

1 **A single-cell transposable element atlas of human cell identity**

2 Helena Reyes-Gopar¹⁻³, Jez L. Marston¹, Bhavya Singh¹, Matthew Greenig⁴, Jonah Lin⁵,
3 Mario A. Ostrowski⁵, Kipchoge N. Randall Jr.^{6,7}, Santiago Sandoval-Motta³, Nicholas Dopkins¹,
4 Elsa Lawrence⁴, Morgan M. O'Mara¹, Tongyi Fei¹, Rodrigo R. R. Duarte⁸, Timothy R. Powell⁸,
5 Enrique Hernández-Lemus³, Luis P. Iñiguez¹, Douglas F. Nixon¹, Matthew L. Bendall*¹

6

7 1. Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York,
8 NY, USA.

9 2. Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de
10 México, Mexico City, Mexico.

11 3. Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica,
12 Mexico City, Mexico.

13 4. University of Cambridge, Cambridge, United Kingdom.

14 5. University of Toronto, Ontario, Canada.

15 6. Department of Biological Sciences, San Jose State University, San Jose, CA, USA.

16 7. Tri-Institutional MD-PhD Gateways Program, Weill Cornell Medicine, New York, NY, USA.

17 8. Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry,
18 Psychology & Neuroscience, King's College London, London, UK.

19

20 ^ These authors contributed equally to this work.

21 * Corresponding Author: MLB; E-mail: mlb4001@med.cornell.edu

22

23

24 **Summary**

25 Single cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex biological
26 systems. However, most sequencing studies overlook the contribution of transposable element
27 (TE) expression to the transcriptome. In both scRNA-seq and bulk tissue RNA sequencing
28 (RNA-seq), quantification of TE expression is challenging due to repetitive sequence content
29 and poorly characterized TE gene models. Here, we developed a tool and analysis pipeline for
30 Single cell Transposable Element Locus Level Analysis of scRNA Sequencing (Stellarscope)
31 that reassigns multi-mapped reads to specific genomic loci using an expectation-maximization
32 algorithm. Using Stellarscope, we built an atlas of TE expression in human PBMCs. We found
33 that locus-specific TEs delineate cell types and define new cell subsets not identified by
34 standard mRNA expression profiles. Altogether, this study provides comprehensive insights into
35 the influence of transposable elements in human biology.

36 **Keywords**

- 37 Single cell analyses
- 38 Single cell RNA sequencing
- 39 Transcriptomics
- 40 Retrotranscriptomics
- 41 Human Endogenous Retrovirus
- 42 LINE-1
- 43 Long interspersed nuclear elements
- 44 Bioinformatics
- 45 Computational biology
- 46 Stellarscope
- 47 GTEx
- 48 Transposable elements
- 49
- 50

51 Introduction

52 The classification of human cells based on cell surface markers, and more recently, RNA
53 expression, has led to a revolution in understanding of cell function, lineage and fate^{1–4}. High
54 quality markers correlate with the characteristics and biological processes within the cell.
55 However, these classifications have mostly been based on analyses of well characterized
56 reference gene models (canonical genes, CG), most of which are protein coding genes⁴. A large
57 fraction of the human genome are transposable elements (TEs), which are now appreciated to
58 be key regulators of development and cell differentiation, and can act as promoters, enhancers,
59 and regulators of nearby genes^{5–12}. TEs play important roles in genome evolution and can have
60 both positive and negative effects on gene regulation and genome stability. How these TEs
61 might shape or distinguish individual cells is unknown. An understanding of TE expression at a
62 single cell level is critical to determining the role of TEs in lineage development, cell sub-type
63 identification and gene regulation.

64 Recent advances in computational biology have led to pipelines which can assess
65 differential expression of TEs from bulk RNA-sequencing data at locus specificity^{13–18}. However,
66 there are several challenges in probing single cells for differential expression of TEs. For both
67 bulk and single cell RNA-seq, TE gene models are underdeveloped, TE transcript abundance is
68 low, and the repetitiveness of TEs leads to ambiguous mapping. The number of fragments
69 sequenced in bulk samples is typically sufficient to resolve ambiguity; however, far fewer
70 fragments are sequenced per cell in scRNA-seq. As a result, informative reads are not observed
71 for every cell, making model-based TE quantification a technological challenge.

