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Summary

Single cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex biological
systems. However, most sequencing studies overlook the contribution of transposable element
(TE) expression to the transcriptome. In both scRNA-seq and bulk tissue RNA sequencing
(RNA-seq), quantification of TE expression is challenging due to repetitive sequence content
and poorly characterized TE gene models. Here, we developed a tool and analysis pipeline for
Single cell Transposable Element Locus Level Analysis of scRNA Sequencing (Stellarscope)
that reassigns multi-mapped reads to specific genomic loci using an expectation-maximization
algorithm. Using Stellarscope, we built an atlas of TE expression in human PBMCs. We found
that locus-specific TEs delineate cell types and define new cell subsets not identified by
standard mRNA expression profiles. Altogether, this study provides comprehensive insights into

the influence of transposable elements in human biology.
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Introduction

The classification of human cells based on cell surface markers, and more recently, RNA
expression, has led to a revolution in understanding of cell function, lineage and fate!=*. High
guality markers correlate with the characteristics and biological processes within the cell.
However, these classifications have mostly been based on analyses of well characterized
reference gene models (canonical genes, CG), most of which are protein coding genes*. A large
fraction of the human genome are transposable elements (TEs), which are now appreciated to
be key regulators of development and cell differentiation, and can act as promoters, enhancers,
and regulators of nearby genes®*2. TEs play important roles in genome evolution and can have
both positive and negative effects on gene regulation and genome stability. How these TEs
might shape or distinguish individual cells is unknown. An understanding of TE expression at a
single cell level is critical to determining the role of TEs in lineage development, cell sub-type
identification and gene regulation.

Recent advances in computational biology have led to pipelines which can assess
differential expression of TEs from bulk RNA-sequencing data at locus specificity**-'8. However,
there are several challenges in probing single cells for differential expression of TEs. For both
bulk and single cell RNA-seq, TE gene models are underdeveloped, TE transcript abundance is
low, and the repetitiveness of TEs leads to ambiguous mapping. The number of fragments
sequenced in bulk samples is typically sufficient to resolve ambiguity; however, far fewer
fragments are sequenced per cell in scRNA-seq. As a result, informative reads are not observed
for every cell, making model-based TE quantification a technological challenge.

In this study, we developed a computational pipeline called, “Single cell Transposable
Element Locus Level Analysis of sScRNA Sequencing”, or “Stellarscope”. We then used
Stellarscope to determine the expression of TEs in human peripheral blood mononuclear cells

(PBMCs) at single cell resolution. We found that HERV and L1 transcripts can be reliably
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detected in single-cell RNA-seq data, and they contribute biologically relevant information to the
transcriptome. We identified novel PBMC subsets using locus specific TE expression profiles
compared to CGs alone.

Some TE transcripts were unique to certain cell-type transcriptomes, and contributed to
cell identity. Furthermore, locus-specific HERV transcripts were distinctly expressed in
differentiated hematological cell types, and could identify new cell sub-types compared to using
coding genes alone.

This single-cell-resolution multi-scale analysis of the transposable element component of
the human ‘dark genome’ illustrates the influence of TEs in cell identify and fate, thus
establishing a novel framework for determining lineage markers derived from transposable
elements, and probing the role of sequences derived from genomic dark matter in biological

tissues.
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88 Results

89  Quantification of TE expression at locus resolution in single cells with Stellarscope.

90 Stellarscope uses four sequential stages to provides a scRNA-seq counts matrix for TE

91 features by reassigning ambiguous (multimapping) reads to their most probable TE locus of

92  origin. In the first stage, alignments for each read (Figure 1A-C) are intersected with the TE

93 annotation (Figure 1D); reads with at least one alignment to a TE locus are retained for the

94  model. For each TE-aligned read, the best alignment score for each locus it aligns to is

95 recorded, resulting in an initial weight matrix of reads and candidate assigned features. The cell

96 barcode (CB) of each read is compared against the user-provided list of passing barcodes

97  (generally known as the ‘whitelist’), and both the CB and the unique molecular identifier (UMI)

98 are stored internally.

99 In the second stage, PCR duplicates are identified and removed using a novel
100  multimapper-aware UMI deduplication approach (Figure 1E). UMIs are random sequences
101 added to DNA fragments before PCR amplification that enable identification of PCR duplicates.
102  Sequencing fragments sharing identical UMIs are assumed to arise from the same original
103  molecule and should only contribute one observation (count) in gene expression experiments.
104  However, the low complexity in the UMI pool can lead to identical UMIs being attached to
105 distinct molecules. Standard practice for UMI deduplication considers not just the UMI
106  sequence, but also the mapping location of the sequencing fragment. This poses a problem for
107  multimapping fragments, as the mapping location is ambiguous. Stellarscope implements an
108 approach that considers all possible mapping locations for each read. For each UMI sequence
109 found on multiple reads, an undirected graph is constructed with nodes corresponding to reads
110 (Figure 1F). An edge exists between two reads if both reads have an alignment to the same
111 locus; edges are weighted by the number of such loci. Each unconnected subgraph (connected

112  component) represents a unique molecule, as the set of mapped genomic locations does not
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113 intersect. Reads within the same connected component are considered PCR duplicates, and the
114  most informative duplicated read is selected as a representative. The result of this stage is a
115 corrected weight matrix with UMI duplicates removed.

116 In the third stage, a Bayesian mixture model is fitted to the deduplicated weight matrix
117  using an expectation maximization algorithm. Parameters of the model include the proportion of
118 total reads () and the proportion of mutimapping reads (8) originating from each locus.

