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Summary 24 

Single cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex biological 25 

systems. However, most sequencing studies overlook the contribution of transposable element 26 

(TE) expression to the transcriptome. In both scRNA-seq and bulk tissue RNA sequencing 27 

(RNA-seq), quantification of TE expression is challenging due to repetitive sequence content 28 

and poorly characterized TE gene models. Here, we developed a tool and analysis pipeline for 29 

Single cell Transposable Element Locus Level Analysis of scRNA Sequencing (Stellarscope) 30 

that reassigns multi-mapped reads to specific genomic loci using an expectation-maximization 31 

algorithm. Using Stellarscope, we built an atlas of TE expression in human PBMCs. We found 32 

that locus-specific TEs delineate cell types and define new cell subsets not identified by 33 

standard mRNA expression profiles. Altogether, this study provides comprehensive insights into 34 

the influence of transposable elements in human biology.  35 
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Introduction  51 

The classification of human cells based on cell surface markers, and more recently, RNA 52 

expression, has led to a revolution in understanding of cell function, lineage and fate1–4.  High 53 

quality markers correlate with the characteristics and biological processes within the cell. 54 

However, these classifications have mostly been based on analyses of well characterized 55 

reference gene models (canonical genes, CG), most of which are protein coding genes4. A large 56 

fraction of the human genome are transposable elements (TEs), which are now appreciated to 57 

be key regulators of development and cell differentiation, and can act as promoters, enhancers, 58 

and regulators of nearby genes5–12. TEs play important roles in genome evolution and can have 59 

both positive and negative effects on gene regulation and genome stability. How these TEs 60 

might shape or distinguish individual cells is unknown. An understanding of TE expression at a 61 

single cell level is critical to determining the role of TEs in lineage development, cell sub-type 62 

identification and gene regulation. 63 

 Recent advances in computational biology have led to pipelines which can assess 64 

differential expression of TEs from bulk RNA-sequencing data at locus specificity13–18. However, 65 

there are several challenges in probing single cells for differential expression of TEs. For both 66 

bulk and single cell RNA-seq, TE gene models are underdeveloped, TE transcript abundance is 67 

low, and the repetitiveness of TEs leads to ambiguous mapping. The number of fragments 68 

sequenced in bulk samples is typically sufficient to resolve ambiguity; however, far fewer 69 

fragments are sequenced per cell in scRNA-seq. As a result, informative reads are not observed 70 

for every cell, making model-based TE quantification a technological challenge.  71 

 In this study, we developed a computational pipeline called, “Single cell Transposable 72 

Element Locus Level Analysis of scRNA Sequencing”, or “Stellarscope”. We then used 73 

Stellarscope to determine the expression of TEs in human peripheral blood mononuclear cells 74 

(PBMCs) at single cell resolution. We found that HERV and L1 transcripts can be reliably 75 
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detected in single-cell RNA-seq data, and they contribute biologically relevant information to the 76 

transcriptome. We identified novel PBMC subsets using locus specific TE expression profiles 77 

compared to CGs alone.  78 

 Some TE transcripts were unique to certain cell-type transcriptomes, and contributed to 79 

cell identity. Furthermore, locus-specific HERV transcripts were distinctly expressed in 80 

differentiated hematological cell types, and could identify new cell sub-types compared to using 81 

coding genes alone.  82 

 This single-cell-resolution multi-scale analysis of the transposable element component of 83 

the human ‘dark genome’ illustrates the influence of TEs in cell identify and fate, thus 84 

establishing a novel framework for determining lineage markers derived from transposable 85 

elements, and probing the role of sequences derived from genomic dark matter in biological 86 

tissues. 87 
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Results 88 

Quantification of TE expression at locus resolution in single cells with Stellarscope. 89 

Stellarscope uses four sequential stages to provides a scRNA-seq counts matrix for TE 90 

features by reassigning ambiguous (multimapping) reads to their most probable TE locus of 91 

origin. In the first stage, alignments for each read (Figure 1A-C) are intersected with the TE 92 

annotation (Figure 1D); reads with at least one alignment to a TE locus are retained for the 93 

model. For each TE-aligned read, the best alignment score for each locus it aligns to is 94 

recorded, resulting in an initial weight matrix of reads and candidate assigned features. The cell 95 

barcode (CB) of each read is compared against the user-provided list of passing barcodes 96 

(generally known as the ‘whitelist’), and both the CB and the unique molecular identifier (UMI) 97 

are stored internally. 98 

 In the second stage, PCR duplicates are identified and removed using a novel 99 

multimapper-aware UMI deduplication approach (Figure 1E). UMIs are random sequences 100 

added to DNA fragments before PCR amplification that enable identification of PCR duplicates. 101 

Sequencing fragments sharing identical UMIs are assumed to arise from the same original 102 

molecule and should only contribute one observation (count) in gene expression experiments. 103 

However, the low complexity in the UMI pool can lead to identical UMIs being attached to 104 

distinct molecules. Standard practice for UMI deduplication considers not just the UMI 105 

sequence, but also the mapping location of the sequencing fragment. This poses a problem for 106 

multimapping fragments, as the mapping location is ambiguous. Stellarscope implements an 107 

approach that considers all possible mapping locations for each read. For each UMI sequence 108 

found on multiple reads, an undirected graph is constructed with nodes corresponding to reads 109 

(Figure 1F). An edge exists between two reads if both reads have an alignment to the same 110 

locus; edges are weighted by the number of such loci. Each unconnected subgraph (connected 111 

component) represents a unique molecule, as the set of mapped genomic locations does not 112 
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intersect. Reads within the same connected component are considered PCR duplicates, and the 113 

most informative duplicated read is selected as a representative. The result of this stage is a 114 

corrected weight matrix with UMI duplicates removed. 115 

 In the third stage, a Bayesian mixture model is fitted to the deduplicated weight matrix 116 

using an expectation maximization algorithm. Parameters of the model include the proportion of 117 

total reads (𝜋) and the proportion of mutimapping reads (𝜃) originating from each locus. 118 

Separate models could be fitted independently for each barcoded cell, meaning that the final 119 

assignment of an ambiguous read depends solely on informative reads from the same cell 120 

(Figure 1G). In practice, this approach suffers from a lack of informative reads, due to the 121 

characteristic low expression levels of TEs and the relatively small sequencing depth per cell. 122 