72 In this study, we developed a computational pipeline called, “Single cell Transposable
73 Element Locus Level Analysis of scRNA Sequencing”, or “Stellarscope”. We then used
74 Stellarscope to determine the expression of TEs in human peripheral blood mononuclear cells
75 (PBMCs) at single cell resolution. We found that HERV and L1 transcripts can be reliably

76 detected in single-cell RNA-seq data, and they contribute biologically relevant information to the
77 transcriptome. We identified novel PBMC subsets using locus specific TE expression profiles
78 compared to CGs alone.

79 Some TE transcripts were unique to certain cell-type transcriptomes, and contributed to
80 cell identity. Furthermore, locus-specific HERV transcripts were distinctly expressed in
81 differentiated hematological cell types, and could identify new cell sub-types compared to using
82 coding genes alone.

83 This single-cell-resolution multi-scale analysis of the transposable element component of
84 the human 'dark genome' illustrates the influence of TEs in cell identity and fate, thus
85 establishing a novel framework for determining lineage markers derived from transposable
86 elements, and probing the role of sequences derived from genomic dark matter in biological
87 tissues.

88 Results

89 Quantification of TE expression at locus resolution in single cells with Stellarscope.

90 Stellarscope uses four sequential stages to provides a scRNA-seq counts matrix for TE
91 features by reassigning ambiguous (multimapping) reads to their most probable TE locus of
92 origin. In the first stage, alignments for each read (Figure 1A-C) are intersected with the TE
93 annotation (Figure 1D); reads with at least one alignment to a TE locus are retained for the
94 model. For each TE-aligned read, the best alignment score for each locus it aligns to is
95 recorded, resulting in an initial weight matrix of reads and candidate assigned features. The cell
96 barcode (CB) of each read is compared against the user-provided list of passing barcodes
97 (generally known as the ‘whitelist’), and both the CB and the unique molecular identifier (UMI)
98 are stored internally.

99 In the second stage, PCR duplicates are identified and removed using a novel
100 multimapper-aware UMI deduplication approach (Figure 1E). UMIs are random sequences
101 added to DNA fragments before PCR amplification that enable identification of PCR duplicates.
102 Sequencing fragments sharing identical UMIs are assumed to arise from the same original
103 molecule and should only contribute one observation (count) in gene expression experiments.
104 However, the low complexity in the UMI pool can lead to identical UMIs being attached to
105 distinct molecules. Standard practice for UMI deduplication considers not just the UMI
106 sequence, but also the mapping location of the sequencing fragment. This poses a problem for
107 multimapping fragments, as the mapping location is ambiguous. Stellarscope implements an
108 approach that considers all possible mapping locations for each read. For each UMI sequence
109 found on multiple reads, an undirected graph is constructed with nodes corresponding to reads
110 (Figure 1F). An edge exists between two reads if both reads have an alignment to the same
111 locus; edges are weighted by the number of such loci. Each unconnected subgraph (connected
112 component) represents a unique molecule, as the set of mapped genomic locations does not

113 intersect. Reads within the same connected component are considered PCR duplicates, and the
114 most informative duplicated read is selected as a representative. The result of this stage is a
115 corrected weight matrix with UMI duplicates removed.

116 In the third stage, a Bayesian mixture model is fitted to the deduplicated weight matrix
117 using an expectation maximization algorithm. Parameters of the model include the proportion of
118 total reads (π) and the proportion of multimapping reads (θ) originating from each locus.

119 Separate models could be fitted independently for each barcoded cell, meaning that the final
120 assignment of an ambiguous read depends solely on informative reads from the same cell
121 (Figure 1G). In practice, this approach suffers from a lack of informative reads, due to the
122 characteristic low expression levels of TEs and the relatively small sequencing depth per cell.