119  Separate models could be fitted independently for each barcoded cell, meaning that the final
120 assignment of an ambiguous read depends solely on informative reads from the same cell

121  (Figure 1G). In practice, this approach suffers from a lack of informative reads, due to the

122  characteristic low expression levels of TEs and the relatively small sequencing depth per cell.
123  To address this challenge, pooling models were implemented that enable the utilization of

124  information across cells for resolving ambiguous reads. The “pseduobulk” pooling model

125 estimates one set of model parameters for all cells (Figure 1H), while read membership

126  probabilities and final assignments are determined at a single cell level. The implicit assumption
127  of this pooling model is that the retrotranscriptome of the sample is reflective of the

128 retrotranscriptome of each individual cell; that is, the relative expression levels of specific TE
129 loci are similar between any two given cells. This model will perform well in samples when

130 cellular heterogeneity is low, such as sorted cell subsets or cultured cells. In contrast, high

131  cellular heterogeneity may lead to incorrect reassignments as TE loci that are more abundant in
132  the sample — either due to higher expression or greater cell type proportion — will have greater
133  weight for ambiguous reassignment. To address such cases, we implemented the “cell type”
134  pooling model, which fits a separate model for each cell type label in the sample (Figure 11). The
135 cell type model assumes that the relative TE expression levels are similar among cells with the
136  same cell type label and are not dependent on sample-level TE expression. The cell type labels
137 are provided as input and can be determined using existing supervised or unsupervised

138 approaches for cell type annotation.
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139 For all three pooling modes, mixture models are specified by subsetting the initial

140 assignments and weights for each read in the pool. Starting values for = and 68, as well as priors
141  on these parameters, are initialized by assigning equal weight to each TE locus. The model is
142  optimized using an expectation-maximization algorithm, which iteratively calculates read

143  assignment probabilities and maximum a posteriori parameter estimates. The algorithm

144  terminates when convergence is achieved or when the maximum number of iterations is

145 reached. The outcome of this stage is the fitted models, including the read assignment posterior
146  probabilities and estimates of  and 6. The number of observations, the number of parameters
147  estimated, and complete data log likelihood for the fitted model are also reported, which can be

148 used for model selection.

149  Stellarscope can determine the retrotranscriptome of human peripheral blood

150 mononuclear cells at single cell resolution.

151 We examined the contribution of TE loci to single cell transcriptomes by profiling TE-
152  derived transcripts in human peripheral blood mononuclear cells (PBMCs). Sequencing reads
153  were aligned to the human genome (hg38) using alignment parameters that report up to 500
154  high-scoring alignments for “multimapping” reads — sequencing fragments that do not uniquely
155 align to the reference genome (STARsolo*®). Multimapping reads were reassigned to the most
156  probable location using a Bayesian mixture model implemented in Stellarscope (see Methods
157  section). UMI counts for TEs reported by Stellarscope were joined with canonical gene (CG)
158  UMII counts for downstream analysis (Figure 2A).

159 First, we asked whether single cell expression profiling, given the low UMI counts per
160 cell, would yield any detectable TE expression. We identified a median of 61 TE features

161  detected per cell, with HERV and L1 features accounting for 12 and 49 features, respectively
162  (Figure 2B). Compared with canonical genes, TEs contribute on average of 2.8% of the total

163  features detected in each cell. The number of TE transcripts observed per cell (UMI counts) was
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164  between 2 and 655, with TEs accounting for ~1.3% of UMI counts per cell (Figure 2C). To

165 determine whether any PBMC cell subtypes have distinct levels of TE expression, we used cell
166  type predictions obtained by reference mapping?. Dendritic cells express more TE features
167 than other cell types, with a median of 23 HERV and 107 L1 features detected per cell (Figure
168 2B). However, the average proportion of TE transcripts observed was not similarly elevated in
169 dendritic cells (Figure 2C), suggesting that expression levels at many loci is small enough that
170 TE load is not appreciably affected. Intriguingly, we observed a bimodal distribution in the

171  proportion of HERYV transcripts for dendritic cells, indicating distinct levels of HERV expression
172  within the same cell type. Using more specific sub-cell type labels (predicted.celltype.l2) we
173  found that plasmacytoid dendritic cells (pDC) had significantly higher HERV loads than other
174  dendritic cell subtypes (Figure 2D). There were no significant differences in the number of

175 HERV features among conventional dendritic cells (cDC1, cDC2), AXL+ dendritic cells (ASDC),
176  and pDCs (Figure 2D). Overall, we found that TE expression was detectable using single cell
177  expression profiling, and although the contribution of the retrotranscriptome is small, it yields
178  detectable signal that distinguishes cell types.

179 Second, we compared TE expression measurements obtained using bulk and single cell
180 RNA-seq to investigate whether the different approaches would detect similar numbers of TE
181  features and proportions of TE reads. We obtained bulk RNA-seq data from 157 PBMC samples
182  collected from healthy donors aged 20-74. Sequencing reads were aligned using similar

183  alignment parameters; TE expression was quantified using Telescope®® with identical TE

184  annotations. Pseudobulk expression profiles were created by aggregating single cell UMI counts
185 for the entire sample, and for each predicted cell type. We found that the proportion of HERV
186  UMI counts (when compared to total UMI counts) in the pseudobulk dataset (0.24%) was

187 comparable to the proportion of HERV fragments in the bulk datasets (range: 0.16%-0.43%,
188 mean=0.28%) (Figure 2E). The proportion of L1 transcripts in the pseudobulk dataset (1.09%)

189  was greater than nearly all bulk dataset L1 proportions (range: 0.32%-2.69%, mean=0.52%).
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190 We hypothesize that the disparity could be attributed to the annotation quality and genomic

191 locations of L1 loci differing from that of HERV loci. L1 annotations are more frequently located
192 intronically or overlapping exons than HERV annotations, potentially favoring the detection of L1
193 transcripts by the 3’ tag-based protocol from 10x. We observed a higher number of both HERV
194 and L1 features in single cell data (Figure S2), consistent with prior findings?:. This may be

195 explained by differences in sequencing depth: the pseudobulk dataset contained over 142M
196  UMI counts, while the average size of the bulk RNA-seq datasets was less than 15M fragments;
197 increased sequencing depth makes it more likely that low abundance transcripts will be

198  detected.

