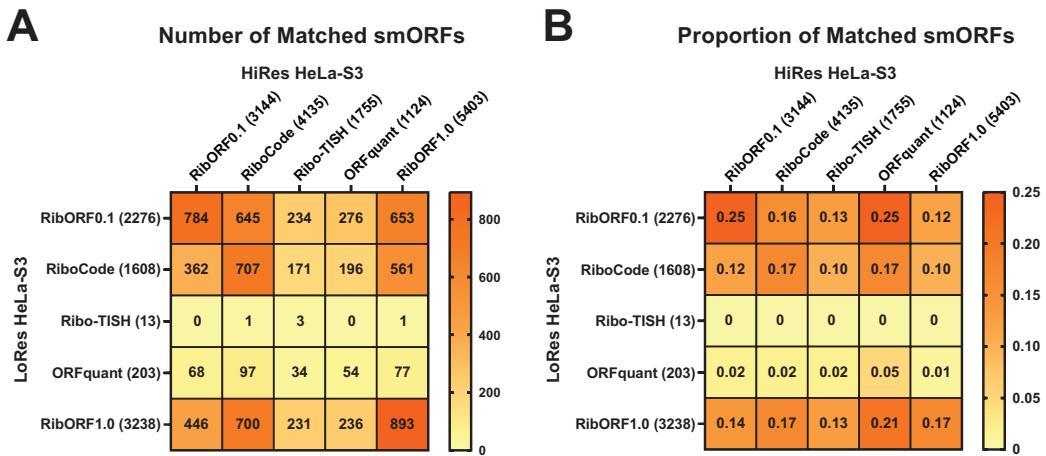


Supplementary Figure 3. Comparison of detected annotated ORFs in HEK293T Ribo-seq datasets of varying resolution. (A-C) Venn diagram showing the overlap of annotated genes called translated across the different tools (left). The total number of annotated genes detected is displayed next to the names of each tool. Heat map showing the pairwise comparison of matching annotated genes between the different tools (middle). Heat map showing the proportion of annotated genes identified by the tool in the column that are also detected by the tool in the row (right). HEK293T datasets analyzed are categorized by their resolution: high **(A)**, medium **(B)**, and low **(C)**.

