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Abstract 

Neuronal firing sequences are thought to be the basic building blocks of neural coding 
and information broadcasting within the brain. However, when sequences emerge during 
neurodevelopment remains unknown. We demonstrate that structured firing sequences are 
present in spontaneous activity of human brain organoids and ex vivo neonatal brain slices 

from the murine somatosensory cortex. We observed a balance between temporally rigid and 
flexible firing patterns that are emergent phenomena in human brain organoids and early 
postnatal murine somatosensory cortex, but not in primary dissociated cortical cultures. Our 
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findings suggest that temporal sequences do not arise in an experience-dependent manner, but 
are rather constrained by an innate preconfigured architecture established during 
neurogenesis. These findings highlight the potential for brain organoids to further explore 
how exogenous inputs can be used to refine neuronal circuits and enable new studies into the 
genetic mechanisms that govern assembly of functional circuitry during early human brain 
development. 

Introduction 

In the last several decades, a growing body of experimental evidence has begun to 
support the notion that intrinsic activity plays a central role in brain function, challenging the 

traditional Jamesian view that higher order function is an emergent product of sensory input1. 
More recently, analysis of the mesoscale wiring of the cortex has revealed a connectome 
dominated by recurrent cortical networks that follow log-normal scaling rules that are 
conserved across species, where only a minor portion of those connections are devoted to 
direct transfer of sensory input2–4. The skewed distribution of these parameters is thought to 
serve as a substrate of neuronal assemblies5,6, where groups of strongly interconnected 
neurons can generate temporally structured spiking activity, which organize into sequences7–

9. Sequential activity patterns represent discrete and temporally consolidated packets of 
neuronal activity proposed as the basic building blocks of neural coding and information 
broadcasting within the brain10. In mature brain circuits, spiking sequences are predictive 
indicators for spatial navigation tasks11 and memory formation within the murine 

hippocampus12, whereas evoked responses in the visual cortex have been shown to closely 
mirror spontaneous sequential patterns13. Replay of sequences within the human cortex 
underlies episodic memory formation and retrieval14. More recently, measurements in the 
human anterior temporal lobe have revealed that spiking sequences organize into a temporal 
backbone, composed of both rigid and flexible sequence elements that are stable over time 
and cognitive states15. Reliable activation of sequences are also present in the reptilian cortex 
that share a common primordial ancestral origin with mammals, which suggests a conserved 
function across phylogeny8. However, the emergence of spiking sequences during 
development is less well elucidated. The murine hippocampus, during the third postnatal 
week, begins to generate spiking sequences that resemble those that will later be produced 

during navigation in a linear environment16. Importantly, these sequences emerge in an 
experience-independent manner. Whether similar spiking sequences, with the potential to 
represent other forms of experience, are present in other brain areas and, potentially at even 
earlier developmental stages, is an important question not yet investigated. The potential 
existence of such sequences would provide strong evidence in support of the notion that the 
brain is in a preconfigured state, and that spiking sequences do not arise in an experience-
dependent manner, as hypothesized, but are rather constrained by an innate architecture that 
is established during neurogenesis17. To address this open question, we investigated large 
scale single-unit activity datasets recorded from different models of brain development: 
human-derived brain organoids generated by two independent laboratories18,19, ex vivo 
murine brain slices from the somatosensory cortex and dissociated two-dimensional primary 
murine cortical cultures19,20 that lack developmental organization. 

Brain organoids are three-dimensional human induced pluripotent stem cell (iPSC) 
derived models of the human brain that recapitulate key facets of the anatomical organization 
and cellular composition found in the developing brain21–24. Neurons within brain organoids 
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form functional synapses23 and establish spontaneous network activity25–27. These self-
organized neuronal systems contain cellular diversity and cytoarchitecture necessary to 
sustain complex network dynamics18,28,29 as evidenced by expression of layer specific 
excitatory pyramidal neurons and generation and incorporation of inhibitory GABAergic 
interneurons30,31. Brain organoids also generate local field potential oscillations (LFP) that 
mirror preterm EEG patterns28, and have been used to model network dynamics associated 

with rare genetic disorders29. Brain organoids can be readily interfaced with state-of-the-art 
high-resolution CMOS microelectrode arrays to record neuronal activity and LFP oscillations 
across 26,400 recording sites18. Furthermore, brain organoids are not <connected= to any 
sensory system, and thus represent an ideal model for studying the emergence of spiking 
sequences as a truly experience-independent phenomenon. 

The ex vivo rodent dataset consists of acute neonatal slice recordings from the murine 
somatosensory cortex. At this developmental stage, the somatosensory cortex is characterized 
by discontinuous activity, displaying an alternation of activity bursts with periods of 
electrical quiescence32, and highly correlated activity between spike trains33,34. Both traits are 
shared with several other cortical areas35,36. Importantly, at this stage, with the exception of 
the olfaction, sensory systems are still underdeveloped37. Accordingly, whisker-elicited 
sensory responses are mainly the result of passive stimulations by the dam and the littermates 
in the first postnatal week, while active whisking only emerges around P10-1238–40. Along the 
same lines, analogously to neural activity in brain organoids, a large portion of neural activity 
in the developing brain is <spontaneous=, that is, internally generated41.  

Here, we investigate the spontaneous firing patterns across these different 
developmental brain models. Within all three models, we observe bursting dynamics of order 

102 milliseconds which reflect the biophysical time constants in which neural circuits 
integrate inputs42, and represent dynamics longer than single-neuron refractoriness and 
burstiness alone43. We found a subpopulation of neurons within organoids and neonatal brain 
slices that were capable of generating and sustaining non-random sequential firing patterns, 
referred to as backbone sequences, whereas two-dimensional primary cultures did not have 
any backbone sequences. Backbone sequence generating neurons populate the tails of right-
skewed, lognormal firing rate and functional connectivity distributions. We also reveal that, 
at a population level, neural activity exhibits a distinct low and high-dimensional neuronal 
subspace that establishes a partition between sequence generating units and their non-rigid 
counterparts. In an in vivo setting, such firing patterning temporally segregate neuronal 
populations into strongly correlated, 8temporally rigid9 components, obedient to population 

dynamics that reside in a low-dimensional subspace, and weakly correlated, 8temporally 
flexible9, firing patterns that are less sensitive to population events44. Finally, for stable and 
flexible computation, theory suggests that neural systems must exist at or near a regime 
called criticality, which is characterized by a stable branching process45,46. At this point, 
complex patterns of activity emerge, and these patterns neither decay rapidly, nor do they 
saturate and consume the network. We found that both brain organoids and two-dimensional 
primary cultures follow a stable branching process, whereas acute neonatal slice recordings 
are tuned below criticality. Given that neuronal circuits within brain organoids establish non-
random, sequence generating dynamics that emerge in a truly experience-independent 
manner that are tuned near criticality, these findings have important implications for 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.29.573646doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/


understanding organizational principles that govern network preconfiguration and activity 
patterns that support a neural code47. 

Results 

Neuronal firing patterns in human brain organoids generate repetitive and variable 

burst sequences 

We investigated the temporal dynamics of spontaneous neuronal activity generated by brain 

organoids of prominent forebrain identity18 using high-density CMOS-based microelectrode 
arrays. These arrays contain 26,400 recording sites (electrode pitch of 17.5 µm) of which 
1,024 can be selected and recorded simultaneously48. Single-unit spike events, visualized as a 
raster plot (Fig. 1A) reveal the temporal evolution of spontaneous spiking dynamics in an 8-
month old organoid slice positioned on the array. Population level burst events are 
highlighted by sharp increases in the population rate (red line Fig. 1A, see Methods) and 
persist for several hundred milliseconds, followed by longer periods of relative quiescence 
lasting up to several seconds. Moreover, we observed that the distribution of single-unit firing 
rates follows a heavy-tailed and right-skewed distribution, well described by a log-normal 
function, a feature consistent across multiple brain organoids (n = 8 organoids, R2 = 0.97 ± 

0.04, Supplementary Fig. 1A-C). This represents one facet of functional activity conserved 
across brain regions and states in vivo5.  

To investigate the temporal structure and dynamics of single-unit neuronal firing 
patterns, we next calculated the instantaneous firing rate from single-unit spike times across 

all units (Fig. 1B, see Methods for details). Reordering units in time, based on their peak 
firing rate over the burst width, revealed the presence of sequential activation patterns during 
individual burst events (Fig. 1B, bottom). Here, we observe bursts with consistent population 
rate profiles within single organoids (Fig. 1C) and durations that span ≈102 millisecond 
timescales (Fig. 1D, Supplementary Fig. 2C), a feature consistent across multiple organoids. 
Furthermore, we observe that a majority of the units display a firing rate peak that is in close 
temporal proximity to the population rate peak (Fig. 1E). Similar bursting time frames are 
generated by spontaneous and evoked sequences in vivo within the murine49 and reptile8 
cortex, the murine hippocampus during sharp wave ripples50 and within the human cortex 
during memory retrieval14,15. Interestingly, the neuronal response time of sensory cortices 
typically peak with a similar time constant across brain regions and species51–54. 
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Figure 1. Temporal structure of spontaneous single-unit neuronal firing patterns during 

population bursts in human brain organoids. (A) Raster plot visualization of single-unit spiking 

(black dots) measured across the surface of a 500 ¼m thick human brain organoid slice, positioned on top of a 
microelectrode array. The population firing rate is shown by the red solid line. Population bursts are marked by 

sharp increases in the population rate. Burst peak events are denoted by local maximas that exceed 4x-RMS 
fluctuations in the population rate. The shaded gray regions denote the burst duration window as defined by the 
time interval in which the population rate remains above 10% of its peak value in the burst. (B) Top, the 

instantaneous firing rate of single-unit activity from panel A. Bottom, zoomed in view of the trajectory of neuronal 
firing during population bursts reveals temporal segregation and contiguous tiling of the peak firing rate of single-

unit activity. Here the subset of units that fire at least two times during the burst are shown, re-ordered for each 
burst individually based on the time relative to the burst peak at which the unit has its maximum firing rate during 
the burst period. (C) The population firing rate (gray lines) is plotted relative to the burst peak for 46 burst events 
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measured across a three-minute interval for the same organoid. The mean value is shown by the solid line and the 
dotted lines represent 1 STD. (D) Burst durations are plotted from four different organoids. (E) The distribution 

of single-unit firing rate peak times relative to population burst peaks for the same organoids as in D. 