199 We sought to characterize TE loci with high biological heterogeneity in the data, because
200 these features are informative for ascribing biological characteristics to individual cells?2. In

201  order to separate technical variance from biological effects, we used the residual variance from
202  models fitted to each feature to quantify how variable is their expression throughout the cells.
203  The residual variance of most canonical (or coding) transcripts ranges between 1 and 10%

204  (Figure 2F). TEs tend to have lower residual variance (between 1-2%) compared to canonical
205 genes (Figures 2H and 21). The residual variance of L1 elements was greater than the residual
206  variance of HERVSs, but for both biotypes it was in the same range as the residual variance for
207  long-noncoding RNA transcripts (Figure 2G). There are transcripts in all biotype sets with no
208 biological variability, including canonical transcripts annotated as marker genes, and TE

209 features with higher residual variance than marker genes, suggesting the expression of HERVs
210 and L1s is not merely transcriptional readthrough or random noise in RNA-seq datasets;

211  instead, there is a deliberate regulation of a specific set of TE transcripts. Stellarscope provides
212  information about the intricate landscape of TE expression within single PBMCs. Demonstrating
213 that HERV and L1 transcripts can be reliably detected in single-cell data, we found that they

214  contribute to the complexity of the transcriptome.
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215 Novel PBMC subsets are identified using locus specific TE expression profiles compared
216 to canonical genes alone

217 Resolution of gene expression at the single cell level has revealed novel cell types and
218 subsets. Since these studies were performed using established gene models that mostly

219 exclude TEs, we asked whether HERV or L1 expression profiles contain distinct patterns that
220 could inform novel cell classifications, or whether the previous cell type identities based on CGs
221  were adequate for characterizing cells. Using different sets of highly variable features (HVFs)
222  thatinclude or exclude TEs, we performed linear dimensionality reduction using principal

223  component analysis (PCA). Significant PCs were transformed using non-linear Uniform Manifold
224  Approximation and Projection (UMAP) for visualization. Using the complete set of HVFs

225 (including CG, HERV, and L1) yields a representation that clearly distinguishes major PBMC
226 lineages and cell types (Monocytes, Dendritic, B cells, T cells, NK cells), as well as many cell
227  type subsets (Figure 3A), which will help to elucidate the mechanisms underlying observed

228  associations of dysregulated TE expression with autoimmunity, neurodegeneration, and cancer.
229  In order to better understand the contribution of TEs to the cellular transcriptional landscape, we
230 next performed dimensionality reduction on sets of HVFs patrtitioned by feature class.

231 Dimensionality reduction using CGs alone revealed a representation that is similar to the full
232  HVF set (Figure 3B). This was expected, as CGs include 10,982 features, over 93% of HVFs,
233 and include HVFs with the greatest biological variability. Differences between these projections
234  indicate information contributed by TEs.

235 Projections based only on HERV HVFs were distinct from the full HVF set and describe
236  distinct similarity patterns among cells (Figure 3C). The HERV-based projection shows some
237  distinctions between major PBMC cell types, with separate groupings for CD14 monocytes,

238 CD16 monocytes, B cells, Dendritic cells, and NK cells. However, some cell type subsets were
239 not clearly distinguished. For example, there was no clear separation between CD4+ and CD8+

240 T cells. Furthermore, the groupings appeared *noisy* when visualized with reference-based cell
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241 type assignments. For example, although most CD14 monocytes appeared together on the left
242  side of the UMAP, there were also CD14 monocytes in nearby groupings primarily comprised of
243 T cells. Despite this failure to recapitulate CG-based identities at the subset level, there appears
244  to be structure in the HERV expression patterns driving similarities among cells, in contrast to
245  random noise. The small number of HVF HERVs (120 features) and the relatively low biological
246  heterogeneity of these features certainly contribute to these differences, but it may also reflect
247  novel cell states or processes involving HERV that are distinct from established celltype

248  identities.

249 Similarly, LINE-1 only transcriptomes more distinctly reproduced the separation of

250 PBMC subtypes when compared to LTR-only transcriptomes and utilized 648 features and 44
251 dimensions (Figure 3D).

252 A key hypothesis tested by this study was the potential for the addition of the

253  retrotranscriptome to determine previously unidentified subcategories of cell types from scRNA-
254  seqtools. When utilizing unsupervised clustering algorithms on canonical CG (Figure 3E), LTR-
255  only (Figure 3F) at resolution = 1.0, a number of subclusters are determined distinct from the
256  reference annotations. Where unsupervised clustering of CG-only and LINE-1 transcriptomes
257 largely recapitulates the reference clustering within the same UMAP space, unsupervised

258 clustering of LTR-only transcriptomes identified expression similarities as subclusters within
259  broader cell types and these subclusters include cells from a number of cell types such as NK
260 cells and CD4+ T cells, yet B cells and pDCs are still distinct as LTR-only clusters.

261 This result provides evidence that TE transcripts are unique to certain cell-type

262  transcriptomes and contribute to cell identity. These findings are a compelling argument for the
263  inclusion of the non-canonical TE transcriptome in analyzing scRNA-seq data and cell-type

264  transcriptional profiles in healthy and disease conditions.
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265 PBMC subtypes are characterized by expression of specific HERV loci

266 Groups of similar cells are typically classified using markers, including surface proteins
267  and more recently, RNA expression. High quality markers correlate with the characteristics and
268  biological processes within the cell. Most of the markers commonly used are protein coding

269 genes, while several long non-coding RNAs (IncRNAs) have been found to be highly sensitive in
270 transcriptomic studies?®. The utility of TE-derived RNAs as markers has not previously been

271  demonstrated, partially due to technological challenges with assaying the expression of specific
272  TE loci in either sorted bulk samples or single cells. Using Stellarscope, we achieved single

273 locus resolution of TE expression in individual PBMC, and show that locus-specific HERV

274  transcripts are distinctly expressed in differentiated hematological cell types (Figure 4).

275  Transcriptional differences amongst cells correlated with known cell types, including subtypes
276  within T cells, B cells and monocyte lineages. Overall, we identified 66 significant tests

277  representing 34 distinct HERV loci with significant differences in expression in one or more cell
278  subsets when compared with all other cells (adjusted p-value < 0.05, average log- fold change >
279  0.25) (Figures 4A and S4).