To address this challenge, pooling models were implemented that enable the utilization of 123 

information across cells for resolving ambiguous reads. The “pseduobulk” pooling model 124 

estimates one set of model parameters for all cells (Figure 1H), while read membership 125 

probabilities and final assignments are determined at a single cell level. The implicit assumption 126 

of this pooling model is that the retrotranscriptome of the sample is reflective of the 127 

retrotranscriptome of each individual cell; that is, the relative expression levels of specific TE 128 

loci are similar between any two given cells. This model will perform well in samples when 129 

cellular heterogeneity is low, such as sorted cell subsets or cultured cells. In contrast, high 130 

cellular heterogeneity may lead to incorrect reassignments as TE loci that are more abundant in 131 

the sample – either due to higher expression or greater cell type proportion – will have greater 132 

weight for ambiguous reassignment. To address such cases, we implemented the “cell type” 133 

pooling model, which fits a separate model for each cell type label in the sample (Figure 1I). The 134 

cell type model assumes that the relative TE expression levels are similar among cells with the 135 

same cell type label and are not dependent on sample-level TE expression. The cell type labels 136 

are provided as input and can be determined using existing supervised or unsupervised 137 

approaches for cell type annotation. 138 
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 For all three pooling modes, mixture models are specified by subsetting the initial 139 

assignments and weights for each read in the pool. Starting values for 𝜋 and 𝜃, as well as priors 140 

on these parameters, are initialized by assigning equal weight to each TE locus. The model is 141 

optimized using an expectation-maximization algorithm, which iteratively calculates read 142 

assignment probabilities and maximum a posteriori parameter estimates. The algorithm 143 

terminates when convergence is achieved or when the maximum number of iterations is 144 

reached. The outcome of this stage is the fitted models, including the read assignment posterior 145 

probabilities and estimates of 𝜋 and 𝜃. The number of observations, the number of parameters 146 

estimated, and complete data log likelihood for the fitted model are also reported, which can be 147 

used for model selection.  148 

Stellarscope can determine the retrotranscriptome of human peripheral blood 149 

mononuclear cells at single cell resolution. 150 

We examined the contribution of TE loci to single cell transcriptomes by profiling TE-151 

derived transcripts in human peripheral blood mononuclear cells (PBMCs). Sequencing reads 152 

were aligned to the human genome (hg38) using alignment parameters that report up to 500 153 

high-scoring alignments for “multimapping” reads – sequencing fragments that do not uniquely 154 

align to the reference genome (STARsolo19). Multimapping reads were reassigned to the most 155 

probable location using a Bayesian mixture model implemented in Stellarscope (see Methods 156 

section). UMI counts for TEs reported by Stellarscope were joined with canonical gene (CG) 157 

UMI counts for downstream analysis (Figure 2A). 158 

First, we asked whether single cell expression profiling, given the low UMI counts per 159 

cell, would yield any detectable TE expression. We identified a median of 61 TE features 160 

detected per cell, with HERV and L1 features accounting for 12 and 49 features, respectively 161 

(Figure 2B). Compared with canonical genes, TEs contribute on average of 2.8% of the total 162 

features detected in each cell. The number of TE transcripts observed per cell (UMI counts) was 163 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.28.573568doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.28.573568
http://creativecommons.org/licenses/by/4.0/


between 2 and 655, with TEs accounting for ~1.3% of UMI counts per cell (Figure 2C). To 164 

determine whether any PBMC cell subtypes have distinct levels of TE expression, we used cell 165 

type predictions obtained by reference mapping20. Dendritic cells express more TE features 166 

than other cell types, with a median of 23 HERV and 107 L1 features detected per cell (Figure 167 

2B). However, the average proportion of TE transcripts observed was not similarly elevated in 168 

dendritic cells (Figure 2C), suggesting that expression levels at many loci is small enough that 169 

TE load is not appreciably affected. Intriguingly, we observed a bimodal distribution in the 170 

proportion of HERV transcripts for dendritic cells, indicating distinct levels of HERV expression 171 

within the same cell type. Using more specific sub-cell type labels (predicted.celltype.l2) we 172 

found that plasmacytoid dendritic cells (pDC) had significantly higher HERV loads than other 173 

dendritic cell subtypes (Figure 2D). There were no significant differences in the number of 174 

HERV features among conventional dendritic cells (cDC1, cDC2), AXL+ dendritic cells (ASDC), 175 

and pDCs (Figure 2D). Overall, we found that TE expression was detectable using single cell 176 

expression profiling, and although the contribution of the retrotranscriptome is small, it yields 177 

detectable signal that distinguishes cell types. 178 

Second, we compared TE expression measurements obtained using bulk and single cell 179 

RNA-seq to investigate whether the different approaches would detect similar numbers of TE 180 

features and proportions of TE reads. We obtained bulk RNA-seq data from 157 PBMC samples 181 

collected from healthy donors aged 20-74. Sequencing reads were aligned using similar 182 

alignment parameters; TE expression was quantified using Telescope13 with identical TE 183 

annotations. Pseudobulk expression profiles were created by aggregating single cell UMI counts 184 

for the entire sample, and for each predicted cell type. We found that the proportion of HERV 185 

UMI counts (when compared to total UMI counts) in the pseudobulk dataset (0.24%) was 186 

comparable to the proportion of HERV fragments in the bulk datasets (range: 0.16%-0.43%, 187 

mean=0.28%) (Figure 2E). The proportion of L1 transcripts in the pseudobulk dataset (1.09%) 188 

was greater than nearly all bulk dataset L1 proportions (range: 0.32%-2.69%, mean=0.52%). 189 
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We hypothesize that the disparity could be attributed to the annotation quality and genomic 190 

locations of L1 loci differing from that of HERV loci. L1 annotations are more frequently located 191 

intronically or overlapping exons than HERV annotations, potentially favoring the detection of L1 192 

transcripts by the 3’ tag-based protocol from 10x. We observed a higher number of both HERV 193 

and L1 features in single cell data (Figure S2), consistent with prior findings21. This may be 194 

explained by differences in sequencing depth: the pseudobulk dataset contained over 142M 195 

UMI counts, while the average size of the bulk RNA-seq datasets was less than 15M fragments; 196 

increased sequencing depth makes it more likely that low abundance transcripts will be 197 

detected.  198 

We sought to characterize TE loci with high biological heterogeneity in the data, because 199 

these features are informative for ascribing biological characteristics to individual cells22. In 200 

order to separate technical variance from biological effects, we used the residual variance from 201 

models fitted to each feature to quantify how variable is their expression throughout the cells. 202 

The residual variance of most canonical (or coding) transcripts ranges between 1 and 10% 203 