123 To address this challenge, pooling models were implemented that enable the utilization of
124 information across cells for resolving ambiguous reads. The “pseduobulk” pooling model
125 estimates one set of model parameters for all cells (Figure 1H), while read membership
126 probabilities and final assignments are determined at a single cell level. The implicit assumption
127 of this pooling model is that the retrotranscriptome of the sample is reflective of the

128 retrotranscriptome of each individual cell; that is, the relative expression levels of specific TE
129 loci are similar between any two given cells. This model will perform well in samples when
130 cellular heterogeneity is low, such as sorted cell subsets or cultured cells. In contrast, high
131 cellular heterogeneity may lead to incorrect reassessments as TE loci that are more abundant in
132 the sample – either due to higher expression or greater cell type proportion – will have greater
133 weight for ambiguous reassignment. To address such cases, we implemented the “cell type”

134 pooling model, which fits a separate model for each cell type label in the sample (Figure 1I). The
135 cell type model assumes that the relative TE expression levels are similar among cells with the
136 same cell type label and are not dependent on sample-level TE expression. The cell type labels
137 are provided as input and can be determined using existing supervised or unsupervised
138 approaches for cell type annotation.

139 For all three pooling modes, mixture models are specified by subsetting the initial
140 assignments and weights for each read in the pool. Starting values for π and θ , as well as priors
141 on these parameters, are initialized by assigning equal weight to each TE locus. The model is
142 optimized using an expectation-maximization algorithm, which iteratively calculates read
143 assignment probabilities and maximum a posteriori parameter estimates. The algorithm
144 terminates when convergence is achieved or when the maximum number of iterations is
145 reached. The outcome of this stage is the fitted models, including the read assignment posterior
146 probabilities and estimates of π and θ . The number of observations, the number of parameters
147 estimated, and complete data log likelihood for the fitted model are also reported, which can be
148 used for model selection.

149 **Stellarscope can determine the retrotranscriptome of human peripheral blood
150 mononuclear cells at single cell resolution.**

151 We examined the contribution of TE loci to single cell transcriptomes by profiling TE-
152 derived transcripts in human peripheral blood mononuclear cells (PBMCs). Sequencing reads
153 were aligned to the human genome (hg38) using alignment parameters that report up to 500
154 high-scoring alignments for “multimapping” reads – sequencing fragments that do not uniquely
155 align to the reference genome (STARsolo¹⁹). Multimapping reads were reassigned to the most
156 probable location using a Bayesian mixture model implemented in Stellarscope (see Methods
157 section). UMI counts for TEs reported by Stellarscope were joined with canonical gene (CG)
158 UMI counts for downstream analysis (Figure 2A).

159 First, we asked whether single cell expression profiling, given the low UMI counts per
160 cell, would yield any detectable TE expression. We identified a median of 61 TE features
161 detected per cell, with HERV and L1 features accounting for 12 and 49 features, respectively
162 (Figure 2B). Compared with canonical genes, TEs contribute on average of 2.8% of the total
163 features detected in each cell. The number of TE transcripts observed per cell (UMI counts) was

164 between 2 and 655, with TEs accounting for ~1.3% of UMI counts per cell (Figure 2C). To
165 determine whether any PBMC cell subtypes have distinct levels of TE expression, we used cell
166 type predictions obtained by reference mapping²⁰. Dendritic cells express more TE features
167 than other cell types, with a median of 23 HERV and 107 L1 features detected per cell (Figure
168 2B). However, the average proportion of TE transcripts observed was not similarly elevated in
169 dendritic cells (Figure 2C), suggesting that expression levels at many loci is small enough that
170 TE load is not appreciably affected. Intriguingly, we observed a bimodal distribution in the
171 proportion of HERV transcripts for dendritic cells, indicating distinct levels of HERV expression
172 within the same cell type. Using more specific sub-cell type labels (predicted.celltype.l2) we
173 found that plasmacytoid dendritic cells (pDC) had significantly higher HERV loads than other
174 dendritic cell subtypes (Figure 2D). There were no significant differences in the number of
175 HERV features among conventional dendritic cells (cDC1, cDC2), AXL+ dendritic cells (ASDC),
176 and pDCs (Figure 2D). Overall, we found that TE expression was detectable using single cell
177 expression profiling, and although the contribution of the retrotranscriptome is small, it yields
178 detectable signal that distinguishes cell types.