280 Eight HERV features were significantly upregulated in monocytes, representing possible
281 HERV-based markers. Four features were uniquely upregulated in CD14 Monocytes, which

282  constitute the largest proportion of cells: ERVLB4-4g31.21a (intergenic), HARLEQUIN_7q33a
283  (intergenic), HML2-1922, and MER34B-4g21.2. One feature, MER4B-19q13.42a, was uniquely
284  upregulated in CD16 Monocytes, while MER34B-1g23.3b and MER4-22g12.3 were significantly
285  upregulated for both monocyte subsets, suggesting that these may be useful in distinguishing
286  monocytes from other cell types, but less useful in resolving subsets. Significant upregulation of
287 MER4B-19913.42b was detected in both CD16 monocytes and pDCs.

288 In pDCs, the relatively high percentage of HERYV transcripts (Figure 2D) was matched by
289 alarge number of differentially expressed loci. We identified six potential HERV markers:

290 HARLEQUIN-1g32.1, ERV316A3-21921.29, HUERSP2-19913.2, MER4B-19q13.42b, PRIMA4-
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291  12p11.21b, MER101-16pl12.2a. Two of these, ERV316A3-21g21.2g and PRIMA4-12p11.21b,
292  were unique to pDCs. HUERSP2-19¢13.2 and MER101-16p12.2a were shared with different B
293  cell subtypes, while HARLEQUIN-1g32.1 was significant six different subtypes, including three
294 B cell subtypes and two other dendritic cell subtypes. We had previously identified this locus as
295 the HERV with the greatest biological heterogeneity (as measured by residual variance, Figure
296  2H) thus supporting our approach for variable feature selection. Considering the strength of this
297  marker compared with canonical marker genes, expression of HARLEQUIN-1g32.1 in pDCs has
298 the greatest effect size and significance of all features tested (adjusted p value < 1e-122 ;

299 average log: fold change = 4.213),and is among the top markers for all cell subtypes.

300 cDC2 were marked by HARLEQUIN-6g21.31. pDC were marked by ERV316A3-21g21g
301 and PRIMA4-12p11.21b. Naive B cells were marked by HML5-8p21.2 and MER4-17q21.2d.
302 Memory B cells were marked by MER101-16p11.2¢c and MER61-1g23.1c. MAIT cells were

303 marked by HERVS71-8p23.1b, and NK cells were marked by HML5-1g23.1.

304 13 of the marker LTR transcripts were also detected as distinct transcriptional signatures
305 in 2-3 cell types demonstrating the possibility of shared transcriptional events in the gene

306 expression patterns across these cell types. pDCs were shown to share 3 marker TE

307  transcripts: CD16 Monocytes shared the MER4B-19g13.42b with CD16 Monocytes, HUERSP2-
308 19g13.2 with Plasmablasts, and MER101-16p12.2a with B intermediate cells. Both NK cells and
309 the NK_CD56bright subtype shared expression of HERVH-12p13.31d.

310 Memory and intermediate B cell subtypes also shared differential relative expression of
311 ERVLE-4g24e with naive B cells and HERVEA-5022.2 with plasmablasts showing common

312  retrotranscriptomic patterns across B lineage cells. Additionally, intermediate B cells and

313 memory B cells shared expression of HARLEQUIN-1g23.1. CD8+ TEM also shared expression
314  of PRIMA4-149g22.1 with and NK cells and CD4+ subtypes, as well as MER101-16p12.2¢ with

315 NK proliferating cells and dnT cells. CD4+ TCM, CD4+ Naive and B intermediate cells
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316  expressed ERV316A3-2g22.2b. Finally, CD4+ TCM, naive CD8+ T cells and CD8+ TEM shared

317  expression of HARLEQUIN-17g12, which may be a T cell lineage marker LTR transcript.
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318 Discussion

319 Cell identity has become a changing landscape with new technologies. Shape shifting
320 cells change as they squeeze through vessels or home to tissues, and cell surface markers vary
321 inthe cell’s journey. Lineage development can be determined by cell sub-types and

322 identification of RNA-seq transcripts from single cell resolution. Yet all of these identifiers of cell
323 identity ignore the large part of the genome composed of transposable elements (TES).

324 In this study, we present a SCRNA-seg-based computational pipeline for characterizing
325 cell identity based on the expression of human endogenous retrovirus (HERV) and Long

326  interspersed nuclear elements type 1 (LINE-1; L1) from the TEs. We demonstrate that TEs can
327  be identified from scRNA-seq data at a locus specific level, and that TE signatures could identify
328 new cell sub-types over canonical gene markers and suggest a new layer of complexity of cell
329 identity.

330 The initial step of the reference pipeline Stellarscope is the mapping stage, where

331  alignments are filtered according to a list of passing barcodes. Then PCR duplicates are

332 identified and removed using a novel multimapper-aware UMI deduplication approach.

333  Stellarscope implements an approach that considers all possible mapping locations for each
334  read. For each UMI sequence found on multiple reads, an undirected graph is constructed with
335 nodes corresponding to reads. Then, a Bayesian mixture model is fitted to the deduplicated
336  weight matrix using an expectation maximization algorithm. Importantly, due to the relatively
337 small sequencing depth of TEs per cell, pooling models were implemented that enable the

338 utilization of information across cells for resolving ambiguous reads.

339 Biologically, we then probed RNA-seq datasets for the contribution of TE loci to single
340 cell transcriptomes. Using scRNA-seq data from human peripheral blood mononuclear cells as
341 areference, and found that compared with canonical genes, TEs contributed on average of

342 2.8% of the total features detected in each cell.
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343 We sought to characterize TE loci with high biological heterogeneity in the data, because
344  these features are informative for ascribing biological characteristics to individual cells. In order
345 to separate technical variance from biological effects, we used the residual variance from

346  models fitted to each feature to quantify how variable is their expression throughout the cells.
347  TEs tended to have lower residual variance (between 1-2) compared to canonical genes

348 (between 1-10). There were transcripts in all biotype sets with no biological variability, including
349 canonical transcripts annotated as marker genes, and TE features with higher residual variance
350 than marker genes, suggesting the expression of HERVs and L1s is not merely transcriptional
351 readthrough or random noise in RNA-seq datasets. Instead, there is a deliberate regulation of a
352  specific set of TE transcripts.