(Figure 2F). TEs tend to have lower residual variance (between 1-2%) compared to canonical 204 

genes (Figures 2H and 2I). The residual variance of L1 elements was greater than the residual 205 

variance of HERVs, but for both biotypes it was in the same range as the residual variance for 206 

long-noncoding RNA transcripts (Figure 2G). There are transcripts in all biotype sets with no 207 

biological variability, including canonical transcripts annotated as marker genes, and TE 208 

features with higher residual variance than marker genes, suggesting the expression of HERVs 209 

and L1s is not merely transcriptional readthrough or random noise in RNA-seq datasets; 210 

instead, there is a deliberate regulation of a specific set of TE transcripts. Stellarscope provides 211 

information about the intricate landscape of TE expression within single PBMCs. Demonstrating 212 

that HERV and L1 transcripts can be reliably detected in single-cell data, we found that they 213 

contribute to the complexity of the transcriptome.  214 
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Novel PBMC subsets are identified using locus specific TE expression profiles compared 215 

to canonical genes alone 216 

 Resolution of gene expression at the single cell level has revealed novel cell types and 217 

subsets. Since these studies were performed using established gene models that mostly 218 

exclude TEs, we asked whether HERV or L1 expression profiles contain distinct patterns that 219 

could inform novel cell classifications, or whether the previous cell type identities based on CGs 220 

were adequate for characterizing cells. Using different sets of highly variable features (HVFs) 221 

that include or exclude TEs, we performed linear dimensionality reduction using principal 222 

component analysis (PCA). Significant PCs were transformed using non-linear Uniform Manifold 223 

Approximation and Projection (UMAP) for visualization. Using the complete set of HVFs 224 

(including CG, HERV, and L1) yields a representation that clearly distinguishes major PBMC 225 

lineages and cell types (Monocytes, Dendritic, B cells, T cells, NK cells), as well as many cell 226 

type subsets (Figure 3A), which will help to elucidate the mechanisms underlying observed 227 

associations of dysregulated TE expression with autoimmunity, neurodegeneration, and cancer. 228 

In order to better understand the contribution of TEs to the cellular transcriptional landscape, we 229 

next performed dimensionality reduction on sets of HVFs partitioned by feature class. 230 

Dimensionality reduction using CGs alone revealed a representation that is similar to the full 231 

HVF set (Figure 3B). This was expected, as CGs include 10,982 features, over 93% of HVFs, 232 

and include HVFs with the greatest biological variability. Differences between these projections 233 

indicate information contributed by TEs.  234 

Projections based only on HERV HVFs were distinct from the full HVF set and describe 235 

distinct similarity patterns among cells (Figure 3C). The HERV-based projection shows some 236 

distinctions between major PBMC cell types, with separate groupings for CD14 monocytes, 237 

CD16 monocytes, B cells, Dendritic cells, and NK cells. However, some cell type subsets were 238 

not clearly distinguished. For example, there was no clear separation between CD4+ and CD8+ 239 

T cells. Furthermore, the groupings appeared *noisy* when visualized with reference-based cell 240 
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type assignments. For example, although most CD14 monocytes appeared together on the left 241 

side of the UMAP, there were also CD14 monocytes in nearby groupings primarily comprised of 242 

T cells. Despite this failure to recapitulate CG-based identities at the subset level, there appears 243 

to be structure in the HERV expression patterns driving similarities among cells, in contrast to 244 

random noise. The small number of HVF HERVs (120 features) and the relatively low biological 245 

heterogeneity of these features certainly contribute to these differences, but it may also reflect 246 

novel cell states or processes involving HERV that are distinct from established celltype 247 

identities. 248 

 Similarly, LINE-1 only transcriptomes more distinctly reproduced the separation of 249 

PBMC subtypes when compared to LTR-only transcriptomes and utilized 648 features and 44 250 

dimensions (Figure 3D).  251 

A key hypothesis tested by this study was the potential for the addition of the 252 

retrotranscriptome to determine previously unidentified subcategories of cell types from scRNA-253 

seq tools. When utilizing unsupervised clustering algorithms on canonical CG (Figure 3E), LTR-254 

only (Figure 3F) at resolution = 1.0, a number of subclusters are determined distinct from the 255 

reference annotations. Where unsupervised clustering of CG-only and LINE-1 transcriptomes 256 

largely recapitulates the reference clustering within the same UMAP space, unsupervised 257 

clustering of LTR-only transcriptomes identified expression similarities as subclusters within 258 

broader cell types and these subclusters include cells from a number of cell types such as NK 259 

cells and CD4+ T cells, yet B cells and pDCs are still distinct as LTR-only clusters. 260 

 This result provides evidence that TE transcripts are unique to certain cell-type 261 

transcriptomes and contribute to cell identity. These findings are a compelling argument for the 262 

inclusion of the non-canonical TE transcriptome in analyzing scRNA-seq data and cell-type 263 

transcriptional profiles in healthy and disease conditions. 264 
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PBMC subtypes are characterized by expression of specific HERV loci 265 

Groups of similar cells are typically classified using markers, including surface proteins 266 

and more recently, RNA expression. High quality markers correlate with the characteristics and 267 

biological processes within the cell. Most of the markers commonly used are protein coding 268 

genes, while several long non-coding RNAs (lncRNAs) have been found to be highly sensitive in 269 

transcriptomic studies23. The utility of TE-derived RNAs as markers has not previously been 270 

demonstrated, partially due to technological challenges with assaying the expression of specific 271 

TE loci in either sorted bulk samples or single cells. Using Stellarscope, we achieved single 272 

locus resolution of TE expression in individual PBMC, and show that locus-specific HERV 273 

transcripts are distinctly expressed in differentiated hematological cell types (Figure 4). 274 

Transcriptional differences amongst cells correlated with known cell types, including subtypes 275 

within T cells, B cells and monocyte lineages. Overall, we identified 66 significant tests 276 

representing 34 distinct HERV loci with significant differences in expression in one or more cell 277 

subsets when compared with all other cells (adjusted p-value < 0.05, average log2 fold change > 278 

0.25) (Figures 4A and S4). 279 

Eight HERV features were significantly upregulated in monocytes, representing possible 280 

HERV-based markers. Four features were uniquely upregulated in CD14 Monocytes, which 281 

constitute the largest proportion of cells: ERVLB4-4q31.21a (intergenic), HARLEQUIN_7q33a 282 

(intergenic), HML2-1q22, and MER34B-4q21.2. One feature, MER4B-19q13.42a, was uniquely 283 

upregulated in CD16 Monocytes, while MER34B-1q23.3b and MER4-22q12.3 were significantly 284 

upregulated for both monocyte subsets, suggesting that these may be useful in distinguishing 285 

monocytes from other cell types, but less useful in resolving subsets. Significant upregulation of 286 

