

1 **Auditory training alters the cortical representation of both learned and task irrelevant sound
2 features**

3

4 Huriye Atilgan^{1,2}, Kerry M Walker², Andrew J. King², Jan W. Schnupp^{2,3} and Jennifer K. Bizley^{1,2}

5 ¹The Ear Institute, University College London, UK

6 ²Department of Physiology, Anatomy and Genetics, University of Oxford, UK

7 ³City University of Hong Kong, China

8

9

10

11 Corresponding Author: Jennifer Bizley j.bizley@ucl.ac.uk

12 UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE.

13

14

15

16

17

18

19

20

21

22

23

24

25

26 **Abstract**

27

28 Auditory learning is supported by long-term changes in the neural processing of sound. We mapped
29 neural sensitivity to timbre, pitch and location in animals trained to discriminate the identity of
30 artificial vowels based on their spectral timbre in a two-alternative forced choice (T2AFC, n=3,
31 female ferrets) or to detect changes in fundamental frequency or timbre of repeating artificial
32 vowels in a go/no-go task (n=2 female ferrets). Neural responses were recorded under anaesthesia
33 in two primary cortical fields and two tonotopically organised non-primary fields. Responses were
34 compared these data to that of naïve control animals. We observed that in both groups of trained
35 animals the overall sensitivity to sound timbre was reduced across three cortical fields but enhanced
36 in non-primary field PSF. Neural responses in trained animals were able to discriminate vowels that
37 differed in either their first or second formant frequency unlike control animals whose sensitivity
38 was mostly driven by changes in the second formant. Neural responses in the T2AFC animals, who
39 were required to generalise across pitch when discriminating timbre, became less modulated by
40 fundamental frequency, while those in the go/no-go animals were unchanged relative to controls.
41 Finally, both trained groups showed increased spatial sensitivity and altered tuning. Trained animals
42 showed an enhanced representation of the midline, where the speaker was located in the
43 experimental chamber. Overall, these results demonstrate training elicited widespread changes in
44 the way in which auditory cortical neurons represent complex sounds with changes in how both task
45 relevant and task-irrelevant features were represented.

46

47

48 **Introduction**

49

50 Sensory discrimination tasks are known to drive cortical plasticity, and increases in map area have
51 been proposed as providing the structural substrate for learning in auditory cortex (Rutkowski and
52 Weinberger, 2005; Schreiner and Polley, 2014). However, recent studies have questioned the
53 functional role of map plasticity suggesting that it may be a temporary phenomena associated with
54 learning that does not persist once a task is well-learned (Reed et al., 2011), and demonstrating that
55 auditory learning can occur in the absence of map plasticity (Galindo-Leon et al., 2009; Shepard et
56 al., 2016). Training animals to 'forage' for sounds with particular features leads to diverse changes

57 within primary auditory cortex independently of any changes in the tonotopic representation (Bao et
58 al., 2004; Whitton et al., 2014). Since one role for auditory cortex is thought to be in the formation
59 of behaviourally meaningful sound categories (Bizley and Cohen, 2013) a question of great interest is
60 to understand the cortical representation is changed in order to support the categorization of
61 spectrally overlapping naturalistic sounds.

62 Identifying auditory 'objects' requires that animal and human listeners are capable of discriminating
63 sounds along a given perceptual dimension while generalizing across variability in other dimensions
64 (Griffiths and Warren, 2004; Bizley and Cohen, 2013). At the level of the single neuron this requires
65 that neuronal responses are both selective for one sound feature but tolerant (or invariant) across
66 others (Ison and Quiroga, 2008; Bizley et al., 2009). While the consequences of behavioural training
67 on neural invariance is unknown, appropriate environmental exposure during development can
68 shape auditory cortical responses to complex sound features: In the auditory cortical neurons of
69 animals reared in complex acoustic environments fewer neurons respond to any single sound but
70 responses were more selective for particular spectro-temporal features and can tolerate greater
71 acoustic variability(Bao et al., 2013).

72 In this study we recorded from the auditory cortex of animals trained in one of two behavioural
73 paradigms that required that animals discriminate perceptual features of spectrally overlapping
74 artificial vowels. One set of animals was trained to discriminate the timbre of artificial vowels (Bizley
75 et al., 2013; Town et al., 2018) and did so across a range of fundamental frequencies (F0s). A second
76 set of animals were trained to detect changes in pitch and timbre of an ongoing sound sequence
77 (Walker et al., 2017).

78 After behavioral training was complete electrophysiological recordings were made from four
79 tonotopic auditory cortical fields. The perceptual features of complex sounds, such as their location
80 in space or spectral timbre, are distributed rather than systematically mapped within or across
81 auditory cortical fields (Bizley and Walker, 2010; Recanzone and Cohen, 2010; King and
82 Middlebrooks, 2011). Given this, and the broadband nature of the stimuli, it seemed unlikely that
83 learning could be supported by an expansion of the tonotopic map. We therefore sought to
84 determine how training altered (i) single neuron response sensitivity and selectivity to both learned
85 and task-irrelevant sound features, and (ii) whether training impacted on the distribution of neural
86 tuning across specific auditory cortical fields. We tested two hypotheses: Firstly, that training would
87 increase the sensitivity to trained features and the tolerance for changes in untrained features.
88 Secondly, consistent with hierarchical encoding theories, we hypothesized that training effects
89 would be strongest in non-primary areas. Our data demonstrate that the representation of both

90 trained and task-irrelevant features was changed by training, but that the direction of these changes
91 varied between cortical fields: increase in selectivity to the trained features occurred specifically in
92 the secondary posterior pseudosylvian field (PPF) whereas neurons in other fields became less
93 sensitive.

94 Materials & Methods

95
96
97

98 All animal procedures were approved by the local animal welfare and ethical review committee at
99 the University of Oxford and performed under license from the UK Home Office in accordance with
100 the Animal (Scientific Procedures) Act 1986. Five adult, female, pigmented ferrets (*Mustela putorius*)
101 were used in this study. Three of these animals experienced 1-2 years of training on a two
102 alternative forced-choice timbre discrimination task which required they report the identity of an
103 artificial vowel (Fig. 1C, T-2AFC; for the details of behavioral training see {Bizley, 2013 #925}). Two
104 animals were trained to perform a Go/No-go change detection task, where animals were presented
105 with a sequence of artificial vowels and had to report (in different sessions) either changes in F0 or
106 changes in vowel identity (Fig. 1D, T/P-GNG; see {Walker, 2011 #93}).