179 Second, we compared TE expression measurements obtained using bulk and single cell
180 RNA-seq to investigate whether the different approaches would detect similar numbers of TE
181 features and proportions of TE reads. We obtained bulk RNA-seq data from 157 PBMC samples
182 collected from healthy donors aged 20-74. Sequencing reads were aligned using similar
183 alignment parameters; TE expression was quantified using Telescope¹³ with identical TE
184 annotations. Pseudobulk expression profiles were created by aggregating single cell UMI counts
185 for the entire sample, and for each predicted cell type. We found that the proportion of HERV
186 UMI counts (when compared to total UMI counts) in the pseudobulk dataset (0.24%) was
187 comparable to the proportion of HERV fragments in the bulk datasets (range: 0.16%-0.43%,
188 mean=0.28%) (Figure 2E). The proportion of L1 transcripts in the pseudobulk dataset (1.09%)
189 was greater than nearly all bulk dataset L1 proportions (range: 0.32%-2.69%, mean=0.52%).

190 We hypothesize that the disparity could be attributed to the annotation quality and genomic
191 locations of L1 loci differing from that of HERV loci. L1 annotations are more frequently located
192 intronically or overlapping exons than HERV annotations, potentially favoring the detection of L1
193 transcripts by the 3' tag-based protocol from 10x. We observed a higher number of both HERV
194 and L1 features in single cell data (Figure S2), consistent with prior findings²¹. This may be
195 explained by differences in sequencing depth: the pseudobulk dataset contained over 142M
196 UMI counts, while the average size of the bulk RNA-seq datasets was less than 15M fragments;
197 increased sequencing depth makes it more likely that low abundance transcripts will be
198 detected.

199 We sought to characterize TE loci with high biological heterogeneity in the data, because
200 these features are informative for ascribing biological characteristics to individual cells²². In
201 order to separate technical variance from biological effects, we used the residual variance from
202 models fitted to each feature to quantify how variable is their expression throughout the cells.
203 The residual variance of most canonical (or coding) transcripts ranges between 1 and 10%
204 (Figure 2F). TEs tend to have lower residual variance (between 1-2%) compared to canonical
205 genes (Figures 2H and 2I). The residual variance of L1 elements was greater than the residual
206 variance of HERVs, but for both biotypes it was in the same range as the residual variance for
207 long-noncoding RNA transcripts (Figure 2G). There are transcripts in all biotype sets with no
208 biological variability, including canonical transcripts annotated as marker genes, and TE
209 features with higher residual variance than marker genes, suggesting the expression of HERVs
210 and L1s is not merely transcriptional readthrough or random noise in RNA-seq datasets;
211 instead, there is a deliberate regulation of a specific set of TE transcripts. Stellarscope provides
212 information about the intricate landscape of TE expression within single PBMCs. Demonstrating
213 that HERV and L1 transcripts can be reliably detected in single-cell data, we found that they
214 contribute to the complexity of the transcriptome.

215 **Novel PBMC subsets are identified using locus specific TE expression profiles compared
216 to canonical genes alone**

217 Resolution of gene expression at the single cell level has revealed novel cell types and
218 subsets. Since these studies were performed using established gene models that mostly
219 exclude TEs, we asked whether HERV or L1 expression profiles contain distinct patterns that
220 could inform novel cell classifications, or whether the previous cell type identities based on CGs
221 were adequate for characterizing cells. Using different sets of highly variable features (HVF)
222 that include or exclude TEs, we performed linear dimensionality reduction using principal
223 component analysis (PCA). Significant PCs were transformed using non-linear Uniform Manifold
224 Approximation and Projection (UMAP) for visualization. Using the complete set of HVFs
225 (including CG, HERV, and L1) yields a representation that clearly distinguishes major PBMC
226 lineages and cell types (Monocytes, Dendritic, B cells, T cells, NK cells), as well as many cell
227 type subsets (Figure 3A), which will help to elucidate the mechanisms underlying observed
228 associations of dysregulated TE expression with autoimmunity, neurodegeneration, and cancer.
229 In order to better understand the contribution of TEs to the cellular transcriptional landscape, we
230 next performed dimensionality reduction on sets of HVFs partitioned by feature class.
231 Dimensionality reduction using CGs alone revealed a representation that is similar to the full
232 HVF set (Figure 3B). This was expected, as CGs include 10,982 features, over 93% of HVFs,
233 and include HVFs with the greatest biological variability. Differences between these projections
234 indicate information contributed by TEs.