MER4B-19q13.42b was detected in both CD16 monocytes and pDCs.  287 

In pDCs, the relatively high percentage of HERV transcripts (Figure 2D) was matched by 288 

a large number of differentially expressed loci. We identified six potential HERV markers: 289 

HARLEQUIN-1q32.1, ERV316A3-21q21.2g, HUERSP2-19q13.2, MER4B-19q13.42b, PRIMA4-290 
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12p11.21b, MER101-16p12.2a. Two of these, ERV316A3-21q21.2g and PRIMA4-12p11.21b, 291 

were unique to pDCs. HUERSP2-19q13.2 and MER101-16p12.2a were shared with different B 292 

cell subtypes, while HARLEQUIN-1q32.1 was significant six different subtypes, including three 293 

B cell subtypes and two other dendritic cell subtypes. We had previously identified this locus as 294 

the HERV with the greatest biological heterogeneity (as measured by residual variance, Figure 295 

2H) thus supporting our approach for variable feature selection. Considering the strength of this 296 

marker compared with canonical marker genes, expression of HARLEQUIN-1q32.1 in pDCs has 297 

the greatest effect size and significance of all features tested (adjusted p value < 1e-122 ; 298 

average log2 fold change = 4.213),and is among the top markers for all cell subtypes. 299 

cDC2 were marked by HARLEQUIN-6q21.31. pDC were marked by ERV316A3-21q21g 300 

and PRIMA4-12p11.21b. Naive B cells were marked by HML5-8p21.2 and MER4-17q21.2d. 301 

Memory B cells were marked by MER101-16p11.2c and MER61-1q23.1c. MAIT cells were 302 

marked by HERVS71-8p23.1b, and NK cells were marked by HML5-1q23.1. 303 

13 of the marker LTR transcripts were also detected as distinct transcriptional signatures 304 

in 2-3 cell types demonstrating the possibility of shared transcriptional events in the gene 305 

expression patterns across these cell types. pDCs were shown to share 3 marker TE 306 

transcripts: CD16 Monocytes shared the MER4B-19q13.42b with CD16 Monocytes, HUERSP2-307 

19q13.2 with Plasmablasts, and MER101-16p12.2a with B intermediate cells. Both NK cells and 308 

the NK_CD56bright subtype shared expression of HERVH-12p13.31d. 309 

Memory and intermediate B cell subtypes also shared differential relative expression of  310 

ERVLE-4q24e with naive B cells and HERVEA-5q22.2 with plasmablasts showing common 311 

retrotranscriptomic patterns across B lineage cells. Additionally, intermediate B cells and 312 

memory B cells shared expression of HARLEQUIN-1q23.1. CD8+ TEM also shared expression 313 

of PRIMA4-14q22.1 with and NK cells and CD4+ subtypes, as well as MER101-16p12.2c with 314 

NK proliferating cells and dnT cells. CD4+ TCM, CD4+ Naive and B intermediate cells 315 
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expressed ERV316A3-2q22.2b. Finally, CD4+ TCM, naive CD8+ T cells and CD8+ TEM shared 316 

expression of HARLEQUIN-17q12, which may be a T cell lineage marker LTR transcript. 317 
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Discussion 318 

Cell identity has become a changing landscape with new technologies. Shape shifting 319 

cells change as they squeeze through vessels or home to tissues, and cell surface markers vary 320 

in the cell’s journey. Lineage development can be determined by cell sub-types and 321 

identification of RNA-seq transcripts from single cell resolution. Yet all of these identifiers of cell 322 

identity ignore the large part of the genome composed of transposable elements (TEs). 323 

In this study, we present a scRNA-seq-based computational pipeline for characterizing 324 

cell identity based on the expression of human endogenous retrovirus (HERV) and Long 325 

interspersed nuclear elements type 1 (LINE-1; L1) from the TEs. We demonstrate that TEs can 326 

be identified from scRNA-seq data at a locus specific level, and that TE signatures could identify 327 

new cell sub-types over canonical gene markers and suggest a new layer of complexity of cell 328 

identity. 329 

The initial step of the reference pipeline Stellarscope is the mapping stage, where 330 

alignments are filtered according to a list of passing barcodes. Then PCR duplicates are 331 

identified and removed using a novel multimapper-aware UMI deduplication approach. 332 

Stellarscope implements an approach that considers all possible mapping locations for each 333 

read. For each UMI sequence found on multiple reads, an undirected graph is constructed with 334 

nodes corresponding to reads. Then, a Bayesian mixture model is fitted to the deduplicated 335 

weight matrix using an expectation maximization algorithm. Importantly, due to the relatively 336 

small sequencing depth of TEs per cell, pooling models were implemented that enable the 337 

utilization of information across cells for resolving ambiguous reads. 338 

Biologically, we then probed RNA-seq datasets for the contribution of TE loci to single 339 

cell transcriptomes. Using scRNA-seq data from human peripheral blood mononuclear cells as 340 

a reference, and found that compared with canonical genes, TEs contributed on average of 341 

2.8% of the total features detected in each cell.  342 
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We sought to characterize TE loci with high biological heterogeneity in the data, because 343 

these features are informative for ascribing biological characteristics to individual cells. In order 344 

to separate technical variance from biological effects, we used the residual variance from 345 

models fitted to each feature to quantify how variable is their expression throughout the cells. 346 

TEs tended to have lower residual variance (between 1-2) compared to canonical genes 347 

(between 1-10). There were transcripts in all biotype sets with no biological variability, including 348 

canonical transcripts annotated as marker genes, and TE features with higher residual variance 349 

than marker genes, suggesting the expression of HERVs and L1s is not merely transcriptional 350 

readthrough or random noise in RNA-seq datasets. Instead, there is a deliberate regulation of a 351 

specific set of TE transcripts.  352 

We then asked whether HERV or L1 expression profiles contained distinct patterns that 353 

could inform novel cell classifications Using different sets of highly variable features (HVFs) that 354 

include or exclude TEs, we performed dimensionality reduction using principal component 355 

analysis (PCA) and uniform manifold approximation and projection (UMAP). Using the complete 356 

set of HVFs (including CG, HERV, and L1) yields a representation that clearly distinguishes 357 

major PBMC lineages and cell types. Unsupervised clustering using only highly variable HERVs 358 

identified expression similarities as subclusters within broader cell types, and these subclusters 359 

included cells from a number of cell types such as NK cells and CD4+ T cells. However, B cells 360 