107 Ferrets were housed in groups of either two or three, with free access to high-protein food pellets
108 and water bottles. On the day before behavioural training, water bottles were removed from the
109 home cages and were replaced on the last day of a training run. Training runs lasted for 5 days or
110 less, with at least 2 days between each run. On training days, ferrets received drinking water as
111 positive reinforcement while performing a sound discrimination task. Water consumption during
112 training was measured and supplemented as wet food in home cages at the end of the day to ensure
113 that each ferret received at least 60 ml of water per kilogram of body weight daily. Once behavioural
114 training was complete electrophysiological recordings were made under non-recovery anaesthesia.
115 Recording under anaesthesia was necessary for the large scale mapping of neurons across cortical
116 fields, and in order to directly compare the resulting responses with data from control animals
117 previously collected under the same anaesthetic regime. Electrophysiological control data was
118 provided from 5 additional ferrets that formed a previously published dataset {Walker, 2011
119 #1485; Bizley, 2009 #607}. All animals were routinely monitored to ensure their ears were clean and
120 disease free throughout the study.

121

122

123 **Stimuli**

124 Acoustic stimuli for both behavioral testing and electrophysiology were artificial vowel sounds. For
125 electrophysiological testing, sounds were all possible combinations of four F0 values: F0 = 200, 336,
126 565, and 951 Hz, four spectral timbres: /a/ (F1–F4 at 936, 1551, 2815, and 4290 Hz); /ε/ (730, 2058,
127 2979, and 4294 Hz); /u/ (460, 1105, 2735, and 4115 Hz); and /i/ (437, 2761, 3372, and 4352 Hz) and
128 four spatial locations presented in virtual acoustic space: -45°, -15°, 15°, and 45° azimuth, at 0°
129 elevation; giving a total of 64 sounds, each of which was 150 ms in duration. Additionally, noise bursts
130 and pure tones were used to characterize individual units and to determine tonotopic gradients in
131 order to confirm the cortical field in which any given recording was made {Bizley, 2005 #602}.

132 For animals trained in the 2AFC timbre identification task stimuli were /u/ and /ε/. Animals were
133 trained initially with an F0 of 200 Hz, but tested across a range of values from 150 Hz – 500 Hz. For
134 animals trained in the T/P GNG task reference sounds were the vowel /a/ at 200 Hz with F0 targets
135 being the vowel /a/ with F0 values of 336, 565, and 951 Hz and timbre targets being the vowels /i/,
136 /u/ and /ε/ presented with an F0 of 200 Hz.

137 **Electrophysiological Recordings**

138

139 Experimental methods were identical to those used in Bizley et al., 2009. Recordings were made under
140 medetomidine/ketamine anaesthesia in the left auditory cortex and targeted at primary and non-
141 primary tonotopic areas: primary auditory cortex (A1) and the anterior auditory field, (AAF), on the
142 middle ectosylvian gyrus and the posterior pseudosylvian and posterior suprasylvian fields (PPF and
143 PSF) located on the posterior ectosylvian gyrus (Fig. 2A). Recordings were made with silicon probe
144 electrodes (Neuronexus Technologies, USA) either in a 16 x 2 configuration (16 active sites spaced at
145 100µm intervals on each of two probes), a 32 x 1 configurations (50 µm spacing) or, in one animal, an
146 8 x 4 configuration (100µm spacing in depth, 200µm between shanks). Voltage signals were bandpass
147 filtered (500-5000Hz), amplified (<20,000 times), and digitized at 25 kHz. Data acquisition and stimulus
148 generation were performed using BrainWare (Tucker-Davis Technologies). A minimum of 80 units
149 were recorded in each field in each dataset (mean = 118 units ± 28.32, Table 1). Data were combined
150 across animals (control or trained) to make composite tonotopic maps (Fig. 1B). The distribution of
151 CFs were not significantly different between trained and naïve animals. (2 way mixed ANOVA (2 groups
152 x 4 fields), group: F (1, 612) = 0.02, p=0.8792; field: F (3,612) = 39.79, p<0.001; group×field: F (3,612)
153 = 4.67, p =0.08).

154 **Behavioural Testing**

155

156 Full details of the training apparatus and procedure for shaping animals can be obtained in {Bizley,
157 2013 #925;Walker, 2011 #93}. Briefly, water-restricted ferrets were positively conditioned to report
158 the identity of a vowel sound (either /e/ or /i/) in a two-alternative forced choice task, or trained
159 to detect a change in the pitch or timbre of a repeating artificial vowel on a go/no-go task. In each case,
160 the animal initiated each trial by inserting its nose in a poke hole situated at the center of the sound-
161 isolated testing chamber. For the 2AFC task this resulted in the presentation of two repetitions of
162 one of the vowel sounds and animals were rewarded for correctly responding at the side that was
163 associated with that vowel. In the GNG task ferrets heard a sequence of artificial vowels which could
164 change in identity or pitch at the third to seventh vowel in the sequence, and if ferrets withdrew
165 from the nose poke hole during presentation of such a deviant, they were rewarded with water.
166 Failures to withdraw to a deviant (within a 550 ms time window following deviant onset) resulted in
167 a 12 s time out. In both tasks sounds were presented from a speaker located above the central 'go'
168 spout at the animals midline.

169 **Neural Data Analysis**

170

171 Neural data was analysed using a variance decomposition approach developed in {Bizley, 2009 #607}.
172 We first calculated spike counts for each of the 64 stimuli, averaged over repeated presentations of
173 the same sound and binned with 20 ms resolution over the 300 ms immediately preceding stimulus
174 onset. We then performed a 4-way ANOVA on the spike counts, where the 3 stimulus parameters
175 (azimuth, pitch, and timbre) plus the time bin served as factors. To quantify the relative strength with
176 which one of the three stimulus dimensions influenced the firing of a particular unit, we calculated
177 the proportion of variance explained by each of azimuth, pitch, and timbre, Var_{stim} , as:

$$178 \quad \text{Var}_{\text{stim}} = \frac{\text{SS}_{\text{stim}. \text{bin}} - \text{SS}_{\text{error}} \cdot \text{df}_{\text{stim}. \text{bin}}}{\text{SS}_{\text{total}} - \text{SS}_{\text{bin}}}$$

179 where "stim" refers to the stimulus parameter of interest (pitch, timbre, or azimuth), $\text{SS}_{\text{stim}. \text{bin}}$ is the
180 sum of squares for the interaction of the stimulus parameter and time bin, SS_{error} is the sum of
181 squares of the error term, $\text{df}_{\text{stim}. \text{bin}}$ refers to the degrees of freedom for the stimulus x time bin
182 interaction, SS_{total} is the total sum of squares, and SS_{bin} is the sum of squares for the time bin factor.
183 A significant SS_{bin} reflects the fact that the response rate was not flat over the duration of the 300 ms
184 response window and by examining the stimulus-by- time-bin interactions, we were able to test the
185 statistical significance of the influence a given stimulus parameter had on the temporal discharge

186 pattern of the response. Subtracting the $SS_{\text{error}} \cdot df_{\text{stim,bin}}$ from the $SS_{\text{stim,bin}}$ term allows us to
187 calculate the proportion of response variance attributable to each of the stimuli, taking into account
188 the additional variance explained simply by adding extra parameters to the model. As in our previous
189 work, we considered a main effect or interaction term in the ANOVA to be statistically significant if it
190 exceeded $p < 0.001$.