Next, we quantified the degree of stereotypy exhibited by single-unit firing patterns 
during spontaneous bursts in organoids. First, single-units were separated into two 
populations: backbone units were defined as units that spike at least twice in all bursts (Fig. 
2A, above the dashed line); all other units were defined as non-rigid units (Fig. 2A, below the 
dashed line). Note that the backbone units display high firing rates residing within the tail of 
a log-normal distribution (Supplementary Fig. 1D), and exhibit comparatively longer periods 
of sustained activity relative to non-rigid units (see Supplementary Fig. 2 for statistics across 

n = 8 organoids). The relative temporal delays between single-unit firing patterns remained 
consistent across multiple burst events when preserving unit ordering (Fig. 2B) and was 
preserved when averaging the firing rate of each unit across all burst events (Fig. 2C, see 
Supplementary Figs. 3A-D for visualizations and firing statistics across organoids). When 
clustering bursts based on their pairwise correlation matrix55, the consistent backbone activity 
patterns remained similar across all clusters, whereas non-rigid units showed significantly 
larger variability across clusters, (P < 10-20 for difference between backbone and non-rigid, 
linear mixed-effect model; Supplementary Fig. 4). Interestingly, higher firing rate backbone 
units9 relative abundance peaks earlier in organoid maturation, and subsequently attenuates 
with increasing age and organoid maturation (Supplementary Fig. 5A,B). This maturation 

time window is marked by the incorporation of interneurons within maturing excitatory 
networks18. A similar feature is observed in early born excitatory pyramidal neurons that 
establish fast firing subnetworks, which are functionally connected and co-activated across 
brain states17. 

To quantify the consistency of neuronal firing within spontaneous population bursts, 
we investigated the activity of single-units relative to the burst peak, similarly to the approach 
previously used for in vivo spontaneous activity49,56. Certain units displayed a pronounced 
peak in their firing rate and narrow temporal jitter when referenced to the burst peak (Fig. 2D, 
left panel), whereas others displayed increased delays and temporal spread (Fig. 2D, middle 
panel). A larger fraction of units, however, did not exhibit a clear preference in spike timing 
relative to the population burst and had more random temporal dynamics (Fig. 2D, right 
panel). The relative fraction of consistent firing backbone units constitutes 28% ± 14% (mean 
± STD) of the total units (n = 8 organoids, Supplementary Fig. 2) and represents a 
subpopulation with significantly higher burst-to-burst correlation scores (Fig. 2E, see 

Methods). The consistency in the firing patterns of the backbone units was stable across 
recording intervals that spanned multiple hours (Supplementary Fig. 6), and the enhanced 
consistency of the backbone units were present at developmental time points that spanned 
multiple months (Supplementary Fig. 5C). Moreover, differences in burst-to-burst 
correlations between backbone and non-rigid units were significantly larger when compared 
to spike trains that were randomized using a method that preserved both the population and 
single-unit mean firing rates (Supplementary Fig. 7A,B and Supplementary Fig. 8, see 
Methods)44,57. Further, this randomization destroyed the preservation of sequences across 
burst events (Supplementary Fig. 7C,D), similar to two-dimensional primary neuronal 
cultures with inherently randomized network architecture (Supplementary Fig. 9, see section 
8Comparing sequences across neurodevelopmental models9)58–60. In addition, we observed 

that the variability of the firing rate peak time increased as a function of its average peak time 
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(Fig.  2F), a significant feature preserved across multiple organoids (Fig.  2G, P < 10-5, linear 
mixed-effect model for relation between relative firing rate peak and peak time variance). 
Together these results suggest that brain organoids are capable of supporting stereotypical 
sequential activation patterns with increasing variability that mirror the spread of spontaneous 
activity through local cortical circuits in vivo7,8,14,15. 

 

Figure 2. Recurring sequential activation patterns in human brain organoids generate a 

stereotyped temporal backbone. (A) Consistent firing single-units form temporally distant sub-groups 

(re-ordered from Fig. 1A) and exhibit temporally rigid and non-rigid firing patterns. The rigid backbone units are 
plotted above the dashed line and are defined by spiking at least two times in every burst epoch. Units that do not 

meet this criterion (non-rigid) are plotted below the dashed line. In each category, units are ordered based on their 
median firing rate peak time relative to the burst peak considered over all bursts in the recording. (B) Zoomed in 
view of the units from the upper dashed partition in A for the four bursts. The order of each unit is the same for 
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all four plots. Note the similarity in firing pattern for each single-unit over the four different bursts. (C) The 
average burst peak centered firing rate measured across 46 burst events. The burst peak is indicated by the dotted 

line. The unit order is the same as A,B. Note the progressive increase in the firing rate peak time relative to the 
burst peak, as well as a spread in the active duration for units having their peak activity later in the burst. The 

average firing rate is normalized per unit to aid in visual clarity. (D) Top left, spikes are plotted for a regularly 
firing backbone unit over a fixed time window relative to population burst peaks. Each row represents spike events 
in a unique burst event. The average burst peak centered firing rate of the unit is plotted as the red solid line. Top 

middle, another regular firing backbone unit is plotted with a larger temporal delay and spread relative to the burst 
peak. Top right, firing patterns of a non-rigid unit, exhibiting poor temporal alignment relative to the burst peak 

events. Bottom, heatmap visualizations showing the cross-correlation coefficients of the burst peak centered firing 
rates of the unit shown in the top. The correlation is computed for each pair of bursts, using a maximum lag of 10 

ms. The average over all burst pairs is denoted in the top right of the heatmap. (i-ii) highlight units with consistent 
firing patterns relative to the burst peak and have average correlation scores of 0.98 and 0.81 respectively. They 
are part of the backbone units as marked in C. (iii) illustrates an irregular firing neuron with an average correlation 

score of 0.51. This unit is not reliably recruited to spike within the burst. The average correlation is computed 
only over pairs of bursts in which this unit fired at least 2 times. (E) Reliably firing backbone units (colored blue) 

retain higher average burst-to-burst correlation coefficients across all burst instantiations, while non-rigid units 
(colored yellow) have significantly lower temporal correlation values. This trend is consistently observed across 
multiple organoids (P < 10-16, linear mixed-effect model for average burst-to-burst correlation coefficients of 

backbone units compared to non-rigid units). See Fig. 7B for the results of the statistical comparison of firing rate 
normalized data between different model types. (F) Firing rate peak times relative to the burst peak for each 

backbone unit as shown and ordered in C. The black dots indicate the relative firing rate peak times per burst and 
the red shading reflects the probability distribution of the firing rate peak times where warming colors indicate 
higher probability. The probabilities highlight the widening of the distribution towards the end of the sequence. 

(G) The variance of the relative firing rate peak times for the backbone units in each of the 4 presented organoids. 
The units are ordered based on their median firing rate peak time over all bursts to visualize the significant increase 

in variability of the firing rate peak times of the units that fire later in the burst (P < 10-5, linear mixed-effect model 
for relation between relative firing rate peak and peak time variance). 

Backbone units are a highly correlated ensemble  

To further quantify the firing patterns that emerge during spontaneous burst events, 
we investigated pairwise correlations between single-unit instantaneous firing rates. 
Stereotyped activation patterns were reliably generated by backbone units and were preserved 
across burst events (Fig. 3A). Our analysis of sequential co-activation of these units revealed 
the preservation of firing rate onsets and peak activity times across all burst events with 
average peak phase lags of ≈10 milliseconds (Fig. 3B) and with strong cross correlations 

(>0.9 across all three example single-unit pairs, Fig. 3C). Cross-correlation analysis between 
all single-unit pairs reveals that units firing within the backbone sub-population form a highly 
correlated ensemble with non-zero phase lags (Fig. 3D, Supplementary Fig. 10). Moreover, 
backbone units displayed significantly higher correlation coefficients when compared to non-
rigid units (Fig. 3E), and occupied the tail of the overall distribution (Fig. 3F), which is well 
described by a log-normal distribution (Supplementary Fig. 11C-E). Together, these results 
suggest that a minority population of high firing rate neurons are strongly tuned to population 
dynamics and function as a stop-watch in the backbone among the more rigid units of the 
population. 
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Figure 3. Firing patterns between single backbone units within bursts are nonrandom. 
(A) Spike times and computed firing rates for three representative units are shown for the first and last burst event 

of the recording, respectively. (B) Burst peak centered average firing rates for the three units shown in A are 
calculated over all burst events. The narrow lines indicate the firing rates for each individual burst event. (C) 

Pairwise normalized cross-correlation coefficients from B. (D) Pairwise cross correlation coefficients computed 
between the instantaneous firing rates of all pairs of units with at least 30 spikes counted over all burst events. A 
maximum lag time of 50 ms was used. The solid red lines separate the backbone units and the non-rigid units. (E) 

Pairwise cross-correlation scores are plotted between unit types. Correlations between backbone units (blue) are 
notably higher than the cross-correlations between pairs of backbone and non-rigid units (gray) and pairs of non-

rigid units (yellow). See Fig. 7C for the results of the statistical comparison of firing rate normalized data between 
different model types. (F) The histogram of all pairwise cross-correlations follows a skewed, log-normal 
distribution. The pairwise connections between pairs of backbone units populate the tail of this distribution for all 

organoids as can be seen from the distribution means of the backbone-to-backbone distributions in E and marked 
on each histogram (circles on line). 

Population firing rate vectors preserve timing across burst epochs 

In previous sections, we focused our analysis on discrete relationships between pairwise 
single-unit activity. Next, we asked if single-unit firing rates were temporally structured in 
time during burst events at the population level. To perform this analysis, we calculated the 
cosine similarity between instantaneous firing rates across bursts (see Methods).  This 

analysis revealed a peak in the cosine similarity coinciding with the firing rate increase of the 
backbone units. Subsequently, after a brief plateau, cosine similarity decayed and bottomed 
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out after the burst has ended (Fig. 4A-B). The variance of the similarity between bursts 
displayed an almost opposite trend: it was high during non-bursting periods, rapidly 
decreased when the similarity peaked, and remained low until burst termination (Fig. 4C). 

To further dissect the composition of firing rate vectors and their contribution to 
spontaneous burst patterns, we split the population into backbone and non-rigid units. Here, 
we observed that the backbone ensembles exhibited significantly higher cosine similarity 
scores (see Fig. 4D, blue line) compared to non-rigid units (yellow line), and shuffled data 
(black line). To illustrate this trend, we showed that the top 20th percentile of units (based on 
their average correlation from the matrix shown in Fig. 3D) are sufficient to generate a 

significantly higher average burst similarity then when considering all units and this 
difference gradually decreases when a larger percentile of the most correlated units are 
included (Supplementary Fig. 12A,C). When comparing the lower 20th percentile of units 
(ranked by their average correlation), we observed a significant decrease of the average burst 
similarity in the population firing rate vector. When a larger percentile of the least correlated 
units is included, this difference gradually decreases (Supplementary Fig. 12B,C). Overall, 
we observed an increase in average burst similarity during the onset of the backbone units 
that subsequently plateaus for the remainder of their activation period across several 
organoids (Fig. 4E and Supplementary Fig. 12D for results across n = 8 organoids). These 
results further highlight that the activity of backbone units in organoids provide temporal 
stability across bursts at the ensemble level.  