and pDCs were still formed distinct clusters using HERV features alone. 361 

After having identified novel cell sub-types based upon differential TE expression, we 362 

probed known annotated cell types for unique TE expression. Notably, dendritic cells expressed 363 

more TE features than other cell types, with a median of 23 HERV and 107 L1 features detected 364 

per cell. Using specific sub-cell type labels, we found that plasmacytoid dendritic cells (pDC) 365 

had significantly higher HERV loads than other dendritic cell subtypes. In pDCs, the relatively 366 

high percentage of HERV transcripts was matched by a large number of differentially expressed 367 

loci. We identified six potential HERV markers: HARLEQUIN-1q32.1, ERV316A3-21q21.2g, 368 
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HUERSP2-19q13.2, MER4B-19q13.42b, PRIMA4-12p11.21b, MER101-16p12.2a. Two of 369 

these, ERV316A3-21q21.2g and PRIMA4-12p11.21b, were unique to pDCs. Thus, our single 370 

cell profiling provides novel insights into cell identities by uncovering unique TE transcripts 371 

delineating known cell sub-types. 372 

As the known role of transposable elements in biology grows, with major contributions 373 

noted in human development, aging, neurodegenerative diseases and cancer, understanding 374 

how single cells express TEs is critical to understand their roles in biology and human diseases. 375 

Our study establishes a novel pipeline for integrated analysis of comprehensive single-cell 376 

genomics and tissue datasets and provides new knowledge and opportunities for translation of 377 

the complexities of cell identities. 378 

Limitations of this study 379 

Although this study provides a powerful computational pipeline to determine differential 380 

expression of TEs from scRNA-seq data, we note a few limitations. First, this study’s primary 381 

focus on human datasets limits mechanistic manipulation in animal models. The annotation of 382 

TEs in other species is more limited, and the biological behavior of TEs in other species quite 383 

different making comparison with human data moot. Second, although a broad array of 384 

annotated TEs are included in the reference set, there are other non annotated LTRs or other 385 

TEs which are not included, and as additional human genomes are sequenced telomere to 386 

telomere, polymorphisms within the TE genes will need to be accounted for. Finally, the insights 387 

gained from the human data sets will need to be validated with specific probes, and new tools 388 

developed to mark expression of TE ORFs (including specific antibodies) and locus specific TE 389 

probes.  390 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.28.573568doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.28.573568
http://creativecommons.org/licenses/by/4.0/


Methods 391 

Single cell reassignment mixture model 392 

Stellarscope implements a generative model of single cell RNA-seq that rescales alignment 393 

probabilities for independently aligned reads based on the cumulative weights of all alignments 394 

to each transcript. Fundamentally, the probability that a given alignment is the “true” alignment 395 

increases when the total supporting information for that transcript is greater. The model and 396 

notation follow from Bendall et al. 201913. Each sequencing fragment is comprised of three parts 397 

that are tracked by our model: 1) 𝐹 = [𝑓1, 𝑓2, … , 𝑓𝑁], the set of 𝑁 observed cDNA sequences from 398 

the originating transcript; 2) the corresponding cell barcodes 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑁], where 𝑏𝑖 =  𝑏𝑗  399 

for all 𝑖 and 𝑗 that originate from the same cell; and 3) a Unique Molecular Identifier (UMI) 𝑈 =400 

[𝑢1, 𝑢2, … , 𝑢𝑁] for each template molecule. Let 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑀], be the set of 𝑀 cells that are 401 

included in the model. Cells are categorized a priori into subsets, or “pools”, depending on the 402 

chosen pooling mode. Let 𝚸 = [𝑷𝟏, 𝑷𝟐, … , 𝑷𝑫] be the set of D pools, and let 𝑃 = [𝑝1, 𝑝2, … , 𝑝𝑀], 403 

be an indicator mapping each cell to the pool to which it belongs, ∀𝑖 𝑝𝑖 ∈ 𝚸. For individual 404 

pooling mode, each cell is in a separate pool (∀𝑖 𝑝𝑖 =  𝑐𝑖). For pseudobulk pooling mode, all cells 405 

are in the same pool (∀𝑖 𝑝𝑖 =  1). For celltype pooling mode, the pool assignment for each cell is 406 

provided as input for the model. For each pool, we estimate the abundance parameter 𝝅𝑷 =407 

[𝜋𝑃0
, 𝜋𝑃1

, … , 𝜋𝑃𝐾
] representing the proportion of total fragments originating from each of 𝐾 408 

annotated transcripts. In addition, we estimate the reassignment parameter 𝜽𝑷 =409 

[𝜃𝑃0
, 𝜃𝑃1

, … , 𝜃𝑃𝐾
] representing the proportion of ambiguous fragments generated by each 410 

transcript. Thus, the probability of observing fragment 𝑓𝑖 with cell barcode 𝑏𝑖 is given by: 411 

Pr(𝑓𝑖 , 𝑏𝑖|𝜋𝑃 , 𝜃𝑃 , 𝑞𝑖) =  ∑ 𝜋𝑃𝑗
𝜃𝑃𝑗

𝑦𝑖𝑞𝑖𝑗

𝐾

𝑗=0

 412 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.28.573568doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.28.573568
http://creativecommons.org/licenses/by/4.0/


 where 𝑃 is the pool containing cell barcode 𝑏𝑖 (𝑝𝑏𝑖
), 𝜋𝑃 and 𝜃𝑃 are pool-specific parameters, 𝑞𝑖 413 

is a vector of mapping qualities for 𝑓𝑖, and 𝑦𝑖 is an indicator where 𝑦𝑖 = 1 if 𝑓𝑖 is ambiguously 414 

aligned and 𝑦𝑖 = 0 otherwise. 415 

 As in earlier work, we formulate a mixture model accounting for uncertainty in the initial 416 

fragment assignments. Let 𝑥𝑃𝑖 = [𝑥𝑃𝑖0, 𝑥𝑃𝑖1, … , 𝑥𝑃𝑖𝐾] be a set of partial assignment (or 417 

membership) weights for fragment 𝑓𝑖 in pool 𝑃. If 𝑓𝑖 did not originate from pool 𝑃 (𝑝𝑏𝑖
≠ 𝑃), then 418 