191 [Experimental Design and Data Analysis](#)

192

193 Data from 5 control animals and 5 experimental animals were used in this experiment. This allowed
194 us to have a sufficient sample size of recordings from each cortical field (see Table 1) and to match the
195 frequency tuning distribution of our samples.

196 For statistical comparison of neural tuning measures (derived using the variance decomposition
197 approach described above) we used Analysis of Variance, with the specific analysis for each test being
198 reported in the Results section. Generalised Linear Mixed Models were fit using maximum likelihood
199 approaches with model selection performed using Akaike Information Criteria values. Where
200 appropriate Bonferroni corrected post-hoc comparisons were applied ($p < 0.05$). The specific analysis
201 for each experimental question is detailed in full in the Results section.

202 [Code and data availability](#)

203

204 All code is available on Github: <https://github.com/huriyeatg/trainingInducedPlasticity>

205 Data are available on the following repository [link added on publication].

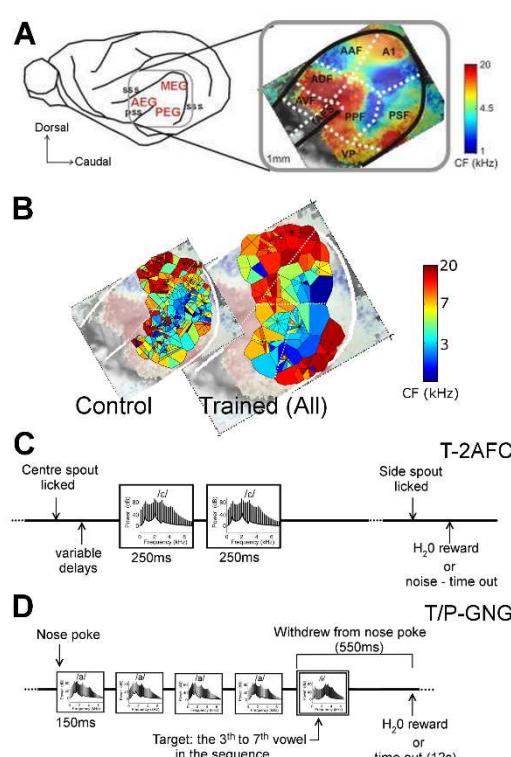
206 **Table 1:** Total number of recordings (probe placements and units) in each field for 5 control animals
207 and 5 trained animals.

	A1	AAF	PPF	PSF
Recordings from Control Animals				
Probe Placement(n)	10	7	11	7
Units (n)	189	101	152	96
Recordings from Trained Animals				
Probe Placement(n)	14	9	7	11
Units (n)	133	80	115	145

208

209

210


211 **Results**

212

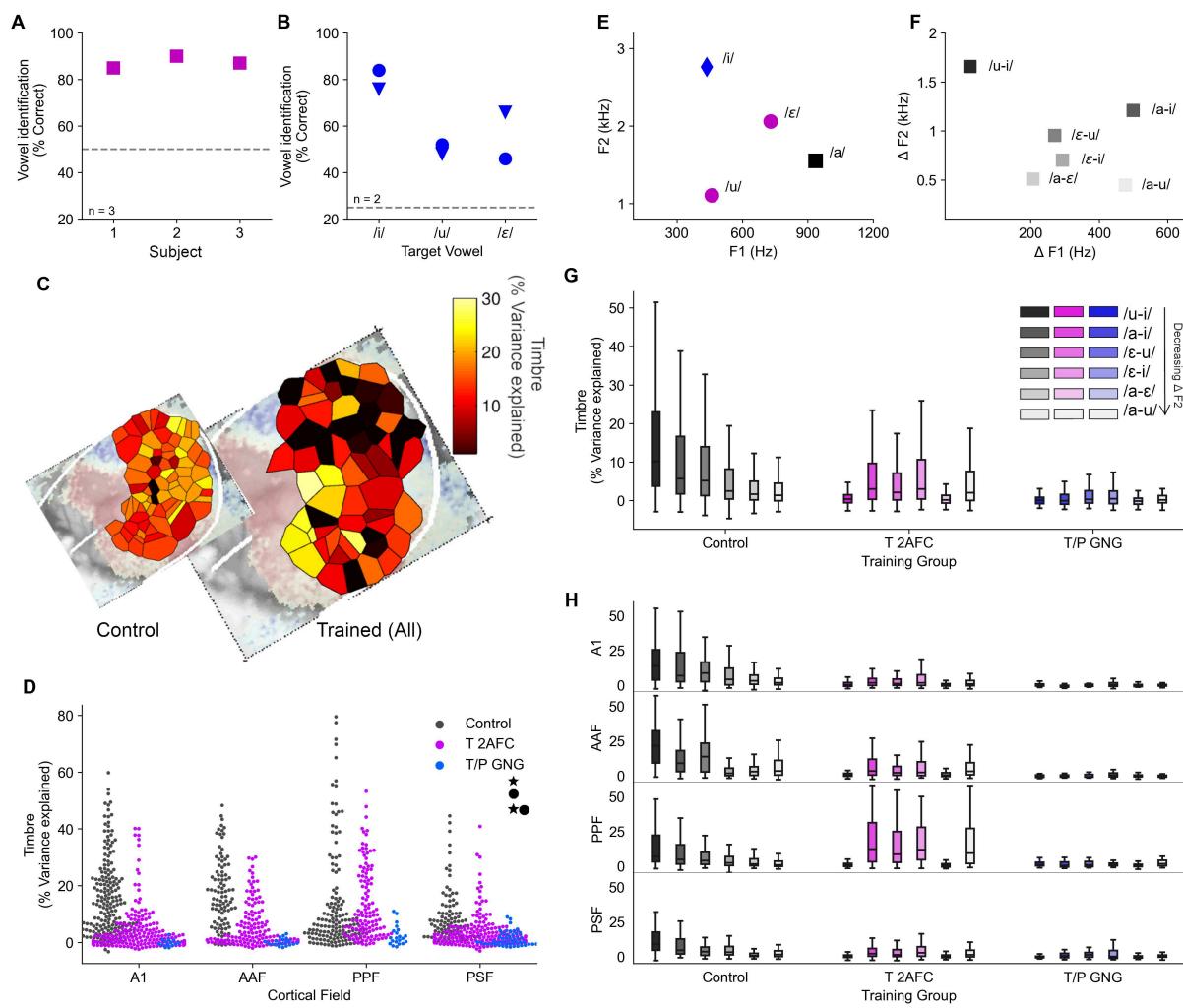
213 Three ferrets were trained in a two alternative forced choice timbre discrimination (T-2AFC) task to
214 discriminate /u/ from /ɛ/, across a range of F0s (Fig.1C). Two ferrets were trained in a go/no-go task
215 to detect changes in timbre or F0 (T/P-GNG) from a repeating reference vowel (/a/ F0 = 200 Hz, Fig.1D).
216 Once behavioural training and testing was complete we recorded neural activity under
217 medetomidine/ketamine anaesthesia, which allowed us to map neural responses across the cortical
218 surface of multiple cortical fields in each animal, and directly compare these data to those obtained
219 in naïve animals in a previous study that constitute the control data for this investigation. The
220 responses of 713 units (459 single neurons, 254 small clusters of units) which were responsive (paired
221 t-test on sound-evoked and spontaneous firing rates, $p < 0.05$) to vowels were recorded from four
222 tonotopic auditory cortical fields (see Table 1). There were no systematic differences between the
223 response properties of single units and small unit clusters therefore the term 'units' will be used to
224 refer to both except when explicitly stated.