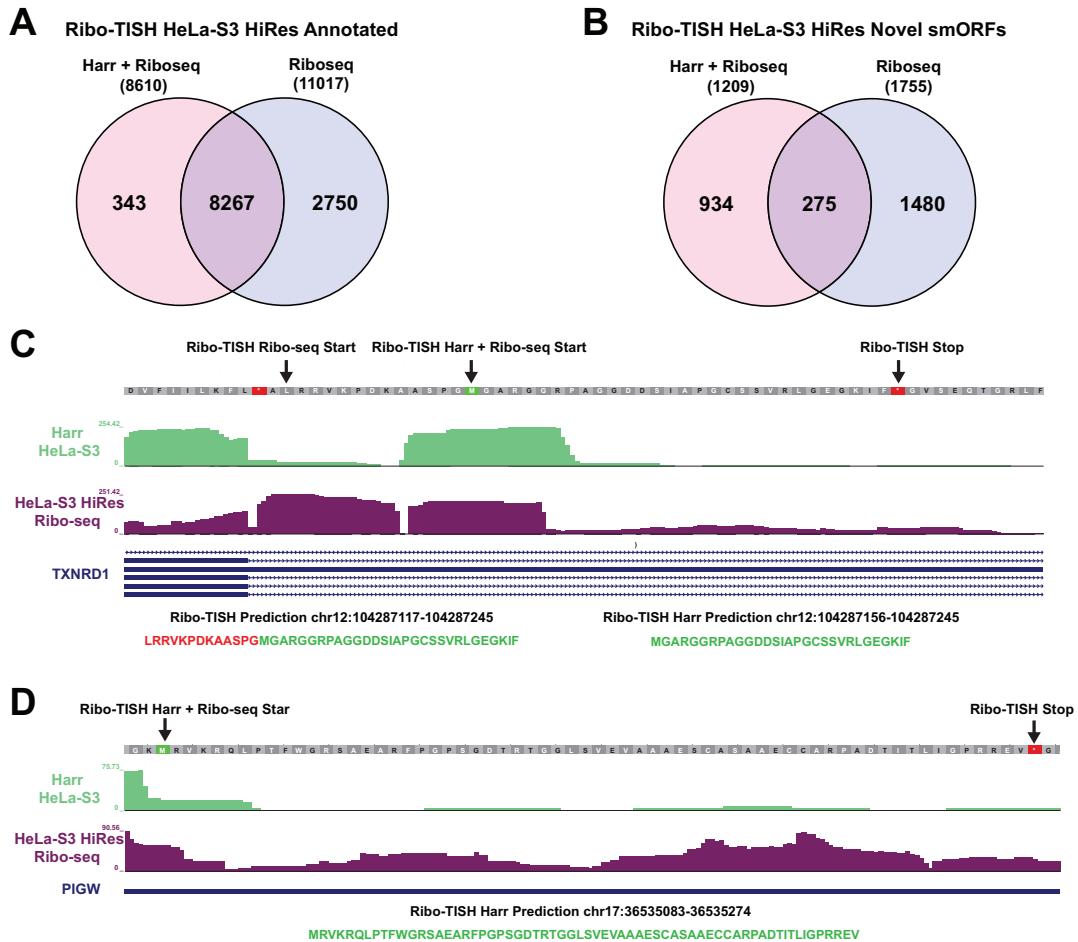


691
692
693
694
695
696
697
698
699
700
701
702

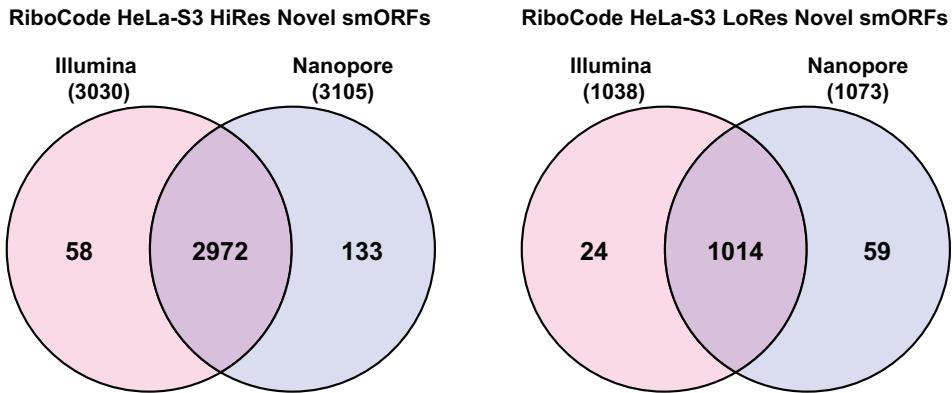
Supplementary Figure 4. Comparison of predicted smORFs in HEK293T Ribo-seq datasets of varying resolution. (A-C) Venn diagram showing the overlap of unannotated smORFs called translated across the different tools (left). The total number of smORFs detected by each tool is displayed next to the names of each tool. Heat map showing the pairwise comparison of matching annotated genes between the different tools (middle). Heat map showing the proportion of unannotated smORFs identified by the tool in the column that are also detected by the tool in the row (right). HEK293T datasets analyzed are categorized by their resolution: high (A), medium (B), and low (C).