235 Projections based only on HERV HVFs were distinct from the full HVF set and describe
236 distinct similarity patterns among cells (Figure 3C). The HERV-based projection shows some
237 distinctions between major PBMC cell types, with separate groupings for CD14 monocytes,
238 CD16 monocytes, B cells, Dendritic cells, and NK cells. However, some cell type subsets were
239 not clearly distinguished. For example, there was no clear separation between CD4+ and CD8+
240 T cells. Furthermore, the groupings appeared *noisy* when visualized with reference-based cell

241 type assignments. For example, although most CD14 monocytes appeared together on the left
242 side of the UMAP, there were also CD14 monocytes in nearby groupings primarily comprised of
243 T cells. Despite this failure to recapitulate CG-based identities at the subset level, there appears
244 to be structure in the HERV expression patterns driving similarities among cells, in contrast to
245 random noise. The small number of HVF HERVs (120 features) and the relatively low biological
246 heterogeneity of these features certainly contribute to these differences, but it may also reflect
247 novel cell states or processes involving HERV that are distinct from established celltype
248 identities.

249 Similarly, LINE-1 only transcriptomes more distinctly reproduced the separation of
250 PBMC subtypes when compared to LTR-only transcriptomes and utilized 648 features and 44
251 dimensions (Figure 3D).

252 A key hypothesis tested by this study was the potential for the addition of the
253 retrotranscriptome to determine previously unidentified subcategories of cell types from scRNA-
254 seq tools. When utilizing unsupervised clustering algorithms on canonical CG (Figure 3E), LTR-
255 only (Figure 3F) at resolution = 1.0, a number of subclusters are determined distinct from the
256 reference annotations. Where unsupervised clustering of CG-only and LINE-1 transcriptomes
257 largely recapitulates the reference clustering within the same UMAP space, unsupervised
258 clustering of LTR-only transcriptomes identified expression similarities as subclusters within
259 broader cell types and these subclusters include cells from a number of cell types such as NK
260 cells and CD4+ T cells, yet B cells and pDCs are still distinct as LTR-only clusters.

261 This result provides evidence that TE transcripts are unique to certain cell-type
262 transcriptomes and contribute to cell identity. These findings are a compelling argument for the
263 inclusion of the non-canonical TE transcriptome in analyzing scRNA-seq data and cell-type
264 transcriptional profiles in healthy and disease conditions.

265 **PBMC subtypes are characterized by expression of specific HERV loci**

266 Groups of similar cells are typically classified using markers, including surface proteins
267 and more recently, RNA expression. High quality markers correlate with the characteristics and
268 biological processes within the cell. Most of the markers commonly used are protein coding
269 genes, while several long non-coding RNAs (lncRNAs) have been found to be highly sensitive in
270 transcriptomic studies²³. The utility of TE-derived RNAs as markers has not previously been
271 demonstrated, partially due to technological challenges with assaying the expression of specific
272 TE loci in either sorted bulk samples or single cells. Using Stellarscope, we achieved single
273 locus resolution of TE expression in individual PBMC, and show that locus-specific HERV
274 transcripts are distinctly expressed in differentiated hematological cell types (Figure 4).

275 Transcriptional differences amongst cells correlated with known cell types, including subtypes
276 within T cells, B cells and monocyte lineages. Overall, we identified 66 significant tests
277 representing 34 distinct HERV loci with significant differences in expression in one or more cell
278 subsets when compared with all other cells (adjusted p-value < 0.05, average log₂ fold change >
279 0.25) (Figures 4A and S4).