353 We then asked whether HERV or L1 expression profiles contained distinct patterns that
354  could inform novel cell classifications Using different sets of highly variable features (HVFs) that
355 include or exclude TEs, we performed dimensionality reduction using principal component

356 analysis (PCA) and uniform manifold approximation and projection (UMAP). Using the complete
357 set of HVFs (including CG, HERV, and L1) yields a representation that clearly distinguishes
358 major PBMC lineages and cell types. Unsupervised clustering using only highly variable HERVs
359 identified expression similarities as subclusters within broader cell types, and these subclusters
360 included cells from a number of cell types such as NK cells and CD4+ T cells. However, B cells
361 and pDCs were still formed distinct clusters using HERV features alone.

362 After having identified novel cell sub-types based upon differential TE expression, we
363  probed known annotated cell types for unigue TE expression. Notably, dendritic cells expressed
364 more TE features than other cell types, with a median of 23 HERV and 107 L1 features detected
365  per cell. Using specific sub-cell type labels, we found that plasmacytoid dendritic cells (pDC)
366  had significantly higher HERYV loads than other dendritic cell subtypes. In pDCs, the relatively
367  high percentage of HERYV transcripts was matched by a large number of differentially expressed

368 loci. We identified six potential HERV markers: HARLEQUIN-1q32.1, ERV316A3-21g21.2g,
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369 HUERSP2-19q13.2, MER4B-19q13.42b, PRIMA4-12p11.21b, MER101-16p12.2a. Two of

370 these, ERV316A3-21g21.2g and PRIMA4-12p11.21b, were unique to pDCs. Thus, our single
371  cell profiling provides novel insights into cell identities by uncovering unique TE transcripts

372  delineating known cell sub-types.

373 As the known role of transposable elements in biology grows, with major contributions
374  noted in human development, aging, neurodegenerative diseases and cancer, understanding
375  how single cells express TEs is critical to understand their roles in biology and human diseases.
376  Our study establishes a novel pipeline for integrated analysis of comprehensive single-cell

377 genomics and tissue datasets and provides new knowledge and opportunities for translation of

378 the complexities of cell identities.

379 Limitations of this study

380 Although this study provides a powerful computational pipeline to determine differential
381  expression of TEs from scRNA-seq data, we note a few limitations. First, this study’s primary
382  focus on human datasets limits mechanistic manipulation in animal models. The annotation of
383  TEs in other species is more limited, and the biological behavior of TEs in other species quite
384  different making comparison with human data moot. Second, although a broad array of

385 annotated TEs are included in the reference set, there are other non annotated LTRs or other
386  TEs which are not included, and as additional human genomes are sequenced telomere to
387 telomere, polymorphisms within the TE genes will need to be accounted for. Finally, the insights
388 gained from the human data sets will need to be validated with specific probes, and new tools
389 developed to mark expression of TE ORFs (including specific antibodies) and locus specific TE

390 probes.
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391 Methods

392 Single cell reassignment mixture model

393  Stellarscope implements a generative model of single cell RNA-seq that rescales alignment

394  probabilities for independently aligned reads based on the cumulative weights of all alignments
395 to each transcript. Fundamentally, the probability that a given alignment is the “true” alignment
396 increases when the total supporting information for that transcript is greater. The model and

397 notation follow from Bendall et al. 20193, Each sequencing fragment is comprised of three parts
398 that are tracked by our model: 1) F = [f, f>, ..., fu], the set of N observed cDNA sequences from
399  the originating transcript; 2) the corresponding cell barcodes B = [by, by, ..., by], where b; = b;
400 for all i and j that originate from the same cell; and 3) a Unique Molecular Identifier (UMI) U =
401  [uy,uy, ..., uy] for each template molecule. Let C = [¢q, ¢4, ..., cy ], be the set of M cells that are
402 included in the model. Cells are categorized a priori into subsets, or “pools”, depending on the
403  chosen pooling mode. Let P =[P4, P,, ..., Pp] be the set of D pools, and let P = [py,ps, ..., Pul,
404  be an indicator mapping each cell to the pool to which it belongs, V; p; € P. For individual

405 pooling mode, each cell is in a separate pool (V; p; = ¢;). For pseudobulk pooling mode, all cells
406  are in the same pool (V; p; = 1). For celltype pooling mode, the pool assignment for each cell is
407  provided as input for the model. For each pool, we estimate the abundance parameter mp =
408  [mp, mp,, -, TTp, ] rEPresenting the proportion of total fragments originating from each of K

409 annotated transcripts. In addition, we estimate the reassignment parameter 8p =

410  [6p,,0p,, -, 0p, ] representing the proportion of ambiguous fragments generated by each

411  transcript. Thus, the probability of observing fragment f; with cell barcode b; is given by:

K

412 Pr(fi:bilnP:QPl ql) = anjgpjyiqij
j=0
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413 where P is the pool containing cell barcode b; (py,), Tp and 6, are pool-specific parameters, g;
414  is a vector of mapping qualities for f;, and y; is an indicator where y; = 1 if f; is ambiguously
415 aligned and y; = 0 otherwise.