703
704
705 **Supplementary Figure 5. Comparison of predicted smORFs from high- and low-**
706 **resolution HeLa-S3 Ribo-seq datasets. (A)** Heat map showing the pairwise comparison of
707 matching smORFs predicted in both high- and low-resolution HeLa-S3 Ribo-seq datasets. **(B)**
708 Heat map showing the proportion of unannotated smORFs identified by the tool in the column
709 using high-resolution data that are also detected by the tool in the row using low-resolution data.
710 The total number of smORFs detected by each tool is shown in parentheses.
711
712
713
714



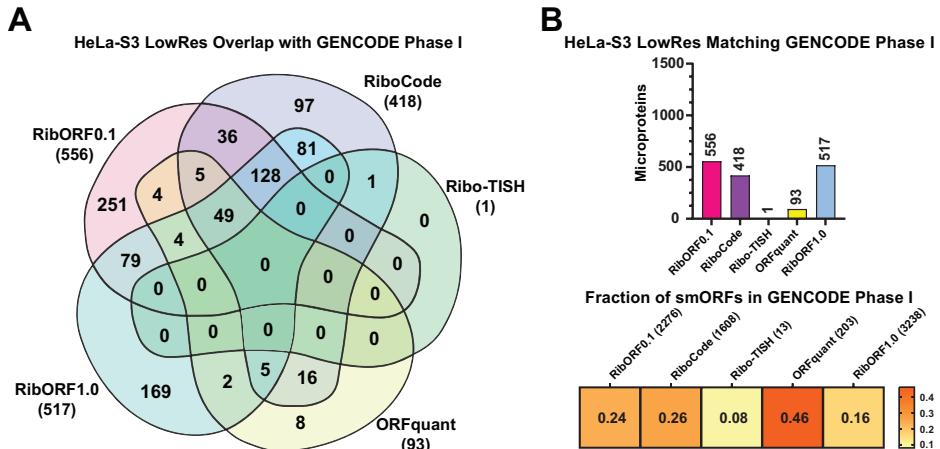
715
716
717 **Supplementary Figure 6. Comparison of predicted smORFs using Ribo-TISH with**
718 **translation initiation (TI-seq) data included and Ribo-seq data alone. (A)** Venn diagram
719 showing the overlap of annotated ORFs detected by Ribo-TISH including or excluding TI-seq
720 HeLa-S3 data along with high-resolution Ribo-seq data. Total number of annotated ORFs
721 identified is displayed next to each condition analyzed in parentheses. **(B)** Same analysis as in
722 for predicted smORFs. **(C)** Bedgraph tracks showing TI-seq and Ribo-seq coverage for
723 smORFs called translated within the 5'-UTR of the TXNRD1 transcript on the positive strand.
724 Both smORFs share the same stop site but have different starts called if TI-seq data is
725 considered. **(D)** Bedgraph tracks showing a smORF identified within the 5'-UTR of PIGW only
726 when running Ribo-TISH with both TI-seq and Ribo-seq data.
727
728