280 Eight HERV features were significantly upregulated in monocytes, representing possible
281 HERV-based markers. Four features were uniquely upregulated in CD14 Monocytes, which
282 constitute the largest proportion of cells: ERV1LB4-4q31.21a (intergenic), HARLEQUIN_7q33a
283 (intergenic), HML2-1q22, and MER34B-4q21.2. One feature, MER4B-19q13.42a, was uniquely
284 upregulated in CD16 Monocytes, while MER34B-1q23.3b and MER4-22q12.3 were significantly
285 upregulated for both monocyte subsets, suggesting that these may be useful in distinguishing
286 monocytes from other cell types, but less useful in resolving subsets. Significant upregulation of
287 MER4B-19q13.42b was detected in both CD16 monocytes and pDCs.

288 In pDCs, the relatively high percentage of HERV transcripts (Figure 2D) was matched by
289 a large number of differentially expressed loci. We identified six potential HERV markers:
290 HARLEQUIN-1q32.1, ERV316A3-21q21.2g, HUERSP2-19q13.2, MER4B-19q13.42b, PRIMA4-

291 12p11.21b, MER101-16p12.2a. Two of these, ERV316A3-21q21.2g and PRIMA4-12p11.21b,
292 were unique to pDCs. HUERSP2-19q13.2 and MER101-16p12.2a were shared with different B
293 cell subtypes, while HARLEQUIN-1q32.1 was significant six different subtypes, including three
294 B cell subtypes and two other dendritic cell subtypes. We had previously identified this locus as
295 the HERV with the greatest biological heterogeneity (as measured by residual variance, Figure
296 2H) thus supporting our approach for variable feature selection. Considering the strength of this
297 marker compared with canonical marker genes, expression of HARLEQUIN-1q32.1 in pDCs has
298 the greatest effect size and significance of all features tested (adjusted p value < 1e-122 ;
299 average \log_2 fold change = 4.213), and is among the top markers for all cell subtypes.

300 cDC2 were marked by HARLEQUIN-6q21.31. pDC were marked by ERV316A3-21q21g
301 and PRIMA4-12p11.21b. Naive B cells were marked by HML5-8p21.2 and MER4-17q21.2d.
302 Memory B cells were marked by MER101-16p11.2c and MER61-1q23.1c. MAIT cells were
303 marked by HERVS71-8p23.1b, and NK cells were marked by HML5-1q23.1.

304 13 of the marker LTR transcripts were also detected as distinct transcriptional signatures
305 in 2-3 cell types demonstrating the possibility of shared transcriptional events in the gene
306 expression patterns across these cell types. pDCs were shown to share 3 marker TE
307 transcripts: CD16 Monocytes shared the MER4B-19q13.42b with CD16 Monocytes, HUERSP2-
308 19q13.2 with Plasmablasts, and MER101-16p12.2a with B intermediate cells. Both NK cells and
309 the NK_CD56bright subtype shared expression of HERVH-12p13.31d.

310 Memory and intermediate B cell subtypes also shared differential relative expression of
311 ERVLE-4q24e with naive B cells and HERVEA-5q22.2 with plasmablasts showing common
312 retrotranscriptomic patterns across B lineage cells. Additionally, intermediate B cells and
313 memory B cells shared expression of HARLEQUIN-1q23.1. CD8+ TEM also shared expression
314 of PRIMA4-14q22.1 with and NK cells and CD4+ subtypes, as well as MER101-16p12.2c with
315 NK proliferating cells and dnT cells. CD4+ TCM, CD4+ Naive and B intermediate cells

316 expressed ERV316A3-2q22.2b. Finally, CD4+ TCM, naive CD8+ T cells and CD8+ TEM shared
317 expression of HARLEQUIN-17q12, which may be a T cell lineage marker LTR transcript.

318 Discussion

319 Cell identity has become a changing landscape with new technologies. Shape shifting
320 cells change as they squeeze through vessels or home to tissues, and cell surface markers vary
321 in the cell's journey. Lineage development can be determined by cell sub-types and
322 identification of RNA-seq transcripts from single cell resolution. Yet all of these identifiers of cell
323 identity ignore the large part of the genome composed of transposable elements (TEs).