To quantify the trajectory of firing patterns generated during spontaneous activity in 
brain organoids we performed principal component analysis (PCA). We observed that the 
trajectory firing patterns follow conserved trajectories in PC-space that preserve timing 

relative to the burst peak (Fig. 4F, first two PCs are shown for organoid 1). When dividing 
the populations into backbone and non-rigid groups (Fig. 4F middle and right panel 
respectively), we observed that backbone units captured a larger variance for the first two 
PCs (73%) when compared to the non-rigid sub-population (25%) (Fig. 4G, Supplementary 
Figs. 13-14). These results highlight that a lower-dimensional subspace is occupied by 
neurons that fire in backbone ensembles, whereas the non-rigid population exhibit more 
irregular and, thus, higher-dimensional firing patterns and require more PCs to explain their 
variance. Of note, the lower-dimensional space is abolished after data randomization 
preserving both the mean neuron firing rate as well as the population firing rate 
(Supplementary Fig. 7). This indicates that the trajectories, and non-zero temporal correlation 
patterns are not a trivial result of the neuron9s mean firing rate.  
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Figure 4. Backbone units provide a stable, low-dimensional reference frame for the 

population bursts. (A) The population firing rate (gray lines) is plotted relative to the burst peak for 46 burst 

events measured across a three-minute interval for the same organoid. Mean and STD are denoted by the solid 
black line and the dashed lines on either side of the solid black line, respectively (left axis). The average burst 

similarity score is plotted in red (right axis, see Methods for more details). The blue box indicates the period from 
the earliest average firing rate peak time of all backbone units until the last. (B) Left, burst similarity for each pair 

of bursts at 50 ms before the burst peak (indicated by the left dashed line in A). Right, burst similarity for each 
pair of bursts at 100 ms after the burst peak (indicated by the right vertical dashed line in A). (C) Burst similarity 

relative to the burst peak for each pair of bursts. Each gray line reflects a burst pair and the red line reflects the 
standard deviation per recording frame over all burst pairs. The blue box indicates the period from the earliest 
average firing rate peak time of all backbone units until the last. (D) Average burst similarity when only the 

backbone units or the non-rigid units are considered and for shuffled data. For each frame relative to the burst 
peak, the difference between the distribution for the backbone units and the non-rigid units was assessed using a 

paired sample, two-sided t-test which was significant throughout the backbone period (P < 10-20). (E) The average 
burst similarity throughout the backbone period follows a similar pattern across different organoids, denoted by 
an increase following the start of the backbone period. (F) Left, population activity projected onto its first two 

principal components. A PCA was performed on the firing rates per single-unit for all units in the recording 
combined. Only spikes that occurred during bursts were included in the firing rate computations. Each dot 

represents a recording frame and is colored by the time point relative to the closest burst peak. Note the consistent 
circular trajectory reflecting the burst manifold. Middle, same as left but only including the backbone units. Note 
the similarity in the low-dimensional manifold representations between the middle and the left, indicating the 
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strong contribution of the backbone units to the low-dimensional activity of the whole population. Right, same as 
left but only including the non-rigid units. The low-dimensional manifold is not present anymore and the variance 

explained by the first to principal components is notably lower, reflecting the higher dimensional activity of the 
non-rigid units. The inset shows the burst peak centered average population rate colored in the same way as the 

PCA trajectories to indicate which parts of the burst correspond to the different coloring. (G) The difference 
between the cumulative sum of the variance explained by the selection of the first principal components of the 
manifold constructed based on only backbone units (blue) or only non-rigid units (yellow) relative to the manifold 

constructed based on all units. For the comparison, the cumulative sum of the explained variance is interpolated 
to account for the difference in the total number of principal components possible between the manifold 

constructed of all units compared to the subsets. The interpolated values are normalized to range from 0 (only first 
component) to 1 (all components). Positive values indicate that the first principal components of the manifold 

constructed of the subset of units explains a higher percentage of the variance than the comparable selection of 
principal components of the manifold constructed of all units while negative values indicate a lower percentage 
of explained variance. Note that for all organoids, indicated with different markers, the explained variance by the 

first principal components of the manifold constructed from the backbone units explain a larger amount of the 
total variance than the manifold constructed for all units while the opposite is true for the non-rigid. This reflects 

the low-dimensional backbone activity related to their heightened correlations. 

Uncovering temporal structure in population bursts with a hidden Markov model 

We have previously shown that the distribution of functional connectivity in human brain 

organoids is well described by a heavy-tailed shape18, mirroring scaling rules found in 
cortical circuits such as the visual61 and somatosensory cortices62. The prevalence of these 
circuit motifs are widely believed to give rise to spontaneous activity patterns that spread 
across most of the cortical mantle, mirroring sensory-evoked responses observed in vivo63. To 
further investigate this rich repertoire of spontaneous neuronal firing patterns, we applied a 
hidden Markov model (HMM). 

We trained an HMM to cluster single-unit spiking activity, generated by each brain 
organoid, into discrete states with shared firing patterns. The data was binned into 30 
millisecond intervals (see Methods), reflecting timescales of fast electrophysiological 
dynamics in the cortex that span ~10-50 milliseconds42,64. We found varying the HMM time 
bins over this range did not significantly impact the performance of the model 
(Supplementary Fig. 15). The identified HMM states, shaded by different colors and 
superimposed on spike raster plots (Fig. 5A), highlight their trajectories in relation to burst 
peak events. Here, each colored state represents a distinct linear combination of single-unit 

firing patterns that are coincident across the recorded ensemble. The first fifty firing rate 
realizations (across all units for a given state) are plotted as heatmap visualizations (Fig. 5B, 
left panels). Each representative state plot is accompanied by a histogram of the average 
firing rate per unit (Fig. 5B, right panels). These visualizations reveal the presence of distinct 
manifolds of firing patterns delineated by both differential gain and attenuation of single-unit 
firing rates associated with each state (Fig. 5B, red lines). Here a model with 20 hidden states 
was used for visualization purposes, but we observe similar-performing models across a 
range of hidden state counts (Supplementary Fig. 16). To further validate that the transition 
between states was not a result of trivial differences in the mean rate, we ran our HMM 
analysis after data randomization, preserving both the neuron9s mean firing rate and 
population rate44,57, and observed that the log likelihood was significantly larger for real data 

(Supplementary Fig. 17). These results demonstrate the presence of distinct combinations of 
firing patterns, regularly activated during burst events, captured by the HMM. The average 
change in firing rate (across all units) between the three states (Fig. 5B) further revealed that 
these discrete transitions represent both increases and decreases in relative firing rate across 
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different sets of units and states. We next utilized the HMM to model transition probability 
between observed states in our brain organoids. Lower probability states were observed prior 
to the burst peak with a larger number of states sampled per unit time. However, during and 
immediately following the burst peak we observed a narrowing of states available per unit 
time (Fig. 5C). This narrowing effect might establish a sequential arrow of time in state 
space, where initial states preserve more precise timing relative to following states 

(Supplementary Fig. 18)10. Subsequently, as the burst fades, state observations return to a 
lower probability. The number of realized states observed during burst events remains similar 
over the variable range of hidden states (Supplementary Fig. 19), indicating the model's 
robustness to discrete patterns of spiking activity and their evolution in time. Next, we show 
that the more temporally rigid units that reside within backbone sequences also distribute 
across a larger pool of HMM states compared to non-rigid units, which span a smaller range 
of states (Fig. 5D), a result consistent across organoids (Supplementary Fig. 20). These 
differences are further visualized after performing PCA on state vs. unit realizations (Fig. 5E, 
Supplementary Fig. 21), which highlights qualitative repeatability of the support vector 
machine (SVM) classifier (see Methods) to distinguish backbone units from non-rigid units 

by their state structure representation (Fig. 5F) and found an accuracy of 96.8% ± 4.5% (n = 8 
organoids) compared to 69.8% ± 14.1% (mean ± STD) based on classification using firing 
rate alone. Together these results highlight spontaneous population burst events in brain 
organoids consisting of ensembles that link together in time to establish neuronal manifolds. 
These manifolds represent a latent multidimensional space that is composed of a temporally 
rigid and flexible subsets of units. These units form a subspace of states that follow 
probabilistic trajectories that are Markovian in time, namely future states depend on the 
system9s current state. Recent theoretical models and experimental observations have 
proposed that local pairwise correlations are a dominant driver of irreversibility within noisy 
logical computations that contribute to a local arrow of time, and generate an irreversible 
Markovian process independent of sensory input65,66.  
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Figure 5. Hidden Markov Models (HMMs) explore stable trajectories and population 

motifs. (A) Repeated sequence of discrete hidden states during three example bursts. The model assigns each 

30 ms bin of the spiking data a hidden state, indicated here by the background color. Note the stereotyped 
trajectory both in state space and in the population rate (red). Spiking events are displayed as a raster, with the 27 

backbone units displayed above and the 104 non-rigid units displayed below a separator line. (B) Each state 
represents a stochastic but repeated pattern of activity across all units. Example realizations of three hidden states 

which occur during the burst trajectory are displayed as heatmaps. The differences between states are highlighted 
in subpanels which show the overall firing rate of each unit, FR, corresponding to the highlighting of part A. Also 

shown is the difference between these plots for adjacent states, ΔFR, in red. (C) The sequence of hidden states 
follows a stereotyped trajectory across each burst. The probability of each hidden state as a function of time 
relative to the burst peak is displayed as a heatmap. Note in particular that for the first 0.3 seconds from the burst 

peak, there is very little variation in the pattern of hidden states, whereas later in the bursts (as well as before the 
burst begins), the variability is significantly higher. (D) Backbone units fire consistently even outside of the burst 

peak states 11 and 12. The probability that each unit will fire in each of the hidden states of an example HMM is 
displayed as a heatmap. The backbone units (left) are active in various states. (E) Backbone and non-rigid units 
are almost linearly separable by consistency across states. First two principal components of vectors representing 

each unit as the sequence of its consistency across states. Backbone and non-rigid units are indicated with color. 
(F) Firing rate is not adequate to identify backbone and non-rigid units. The linear separability of backbone/non-

rigid units based on their vectors of consistency scores is shown as a boxplot across all fitted HMMs for each 
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brain organoid. Linear separability based only on the firing rate is marked by a diamond for comparison; in every 
case it is far below all of the classifiers with access to state information. 