416 As in earlier work, we formulate a mixture model accounting for uncertainty in the initial
417  fragment assignments. Let xp; = [xpio,xpil, ...,xpl.K] be a set of partial assignment (or

418  membership) weights for fragment f; in pool P. If f; did not originate from pool P (p,, # P), then

419 v, Xp; = 0; otherwise Zj;o Xp;; = 1 and Xp; = 0 if f; does not align to t;. We assume that xp; is

420  distributed according to a multinomial distribution with success probability 7p. Intuitively, x;;
421  represents our confidence that f; was generated by transcript ¢;. The complete data likelihood

422  across all pools is
P N K
y; XPij
423 L(T’:;elx,q:y’P)oc nnn[npjgp]lql]]
Pl y

424  PBMC datasets

425  To validate the efficacy of the Stellarscope workflow we obtained and analyzed three publicly
426  available PBMCs scRNA-seq datasets from 10x Genomics corresponding to a healthy female
427  donor aged 25-30. Cells were sequenced by 10x Genomics using the Chromium Next GEM

428  Single Cell 3' HT Reagent Kit v3.1.

429 HERV annotations

430 A Stellarscope analysis requires an annotation that defines the transcriptional unit of each TE to
431  be quantified. For HERV proviruses, the prototypical transcriptional unit contains an internal
432  protein-coding region flanked by LTR regulatory regions. Existing annotations, such as those
433 identified by RepeatMasker?* (using the RepBase database?® or Dfam?® identify sequence

434  regions matching TE families but do not seek to annotate transcriptional units. Both databases

435  represent the internal region and corresponding LTRs using separate models, and the regions
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436 identified are sometimes discontinuous. In these annotations a HERV transcriptional unit is

437  likely to appear as a collection of nearby annotations from the same HERV subfamily.

438 We defined transcriptional units for HERV proviruses by combining RepeatMasker

439 annotations belonging to the same HERYV subfamily that are also located in adjacent or nearby
440  genomic regions. Briefly, repeat families from the same HERYV subfamily (internal region plus
441  flanking LTRs) were identified using the RepBase database?®. RepeatMasker annotations for
442  each repeat subfamily were downloaded using the UCSC table browser?” and converted to GTF
443  format, merging nearby annotations from the same repeat subfamily. Next, LTRs flanking

444  internal regions were identified and grouped using BEDtools?®. HERV transcriptional units

445  containing internal regions were assembled using custom python scripts. Each putative locus
446  was categorized according to provirus organization; loci that did not conform to expected HERV
447  organization or conflicted with other loci were visually inspected using IGV2® and manually

448  curated.

449 As validation, we compared our annotations to the HERV-K(HML-2) annotations published by
450  Subramanian et al.*° the two annotations were concordant. Final annotations were output as
451  GTF (S1 File); all annotations, scripts, and supporting documentation are available at

452 https://github.com/mlbendall/telescope annotation db.

453

454  Raw data/alignment

455  The PBMCs scRNA-seq data was publicly available and re-analyzed in this study. Raw reads
456  were aligned to the GRCh38 reference genome using STARsolo to produce a Binary Alignment
457  Map (BAM) file containing cell barcodes for each sequenced individual cell and for each of

458 them, the set of possible locations their reads align to. Parameters that allow multiple

459  alignments per read and a range score were used to retain the set of best possible alignments

460 for each read.
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461

462  Preprocessing

463  Quality control was performed on the data at the cell level. Scater® functions were used to
464  identify outliers in the percentage of mitochondrial reads, total number of features, and total
465 number of molecules detected, distributions and remove cells using these adaptive thresholds.
466  Cell type identity was assigned to each cell using the Azimuth3? PBMCs reference

467  transcriptome. Multiplets were detected using Scrublet®® and removed. The list of cell barcodes

468 from cells that passed these filters was subsequently used for the Stellarscope analysis.

469  Fragment Reassignment for Single-Cell Transcriptomics

470  The alignment from STARsolo and the list of filtered Cell Barcodes were input to Stellarscope
471  and the BAM file alignments for valid cells were sorted using Stellarscope Cellsort. Then,

472  Stellarscope was used in the pooling mode ‘celltype’ to reassign ambigous reads overlapping
473  the regions from the TE annotation and obtain a TE counts matrix compatible with the Canonical

474 Genes counts matrix.

475  Downstream analysis

476 A merged matrix was created from the canonical genes counts matrix and the TE counts matrix
477  and subsequent analyses were performed using Seurat version 44, Cell types were annotated,
478  and raw counts were processed using the ‘sctransform’ method to normalize the data and

479  stabilize the variance with the aim of removing technical variability and retaining biological

480 variability.

481  Principal Component Analysis (PCA)
482 PCA was performed on batch-corrected Seurat data to generate a lower-dimensional
483 representation. The data were reduced to their top 50 principal components using the “RunPCA”

484 Seurat function.
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Clustering
Putative cell types in the three PBMC datasets were annotated by 10x Genomics. We used the
50-component PCA representation of each dataset to generate neighbour graphs and then used

the Seurat function to perform the hierarchical clustering (“BuildClusterTree”).

Differential Gene Expression

The MAST? function in Seurat was applied to the single-cell PBMC datasets to identify
differentially expressed genes across clusters (add parameters). MAST is a generalized linear
model (GLM) framework that treats cellular detection rate as a covariate and identifies enriched

genes whilst correcting for covariates and gene-gene correlations.

Visualization
2D Uniform Manifold Approximation Projections (UMAPS) were created from the PCA matrix

of the top 50 components using the “RunUMAP” function in Seurat.

Code availability

https://github.com/nixonlab/stellarscope
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620 Figure Legends

621  Figure 1. Stellarscope — Single cell Transposable Element Locus Level Analysis of

622 scRNA Sequencing.

623 STELLARSCOPE SETUP. (A) Alignments are filtered according to a user-provided list of

624  passing barcodes ("whitelist"). (B) The cell barcode (CB) and unique molecular identifier (UMI)
625 from valid fragments are stored internally. (C) Initial weight matrix with fragments as rows and
626 candidate assigned features as columns. (D) Values for the initial weight matrix setup result
627  from intersecting each fragment's alignment(s) with the TE features annotation and selecting the
628  best alignment score for each fragment for each locus.

629 MULTIMAPPER-AWARE UMI DEDUPLICATION. (E) fragments that contain the same CB+UMI
630 combination (i.e. duplicates) and their alignment positions are identified. (F) An undirected

631  weighted graph is built for each CB+UMI combination with fragments as nodes and shared

632  alignments as edge weights. For each component the most informative read according to

633  alignment quality and ambiguity criteria is selected as representative. This method identifies and
634  corrects non obvious duplicates (e.g. f1-f2, and f1-f3).

635 MODEL FITTING. Stellarscope fits a Bayesian mixture model to the deduplicated weight matrix
636  using an expectation maximization algorithm for each cell (G), for all cells (H), and for each cell
637  type () in pooling modes Individual, Pseudobulk, and Celltype, respectively.