324 In this study, we present a scRNA-seq-based computational pipeline for characterizing
325 cell identity based on the expression of human endogenous retrovirus (HERV) and Long
326 interspersed nuclear elements type 1 (LINE-1; L1) from the TEs. We demonstrate that TEs can
327 be identified from scRNA-seq data at a locus specific level, and that TE signatures could identify
328 new cell sub-types over canonical gene markers and suggest a new layer of complexity of cell
329 identity.

330 The initial step of the reference pipeline Stellarscope is the mapping stage, where
331 alignments are filtered according to a list of passing barcodes. Then PCR duplicates are
332 identified and removed using a novel multimapper-aware UMI deduplication approach.
333 Stellarscope implements an approach that considers all possible mapping locations for each
334 read. For each UMI sequence found on multiple reads, an undirected graph is constructed with
335 nodes corresponding to reads. Then, a Bayesian mixture model is fitted to the deduplicated
336 weight matrix using an expectation maximization algorithm. Importantly, due to the relatively
337 small sequencing depth of TEs per cell, pooling models were implemented that enable the
338 utilization of information across cells for resolving ambiguous reads.

339 Biologically, we then probed RNA-seq datasets for the contribution of TE loci to single
340 cell transcriptomes. Using scRNA-seq data from human peripheral blood mononuclear cells as
341 a reference, and found that compared with canonical genes, TEs contributed on average of
342 2.8% of the total features detected in each cell.

343 We sought to characterize TE loci with high biological heterogeneity in the data, because
344 these features are informative for ascribing biological characteristics to individual cells. In order
345 to separate technical variance from biological effects, we used the residual variance from
346 models fitted to each feature to quantify how variable is their expression throughout the cells.
347 TEs tended to have lower residual variance (between 1-2) compared to canonical genes
348 (between 1-10). There were transcripts in all biotype sets with no biological variability, including
349 canonical transcripts annotated as marker genes, and TE features with higher residual variance
350 than marker genes, suggesting the expression of HERVs and L1s is not merely transcriptional
351 readthrough or random noise in RNA-seq datasets. Instead, there is a deliberate regulation of a
352 specific set of TE transcripts.

353 We then asked whether HERV or L1 expression profiles contained distinct patterns that
354 could inform novel cell classifications. Using different sets of highly variable features (HVF)
355 that include or exclude TEs, we performed dimensionality reduction using principal component
356 analysis (PCA) and uniform manifold approximation and projection (UMAP). Using the complete
357 set of HVFs (including CG, HERV, and L1) yields a representation that clearly distinguishes
358 major PBMC lineages and cell types. Unsupervised clustering using only highly variable HERVs
359 identified expression similarities as subclusters within broader cell types, and these subclusters
360 included cells from a number of cell types such as NK cells and CD4+ T cells. However, B cells
361 and pDCs were still formed distinct clusters using HERV features alone.

362 After having identified novel cell sub-types based upon differential TE expression, we
363 probed known annotated cell types for unique TE expression. Notably, dendritic cells expressed
364 more TE features than other cell types, with a median of 23 HERV and 107 L1 features detected
365 per cell. Using specific sub-cell type labels, we found that plasmacytoid dendritic cells (pDC)
366 had significantly higher HERV loads than other dendritic cell subtypes. In pDCs, the relatively
367 high percentage of HERV transcripts was matched by a large number of differentially expressed
368 loci. We identified six potential HERV markers: HARLEQUIN-1q32.1, ERV316A3-21q21.2g,

369 HUERSP2-19q13.2, MER4B-19q13.42b, PRIMA4-12p11.21b, MER101-16p12.2a. Two of
370 these, ERV316A3-21q21.2g and PRIMA4-12p11.21b, were unique to pDCs. Thus, our single
371 cell profiling provides novel insights into cell identities by uncovering unique TE transcripts
372 delineating known cell sub-types.

373 As the known role of transposable elements in biology grows, with major contributions
374 noted in human development, aging, neurodegenerative diseases and cancer, understanding
375 how single cells express TEs is critical to understand their roles in biology and human diseases.
376 Our study establishes a novel pipeline for integrated analysis of comprehensive single-cell
377 genomics and tissue datasets and provides new knowledge and opportunities for translation of
378 the complexities of cell identities.