225 **Figure 1:**

226 **A**, Location of ferret auditory cortical fields and their tonotopic organisation (adapted from (Nelken
227 et al., 2004)). Recordings in this study targeted A1, AAF, PPF and PSF. Field boundaries are marked with dotted
lines, and the pseudosylvian sulcus (pss) and suprasylvian sulcus (sss) are drawn as solid lines. **B**, Voronoi tessellation map showing the CFs of all unit
recordings made in control animals (478 units, 5 animals) and trained animals (456 units, 5 animals).
Tiles represent a recording site and are coloured according to the characteristic frequency (CF) of the
unit recorded there. **C**, Schematic illustration of the timbre two-alternative forced choice paradigm (C, T-
2AFC) and F0 / timbre change detection paradigm (D, T/P-GNG).

244 **Response modulation by timbre, pitch and azimuth**

245 In order to test our first hypothesis, that we would see an increase in both sensitivity and invariance
246 in control animals, we determined the proportion of units whose responses were significantly
247 modulated by variation in stimulus location, pitch (determined by fundamental frequency, F0) and
248 timbre, using the variance decomposition approach used in Bizley et al. (2009). Since all five animals
249 trained in a timbre discrimination task, we predicted a greater number of neurons might convey
250 timbre information, and that we might observe fewer neurons that were additionally sensitive to
251 untrained stimulus features (pitch in the 2AFC animals and azimuth in 2AFC and T/P GNG animals).
252 However, contrary to these predictions, the number of units that showed timbre sensitivity was
253 equivalent between trained and control groups (391/713 units and 293/538 units respectively, $\chi^2 =$
254 0.005, $p=0.95$). In both datasets units with joint stimulus sensitivity outnumbered those with
255 sensitivity to only a single parameter, but the distribution of sensitivity to zero, one, two or three
256 stimulus parameters was significantly different between the groups ($\chi^2 = 86.9$, $p<0.001$). In the trained
257 dataset many more units showed significant modulation by all three stimulus parameters, or by none
258 of the stimulus parameters, than in the control dataset where most units were modulated by one or
259 two stimulus dimensions. Taken together this suggests that training resulted in a relative increase in
260 the number of units either insensitive to modulations in pitch, timbre or space, or sensitive to all three
261 dimensions. We now consider sensitivity to each feature in turn, asking how training changes the
262 responses of single units, and the cortical distribution of sensitivity.


263 **Table 2:** Percentages of recordings modulated by stimuli dimensions (azimuth, F0 and timbre) for
264 naïve, T-2AFC trained and T/P-GNG trained animals

	Control Animals	T-2AFC trained	T/P-GNG trained
One Stimulus	24% (120)	16% (103)	14% (11)
Only Azimuth	5% (29)	4% (24)	3% (3)
Only F0	6% (30)	7% (47)	6% (6)
Only Timbre	13% (71)	5% (32)	5% (5)
Two Stimuli	38% (203)	16% (92)	31% (32)
Azimuth-F0	2% (10)	6% (30)	22% (23)
Azimuth-Timbre	7% (35)	5% (26)	6% (6)
F0-Timbre	29% (158)	6% (36)	3% (3)
Three Stimuli	30% (159)	44% (272)	11% (11)
Not significant	13% (70)	24% (146)	34% (36)
Total Units	538	607	106

265

266 **Neural sensitivity to trained stimulus features: Timbre**

267 For each unit we determined what proportion of the response variance was attributable to each of
268 the three stimulus dimensions, and their combinations. We start by considering sensitivity to timbre,
269 as both behavioural tasks required that animals discriminated this feature (Fig. 2A, T-2AFC animals,
270 Fig. 2B, T-GNG). Figure 2C shows the distribution of sensitivity to timbre (i.e. the proportion of variance
271 explained by timbre) across the four cortical fields examined and illustrates that while the proportion
272 of units with significant timbre sensitivity is equivalent across trained and control groups, the
273 magnitude of this sensitivity is substantially *lower* in the trained animals in three out of the four
274 cortical fields examined. This observation was confirmed with a two-way ANOVA (factors: group
275 (control, T-2AFC, T/P-GNG), and cortical field (A1, AAF, PPF, PSF), dependent variable: proportion of
276 variance explained by timbre) which showed a significant effect of group ($F(2, 1224) = 74.48, p < 0.001$)
277 and field ($F(3, 1224) = 7.17, p < 0.001$) and a significant group \times field interaction ($F(6, 1224) = 11.17, p < 0.001$). In control animals, sensitivity to timbre was highest in the primary fields A1 and AAF. In
279 contrast in the T-2AFC animals timbre sensitivity was substantially higher in PPF than in any of the
280 other three areas. Tukey–Kramer post hoc comparisons between trained and untrained animals ($p < 0.05$) revealed lower timbre sensitivity in the primary areas (A1 and AAF) in T-2AFC and T/P-GNG
282 trained animals than in controls, but higher sensitivity in PPF in T-2AFC trained animals (Fig. 2C,D).
283 Therefore, we conclude that long-term training in a spectral timbre discrimination task leads to a field-
284 specific increase in timbre sensitivity in field PPF which is accompanied by a more general decrease
285 timbre sensitivity in A1, AAF and PSF.

286

287 **Figure 2: Timbre sensitivity is reduced overall, but enhanced in field PPF, of trained animals.**

288 **A**, performance of three ferrets discriminating timbre across changes in F0 (chance = 50%). **B**
289 performance of two animals detecting changes in timbre (chance = 25%). **C**, cortical distribution of
290 sensitivity to timbre measured using the Proportion of variance explained metric (see methods).
291 Each tile represents an electrode penetration, with individual sites averaged. **D**, swarm plots
292 showing the distribution of timbre sensitivity across fields and groups. Each datapoint is a unit. The
293 dot indicates a significant main effect of field ($p < 0.001$), the star indicates a significant main effect of
294 training ($p < 0.001$), and a significant effect of field*training interaction is indicated with both symbols
295 together ($p < 0.001$). **E**, first and second formant frequencies for the vowels used in the study, **F**,
296 difference values in F1 or F2 space for given vowel pairs **G**, Neural discriminability for vowel pairs
297 estimated by calculating the proportion of neural response variance attributable to changes in
298 timbre for subsets of the data comprising only those vowels. Boxplots illustrate the median and
299 upper and lower quartile values of the data. **H**, as **G**, but broken down by cortical field.