Endogenous spiking sequences in early developing neonatal cortex 

We next asked if spiking sequences also emerge in early developing cortical circuits. It has 
been established that sequential patterns are crucial components for mature brain function10 
as well as early navigational tasks16, however, it is not known if such patterns are present in 

early brain development before eye opening and exploration occur. To address this open 
question, we investigated the emergence of sequential firing patterns in acute coronal slices 
obtained from the developing murine somatosensory cortex. We performed acute 
extracellular recordings using high-density CMOS MEAs (n = 6 slices). Discontinuous 
single-unit spiking activity alternated with long periods of quiescence and abrupt transitions 
to synchronized bursts (Fig. 6A and Supplementary Fig. 22 for plots from additional slices).  
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Figure 6. Recurring sequential activation patterns in murine neonatal cortical slices 

generate a stereotyped temporal backbone. (A) Raster plot visualization of single-unit spiking 

measured across the surface of the somatosensory cortex of a murine neonatal cortical slice dissected at P13, 
positioned on top of a microelectrode array. The population firing rate is shown by the red solid line. Population 
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bursts are marked by sharp increases in the population rate. Burst peak events are denoted by local maximas that 
exceed 4x-RMS fluctuations in the population rate. The shaded gray regions denote the burst duration window as 

defined by the time interval in which the population rate remains above 10% of its peak value in the burst. (B) 
The instantaneous firing rate of single-unit activity from panel A after reordering. Backbone units are plotted 

above the dotted line and non-rigid units are plotted below the dotted line. In each category, units are ordered 
based on their median firing rate peak time relative to the burst peak, considered over all bursts in the recording. 
The backbone unit threshold for murine neonatal cortical slices was lowered to at least 2 spikes in at least 70% of 

all bursts. (C) The average burst peak centered firing rate measured across all burst events. The burst peak is 
indicated by the dotted line. The unit order is the same as B. Note the progressive increase in the firing rate peak 

time relative to the burst peak, as well as a spread in the active duration for units having their peak activity later 
in the burst. The average firing rate is normalized per unit to aid in visual clarity. (D) Top left, spike events are 

plotted for a regularly firing backbone unit over a fixed time window relative to population burst peaks. Each row 
represents spike events in a unique burst event. The average burst peak centered firing rate of the unit is plotted 
as the red solid line. Top right, another regular firing backbone unit is plotted with a larger temporal delay relative 

to the burst peak events. Bottom, heatmap visualizations showing the correlation coefficients of the burst peak 
centered firing rates of the unit shown in the top. The correlation is computed for each pair of bursts, using a 

maximum lag of 10 ms. The average over all burst pairs is denoted in the top right of the heatmap. Both example 
backbone units are marked in C. (E) Pairwise cross correlation coefficients over the instantaneous firing rates of 
all pairs of units with at least 30 spikes counted over all burst events. A maximum lag time of 50 ms was used. 

The solid red lines separate the backbone units and the non-rigid units. (F) The average burst-to-burst correlation 
per unit grouped in backbone and non-rigid categories for all murine neonatal cortical slices. (G) The pairwise 

correlations between all unit pairs for all murine neonatal cortical slices grouped into pairs that connect two 
backbone units (blue), pairs that connect a backbone unit and a non-rigid unit (gray) and pairs that connect two 
non-rigid units (yellow). 

Next, we quantified the consistency of firing patterns generated by coronal slices of 
the somatosensory cortex. First, we split single units into backbone and non-rigid units based 
on their firing recruitment within population bursts, similarly to the protocol used for brain 
organoid data (Fig. 6B, Supplementary Fig. 2,23, see Methods). The temporal pattern of these 
backbone units was apparent upon signal averaging of each unit9s instantaneous firing 
relative to the burst peak events (Fig. 6C), which revealed a sequential firing structure within 
the subset of units regularly recruited during spontaneous bursts events. Analysis of the 
single-unit spike times further revealed preservation of spike timing relative to burst peak 
events with consistent shifts between their peak firing rates in neonatal murine brain slices 
(Fig. 6D). Analogously to what we observed in brain organoids, we found that backbone 
units form a more strongly correlated core when compared to their non-rigid counterparts 

(Fig. 6E-G, Supplementary Fig. 8,11), and that activity in murine neonatal cortical slices 
generated temporal sequences that span ≈ 102 millisecond time scales. Together, these results 
highlight that slices of the developing murine somatosensory cortex generate firing patterns 
composed of both rigid and flexible units that are capable of establishing sequential 
activation patterns commonly observed in mature cortical circuits across a range species and 
brain regions10. 

Comparing sequences across neurodevelopmental models 

To understand the potential role played by the three dimensionality of neurodevelopment, we 
investigated the firing patterns generated by two-dimensional murine primary cultures of 
neurons derived from the cortex, and compared them to what we observed in human brain 
organoids and acute murine neonatal cortical slices (Supplementary Fig. 9). Here, all three 
neuronal systems have characteristic population bursts with consistent firing units that are 
recruited during burst epochs (Supplementary Fig. 2). These consistent firing neurons have 
significantly higher average firing rates compared to the more irregular non-rigid 
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counterparts (Fig. 7A, P < 10-6 for organoid, murine slice and primary cultures, linear mixed-
effect model, Supplementary Fig. 23 for results per recording). However, on average the 
primary two-dimensional cultures tend to have higher average firing rate distributions for 
both the backbone and non-rigid units (P < 10-10 for comparisons across organoid and murine 
neonatal cortical slices). Meanwhile, we observed that backbone units for organoids and 
neonatal cortical slices have higher normalized burst-to-burst single-unit firing rate 

correlation scores relative to two-dimensional primary cultures (Fig. 7B, see Methods and 
Supplementary Fig. 8 for unnormalized and normalized results per recording). Furthermore, 
after normalizing with the randomized data, the average burst-to-burst single-unit firing rate 
correlations remain significantly larger for backbone units than for non-rigid units in both 
organoids and neonatal slices (P < 10-10, P = 7x10–4, respectively, linear mixed-effect model, 
backbone unit distribution mean is larger than non-rigid), whereas this difference is not 
significant for primary cultures (P = 0.06, linear mixed-effect model, backbone unit 
distribution mean is smaller than non-rigid). Despite strong variability that can occur between 
organoids grown from different batches67, we found that our observed differences in 
normalized burst-to-burst single-unit firing rate correlations scores between backbone units 

and non-rigid units were robustly present in organoid slice recordings that were grown and 
measured across different laboratories (Supplementary Fig. 3E, Supplementary Fig. 8).  
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Figure 7. Backbone units provide a stable reference frame in brain organoids and murine 

neonatal cortical slices but not in murine primary cultures. (A) The log of the average firing rate 

per unit grouped in backbone and non-rigid categories for organoid slices, murine neonatal cortical slices and 
primary cultures. The organoid group consists of 8 different organoid slices, the murine neonatal slice group 

consists of 6 different slices from a total of 3 animals (2 unique slices per animal), the murine primary group 
consists of 10 different cultures. Statistical differences between the different model types and between backbone 
and non-rigid units for the different model types are computed using a linear mixed effects model. The model 

considers interactions between backbone and non-rigid units and between different model types. The specific 
recordings within each model type are included as grouping factors in the model. Each model is significantly 

different from each other (P < 10-10) and within each model the backbone and non-rigid units are significantly 
different from each other (*** = P <0.001, ** = P < 0.01, * = P < 0.05). (B) The normalized average burst-to-
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burst correlation per unit grouped the same as in A. Normalization was performed by subtracting the average 
burst-to-burst correlation per unit after shuffling from the original value and the dividing the outcome by the sum 

of both values (Original-Shuffled)/(Original+Shuffled). Similar to A, the statistical differences between the model 
types and between the backbone and non-rigid units were computed using a linear mixed effect model. Each 

model is significantly different from each other (P < 10-10) and for the organoids and murine cortical slices the 
backbone and non-rigid units are significantly different from each other (*** = P <0.001, ** = P < 0.01, * = P < 
0.05). (C) The normalized pairwise cross-correlation per unit pair is grouped into backbone-to-backbone (blue), 

backbone to non-rigid (gray) and non-rigid to non-rigid (yellow) for each model type individually. Normalization 
was performed by subtracting the average pairwise correlation per unit pair after shuffling from the original value 

and then dividing the outcome by the sum of both values (Original-Shuffled)/(Original+Shuffled). A linear mixed 
effect model was used to assess which of the distributions were significantly larger than 0, indicating above 

random correlation strengths (*** = P <0.001, ** = P < 0.01, * = P < 0.05). Note that even though all three-unit 
pair types have a P value smaller than 10-10 for the organoids due to the large n, the effect size for backbone-to-
backbone unit pairs is notably higher compared to the other two categories. (D) The normalized fraction of the 

variance explained summed over the first three principal components for the PCA manifolds per model type. To 
account for differences in the total number of principal components per category, the summed explained variance 

for the first three principal components is divided by the summed explained variance of the first X principal 
components, where X is the lowest number of total principal components from the three categories, all units, 
backbone and non-rigid. This value is computed for the original data and the shuffled data after which the shuffled 

result is subtracted from the original result to get the final value. The dots within the violins represent each 
individual recording. A linear mixed effect model was used to assess differences between model types (*** = P 

<0.001, ** = P < 0.01, * = P < 0.05). (E) Hidden Markov models explore a higher-dimensional space for brain 
organoids and murine slices than for primary culture. For each fitted HMM, the dimensionality of representation 
was estimated as a function of a variance threshold ¸ by calculating how many principal components of the HMM 

observations needed to be included to explain at least a fraction ¸ of the total variance. The mean across all models 
from 10 to 30 hidden states is plotted as a function of ¸, with a shaded area representing ± 1 standard deviation. 

The trend pictured is preserved across the full range of 10 to 50 hidden states and ¸ ranging from 0 to 1: organoids 
have greater dimensionality than slices (P < 10-6), which in turn has greater dimensionality than primary cultures 

(P < 10-7). (F) Backbone units are characterized by non-Poisson activity in human brain organoids and to a lesser 
extent in murine neonatal cortical slices, but not in murine primary cultures. The fraction of backbone units 
considered non-Poisson as a function of the <non-Poisson threshold=: the fraction of hidden states across all 
HMMs in which a unit must exhibit statistically non-Poisson activity to be considered non-Poisson. 