∀𝑗 𝑥𝑃𝑖𝑗
= 0; otherwise ∑ 𝑥𝑃𝑖𝑗

𝐾
𝑗=0 = 1 and 𝑥𝑃𝑖𝑗 = 0 if 𝑓𝑖 does not align to 𝑡𝑗 . We assume that 𝑥𝑃𝑖 is 419 

distributed according to a multinomial distribution with success probability 𝜋𝑃. Intuitively, 𝑥𝑖𝑗 420 

represents our confidence that 𝑓𝑖 was generated by transcript 𝑡𝑗 . The complete data likelihood 421 

across all pools is 422 

𝐿(𝝅, 𝜽|𝒙, 𝒒, 𝒚, 𝑷) ∝  ∏ ∏ ∏ [𝜋𝑃𝑗𝜃𝑃𝑗
𝑦𝑖𝑞𝑖𝑗]

𝑥𝑃𝑖𝑗

𝐾

𝑗=0

𝑁

𝑖=1

Ρ

𝑃

 423 

PBMC datasets 424 

To validate the efficacy of the Stellarscope workflow we obtained and analyzed three publicly 425 

available PBMCs scRNA-seq datasets from 10x Genomics corresponding to a healthy female 426 

donor aged 25-30. Cells were sequenced by 10x Genomics using the Chromium Next GEM 427 

Single Cell 3' HT Reagent Kit v3.1. 428 

HERV annotations 429 

A Stellarscope analysis requires an annotation that defines the transcriptional unit of each TE to 430 

be quantified. For HERV proviruses, the prototypical transcriptional unit contains an internal 431 

protein-coding region flanked by LTR regulatory regions. Existing annotations, such as those 432 

identified by RepeatMasker24 (using the RepBase database25 or Dfam26 identify sequence 433 

regions matching TE families but do not seek to annotate transcriptional units. Both databases 434 

represent the internal region and corresponding LTRs using separate models, and the regions 435 
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identified are sometimes discontinuous. In these annotations a HERV transcriptional unit is 436 

likely to appear as a collection of nearby annotations from the same HERV subfamily.  437 

    We defined transcriptional units for HERV proviruses by combining RepeatMasker 438 

annotations belonging to the same HERV subfamily that are also located in adjacent or nearby 439 

genomic regions. Briefly, repeat families from the same HERV subfamily (internal region plus 440 

flanking LTRs) were identified using the RepBase database25. RepeatMasker annotations for 441 

each repeat subfamily were downloaded using the UCSC table browser27 and converted to GTF 442 

format, merging nearby annotations from the same repeat subfamily. Next, LTRs flanking 443 

internal regions were identified and grouped using BEDtools28. HERV transcriptional units 444 

containing internal regions were assembled using custom python scripts. Each putative locus 445 

was categorized according to provirus organization; loci that did not conform to expected HERV 446 

organization or conflicted with other loci were visually inspected using IGV29 and manually 447 

curated.  448 

    As validation, we compared our annotations to the HERV-K(HML-2) annotations published by 449 

Subramanian et al.30 the two annotations were concordant. Final annotations were output as 450 

GTF (S1 File); all annotations, scripts, and supporting documentation are available at 451 

https://github.com/mlbendall/telescope_annotation_db.  452 

 453 

Raw data/alignment 454 

The PBMCs scRNA-seq data was publicly available and re-analyzed in this study. Raw reads 455 

were aligned to the GRCh38 reference genome using STARsolo to produce a Binary Alignment 456 

Map (BAM) file containing cell barcodes for each sequenced individual cell and for each of 457 

them, the set of possible locations their reads align to. Parameters that allow multiple 458 

alignments per read and a range score were used to retain the set of best possible alignments 459 

for each read. 460 
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 461 

Preprocessing 462 

Quality control was performed on the data at the cell level. Scater31 functions were used to 463 

identify outliers in the percentage of mitochondrial reads, total number of features, and total 464 

number of molecules detected, distributions and remove cells using these adaptive thresholds. 465 

Cell type identity was assigned to each cell using the Azimuth32 PBMCs reference 466 

transcriptome. Multiplets were detected using Scrublet33 and removed. The list of cell barcodes 467 

from cells that passed these filters was subsequently used for the Stellarscope analysis. 468 

Fragment Reassignment for Single-Cell Transcriptomics 469 

The alignment from STARsolo and the list of filtered Cell Barcodes were input to Stellarscope 470 

and the BAM file alignments for valid cells were sorted using Stellarscope Cellsort. Then, 471 

Stellarscope was used in the pooling mode ‘celltype’ to reassign ambigous reads overlapping 472 

the regions from the TE annotation and obtain a TE counts matrix compatible with the Canonical 473 

Genes counts matrix. 474 

Downstream analysis 475 

A merged matrix was created from the canonical genes counts matrix and the TE counts matrix 476 

and subsequent analyses were performed using Seurat version 434. Cell types were annotated, 477 

and raw counts were processed using the ‘sctransform’ method to normalize the data and 478 

stabilize the variance with the aim of removing technical variability and retaining biological 479 

variability. 480 

Principal Component Analysis (PCA) 481 

    PCA was performed on batch-corrected Seurat data to generate a lower-dimensional 482 

representation. The data were reduced to their top 50 principal components using the “RunPCA” 483 

Seurat function.  484 
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Clustering 485 

Putative cell types in the three PBMC datasets were annotated by 10x Genomics. We used the 486 

50-component PCA representation of each dataset to generate neighbour graphs and then used 487 

the Seurat function to perform the hierarchical clustering (“BuildClusterTree”). 488 

Differential Gene Expression 489 

The MAST35 function in Seurat was applied to the single-cell PBMC datasets to identify 490 

differentially expressed genes across clusters (add parameters). MAST is a generalized linear 491 

model (GLM) framework that treats cellular detection rate as a covariate and identifies enriched 492 

genes whilst correcting for covariates and gene-gene correlations. 493 

Visualization  494 

    2D Uniform Manifold Approximation Projections (UMAPs) were created from the PCA matrix 495 

of the top 50 components using the “RunUMAP” function in Seurat. 496 

Code availability 497 

https://github.com/nixonlab/stellarscope 498 

  499 
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Figure Legends 620 

Figure 1. Stellarscope – Single cell Transposable Element Locus Level Analysis of 621 

scRNA Sequencing.  622 

STELLARSCOPE SETUP. (A) Alignments are filtered according to a user-provided list of 623 

passing barcodes ("whitelist"). (B) The cell barcode (CB) and unique molecular identifier (UMI) 624 

from valid fragments are stored internally. (C) Initial weight matrix with fragments as rows and 625 

candidate assigned features as columns. (D) Values for the initial weight matrix setup result 626 

from intersecting each fragment's alignment(s) with the TE features annotation and selecting the 627 

best alignment score for each fragment for each locus. 628 

MULTIMAPPER-AWARE UMI DEDUPLICATION. (E) fragments that contain the same CB+UMI 629 

combination (i.e. duplicates) and their alignment positions are identified. (F) An undirected 630 

weighted graph is built for each CB+UMI combination with fragments as nodes and shared 631 

alignments as edge weights. For each component the most informative read according to 632 

alignment quality and ambiguity criteria is selected as representative. This method identifies and 633 

corrects non obvious duplicates (e.g. f1-f2, and f1-f3). 634 

MODEL FITTING. Stellarscope fits a Bayesian mixture model to the deduplicated weight matrix 635 

using an expectation maximization algorithm for each cell (G), for all cells (H), and for each cell 636 

type (I) in pooling modes Individual, Pseudobulk, and Celltype, respectively. 637 