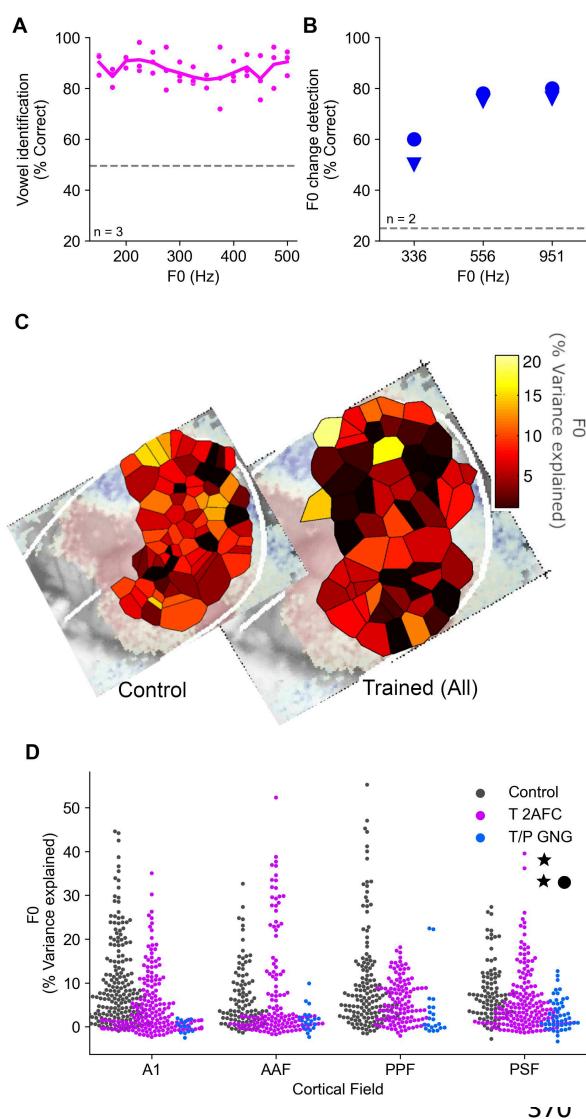
300

301

302 **Formant cues are reweighted in timbre-trained animals**

303 Contrary to our expectation, long-term training on a spectral timbre discrimination task apparently
304 led to an overall decrease in neural sensitivity to timbre. However, the stimuli with which we recorded
305 neural responses comprised both trained and untrained sounds. To contrast responses to both types
306 of vowels, we therefore repeated the variance decomposition analysis using the neural responses to
307 pairs of vowels (i.e. subsets of 50% of the data comprising the responses to stimulus combinations of
308 two vowels, four F0s and four locations, 32 in total) with the proportion of variance explained by
309 timbre in each case now providing an estimate of how well neuronal responses differentiate a given
310 pair of vowels across variation in F0 and space. We hypothesized that if training led to enhanced
311 selectivity for the target vowels we would observe the highest timbre sensitivity measures for these:
312 for the T2AFC animals /u/ versus /e/ should yield the greatest timbre sensitivity, whereas for the T/P-
313 GNG animals, where /a/ was the reference vowel, we might expect the /a/-/i/, /a/-/e/, and /a/-/u/
314 contrasts to yield higher sensitivity measures than the pairs of vowels that did not include /a/.

315 Figure 2E shows the proportion of variance explained by timbre for the six possible vowel
316 combinations, organised according to the magnitude of the difference in second formant frequency
317 ($\Delta F2$). In control animals the neural sensitivity to spectral timbre was well predicted by the size of the
318 difference in F2 frequency. In contrast, the pattern of timbre sensitivity in the T-2AFC animals was
319 neither dominated by the F2 difference, nor by the identity of the trained vowel pair. Instead the pairs
320 with lowest discriminability were those with the smallest difference in the frequency of the first
321 formants (sitting to the left of the space defined by $\Delta F1$ and $\Delta F2$ in Fig.2F).


322 To better understand how training group, cortical field and change in first and second formant
323 frequencies determined the proportion of the neural response variance was attributed to a change in
324 timbre we ran GLMM which predicted the neural response variance for every pair of vowels with
325 factors field, training group, delta F1 and delta F2 (where delta F1 and F2 were calculated as the
326 difference in first and second formant frequencies for the relevant vowel pair), with unit ID as a
327 random effect. The model was fitted using maximum likelihood estimation and the AIC was used to
328 determine the best model. Within this model both delta F1 and delta F2 were significant predictors,
329 and there was a significant interaction between training group and delta-F1 (but not training group
330 and delta F2) consistent with the idea that training led to an increased integration of both formant
331 frequencies (see Table 1 for full model). From this we conclude that training not only redistributed
332 timbre sensitivity within auditory cortex, but caused a reweighting of spectral integration from being
333 F2 dominated to incorporating differences in both F1 and F2.

334

335

336 **Sensitivity to fundamental frequency**

337 T-2AFC animals were able to identify trained vowels across a range of F0 values (Fig 3A) and we
 338 therefore predicted that we might see a decreased sensitivity (i.e. increased tolerance) across changes
 339 in F0. In contrast, the T/P-GNG animals were never required to discriminate one stimulus dimension
 340 across changes in the other, but were trained to detect changes in either F0 (Fig 3B) or spectral timbre
 341 (Fig 2B). When sensitivity to F0 is plotted across the cortical surface, or broken down by cortical field
 342 it is apparent that compared to control data both trained groups show decreased F0 sensitivity. A
 343 two-way ANOVA was performed determine the effect of group and cortical field. There was a
 344 significant effect of group ($F(2,1224) = 27.76, p < 0.001$) and a significant training x field interaction ($F(6,1224) = 5.02, p < 0.001$). Tukey–Kramer post hoc comparisons ($p < 0.05$) on the responses recorded
 345 in each of the cortical field across groups revealed lower F0 sensitivity in A1 of T-2AFC trained animals
 346 compared to control animals (Fig.3C,D), with T/P-GNG animals being statistically indistinguishable
 347 from controls.