We next focused our analysis on pairwise cross correlations between single-unit firing 
rates among the backbone and non-rigid units (Fig. 7C, Supplementary Fig. 11). We observed 
significant increase in the pairwise correlations between backbone-to-backbone (blue) units 
when referenced to randomized data preserving both population and mean single-unit firing 
rates44,57 (see Methods) for both the organoid and murine neonatal slice recordings (P < 10-10, 
linear mixed-effect model), an effect not observed in two-dimensional murine primary 
cortical cultures (P > 0.99, linear mixed-effect model). Although organoids do show a 

statistically significant difference between all the pairwise firing rate correlation groups, the 
largest effect size occurs between backbone-to-backbone units (Supplementary Fig. 24, see 
Methods). The differences in firing rate, burst-to-burst correlation and pairwise correlation 
were present in organoids at all observed developmental time points (Supplementary Fig. 
5D). Further, we found that the higher normalized pairwise correlations scores between 
backbone unit pairs was robustly present in organoid slice recordings from organoids grown 
from different cell lines and laboratories using the same protocol18,19 (Supplementary Fig. 3F, 
Supplementary Fig. 11). Interestingly, the temporal trajectory of backbone units for the two-
dimensional primary cultures exhibited synchronous activity centered about the burst peak 
(Supplementary Fig. 9C), effectively abolishing sequential structure, and were identical to 
randomized organoid data (Supplementary Fig. 7C).  
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Finally, we performed principal component analysis (PCA) on the single-unit firing 
rates to quantify further the variance explained by the backbone and non-rigid single-units 
across these developmental models. The backbone units in the organoids explain a 
significantly higher fraction of the total variance than the other model types and unit types, as 
reflected by the percent variance explained by the first three principal components (Fig. 7D, 
Supplementary. Fig. 14, P < 0.001, linear mixed-effect model). Together these findings 

highlight the finding that organoids generate sequential patterns that reside in a lower 
dimensional subspace (explained by fewer PCs) that is embedded in a higher dimensional 
background (requiring larger number PCs) of comparatively more irregular spiking patterns. 
Interestingly, we observe that backbone units are present in neonatal slices from the 
somatosensory cortex with the intrinsic capacity to generate sequences that span timescales 
(order 102 milliseconds) observed in mature cortical circuits7,8,14, and occur with less 
stereotypy compared to organoids. Meanwhile, recurring sequential activation patterns of 
backbone units are not sustained in two-dimensional primary cultures. 

We next asked if our analysis using hidden Markov models (HMMs) would enable us 
to quantify the firing patterns that are present in brain organoids, brain slices and two-
dimensional primary cultures. To further quantify the complexity across the different 
neuronal model systems we calculated their dimensionality, which we defined as the number 
of principal components of the HMM observations required to explain a variable fraction, ¸, 
of the total variance. Here, the hidden states range from 10-50 and ¸ spans the range from 0 

to 1, (see Methods and Supplementary Fig. 25). This analysis revealed that organoids are not 
significantly separable from slice data, however both three-dimensional cultures are 
significantly different compared against two-dimensional primary cultures (P < 10-7) as well 
as randomized recordings (P < 10-10) when comparing the geometric mean of Mann-Whitney 
U test at various values of ¸ (Fig. 7E). Importantly, we observed that within organoids, 
hidden states correspond to clusters of population activity patterns which are distinguished 
across multiple dimensions, whereas after randomization, the HMM captures only a one-
dimensional space which scales with the population rate (Supplementary Fig. 21). 
Furthermore, the number of realized states does not depend strongly on the number of hidden 
states (Supplementary Fig. 19), but is significantly different between the two-dimensional 

primary cultures and the other two types of models (Supplementary Fig. 26). Finally, we 
examined the fraction of backbone units that follow a Poisson process across all HMMs. In 
our analysis, we observe that the fraction of Poisson-like firing patterns generated by neonatal 
slices of the somatosensory cortex are bounded from above by organoid data (Fig. 7F). Here, 
both slice and organoid recordings have a comparatively larger fraction of non-Poisson-like 
firing units within the backbone, relative to the Poisson dominant patterns generated by two-
dimensional primary cortical cultures. However, in all models, the non-rigid units are 
predominantly Poisson, and backbone units are predominantly non-Poisson (Supplementary 
Fig. 27). In an in vivo setting, it has been well established that Poisson randomness is not a 
universal feature of spiking patterns in the cortex43, where architectonically defined brain 
regions generate homologous firing patterns that differ systematically across brain regions 
and less across species, a feature consistent from mice to cats and monkeys68. 
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Firing pattern stability 

Despite the similarities between neuronal firing patterns and establishment of stable sequences 
in both organoids and neonatal slices, neonatal slices are bounded by lower dimensional 
organoids, and by higher dimensional activity patterns generated by primary cultures that are 
characterized by irregular Poisson-like firing patterns (Fig. 7E-F). We assessed the ability of 
these systems to support stable firing patterns, in a regime near criticality, necessary for stable 
and flexible computation, and described by a stable branching process, captured by the 
branching ratio45. At criticality, general features beneficial to complex computation are 
simultaneously optimized, including information transmission, information storage, dynamic 
range, entropy, and susceptibility46,69. Biological systems tend to be slightly subcritical, 
supporting branching ratios of 0.9846,70, consistent with theoretical work71. In simple terms, 
branching ratio quantifies the average number of neurons activated by a single neuron's 
activity. This captures a key characteristic of the state of a neural network: a branching ratio of 
1 indicates a critical state where each neuron's activity, on average, leads to the activation of 
one other neuron. In a subcritical system, neural events are dampened and rapidly fall silent, 
while in a supercritical system, events grow exponentially (Supplementary Fig. 28A). We next 
calculated branching ratios in each system - organoids, murine cortical slices, and two-
dimensional murine primary cultures. The branching ratio in organoids was 0.96 ± 0.013 (mean 
± STD, Supplementary Fig. 28B) which was not different from the branching ratio in two-
dimensional cultures (0.95 ± 0.015, P = 0.96; linear mixed effects). In contrast, the branching 
ratio in acute murine cortical slices was 0.83 ± 0.018, which was significantly lower than both 
organoids (P = <0.0001) and primary cultures (P = 0.0001). Branching ratios of intact spike 
times were significantly different than shuffle controls in all three systems (organoid shuffle 
control branching ratio - 0.88 ± 0.013, P < 0.0001; primary culture shuffle control – 0.88 ± 
0.015, P < 0.0001; slice shuffle control: 0.89 ± 0.018, P = 0.001). Taken together, these data 
suggest that the two systems grown in vitro and thus measured in the context of extended 
homeostatic adaptation to their conditions were characterized by near-critical dynamics, 
however primary two-dimensional cultures lack the low-dimensional component necessary to 
generate recurring sequences. In contrast, while isocortical circuits in vivo are homeostatically 
tuned to criticality46,72,73, the ex vivo slice, although capable of generating sequential activity 
patterns, was severely subcritical - characterized by fading events - suggestive of an inability 
to rapidly compensate for having been removed from the intact brain and associated external 
and network inputs. 

Discussion 

The advent of high-density extracellular recordings has facilitated the detection of non-
random firing patterns that assemble into temporally precise sequences that are believed to 
form a basis for broadcasting and computing information in the brain10. Whether such 
sequences are emergent features, present during early brain development, a stage that is 
dominated by spontaneous activity with the potential to encode informational content, 
remains unclear. It has been hypothesized that sequences are 8preconfigured9 and represent an 
innate architecture independent of external experience17. However, experimental evidence in 
support of this notion is still sparse, largely due to experimental inaccessibility47.  

To address this open question, we leveraged state-of-the-art high density extracellular 
recordings from three-dimensional stem cell derived models of the human brain, known as 
brain organoids, which represent an intrinsically self-organized neuronal system that 

recapitulates key facets of early brain development21–24 and the establishment of functional 
circuits18,26,29. Crucially, brain organoids are not exposed to sensory information, and are thus 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.29.573646doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/


an ideal model to study whether the emergence of sequences is truly experience-independent. 
Here, our analysis of single-unit firing patterns within human brain organoids revealed the 
presence of a subset of high-firing rate neurons capable of generating firing patterns that 
assemble into temporally precise spiking sequences. A larger subpopulation conversely 
exhibits lower firing rates and less regular firing patterns (Fig. 2), where temporally rigid 
sequences project back onto a minority of strong functional connections (Fig. 3), which we 

previously reported are emergent properties of brain organoids18. In a seminal paper, 
Hopfield demonstrated that emergent computational properties from simple properties of 
many cells, rather than complex circuits, are capable of generalization, time sequence 
retention, error correction and time-evolution of the state of the system74. Therefore, it9s not 
surprising that the temporal structure of spontaneous and evoked patterns of cortical circuits 
are similar75,76, since such representations are drawn from a functionally connected neuronal 
pool with right-skewed, log-normal scaling rules61. 

Units that fire within the recurrent neuronal firing sequences exhibit varying degrees 
of temporal precision. The subpopulation of neurons that fire during the beginning of the 
population bursts are the most constrained, whereas units firing later in the sequences are 
more temporally flexible (Fig. 2F,G). An analogous organization of spiking activity is present 
also in the somatosensory and auditory cortex of adult rats49. Similarly in the three-layered 
turtle cortex8. In the hippocampus, experience-dependent replay has been shown to emerge 
from spontaneous, experience-independent preconfigured sequences16. The balance between 

temporally correlated and irregular spike neuronal populations is an important feature of 
information processing and computation in the brain. For example, large-scale extracellular 
field recordings from neurons in the visual cortex of the mouse and monkey brain have 
revealed a low-dimensional subspace of neurons that are entrained to population firing 
dynamics and represent a fixed attribute insensitive to external stimulus44. Consistent with 
this observation, also in brain organoids, we observe a low-dimensional subspace, consisting 
of backbone units, that resides within a higher dimensional space spanned by more weakly 
correlated and irregular firing units (Fig. 4). Moreover, we show that the stochastic firing 
patterns of randomized organoid data closely mirror the firing patterns of two-dimensional 
dissociated cortical cultures, which are marked by culture wide synchronization events that 

cannot sustain sequential activity patterns (Supplementary Fig. 7,9). Such an effect is likely 
the result of highly redundant and interconnected two-dimensional network configurations 
commonly observed in vitro58,59. Together, these findings highlight that the self-organized 
process of neurogenesis within brain organoids may serve as a more faithful in vitro model of 
the human brain, and are not simply a product of random networks. In fact, recent 
experiments have demonstrated that functional circuits in human brain organoids when 
interfaced with a machine interface can function as a reservoir for computing, capable of 
speech recognition and nonlinear equation prediciton77. 