REASSIGNMENT. Once the model is fitted and parameters are estimated, Stellarscope uses 638 

the posterior probability matrix to reassign ambiguous fragments to their final generating locus. 639 

Stellarscope provides a variety of reassignment strategies (J) including filtering based on a 640 

threshold, excluding fragments with multiple optimal alignments, and randomly selecting from 641 

multiple optimal alignments; these criteria result in a different number of excluded alignments 642 

(shaded in grey). The output from Stellarscope (K) includes an umi-tracking file with the graphs 643 

and representative reads selection; a log file with the fitted models, the number of observations 644 
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and parameters estimated, and a log likelihood for the fitted model; an updated BAM file; and a 645 

sparse single-cell counts matrix compatible with all the generally used analysis tools. 646 

 647 

Figure 2. Stellarscope determines the retrotranscriptome of human PBMCs at single cell 648 

resolution. 649 

(A) Schematic representation of the stepwise analytical pipeline employed to obtain the scRNA-650 

seq matrix counts for the PBMCs. Alignment: reads are aligned to the hg38 reference genome 651 

retaining multimappers and alignments of varying quality. Cell quality control: outlier cells are 652 

identified and excluded using adaptive thresholds on the number of features detected, total 653 

number of molecules detected, and percentage of mitochondrial reads. Celltype annotation: 654 

scRNA-seq data is projected onto the Azimuth reference atlas for PBMCs 36. Doublet filtering: 655 

doublets are detected and removed using Scrublet33 to obtain the final list of cell barcodes that 656 

are input to Stellarscope for reassignment of ambiguous reads and counting of TE features. (B) 657 

Violin plots showing the distribution of detected TE features in the PBMCs (left panel), and 658 

detected HERV features and L1 features (Y axes) by PBMC cell type (X axes). (C) Violin plots 659 

showing the distribution of the percentage of reads by cell that is contributed by TE loci in the 660 

PBMCs (left panel), the percentage of reads by cell that is contributed by HERV loci and L1 loci 661 

(Y axes) by PBMC cell type (X axes). (D) Violin plots showing comparable distributions of 662 

detected HERV features number in Dendritic Cells (upper panel) and a significant difference in 663 

the percentage of reads by cell that are contributed by HERV loci in plasmacytoid Dendritic 664 

Cells. (cDC1s: Conventional type 1 dendritic cells) (E) Measurements of TE expression from 665 

true bulk RNA-seq data for 157 PBMC samples (gray) and from pseudobulk aggregation of the 666 

PBMCs scRNA-seq data by cell type (blue) and by total cells (red). (F-I) Biological variability of 667 

expression values for different sets of transcripts by biotype showing matching patterns for TE 668 

(HERV and L1) transcripts and biologically relevant noncoding trancsripts (ncRNAs). Features 669 
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with a rv value higher than 1 show relevant variation across the cells. Triangles in canonical 670 

transcripts indicate marker genes determined by the reference transcriptome. 671 

 672 

Figure 3: Transposable element features inform novel cell relationships and subtypes. 673 

(A) UMAP based on all identified highly variable features (HVFs), including canonical genes 674 

(CG), HERV, and L1.  Cells are colored according to predicted celltype based on reference 675 

mapping to the HuBMAP human PBMC reference, celltype.l2 annotation, using Azimuth. UMAP 676 

is based on the top 40 principal components for 11,750 highly variable features. (B) UMAP 677 

based only on CG HVFs. Cells are colored as in (A), based on 40 principal components for 678 

10,982 highly variable features. (C) UMAP based only on HERV HVFs. Cells are colored as in 679 

(A), based on 45 principal components for 120 highly variable features. (D) UMAP based only 680 

on L1 HVFs. Cells are colored as in (A), based on 44 principal components for 648 highly 681 

variable features. (E) UMAP based only on CG HVFs, as in (B). Cells are colored according to 682 

unsupervised cluster label using resolution = 1. (F) UMAP based only on HERV HVFs, as in (C). 683 

Cells are colored according to unsupervised cluster label using resolution = 1. (G) UMAP based 684 

only on L1 HVFs, as in (D). Cells are colored according to unsupervised cluster label using 685 

resolution = 1. 686 

 687 

Figure 4. Expression of locus specific HERV features characterizes PBMC subsets. 688 

(A) Feature plots showing the relative expression in each cell for 27 HERV features with 689 

significant differential expression in one or more cell subset comparisons. Each plot is titled with 690 

the feature name; within each plot, every cell is colored according to the scaled HERV 691 

expression detected in that cell, see legend. Cells where there was no detection are colored 692 

gray. The position of cells is identical in all plots and in Fig. 3A: the cells are plotted in UMAP 693 

space calculated using all highly variable features (CG+HERV+ L1). The identity of the cell 694 
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subset (or subsets) in which each HERV is significantly upgregulated is annotated in the lower 695 

left of each plot with the average log2 fold change in parentheses; HERV features that were 696 

significantly upregulated in more than three cell subsets, only the top three significance tests are 697 

shown, as ranked by adjusted p-value. Annotation text is colored according to the celltype color 698 

palettes in the legend. (B) Two dimensional heatmap showing the relative expression in each 699 

cell for 27 HERV features with significant differential expression in one or more cell subset 700 

comparisons. Each row represents a HERV feature with the names along the Y axis. Each 701 

column represents one cell with the predicted cell subset shown above the plot, colored 702 

according to the celltype color palette. Features are ordered by hierarchical clustering of the 703 

heatmap data. Cells are first grouped according to cell subset, then ordered by hierarchical 704 