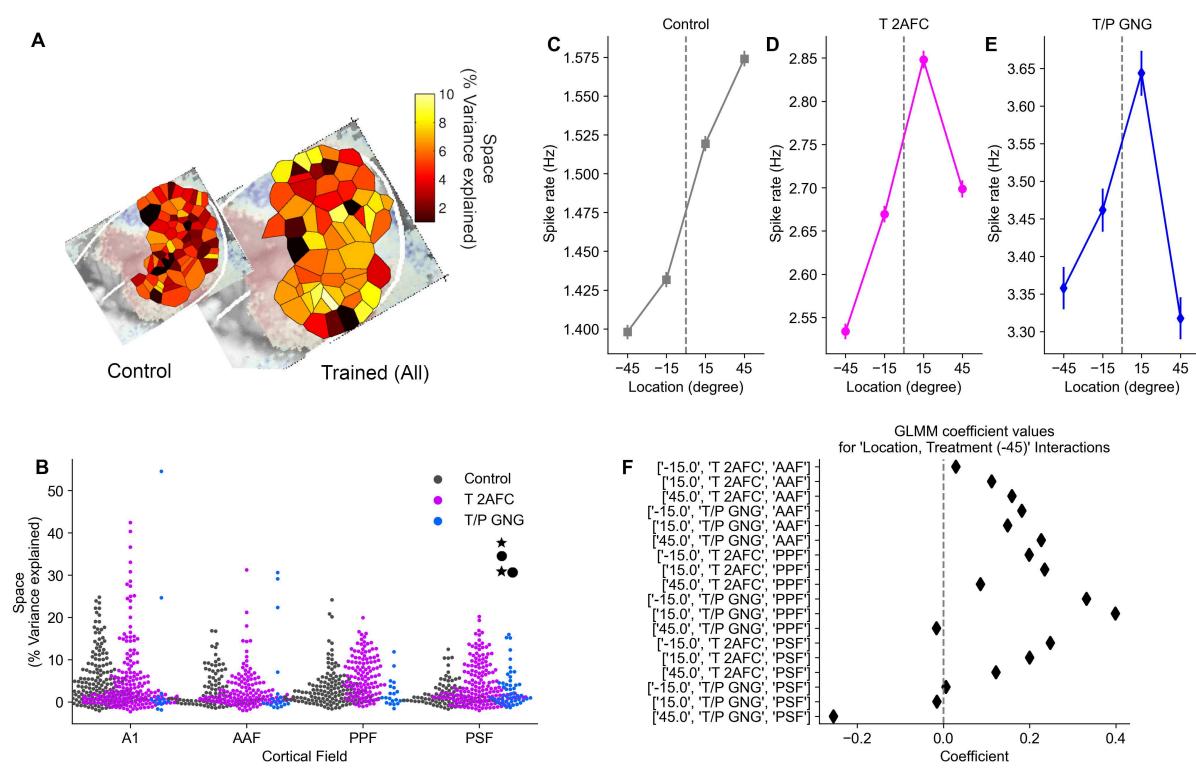


Figure 3: Sensitivity to F0 is decreased in trained animals

A Behavioural performance for discriminating timbre across fundamental frequency (F0). Symbols show individual animals. **B** F0 change detection performance for two animals. **C** Voronoi tessellation maps and box plots plotting the proportion of variance explained by F0 for control and trained animals. Conventions as figure 2 C. **D** Swarm plots showing the distribution of F0 sensitivity across fields and training groups. Symbols (black star and dot) show ANOVA results indicating significant main effect of field ($p < 0.001$), training ($p < 0.001$) and a significant effect of field*training interaction.

371 **Sensitivity to task-irrelevant features: Space**

372 Finally we examined how training impacted sensitivity to variation in sound source location. In our
 373 control dataset we observed that the spatial tuning elicited by these vowel stimuli presented in virtual
 374 acoustic space was modest, and as anticipated, predominantly contralateral (Bizley et al., 2009). When
 375 the same neurons were tested with spatially modulated broadband noise (also in VAS) we observed
 376 considerably greater spatial modulation leading us to suggest that the low spatial sensitivity was a
 377 product of the stimuli rather than the neurons we were recording or the VAS technique. We had
 378 speculated that exposure to these sounds might enhance spatial sensitivity measured in auditory
 379 cortex using these stimuli. As Figure 4 show spatial sensitivity was indeed higher in trained animals:
 380 whether visualized as a cortical map (Fig.4A) or broken down by cortical field (Fig.4B), it is clear that
 381 in the non-primary areas spatial sensitivity was higher in the T-2AFC animals than in controls. A two-
 382 way ANOVA on the proportion of variance explained by space, with group and cortical field as factors,
 383 determined significant effects of group ($F(2,1224) = 10.63, p<0.001$) and field ($F(3,1224) = 3.45, p=0.01$)
 384 and a significant training \times field interaction ($F(6,1224) = 4.22, p<0.001$). Tukey–Kramer post hoc
 385 comparisons ($p < 0.05$) of the trained and control data in specific auditory fields revealed higher
 386 azimuth sensitivity in the non-primary areas (PPF and PSF) in trained animals compared to control
 387 animals.

388

389 **Figure 4: Effect of training on the neural encoding of task-irrelevant features**

390 **A**, Voronoi tessellation maps plotting the proportion of variance explained by azimuth for control
391 and trained animals. **B**, Swarm plots showing the proportion of variance explained by azimuth across
392 fields and training groups. The dot indicates a significant main effect of field ($p<0.001$), the star
393 indicates a significant main effect of training ($p<0.001$), and a significant effect of field*training
394 interaction is indicated with both symbols together ($p<0.001$). **C-E**, Population spatial tuning
395 functions (mean \pm SEM for all responsive units) for control, T2AFC animals and T/P GNG animals. **F**
396 beta coefficients for the impact of model parameters on spike rate.
397

398 We next asked whether the increased spatial sensitivity in trained animals reflected altered spatial
399 tuning, or simply enhanced the gain of spatial receptive fields. To assess this we exploited the typical
400 contralateral spatial preference of most auditory cortical neurons to derive population tuning
401 functions. We calculated a normalised spatial response function for each neuron, taken as the mean
402 sound-evoked spike rate at each location across all pitch and timbre combinations, and then averaged
403 across all recorded units (Fig.4C-E). As expected, in the control animals (Fig.4C) this yielded a
404 monotonically increasing function with the most contralateral ($+45^\circ$) location eliciting the strongest
405 firing rates. In contrast, in both trained groups of animals, spatial tuning was non-monotonic and
406 showed a peak at $+15^\circ$. To quantify these effects we ran a GLMM predicting spike rates with group
407 (T-2AFC or T/P-GNG relative to reference category control), field (reference category A1), spatial
408 position (categorical predictor, relative to -45°) with unit as a random effect. This confirmed significant
409 main effects of spatial position (-45° and $+45^\circ$ significantly different, reflecting contralateral tuning), and
410 significant field*group*position interactions showing for fields PPF and PSF with both trained groups.
411 The coefficients for these effects (Fig.4F) were negative for $+45^\circ$ and positive for $\pm 15^\circ$, confirming the
412 changes visible in the spatial tuning functions plotted in (Fig.4C-E). Thus despite the sound source
413 never varying in its spatial position, and not being relevant to the task, the location from which the
414 sounds were presented (i.e. central space) was substantially enhanced in the trained animals.