 In an in vivo setting, a minority pool of strongly correlated neurons have been 
proposed to serve as a fast-acting system that resides within a more weakly coupled 
background, believed to function as a pre-configured and optimally tuned brain state5,78. The 
delicate balance between rigid and flexible spiking components and the establishment of 
sequential spiking patterns are an emergent feature of the three-dimensional cytoarchitecture, 
which is further supported by our analysis of spontaneous activity from neonatal slices from 
the somatosensory cortex (Fig. 6). Recent work has further established that a 
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neurophysiological backbone is likely organized during neurogenesis where common 
pyramidal neuronal progenitors establish high firing rate subnetworks, which are functionally 
connected and co-activated across brain states17. The present data from organoids show that 
highly correlated backbone units consist of a larger fraction of the total number of observed 
units at earlier organoid developmental time points relative to later time points (from 6 
months to 8 months old, Supplementary Fig. 5). This transition also coincides with the 

functional incorporation of inhibitory interneurons in our brain organoids18,79, and reflects an 
excitatory-inhibitory balance shifting towards inhibition that is observed in in vivo cortical 
circuits36, while preserving right-skewed functional organizational rules80. Thus, the organoid 
model presents a unique opportunity for future studies on the control of brain region 
interactions81. 

Brain organoids represent a self-organized neurodevelopmental system that operates 
as a truly closed system devoid of external input, and yet is capable of generating a rich 
repertoire of activity patterns that resemble the temporal dynamics of the early developing 
brain. Embedded within these firing patterns we observed a homologous overlap between the 
pool of non-Poisson-like firing patterns generated by brain organoids and neonatal brain 
slices. However, within primary cortical cultures, with an inherently randomized 
cytoarchitecture, we observed a concomitant shift to states governed by a Poisson process 
(Fig. 7F). In an in vivo setting, brain regions are defined by a balance between a repertoire of 
firing patterns that span irregular Poisson dynamics to clock-like regularity, which depend on 

local circuit architectures and are believed to be critical components underlying higher order 
brain function43. In fact, the 8backbone9 of consistently firing neurons, which form a minority 
pool within strongly connected networks, can predict as much as 80% accuracy during motor 
control in humans82. Backbone units have been proposed to function as an 8ansatz9, or initial 
estimate for matching behavior to external environmental inputs5. We posit that the highly 
correlated, non-Poisson neuronal components may serve as basis for the emergence of 
temporal sequences in early brain development. Early sequences might function as an internal 
reference frame for larger scale population dynamics found in mature circuits10, which will 
later be calibrated through interplay between sensory input and motor output47. We further 
demonstrate that neuronal firing patterns within brain organoids and neonatal brain slices 

generate strong non-random pairwise correlations with varying degrees of temporal jitter 
(relative to population events) with non-zero phase lags. These ensembles link together to 
establish a manifold of trajectories that are identifiable using a hidden Markov model, with a 
core of these probabilistic state transitions consisting of units with strong pairwise 
interactions (Fig. 5C,D). These subsets of units may function as an 8irreversible9 set of 8noisy 
logic elements9 that define a local arrow of time, which has recently shown to emerge in 
retinal circuits, where neuronal activity remains irreversible even when their inputs are not65.  

In summary, our analysis of spontaneous activity generated by stem cell derived 
human brain organoids, demonstrates that structured spiking sequences can emerge when 
completely devoid of sensory experience and motor output, supporting the pre-configured 
brain hypothesis. Recent work pharmacologically blocking neuronal activity during 
development of the central nervous system in larval zebrafish did not significantly alter 
neuronal responses relative to unperturbed animals83, suggesting that complex sensory 
systems are hard-wired by activity-independent mechanisms. Brain organoids offer a 
heuristic opportunity to understand how exogenous inputs can be used to refine neuronal 
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circuits and enable new studies into the genetic mechanisms that govern assembly of 
functional circuitry during early human brain development.  

Methods 

Organoid recording and pre-processing 

The human brain organoids presented in Figure 1-4 were grown and prepared for 
extracellular field recordings as described in Sharf et al.18. Organoids with less than 20 active 

units were not considered as significant to reliably separate a backbone and non-rigid 
population. Briefly, brain organoids were grown based on methods developed by Lancaster et 
al.22 and were of predominant forebrain identity based on single cell RNA sequencing 
analysis18. The recordings were made using complementary metal-oxide-semiconductor 
(CMOS) micro-electrode array (MEA) technology (MaxOne, Maxwell Biosystems, Zurich, 
Switzerland). The arrays contain 26,400 recording electrodes of which a subset of 1,024 
electrodes can be selected for simultaneous recording48. With a diameter of 7.5 µm each and 
a 17.5 µm pitch, the electrodes cover a total sensing area of 3.85 mm x 2.1 mm. The electrode 
selection was made based on automatic activity scans (tiled blocks of 1,020 electrodes) to 
identify the spatial distribution of electrical activity across the surface of the organoid. The 

1,020 most active electrodes were chosen with a minimum spacing distance of at least two 
electrodes (2 x 17.5 µm), providing sufficient electrode redundancy per neuron to enable 
accurate identification of single-units by spike sorting84, while simultaneously sampling 
network activity across the whole organoid surface interfacing the MEA. Measurements were 
made in a culture incubator (5% CO2 at 37 ºC) with a sampling rate of 20 kHz for all 
recordings and saved in HDF5 file format. The raw extracellular recordings were band-pass 
filtered between 300-6000 Hz and subsequently spikesorted using the Kilosort2 algorithm85 
through a custom Python pipeline. The spike sorting output was then further curated by 
removing units with an ISI violation threshold86 above 0.3, an average firing rate below 0.05 
Hz and/or a signal to noise ratio (SNR) below 5. 

The additional human brain organoids presented in Figure 7 were also grown based 
on the same methods developed by Lancaster et al.22, prepared for extracellular field 
recordings and spike sorted as described in Akarca et al.19. They were recorded using the 
same Maxwell Biosystems MEA systems and their recordings can be obtained here: 

https://zenodo.org/record/6109414#.YiiYbC-l2J9. From the 6 described organoids, well-1 
and well-6 were not considered since these recordings exhibited only 8superbursts987, rather 
than the normal bursting observed across all other organoids in this study. 

Neonatal murine brain-slice preparation 

All experiments involving murine neonatal acute slice recordings were approved by the 
Basel-Stadt veterinary office according to Swiss federal laws on animal welfare. Briefly, 
mouse pups (P12-14; both sexes; C57BL/6JRj from Janvier Labs) were decapitated under 
isoflurane anesthesia, followed by brain dissection in ice-cold artificial CSF (aCSF) bubbled 
with carbogen gas (95% O2, 5% CO2). To promote self-sustained cortical activity88, the 
following aCSF recipe was used (in mM): 126 NaCl, 3.5 KCl, 1.25 NaH2PO4, 1 MgSO4, 2 
CaCl2, 26 NaHCO3, and 10 glucose, at approximately pH 7.3 when bubbled with carbogen. 
Coronal brain slices (370 ¼m) were prepared using a vibratome (VT1200S, Leica, Wetzlar, 
Germany). Slices were subsequently transferred to a chamber submerged in carbogenated 
aCSF and stored at room temperature until use. 
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Acute recordings from neonatal murine brain slices  

For recordings, a brain slice containing somatosensory cortex was transferred from the 
storage chamber onto the sensing area of the CMOS MEA and fixated with a customized 
MaxOne Tissue Holder (MaxWell Biosystems, Zurich, Switzerland). The slice was perfused 
with heated aCSF (32-34 °C). Sparse, rectangular electrode configurations were selected to 
find active regions of the somatosensory cortex, with a sparsity of two or three to allow for a 
good spike-sorting performance. 

Primary planar culture preparation 

The presented primary neuronal recordings (Pr) were performed and spike sorted as described 
in Yuan et al.20 for Pr1-4 and as described in Akarca et al.19 for Pr5-10. Briefly, neuronal 
cultures according to Yuan et al. were prepared from embryonic day 18 Wistar rat cortices 
and plated at a density of 3,000 cells/mm2 onto high-density CMOS MEAs (MaxOne, 
Maxwell Biosystems) and maintained in a cell culture incubator (5% CO2 at 37 ºC). The 
recordings were made at 20 days in vitro. The recordings can be obtained here: 

https://www.research-collection.ethz.ch/handle/20.500.11850/431730. For Akarca et al., 
neuronal cultures were prepared from embryonic day 18/19 Wistar rat cortices and were 
plated onto high-density CMOS MEAs at a density of 12,500 cells/mm2 and maintained in a 
cell culture incubator (5% CO2 at 37 ºC). The recordings were made at 21 days in vitro. The 
recordings can be obtained here: https://zenodo.org/record/6109414#.YiiYbC-l2J9. 

Comparing data from different sources 

The recording durations of all recordings coming from the same source were kept consistent. 

The recording durations per data source were selected so that each recording contained 
around 50 bursts (55 ± 10 bursts, mean ± SE), using the first x minutes of the recording to get 
to this value. The only exception included the Akarca et al. primary neuron recordings which 
showed strong differences in their population rate during the first five-minutes of the 
recording compared to the remainder of the recording, potentially due to the cultures not 
having reached an equilibrium state before the start of the recording. As a result, the first 
five-minutes of these recordings were not considered. 

Single-unit firing rate calculations 

All of the following analyses were performed using custom MATLAB scripts. MATLAB 
version R2018b was used. The firing rate of each individual spike-sorted unit with at least 30 
detected spikes in the recording was computed by obtaining the inter spike interval between 
each spike event and applying a Gaussian smoothing with a 50 ms kernel to its inverse. A 
log-normal distribution was fitted to the distribution of firing rates averaged over the whole 
recording period for each unit. The goodness of the fit was assessed using the R2 metric. 