638 REASSIGNMENT. Once the model is fitted and parameters are estimated, Stellarscope uses
639 the posterior probability matrix to reassign ambiguous fragments to their final generating locus.
640  Stellarscope provides a variety of reassignment strategies (J) including filtering based on a

641  threshold, excluding fragments with multiple optimal alignments, and randomly selecting from
642  multiple optimal alignments; these criteria result in a different number of excluded alignments
643  (shaded in grey). The output from Stellarscope (K) includes an umi-tracking file with the graphs

644 and representative reads selection; a log file with the fitted models, the number of observations
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645 and parameters estimated, and a log likelihood for the fitted model; an updated BAM file; and a
646  sparse single-cell counts matrix compatible with all the generally used analysis tools.

647

648  Figure 2. Stellarscope determines the retrotranscriptome of human PBMCs at single cell
649  resolution.

650 (A) Schematic representation of the stepwise analytical pipeline employed to obtain the sScRNA-
651  seq matrix counts for the PBMCs. Alignment: reads are aligned to the hg38 reference genome
652  retaining multimappers and alignments of varying quality. Cell quality control: outlier cells are
653 identified and excluded using adaptive thresholds on the number of features detected, total
654  number of molecules detected, and percentage of mitochondrial reads. Celltype annotation:
655 scRNA-seq data is projected onto the Azimuth reference atlas for PBMCs . Doublet filtering:
656  doublets are detected and removed using Scrublet® to obtain the final list of cell barcodes that
657 are input to Stellarscope for reassignment of ambiguous reads and counting of TE features. (B)
658  Violin plots showing the distribution of detected TE features in the PBMCs (left panel), and

659 detected HERV features and L1 features (Y axes) by PBMC cell type (X axes). (C) Violin plots
660  showing the distribution of the percentage of reads by cell that is contributed by TE loci in the
661 PBMCs (left panel), the percentage of reads by cell that is contributed by HERV loci and L1 loci
662 (Y axes) by PBMC cell type (X axes). (D) Violin plots showing comparable distributions of

663 detected HERYV features number in Dendritic Cells (upper panel) and a significant difference in
664  the percentage of reads by cell that are contributed by HERV loci in plasmacytoid Dendritic
665  Cells. (cDC1s: Conventional type 1 dendritic cells) (E) Measurements of TE expression from
666  true bulk RNA-seq data for 157 PBMC samples (gray) and from pseudobulk aggregation of the
667 PBMCs scRNA-seq data by cell type (blue) and by total cells (red). (F-1) Biological variability of
668  expression values for different sets of transcripts by biotype showing matching patterns for TE

669 (HERV and L1) transcripts and biologically relevant noncoding trancsripts (ncRNAS). Features
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670  with arv value higher than 1 show relevant variation across the cells. Triangles in canonical
671 transcripts indicate marker genes determined by the reference transcriptome.

672

673  Figure 3: Transposable element features inform novel cell relationships and subtypes.
674 (A) UMAP based on all identified highly variable features (HVFs), including canonical genes
675 (CG), HERV, and L1. Cells are colored according to predicted celltype based on reference

676  mapping to the HUBMAP human PBMC reference, celltype.l2 annotation, using Azimuth. UMAP
677 is based on the top 40 principal components for 11,750 highly variable features. (B) UMAP

678 based only on CG HVFs. Cells are colored as in (A), based on 40 principal components for

679 10,982 highly variable features. (C) UMAP based only on HERV HVFs. Cells are colored as in
680 (A), based on 45 principal components for 120 highly variable features. (D) UMAP based only
681 on L1 HVFs. Cells are colored as in (A), based on 44 principal components for 648 highly

682 variable features. (E) UMAP based only on CG HVFs, as in (B). Cells are colored according to
683  unsupervised cluster label using resolution = 1. (F) UMAP based only on HERV HVFs, as in (C).
684  Cells are colored according to unsupervised cluster label using resolution = 1. (G) UMAP based
685 onlyon L1 HVFs, as in (D). Cells are colored according to unsupervised cluster label using

686  resolution = 1.

687

688  Figure 4. Expression of locus specific HERV features characterizes PBMC subsets.

689 (A) Feature plots showing the relative expression in each cell for 27 HERV features with

690 significant differential expression in one or more cell subset comparisons. Each plot is titled with
691 the feature name; within each plot, every cell is colored according to the scaled HERV

692  expression detected in that cell, see legend. Cells where there was no detection are colored
693 gray. The position of cells is identical in all plots and in Fig. 3A: the cells are plotted in UMAP

694  space calculated using all highly variable features (CG+HERV+ L1). The identity of the cell
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695  subset (or subsets) in which each HERV is significantly upgregulated is annotated in the lower
696 left of each plot with the average log2 fold change in parentheses; HERV features that were
697  significantly upregulated in more than three cell subsets, only the top three significance tests are
698 shown, as ranked by adjusted p-value. Annotation text is colored according to the celltype color
699 palettes in the legend. (B) Two dimensional heatmap showing the relative expression in each
700 cell for 27 HERYV features with significant differential expression in one or more cell subset

701  comparisons. Each row represents a HERV feature with the names along the Y axis. Each

702  column represents one cell with the predicted cell subset shown above the plot, colored

703  according to the celltype color palette. Features are ordered by hierarchical clustering of the
704  heatmap data. Cells are first grouped according to cell subset, then ordered by hierarchical

705  clustering within each subset.

706

707

708

709
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Figure 1: Stellarscope quantifies TE transcripts at locus resolution in
single-cell RNA-seq datasets
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Figure 1. Stellarscope - Single cell Transposable Element Locus Level Analysis of scRNA
Sequencing.

STELLARSCOPE SETUP. (A) Alignments are filtered according to a user-provided list of
passing barcodes ("whitelist"). (B) The cell barcode (CB) and unique molecular identifier (UMI)
from valid fragments are stored internally. (C) Initial weight matrix with fragments as rows and
candidate assigned features as columns. (D) Values for the initial weight matrix setup result
from intersecting each fragment's alignment(s) with the TE features annotation and selecting the
best alignment score for each fragment for each locus.