clustering within each subset. 705 

 706 

 707 

 708 

 709 
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Figure 1: Stellarscope quantifies TE transcripts at locus resolution in 
single-cell RNA-seq datasets
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Figure 1. Stellarscope – Single cell Transposable Element Locus Level Analysis of scRNA 
Sequencing.  
STELLARSCOPE SETUP. (A) Alignments are filtered according to a user-provided list of 
passing barcodes ("whitelist"). (B) The cell barcode (CB) and unique molecular identifier (UMI) 
from valid fragments are stored internally. (C) Initial weight matrix with fragments as rows and 
candidate assigned features as columns. (D) Values for the initial weight matrix setup result 
from intersecting each fragment's alignment(s) with the TE features annotation and selecting the 
best alignment score for each fragment for each locus. 
MULTIMAPPER-AWARE UMI DEDUPLICATION. (E) fragments that contain the same CB+UMI 
combination (i.e. duplicates) and their alignment positions are identified. (F) An undirected 
weighted graph is built for each CB+UMI combination with fragments as nodes and shared 
alignments as edge weights. For each component the most informative read according to 
alignment quality and ambiguity criteria is selected as representative. This method identifies and 
corrects non obvious duplicates (e.g. f1-f2, and f1-f3). 
MODEL FITTING. Stellarscope fits a Bayesian mixture model to the deduplicated weight matrix 
using an expectation maximization algorithm for each cell (G), for all cells (H), and for each cell 
type (I) in pooling modes Individual, Pseudobulk, and Celltype, respectively. 
REASSIGNMENT. Once the model is fitted and parameters are estimated, Stellarscope uses 
the posterior probability matrix to reassign ambiguous fragments to their final generating locus. 
Stellarscope provides a variety of reassignment strategies (J) including filtering based on a 
threshold, excluding fragments with multiple optimal alignments, and randomly selecting from 
multiple optimal alignments; these criteria result in a different number of excluded alignments 
(shaded in grey). The output from Stellarscope (K) includes an umi-tracking file with the graphs 
and representative reads selection; a log file with the fitted models, the number of observations 
and parameters estimated, and a log likelihood for the fitted model; an updated BAM file; and a 
sparse single-cell counts matrix compatible with all the generally used analysis tools. 
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Figure 2: Single-cell transcriptional landscape of transposable elements in healthy 
human peripheral blood mononuclear cells
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Figure 2. Stellarscope determines the retrotranscriptome of human leukocytes at single 
cell resolution. 
(A) Schematic representation of the stepwise analytical pipeline employed to obtain the scRNA-
seq matrix counts for the PBMCs. Alignment: reads are aligned to the hg38 reference genome 
retaining multimappers and alignments of varying quality. Cell quality control: outlier cells are 
identified and excluded using adaptive thresholds on the number of features detected, total 
number of molecules detected, and percentage of mitochondrial reads. Celltype annotation: 
scRNA-seq data is projected onto the Azimuth reference atlas for PBMCs (PMID: 31178118). 
Doublet filtering: doublets are detected and removed using Scrublet (PMID: 30954476) to obtain 
the final list of cell barcodes that are input to Stellarscope for reassignment of ambiguous reads 
and counting of TE features. (B) Violin plots showing the distribution of detected TE features in 
the PBMCs (left panel), and detected HERV features and L1 features (Y axes) by PBMC cell 
type (X axes). (C) Violin plots showing the distribution of the percentage of reads by cell that is 
contributed by TE loci in the PBMCs (left panel), the percentage of reads by cell that is 
contributed by HERV loci and L1 loci (Y axes) by PBMC cell type (X axes). (D) Violin plots 
showing comparable distributions of detected HERV features number in Dendritic Cells (upper 
panel) and a significant difference in the percentage of reads by cell that are contributed by 
HERV loci in plasmacytoid Dendritic Cells. (cDC1s: Conventional type 1 dendritic cells) (E) 
Measurements of TE expression from true bulk RNA-seq data for 157 PBMC samples (gray) 
and from pseudobulk aggregation of the PBMCs scRNA-seq data by cell type (blue) and by total 
cells (red). (F-I) Biological variability of expression values for different sets of transcripts by 
biotype showing matching patterns for TE (HERV and L1) transcripts and biologically relevant 
noncoding trancsripts (ncRNAs). Features with a rv value higher than 1 show relevant variation 
across the cells. Triangles in canonical transcripts indicate marker genes determined by the 
reference transcriptome. 
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Figure 3: Transposable element features inform novel cell relationships and subtypes. 
(A) UMAP based on all identified highly variable features (HVFs), including canonical genes 
(CG), HERV, and L1.  Cells are colored according to predicted celltype based on reference 
mapping to the HuBMAP human PBMC reference, celltype.l2 annotation, using Azimuth. UMAP 
is based on the top 40 principal components for 11,750 highly variable features. (B) UMAP 
based only on CG HVFs. Cells are colored as in (A), based on 40 principal components for 
10,982 highly variable features. (C) UMAP based only on HERV HVFs. Cells are colored as in 
(A), based on 45 principal components for 120 highly variable features. (D) UMAP based only 
on L1 HVFs. Cells are colored as in (A), based on 44 principal components for 648 highly 
variable features. (E) UMAP based only on CG HVFs, as in (B). Cells are colored according to 
unsupervised cluster label using resolution = 1. (F) UMAP based only on HERV HVFs, as in (C). 
Cells are colored according to unsupervised cluster label using resolution = 1. (G) UMAP based 
only on L1 HVFs, as in (D). Cells are colored according to unsupervised cluster label using 
resolution = 1. 
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Figure 4. Expression of locus specific HERV features characterizes leukocyte subsets. 
(A) Feature plots showing the relative expression in each cell for 27 HERV features with 
significant differential expression in one or more cell subset comparisons. Each plot is titled with 
the feature name; within each plot, every cell is colored according to the scaled HERV 
expression detected in that cell, see legend. Cells where there was no detection are colored 
gray. The position of cells is identical in all plots and in Fig. 3A: the cells are plotted in UMAP 
space calculated using all highly variable features (CG+HERV+ L1). The identity of the cell 
subset (or subsets) in which each HERV is significantly upgregulated is annotated in the lower 
left of each plot with the average log2 fold change in parentheses; HERV features that were 
significantly upregulated in more than three cell subsets, only the top three significance tests are 
shown, as ranked by adjusted p-value. Annotation text is colored according to the celltype color 
palettes in the legend. (B) Two dimensional heatmap showing the relative expression in each 
cell for 27 HERV features with significant differential expression in one or more cell subset 
comparisons. Each row represents a HERV feature with the names along the Y axis. Each 
column represents one cell with the predicted cell subset shown above the plot, colored 
according to the celltype color palette. Features are ordered by hierarchical clustering of the 
heatmap data. Cells are first grouped according to cell subset, then ordered by hierarchical 
clustering within each subset. 
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