Population rate calculations 

The population firing rate was computed by summing spikes over all units per frame 
followed by smoothing with a 20 ms sliding square window and a subsequent 100 ms sliding 
Gaussian kernel. For the detection of the burst start, end and peak, population activity bursts 
were defined when the population-averaged spike rate exceeded 4x its RMS value (using the 
built in MATLAB function findpeaks with min_dist = 700 ms. For recordings with long 
duration bursts, min_dist was increased up to 2000 ms in order to prevent peaks in the tail of 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2023. ; https://doi.org/10.1101/2023.12.29.573646doi: bioRxiv preprint 

https://www.research-collection.ethz.ch/handle/20.500.11850/431730
https://zenodo.org/record/6109414#.YiiYbC-l2J9
https://doi.org/10.1101/2023.12.29.573646
http://creativecommons.org/licenses/by-nc-nd/4.0/


the burst to be detected as separate burst instances). The burst start and end times were 
determined to be the first time points where the multi-unit activity fell below 10% of the 
detected peak value, before and after the burst peaks respectively. The actual burst peak time 
was then obtained by recomputing the population firing rate using a 5 ms square window and 
a 5 ms Gaussian kernel and finding the frame with the highest value between the burst start 
and end time. For murine primary planar cultures, a 20 ms square window, a 50 ms Gaussian 

kernel and a 3 x RMS threshold were used for population peak detection and a 20% threshold 
for the burst start and end time detection. These values were chosen to account for stronger 
jitteriness of the population activity and more abundant inter-burst activity. 

Firing rate sequences and burst backbones 

For each individual unit, the firing rate centered by the burst peak was averaged from -250 
ms to 500 ms relative to the burst peak. In addition, the time relative to the population burst 
peak at which this unit had a peak in its firing rate within the burst start and end window was 

selected. The median and variance of the firing rate peak times was computed per unit over 
all bursts in which this unit fired at least two action potentials. The median values were used 
for reordering the units for different plotting purposes and the variance was used to fit a linear 
mixed effects model to study the relationship between the effect of the relative position of the 
peak (from 0 to 1) on the variance of the peak. 

Units that fired at least two action potentials in all the bursts in a recording were 
defined as backbone units. For murine cortical slices and Akarca et al.19 primary cultures, a 
threshold of 70% of bursts was used since only a small fraction of units had at least two 
action potentials in all bursts (Suppl. Fig. 2A). A Backbone unit sequence was defined by 
ordering all backbone units based on their median firing rate peak time. For each organoid, 
the burst backbone period was defined as the average firing rate peak time of the earliest 
backbone unit until the average firing rate peak time of the latest backbone unit in the 
sequence. For different plotting purposes, the backbone period was rescaled from 0 to 1 and 
data per organoid were overlaid and averaged over the rescaled backbone period for 
comparison. 

Burst-to-burst firing rate correlations 

For each unit, the firing rate was recomputed after removing all spikes that fell outside of the 
burst windows. Next, this firing rate was selected from -250 ms to 500 ms relative to each 
individual burst peak and a cross correlation was computed for the unit firing rate between 
each pair of bursts for each individual unit (using the built in MATLAB function xcorr with 
maxlag = 10ms and normalization = <coeff=). Only bursts with at least 2 detected action 
potentials and units with at least 2 spikes in at least 30% of all bursts were considered for this 
analysis. Afterwards the average over the maximum correlations for all the burst pairs with at 
least 2 detected action potentials was computed per unit, yielding the burst-to-burst 
correlation. The same computations were performed on the spike matrices after shuffling, and 
normalized burst-to-burst correlations were computed by subtracting the score after shuffling 
from the original score. 

In a separate analysis, burst-to-burst correlations were computed between bursts from 
two recordings from the same organoid slice at four-hour intervals. Average burst-to-burst 
correlations were computed for pairs of bursts within each of the two same recordings, as 
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well as for pairs of bursts where one burst came from the recording at zero hours and the 
other burst from the recording at four hours. 

Pairwise firing rate correlations 

Using the same firing rates computed after removing spikes outside burst windows, cross-
correlations were computed between each pair of units (using the built in MATLAB function 
xcorr with maxlag = 50ms and normalization = <coeff=). The rate for the whole recording 
was used. The maximum correlation values for each unit pair were compared between pairs 
of backbone units, pairs of one backbone and one non-rigid unit and pairs of non-rigid units. 
The same computations were performed on the spike matrices after shuffling and normalized 
pairwise correlations were computed by subtracting the score after shuffling from the original 
score. 

Burst clustering 

For all the detected bursts, the firing rate per unit was selected for a window of -250 ms until 
500 ms relative to the burst peak. Similar to Segev et al.55, the pairwise correlations in the 
firing rates were computed for all unit pairs, using the firing rates for this single burst 
window. Subsequently, the bursts were clustered by performing a k-means++ clustering on 
the pairwise correlation matrices. The optimal number of clusters was selected using the 
elbow method. The clustering results were assessed by projecting the pairwise correlation 
matrices per burst onto the first two principal components, labeled by their cluster and cluster 
separability was confirmed. Next, to assess variability in the firing of a unit between different 

burst clusters, the average firing rate per unit was computed for each burst cluster and the CV 
score (STD/mean) was computed to quantify the firing rate differences between burst clusters 
per unit. This difference was compared between backbone units and non-rigid units using the 
statistical analysis as described in Methods: statistical analyses for model comparisons. 

Burst similarity score 

At every frame relative to the burst peak, a vector containing the firing rates for each unit was 
obtained. For every pair of bursts, the cosine similarity was computed between the vectors 

from the two different bursts. This yielded a matrix with pairwise burst similarity values at 
every frame relative to the burst peak. The average of this matrix was defined to be the burst 
similarity score for that relative frame. This score was computed for every frame in the period 
from the earliest burst start time - relative to the burst peak over all bursts - until the latest 
burst end time -  relative to the burst peak over all bursts. The same computations were 
performed on the spike matrices after shuffling. 

Besides computing the burst similarity score over all units, burst similarity scores 
were also computed for only a subset of units. In the first case, these subsets consisted of all 
backbone units and all non-rigid units respectively. Subsequently, at each frame the burst 
similarity score distribution for all burst pairs was compared using a paired sample, two-sided 
t-test (using the built in MATLAB function t-test). In the second case, these subsets consisted 
of units with an average correlation value (Methods: Pairwise firing rate correlations) in the 
top/bottom ith percentile where i ranged from 20 to 95. This was done to assess the burst 
similarity based only on highly/lowly correlated units. Similarly, the burst similarity score 

distribution for all burst pairs was compared between the top/bottom 20 percent of units and 
all units using a paired sample, two-sided t-test. 
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PCA manifold analysis 

The spike rate matrix of an organoid with n units can be interpreted as a set of points in n 
dimensional space, where each axis holds the spike-rate trajectory of a specific unit. The 
principal components (PC) of this system are the directions in this space that capture the 
majority of the dataset9s variance. A dimensionality reduction is achieved by linearly 
projecting the dataset onto these PCs. This transformation collapses the n dimensional system 
to p dimensions where p < n, while preserving the dominant patterns exhibited by the system. 
For this analysis, the PCs are computed by the Eigen-decomposition of the covariance matrix 
computed as follows: 

Prior to the dimensionality reduction step, the firing rate data was normalized for each 
unit individually using the z-score method, which centers the data around zero mean and unit 
standard deviation. The dimensionality reduction was performed on three separate selections 
of units: all units, backbone units only and non-rigid units only. 

The cumulative sum of the variance explained per PC was computed for the PCs 
ordered from high variance to low. For each recording, the results for all units were 
subtracted from the results for backbone units only and non-rigid units only. Negative values 

mean that the cumulative sum of the variance explained by all units is larger than for the 
subset of units and positive values mean that the cumulative sum of the variance explained by 
all units is smaller. 

Furthermore, the sum of the variance explained by the first three PCs was computed 

and divided by the summed explained variance of the first X principal components, where X 
is the lowest number of total PCs from the three selections, all units, backbone and non-rigid. 
This was done to account for differences in the total number of PCs per selection. This value 
was computed for the original data and the shuffled data after which the shuffled results were 
subtracted from the original result to get a normalized score per recording. These scores were 
compared between the three selections and between the different model types as described in 
Methods: statistical analyses for model comparisons. 

Randomized recording 

Randomization of single-unit spike times were performed based on the methods of Okun et 
al.44,57 to preserve each neuron9s mean firing rate as well as the population averaged firing 
rate distribution. This is necessary to avoid trivial differences that would arise simply by 
changes in the mean firing rate of a neuron. Briefly, whenever analyses were performed on a 
randomized recording, the randomization was done as follows (unless stated otherwise): Two 
separate units, A and B, were selected and two separate frames, 1 and 2, were selected where 
A but not B fired in frame 1 and B but not A fires in frame 2. Next, the spikes from unit A 
and B were switched between frames 1 and 2. The resulting spike matrix still has an equal 
number of spikes per unit (same average firing rate) and an equal number of spikes per frame 

(same population rate). This shuffling procedure was performed 5x as many times as there 
were spikes in the spike matrix, resulting in each spike getting shuffled 10x on average. 

Statistical analyses for model comparisons 

Statistical modeling was carried out in the R environment. Nested data were analyzed with 
linear mixed-effects models (lmer function of the lme4 R package89) with <organoid= or <unit 
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ID= as random effect. Non-nested data were analyzed with linear models (lm function). 
Right-skewed and heavy-tailed data was log-transformed and analyzed with a linear model. 
Statistical significance for linear mixed-effects models was computed with the lmerTest R 
package90 and the summary (type III sums of squares) R function. Statistical significance for 
linear models was computed with the summary R function. When possible, model selection 
was performed according to experimental design. When this was not possible, models were 

compared using the compare_performance function of the performance R package91, and 
model choice was based on a holistic comparison of AIC, BIC, RMSE and R2. Model output 
was plotted with the plot_model (type=9pred9) function of the sjPlot. 95% confidence 
intervals were computed using the confint R function. Post hoc analysis was carried out using 
the emmeans and emtrends functions of the emmeans R package. 

Hidden Markov model analysis 

Hidden Markov models (HMMs) have been widely used in computational biology, ranging 

from protein modeling92 to determining evolutionarily conserved genomic elements across 
species93. More recently, this approach has been utilized to characterize the firing patterns of 
neuronal ensembles of specific brain states during motor function94, deciphering neural codes 
of sleep95 and uncovering temporal structure in hippocampal outputs96. 

A hidden Markov model is a statistical characterization of a discrete-time random 
process in terms of a discrete <hidden= state, which cannot be directly observed, but which 
changes the probability distribution of the observations. At each time step, the value of the 
hidden state depends only on the previous hidden state. The observation distribution and 
transition probabilities together make up the parametrization of the HMM. These parameters 
are fitted using the Expectation-Maximization (EM) algorithm to assign the parameters of the 
observation distribution and transition probabilities in order to co-optimize the posterior 
likelihood of the observations and the sequence of hidden states. 