MULTIMAPPER-AWARE UMI DEDUPLICATION. (E) fragments that contain the same CB+UMI
combination (i.e. duplicates) and their alignment positions are identified. (F) An undirected
weighted graph is built for each CB+UMI combination with fragments as nodes and shared
alignments as edge weights. For each component the most informative read according to
alignment quality and ambiguity criteria is selected as representative. This method identifies and
corrects non obvious duplicates (e.g. f1-f2, and f1-f3).

MODEL FITTING. Stellarscope fits a Bayesian mixture model to the deduplicated weight matrix
using an expectation maximization algorithm for each cell (G), for all cells (H), and for each cell
type (I) in pooling modes Individual, Pseudobulk, and Celltype, respectively.

REASSIGNMENT. Once the model is fitted and parameters are estimated, Stellarscope uses
the posterior probability matrix to reassign ambiguous fragments to their final generating locus.
Stellarscope provides a variety of reassignment strategies (J) including filtering based on a
threshold, excluding fragments with multiple optimal alignments, and randomly selecting from
multiple optimal alignments; these criteria result in a different number of excluded alignments
(shaded in grey). The output from Stellarscope (K) includes an umi-tracking file with the graphs
and representative reads selection; a log file with the fitted models, the number of observations
and parameters estimated, and a log likelihood for the fitted model; an updated BAM file; and a
sparse single-cell counts matrix compatible with all the generally used analysis tools.
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Figure 2: Single-cell transcriptional landscape of transposable elements in healthy
human peripheral blood mononuclear cells
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Figure 2. Stellarscope determines the retrotranscriptome of human leukocytes at single
cell resolution.

(A) Schematic representation of the stepwise analytical pipeline employed to obtain the scRNA-
seq matrix counts for the PBMCs. Alignment: reads are aligned to the hg38 reference genome
retaining multimappers and alignments of varying quality. Cell quality control: outlier cells are
identified and excluded using adaptive thresholds on the number of features detected, total
number of molecules detected, and percentage of mitochondrial reads. Celltype annotation:
scRNA-seq data is projected onto the Azimuth reference atlas for PBMCs (PMID: 31178118).
Doublet filtering: doublets are detected and removed using Scrublet (PMID: 30954476) to obtain
the final list of cell barcodes that are input to Stellarscope for reassignment of ambiguous reads
and counting of TE features. (B) Violin plots showing the distribution of detected TE features in
the PBMCs (left panel), and detected HERYV features and L1 features (Y axes) by PBMC cell
type (X axes). (C) Violin plots showing the distribution of the percentage of reads by cell that is
contributed by TE loci in the PBMCs (left panel), the percentage of reads by cell that is
contributed by HERV loci and L1 loci (Y axes) by PBMC cell type (X axes). (D) Violin plots
showing comparable distributions of detected HERV features number in Dendritic Cells (upper
panel) and a significant difference in the percentage of reads by cell that are contributed by
HERYV loci in plasmacytoid Dendritic Cells. (cDC1s: Conventional type 1 dendritic cells) (E)
Measurements of TE expression from true bulk RNA-seq data for 157 PBMC samples (gray)
and from pseudobulk aggregation of the PBMCs scRNA-seq data by cell type (blue) and by total
cells (red). (F-1) Biological variability of expression values for different sets of transcripts by
biotype showing matching patterns for TE (HERV and L1) transcripts and biologically relevant
noncoding trancsripts (ncRNAs). Features with a rv value higher than 1 show relevant variation
across the cells. Triangles in canonical transcripts indicate marker genes determined by the
reference transcriptome.
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Figure 3: Transposable element features inform novel cell relationships and subtypes.
(A) UMAP based on all identified highly variable features (HVFs), including canonical genes
(CG), HERYV, and L1. Cells are colored according to predicted celltype based on reference
mapping to the HUBMAP human PBMC reference, celltype.|2 annotation, using Azimuth. UMAP
is based on the top 40 principal components for 11,750 highly variable features. (B) UMAP
based only on CG HVFs. Cells are colored as in (A), based on 40 principal components for
10,982 highly variable features. (C) UMAP based only on HERV HVFs. Cells are colored as in
(A), based on 45 principal components for 120 highly variable features. (D) UMAP based only
on L1 HVFs. Cells are colored as in (A), based on 44 principal components for 648 highly
variable features. (E) UMAP based only on CG HVFs, as in (B). Cells are colored according to
unsupervised cluster label using resolution = 1. (F) UMAP based only on HERV HVFs, as in (C).
Cells are colored according to unsupervised cluster label using resolution = 1. (G) UMAP based
only on L1 HVFs, as in (D). Cells are colored according to unsupervised cluster label using
resolution = 1.
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Figure 4. Expression of locus specific HERV features characterizes leukocyte subsets.
(A) Feature plots showing the relative expression in each cell for 27 HERV features with
significant differential expression in one or more cell subset comparisons. Each plot is titled with
the feature name; within each plot, every cell is colored according to the scaled HERV
expression detected in that cell, see legend. Cells where there was no detection are colored
gray. The position of cells is identical in all plots and in Fig. 3A: the cells are plotted in UMAP
space calculated using all highly variable features (CG+HERV+ L1). The identity of the cell
subset (or subsets) in which each HERV is significantly upgregulated is annotated in the lower
left of each plot with the average log2 fold change in parentheses; HERV features that were
significantly upregulated in more than three cell subsets, only the top three significance tests are
shown, as ranked by adjusted p-value. Annotation text is colored according to the celltype color
palettes in the legend. (B) Two dimensional heatmap showing the relative expression in each
cell for 27 HERYV features with significant differential expression in one or more cell subset
comparisons. Each row represents a HERV feature with the names along the Y axis. Each
column represents one cell with the predicted cell subset shown above the plot, colored
according to the celltype color palette. Features are ordered by hierarchical clustering of the
heatmap data. Cells are first grouped according to cell subset, then ordered by hierarchical
clustering within each subset.
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