415

416 **Discussion**

417 In this study we trained two groups of ferrets to discriminate perceptual attributes of artificial vowels.
418 One group categorized vowels according to their identity across changes in F0 (T-2AFC animals), while
419 the other detected changes in either the F0 or timbre in a sequence of on-going vowel sounds (T/P
420 GNG animals). We predicted that the 2AFC animals would show enhanced sensitivity for timbre and
421 increased tolerance (i.e. decreased sensitivity) to other sound features. In fact, what we observed was
422 more complex: sensitivity to timbre decreased markedly in three cortical areas but was enhanced in
423 field PPF. Moreover, sensitivity to vowel identity became less contingent only on changes in the
424 frequency of the second formant, and instead was dependent on both changes in first and second

425 formant frequency. Sensitivity to F0, which the animals were required to generalize across, decreased.
426 In contrast, sensitivity to space, which had no task-relevance, was enhanced, with spatial receptive
427 fields shifted towards the midline, from where target sounds originated. In the T/P GNG animals our
428 conclusions are somewhat limited by a smaller sample size, but there was also a decrease in timbre
429 sensitivity relative to controls and an increase in spatial sensitivity, with F0 encoding matching that of
430 control animals.

431 Previous studies investigating the impact of training on neural tuning in auditory cortex have focused
432 on map plasticity in A1. However, higher auditory cortical fields are thought to become increasingly
433 specialized for processing spatial or non-spatial stimulus attributes (Rauschecker and Tian, 2000;
434 Bizley and Cohen, 2013; Elgueda et al., 2019) and neurons in higher cortical fields show enhanced
435 attention related changes during behavior (Mesgarani and Chang, 2012; Atiani et al., 2014; Elgueda et
436 al., 2019). It is currently unknown how these attention-related changes relate to more ‘hard-wired’
437 changes in neural sensitivity. Our data bridge this gap by suggesting that the areas that show larger
438 attention related changes may also be those in which receptive fields are optimized through learning
439 to process task-relevant stimuli.

440 The observation of a marked decrease in sensitivity to task-relevant features in the primary auditory
441 cortical fields A1 and AAF is a potentially surprising finding. However, a number of studies report that
442 engagement in a behavioural task causes suppression of neural responses in auditory cortex (Otazu et
443 al., 2009; Town et al., 2018). One possibility is that training leads to the integration of diverse non-
444 sensory inputs into auditory cortex that ultimately underlie the observation of choice or motor related
445 activity, but that these inputs come at the cost of presumably redundant feed-forward stimulus
446 evoked activity. Cooling primary auditory cortex in ferrets does not lead to an impairment in a vowel
447 discrimination in silence in a task analogous to the one here (Town et al., 2023). Our neural data raise
448 the testable prediction that inactivation of field PPF should cause a timbre identification deficit
449 whereas cooling A1, AAF or PSF would have a more modest effect on behavior.

450 Calculating discriminability measures for pairs of vowels allowed us to observe that training on a
451 spectral timbre task altered the way in which neuronal responses were sensitive to spectral timbre. In
452 the naïve control animals the most discriminable stimuli were those in which there was a large
453 difference in second formant frequency. This finding is mirrored behaviourally; when first and second
454 formant cues are placed in conflict, animals tend to weight the position of the second formant over
455 the first, with behaviour being best predicted by either F2 position or the position of the spectral
456 centroid (Town et al., 2015). Nonetheless, the animals whose neural data were recorded for this study
457 were also tested behaviourally with single-formant stimuli and these animals accurately classify F1 for

458 /u/ and F2 for /e/ (Bizley et al., 2013). The finding that neural responses in trained animals are
459 explained by both changes first and second formants for both trained and novel vowels suggest that
460 learning results in an enhanced integration of the cues that define the spectral envelope.

461 We also considered the impact of training on the neural representation of two task-irrelevant
462 features. In the T-2AFC task animals were required to generalise across F0 while discriminating timbre,
463 and neural responses showed an overall decrease in sensitivity to F0. In contrast, the T/P-GNG animals
464 were required, in separate sessions, to detect changes in timbre or F0 of a sequence of vowels and
465 showed F0 sensitivity that was statistically indistinguishable from controls. It remains possible that, as
466 with timbre in the 2AFC animals, this might reflect a reorganization such that there is a general
467 decrease in sensitivity that is accompanied by a local increase in F0 sensitivity in another cortical area
468 in one or both sets of animals. This possibility requires further investigation, possibly with high-density
469 recordings targeting the low frequency border of primary and posterior fields where specialization for
470 pitch might occur (Walker et al., in prep).

471 In contrast to the decreased sensitivity to non-spatial sound features we observed a marked increase
472 in spatial sensitivity in trained animals despite the task having no spatial component to it. These
473 changes occurred principally in the non-primary fields PPF and PSF and were not simply gain changes
474 but rather (presumably) adaptive shifts in tuning: the population tuning function shifted from
475 monotonically increasing for more contralateral sounds to peaking 15° contralateral to the midline.

476 Our spatial receptive fields were very coarsely measured with stimuli at $\pm 15^\circ$ and $\pm 45^\circ$ but if the
477 change in tuning observed in the recorded hemisphere were mirrored across the midline we would
478 expect to see that the representation of the midline, where stimuli were presented during
479 behavioural testing, was enhanced. Therefore it seems that repeated exposure to behaviourally
480 relevant sounds from this location led to an enhancement in non-primary auditory cortex (fields PPF
481 and PSF). Engaging in a sound discrimination task has been shown to refine spatial tuning in primary
482 auditory cortex, with changes occurring for both localisation tasks, and – more modestly – for non-
483 spatial tasks (Lee and Middlebrooks, 2011) but to our knowledge this is the first report of enhanced
484 location coding after repeated exposure to behaviourally relevant stimuli. Learning triggers
485 widespread changes in gene expression in auditory cortex (Graham et al., 2023). Future work can
486 seek to unpicking the specific molecular mechanisms which ultimately support the changes in
487 auditory cortical function, and ultimately auditory memory, that we observe here.

488 The stimuli that the animals were processing were relatively low frequency (<4 kHz). Our sampling
489 yielded balanced samples of neurons across the frequency axis in both groups of animals (Fig.1) but
490 we did not perform the high-resolution mapping that would probably be required to unequivocally

491 argue that there was no difference in the tonotopic organisation in these animals. Nonetheless, we
492 did not see any evidence for map reorganisation in these animals and our sampling of the cortical
493 surface did not yield a dominance of low frequency recording sites. Given evidence that map
494 plasticity may be a temporary phase of learning (Reed et al., 2011), and that learning of natural
495 sounds can occur in the absence of any map plasticity (Shepard et al., 2016) the lack of evidence for
496 tonotopic map plasticity here is perhaps not surprising and likely additionally reflects the broad band
497 nature of the sounds that the animals were exposed to.