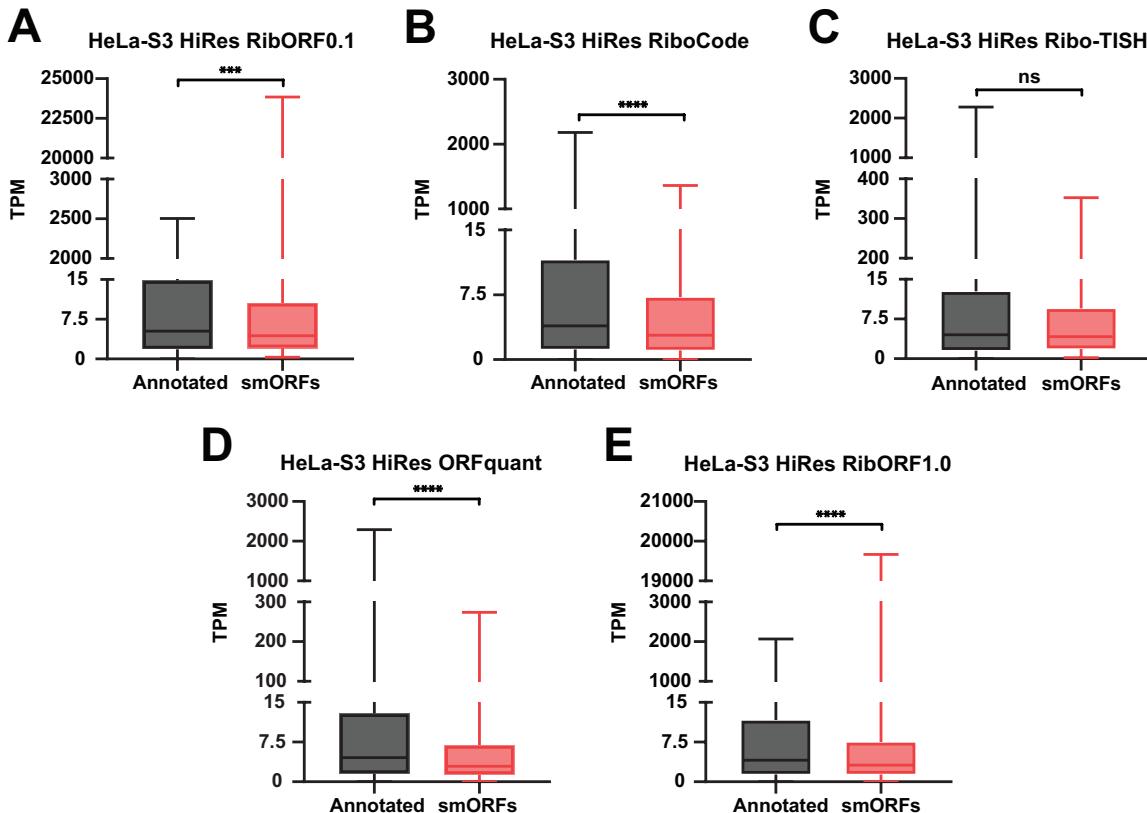
729
730

731 **Supplementary Figure 7: Comparison of smORFs predicted by RiboCode when**
732 **incorporating Nanopore- and Illumina-based *de novo* assembled transcriptomes.** Venn
733 diagram showing the overlap of predicted smORFs identified by RiboCode when using the *de*
734 *novo transcriptome* assemblies along either high-resolution (left) or low-resolution (right) HeLa-
735 S3 Ribo-seq datasets.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757



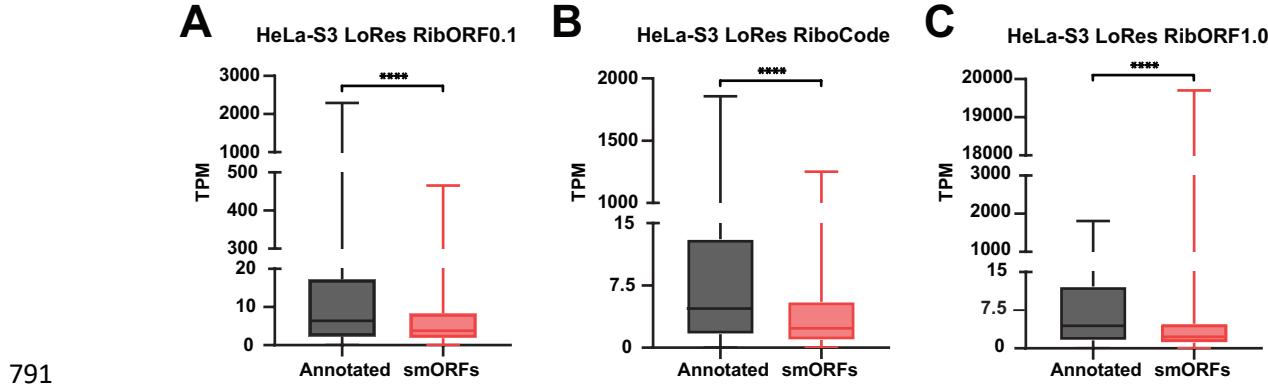
758
759
760 **Supplementary Figure 8. Comparison of the GENCODE Phase I high-confidence smORFs**
761 **predicted by each tool in the HeLa-S3 low-resolution dataset. (A)** Venn diagram showing
762 the overlap of GENCODE smORFs detected by each tool in the low-resolution HeLaS3 Ribo-
763 seq dataset. Total number of GENCODE smORFs detected by each tool is shown in
764 parentheses. **(B)** Bar plot showing the total number of matched smORFs with the GENCODE
765 set for each tool (top). Heat map showing the proportion of smORFs identified by each tool that
766 are also included in the GENCODE smORF set (bottom).
767
768
769
770
771
772
773