For neuronal spiking data, HMMs are typically applied to time-binned spike matrices, 
where at each time step, the observation is a population activity vector consisting of the 
number of spikes produced by each unit within that time bin. If the bin size is significantly 
larger than the refractory period of the neuron, the resulting observation distribution is per-
neuron independent Poisson with a parameter », such that the probability that the unit fires n 

times in a given time bin is given by p(n) = »ke-»/k! Our analysis is carried out in the Python 
programming language, version 3.11, using the implementation of an HMM with Poisson 
observations provided by the package SSM. 

We validated that HMMs capture information from the spiking data via 5-fold cross-

validation by comparing the posterior log likelihood of a held-out validation set to that of the 
randomized surrogate data for the held-out region96. Each <fold= consists of fitting the model 
parameters to a random 80% subset of the data and evaluating the fitted model on the 
remaining 20%. Log likelihood is always greater for the real than the surrogate data 
(Supplementary Fig. 17), indicating that the HMM is modeling transitions using information 
present in the real data but not the surrogate. 

Hidden Markov Model Hyperparameters 

Although the parameters of the observation and state transition distributions are selected by 
EM, there are two hyperparameters as well: the bin size T for converting spiking data into a 
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discrete-time observation vector, and the number of states K for the HMM itself. Both must 
be chosen independently of the EM fitting process, so we treat them as hyperparameters and 
evaluate performance for a range of values using the 5-fold cross-validation method 
described above. We performed this validation across all 8 human brain organoid recordings. 
We first chose a default bin size of 30 ms based on the characteristic time scale of bursts. 
Under this condition, fit performance is insensitive to the number of hidden states above 10 

(Supplementary Fig. 16), so all further analysis is conducted across models with the number 
of hidden states ranging from 10 to 50. We next evaluated performance across bin sizes of 10, 
20, 30, 50, 70, and 100 ms, for numbers of hidden states ranging from 10 to 50 
(Supplementary Fig 15). Performance is also relatively insensitive to bin size near 30 ms, but 
significantly larger or smaller bin sizes do exhibit somewhat worse performance. The 
analysis reported on in the main paper uses a fixed bin size of 30 ms, but the number of 
hidden states ranges from 10 to 50. 

Hidden State Trajectories 

The ability of a HMM to capture the stereotyped dynamics of bursts in human brain 
organoids is explored in Figure 5 A-C. Given a fitted HMM, we estimate the most probable 
sequence of hidden states for a given time-binned spike matrix using the forward-backward 
algorithm, a standard technique for maximum likelihood estimation of hidden state. Then, 
this sequence of hidden states is registered relative to the peaks of all the bursts in the 
recording, and trimmed into fixed-length subsequences corresponding to a fixed time window 
surrounding each peak. For visualization purposes, the parameters were set to 300 ms before 
and 600 ms after. We then computed the empirical probability distribution over hidden states 
as a function of time relative to the burst peak by counting how many times each state 

appears at each position across all subsequences, divided by the total number of 
subsequences. Results are shown for one representative HMM (with 20 hidden states) in the 
first organoid we analyzed (with 30ms time bins). 

We also measured the rate of hidden state traversal during the burst backbone time 

period (Methods: firing rate sequences and burst backbones). We split the maximum-
likelihood state sequence into subsequences corresponding to one backbone period around 
each burst peak, and calculated the total number of hidden states divided by the duration of 
the burst backbone period. The distribution of these state traversal rates was significantly 
different for all three biological models (Supplementary Fig. 26), but much more similar 
between murine slices and human brain organoids than between either model and murine 
primary cultures. 

Consistency of units within a Hidden State 

We refer to each time bin of the spike matrix in which a given hidden state is most probable 
as a <realization= of that state. We then computed the consistency of each unit in each hidden 
state as the fraction of realizations of that hidden state in which the unit fires at least once. 
This procedure yielded an array of consistency scores with one row for each of the model9s K 
hidden states, and one column for each unit (Fig. 5D, Supplementary Fig. 20). 

We view the columns of this array as vectors in a K-dimensional space; Figure 5E 
visualizes a concrete example of this space, using PCA dimensionality reduction to 
demonstrate that backbone and non-rigid units are almost linearly separable. We measured 
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the degree of this approximate linear separability by determining an optimal decision 
boundary within the original space using a linear support vector machine (SVM). 

As we were not attempting to use this SVM as a predictive model but rather as a 
measurement of linear separability, the decision boundary was both fitted and evaluated 
across all units in the recording, rather than using any kind of cross-validation. Instead, as a 
null hypothesis to control for the fact that backbone units fire more overall than non-rigid 
units, we calculated the linear separability of backbone and non-rigid units based solely on 
their overall firing rate. This does not depend on the fitted HMM, so the null hypothesis has 
only one score per organoid (the linear separability across all units), rather than the 
distribution across models produced by the SVM-based linear separability metric. 

Dimensionality of a Fitted HMM 

To evaluate the ability of HMMs to represent non-trivial activity manifolds beyond simple 
variations in population firing rate, we estimated the dimensionality of the observation model 
in each fitted HMM. The population observation matrix is an array of shape [number of 
hidden states] × [number of units], where each entry represents the parameter » of the Poisson 
distribution estimated for the firing of that unit in that state. We performed a singular value 

decomposition (SVD) on this matrix so that a principal component analysis with any desired 
number of dimensions d could be acquired by projecting only the first d components of the 
SVD. Furthermore, this same transformation can be applied to the time-binned spike matrix 
itself in order to yield a dimension-reduced version for visualization purposes 
(Supplementary Fig. 21). 

We defined the <dimensionality= of the trained HMM for a given dataset to be the 
number of principal components required to meet a given threshold ¸ in the percent explained 
variance on the HMM states themselves. Calculating the required dimensionality for a range 
of values of K for any given value of ¸ yields a distribution of identified dimensionality (Fig. 
7E). We found that for K ranging from 10 to 50 hidden states and ¸ ranging from 0 to 1, these 
distributions were not significantly different between Organoid and Slice (P = 1.2%) but 
were significant for Organoid or Slice vs. Primary (P < 10-7), as well as any vs. Surrogate (P 
< 10-10). Significance is estimated by conducting a separate Kolmogorov-Smirnoff test at 
each of many values of ¸. These values are highly correlated between similar values of ¸ and 

so could not be combined using e.g. Fisher9s method, so we instead treated this as an 
estimation problem and used the geometric mean to combine the P-values. This is a much 
more conservative method with regard to identifying distinctions than the arithmetic mean, as 
highly significant differences cannot easily be counteracted by regions with no significant 
difference (e.g. the geometric mean of 0.5 and 0.005 is 0.05, but their arithmetic mean is 
nearly 0.25). This is important because there are ranges of ¸ where the distributions are 
inevitably very similar: for very low ¸, the dimensionality of any model will be 1, whereas 
for ¸ very close to 100%, the dimensionality of any model (even on surrogate data) will be 
close to K. 

Non-Poisson Units 

Based on the idea that backbone units should be distinguished by the consistency of their 
firing, we attempted to separate units based on their regularity of firing. Under the null 
hypothesis, which was originally assumed in fitting HMMs to our data in the first place, each 
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unit produces Poisson firing at a rate, which depends on the hidden state. For a Poisson unit, 
for each hidden state of each fitted HMM, the number of firings of the unit in each realization 
of the hidden state should follow a Poisson distribution. This distribution has mean and 
variance both equal to its single parameter », so we calculated the mean number of firings of 
a unit across all realizations of a hidden state, and performed a one-sided chi-square test to 
identify whether the variance in firings for that unit was less than under the Poisson null 

hypothesis at the P = 1% significance level. We then identify units as Poisson or non-Poisson 
based on the fraction of all hidden states across all models in which a given unit exhibited 
significantly lower variance than under the null hypothesis. Units for which this fraction 
exceeds a threshold (an arbitrary parameter) can be considered consistently non-Poisson, a 
property which is substantially more likely for backbone than for non-rigid units 
(Supplementary Fig. 27), but also varies significantly between our three biological model 
systems (Fig. 7F). 

Branching ratio  

As previously described in detail, we analyzed the branching ratio in each recording included 
in this manuscript. The branching ratio, defined as the proportion of the total number of neurons 
firing at time n + 1 to those active at time n, is a measure of critical dynamics. Perfectly critical 
systems should give rise to continuous activity that neither grows nor decays, and thus support 
a branching ratio 1.0. Note that theory and empirical measurements suggest that biological 
systems self-organize to a near-critical point exemplified by a branching ratio of ~ 0.9846,70,71,73. 
The specific calculation of branching ratio developed by Wilting and Priesemann45 is resilient 
to subsampling, and is thus well suited to the relatively brief recordings examined in our study. 

If A denotes the number of neurons active at time t, a constant branching ratio implies 
that the expected value of <At+1 | At> = mAt + h, where < | > signifies the conditional 
expectation, m represents the branching ratio, and h is the average rate of an external input. 
Factoring in subsampling, where at is proportionate to At, we get <at | At > = ·At + ξ, where · 
and ξ are constants. This subsampling introduces a bias in the form of: m(·2Var [At] / Var [at] 
- 1). Rather than focusing on times t and t + 1, this centers on times t and t + k, with varying 
time lags k = 1,..., kmax. Consequently, the branching ratio mk is computed as <at+k | at > = mk = 
·2 Var [At] / Var[at]mk = bmk, where b is a constant. To ascertain mk across different k values, 
we derived an exponential curve and deduced m from this curve. For a detailed explanation, 
refer to Wilting and Priesemann45. 

In this work, we employed bins of 10 milliseconds, defined kmax as 2500 bins, and 
stepped across the data in 10 milliseconds steps. We bootstrapped calculations in each 
preparation 50 times; 10% of neurons were randomly selected (or 10 neurons if the total n < 
100) and calculated branching ratio. Branching ratio was calculated for both intact spike 
times and shuffled times (control). To shuffle spike times, we randomly generated nspikes 

times between t0 and tend for each neuron. This maintains the neuron- and network- level 
firing rate while destroying spike time relationships between neurons. 

Data Availability: The data supporting the findings of this study are available within the 

article and its supplementary information. Raw and curated electrophysiology recordings can 
be found here https://dandiarchive.org/dandiset/000732 
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Code Availability: Spike sorting was performed in Python 3.6 using SpikeInterface 0.13.0 
and previously published84, which can be found at 
https://github.com/SpikeInterface/spikeinterface. Custom code for electrophysiology analysis 
is available at https://github.com/braingeneers/Protosequences2023 
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