498 A caveat of our study is that it is performed under anaesthesia. This was essential for performing
499 mapping across multiple cortical fields. Methods for recording in awake animals currently allow only
500 high density sampling from a small area of cortex, or sparse sampling across multiple fields.
501 Recording under anaesthesia does, however, allow us to separate out effects of sensitivity to
502 stimulus features from attention and allows us to measure static receptive field features to which
503 attentional and task related effects are likely added during active listening.

504 In summary, training causes diverse effects in auditory cortex: sensitivity to trained stimulus features
505 which is broadly distributed in naïve animals becomes localised to one distinct auditory field after
506 training. In contrast to control animals which strongly weight second formant frequency, receptive
507 fields integrate information about both first and second formant frequency. Finally, sensitivity to
508 task-orthogonal features – here auditory space – is enhanced when stimuli consistently originated
509 from a single location.

510 **Acknowledgments**

511 This work was supported by a RNID (formally Action on Hearing Loss) PhD studentship to H.A.,
512 grants from the Biotechnology and Biological Sciences Research Council (to J.W.H.S., J.K.B.,
513 and A.J.K. and to J.K.B. BB/H016813/1), a Royal Society Dorothy Hodgkin Fellowship (J.K.B.), a
514 Sir Henry Dale Fellowship (J.K.B. WT098418MA) and a Wellcome Trust Principal Research
515 Fellowship (A.J.K.).

516 **References**

517 Atiani S, David SV, Elgueda D, Locastro M, Radtke-Schuller S, Shamma SA, Fritz JB (2014) Emergent
518 selectivity for task-relevant stimuli in higher-order auditory cortex. *Neuron* 82:486–499.

519 Bao S, Chang EF, Teng CL, Heiser MA, Merzenich MM (2013) Emergent categorical representation of
520 natural, complex sounds resulting from the early post-natal sound environment.
521 *Neuroscience* 248:30–42.

522 Bao S, Chang EF, Woods J, Merzenich MM (2004) Temporal plasticity in the primary auditory cortex
523 induced by operant perceptual learning. *Nat Neurosci* 7:974–981.

524 Bizley JK, Cohen YE (2013) The what, where and how of auditory-object perception. *Nat Rev Neurosci* 14:693–707.

526 Bizley JK, Walker KM (2010) Sensitivity and selectivity of neurons in auditory cortex to the pitch, 527 timbre, and location of sounds. *Neuroscientist* 16:453–469.

528 Bizley JK, Walker KM, King AJ, Schnupp JW (2013) Spectral timbre perception in ferrets: 529 discrimination of artificial vowels under different listening conditions. *J Acoust Soc Am* 530 133:365–376.

531 Bizley JK, Walker KM, Silverman BW, King AJ, Schnupp JW (2009) Interdependent encoding of pitch, 532 timbre, and spatial location in auditory cortex. *J Neurosci* 29:2064–2075.

533 Elgueda D, Duque D, Radtke-Schuller S, Yin P, David SV, Shamma SA, Fritz JB (2019) State-dependent 534 encoding of sound and behavioral meaning in a tertiary region of the ferret auditory cortex. *Nat Neurosci*. 535

536 Galindo-Leon EE, Lin FG, Liu RC (2009) Inhibitory plasticity in a lateral band improves cortical 537 detection of natural vocalizations. *Neuron* 62:705–716.

538 Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Biesczad KM (2023) 539 Learning induces unique transcriptional landscapes in the auditory cortex. *Hear Res* 540 438:108878.

541 Griffiths TD, Warren JD (2004) What is an auditory object? *Nat Rev Neurosci* 5:887–892.

542 Ison MJ, Quiroga RQ (2008) Selectivity and invariance for visual object perception. *Front Biosci* 543 13:4889–4903.

544 King AJ, Middlebrooks JC (2011) Cortical Representation of Auditory Space. In: *The Auditory Cortex*, 545 pp 329–341. Springer.

546 Lee CC, Middlebrooks JC (2011) Auditory cortex spatial sensitivity sharpens during task performance. 547 *Nat Neurosci* 14:108–114.

548 Mesgarani N, Chang EF (2012) Selective cortical representation of attended speaker in multi-talker 549 speech perception. *Nature* 485:233–236.

550 Nelken I, Bizley JK, Nodal FR, Ahmed B, Schnupp JW, King AJ (2004) Large-scale organization of ferret 551 auditory cortex revealed using continuous acquisition of intrinsic optical signals. *J Neurophysiol* 552 92:2574–2588.

553 Otazu GH, Tai LH, Yang Y, Zador AM (2009) Engaging in an auditory task suppresses responses in 554 auditory cortex. *Nat Neurosci* 12:646–654.

555 Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in 556 auditory cortex. *Proc Natl Acad Sci U S A* 97:11800–11806.

557 Recanzone GH, Cohen YE (2010) Serial and parallel processing in the primate auditory cortex 558 revisited. *Behav Brain Res* 206:1–7.

559 Reed A, Riley J, Carraway R, Carrasco A, Perez C, Jakkamsetti V, Kilgard MP (2011) Cortical map
560 plasticity improves learning but is not necessary for improved performance. *Neuron* 70:121–
561 131.

562 Rutkowski RG, Weinberger NM (2005) Encoding of learned importance of sound by magnitude of
563 representational area in primary auditory cortex. *Proc Natl Acad Sci U S A* 102:13664–13669.

564 Schreiner CE, Polley DB (2014) Auditory map plasticity: diversity in causes and consequences. *Curr
565 Opin Neurobiol* 24:143–156.

566 Shepard KN, Chong KK, Liu RC (2016) Contrast Enhancement without Transient Map Expansion for
567 Species-Specific Vocalizations in Core Auditory Cortex during Learning. *eNeuro* 3.

568 Town SM, Atilgan H, Wood KC, Bizley JK (2015) The role of spectral cues in timbre discrimination by
569 ferrets and humans. *J Acoust Soc Am* 137:2870–2883.

570 Town SM, Poole KC, Wood KC, Bizley JK (2023) Reversible Inactivation of Ferret Auditory Cortex
571 Impairs Spatial and Nonspatial Hearing. *J Neurosci* 43:749–763.

572 Town SM, Wood KC, Bizley JK (2018) Sound identity is represented robustly in auditory cortex during
573 perceptual constancy. *Nature communications* 9:4786.

574 Walker KM, Davies A, Bizley JK, Schnupp JW, King AJ (2017) Pitch discrimination performance of
575 ferrets and humans on a go/no-go task. *Animal Behavior and Cognition*. Available at:
576 <http://biorxiv.org/lookup/doi/10.1101/165852> [Accessed December 29, 2023].

577 Whitton JP, Hancock KE, Polley DB (2014) Immersive audiomotor game play enhances neural and
578 perceptual salience of weak signals in noise. *Proc Natl Acad Sci U S A* 111:E2606–15.

579

580