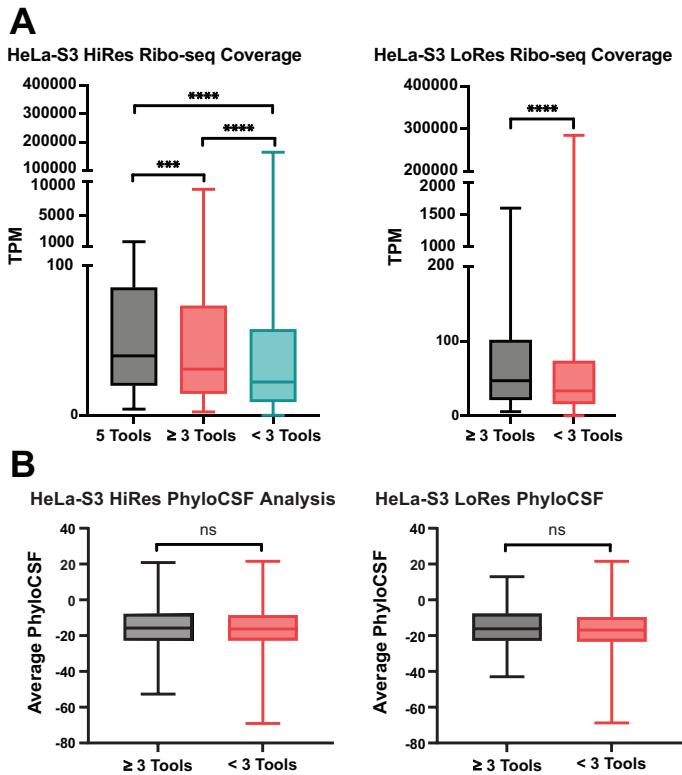


774
775

776 **Supplementary Figure 9. Comparison of Ribo-seq coverage in annotated genes and**
777 **smORFs called translated in HeLa-S3 high-resolution dataset. (A-E)** Quantification of Ribo-
778 **seq read coverage for both annotated gene ORFs and smORFs called translated by each tool in**
779 **the HeLaS3 high-resolution dataset: RibORFv0.1 (A), RiboCode (B), Ribo-TISH (C), ORFquant**
780 **(D), and RibORFv1.0 (E).** Coverage is calculated as transcripts per million (TPM) and are
781 **shown in Box-and-whisker plots. The box is bounded by the first and third quartiles, centerline**
782 **shows the median, and whiskers represent the min and max values. Two-tailed Mann Whitney**
783 **test was used to determine significant differences in coverage between annotated ORFs and**
784 **smORFs (ns – not significant; ***, $p < 0.001$; ****, $p < 0.0001$).**

785
786
787
788
789
790





809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

Supplementary Figure 11. smORFs with higher Ribo-seq coverage are more likely to be predicted by multiple tools (A) Ribo-seq read coverage for smORFs predicted in high- and low-resolution HeLa-S3 datasets were categorized as identified in all five tools, in greater than three tools, and less than three tools. Coverage is calculated as transcripts per million (TPM) and are shown in Box-and-whisker plots. The box is bounded by the first and third quartiles, centerline shows the median, and whiskers represent the min and max values. For the low-resolution dataset analyses, no smORFs were found in common across all five tools. Two-tailed Mann Whitney test was used to determine significant differences in the Ribo-seq coverage (ns – not significant; ***, p < 0.001; ****, p < 0.0001). **(B)** Average PhyloCSF scores of smORFs predicted in high- and low-resolution HeLa-S3 datasets categorized by smORFs found in greater than three tools or less than three tools.