379 **Limitations of this study**

380 Although this study provides a powerful computational pipeline to determine differential
381 expression of TEs from scRNA-seq data, we note a few limitations. First, this study's primary
382 focus on human datasets limits mechanistic manipulation in animal models. The annotation of
383 TEs in other species is more limited, and the biological behavior of TEs in other species quite
384 different making comparison with human data moot. Second, although a broad array of
385 annotated TEs are included in the reference set, there are other non annotated LTRs or other
386 TEs which are not included, and as additional human genomes are sequenced telomere to
387 telomere, polymorphisms within the TE genes will need to be accounted for. Finally, the insights
388 gained from the human data sets will need to be validated with specific probes, and new tools
389 developed to mark expression of TE ORFs (including specific antibodies) and locus specific TE
390 probes.

391 **Methods**

392 **Single cell reassignment mixture model**

393 Stellarscope implements a generative model of single cell RNA-seq that rescales alignment
394 probabilities for independently aligned reads based on the cumulative weights of all alignments
395 to each transcript. Fundamentally, the probability that a given alignment is the “true” alignment
396 increases when the total supporting information for that transcript is greater. The model and
397 notation follow from Bendall et al. 2019¹³. Each sequencing fragment is comprised of three parts
398 that are tracked by our model: 1) $F = [f_1, f_2, \dots, f_N]$, the set of N observed cDNA sequences from
399 the originating transcript; 2) the corresponding cell barcodes $B = [b_1, b_2, \dots, b_N]$, where $b_i = b_j$
400 for all i and j that originate from the same cell; and 3) a Unique Molecular Identifier (UMI) $U =$
401 $[u_1, u_2, \dots, u_N]$ for each template molecule. Let $C = [c_1, c_2, \dots, c_M]$, be the set of M cells that are
402 included in the model. Cells are categorized a priori into subsets, or “pools”, depending on the
403 chosen pooling mode. Let $\mathbf{P} = [\mathbf{P}_1, \mathbf{P}_2, \dots, \mathbf{P}_D]$ be the set of D pools, and let $P = [p_1, p_2, \dots, p_M]$,
404 be an indicator mapping each cell to the pool to which it belongs, $\forall_i p_i \in \mathbf{P}$. For individual
405 pooling mode, each cell is in a separate pool ($\forall_i p_i = c_i$). For pseudobulk pooling mode, all cells
406 are in the same pool ($\forall_i p_i = 1$). For celltype pooling mode, the pool assignment for each cell is
407 provided as input for the model. For each pool, we estimate the abundance parameter $\pi_{\mathbf{P}} =$
408 $[\pi_{P_0}, \pi_{P_1}, \dots, \pi_{P_K}]$ representing the proportion of total fragments originating from each of K
409 annotated transcripts. In addition, we estimate the reassignment parameter $\theta_{\mathbf{P}} =$
410 $[\theta_{P_0}, \theta_{P_1}, \dots, \theta_{P_K}]$ representing the proportion of ambiguous fragments generated by each
411 transcript. Thus, the probability of observing fragment f_i with cell barcode b_i is given by:

$$412 \quad \Pr(f_i, b_i | \pi_{\mathbf{P}}, \theta_{\mathbf{P}}, q_i) = \sum_{j=0}^K \pi_{P_j} \theta_{P_j}^{y_i} q_{ij}$$

413 where P is the pool containing cell barcode b_i (p_{b_i}), π_P and θ_P are pool-specific parameters, q_i
414 is a vector of mapping qualities for f_i , and y_i is an indicator where $y_i = 1$ if f_i is ambiguously
415 aligned and $y_i = 0$ otherwise.

416 As in earlier work, we formulate a mixture model accounting for uncertainty in the initial
417 fragment assignments. Let $x_{P_i} = [x_{P_{i0}}, x_{P_{i1}}, \dots, x_{P_{iK}}]$ be a set of partial assignment (or
418 membership) weights for fragment f_i in pool P . If f_i did not originate from pool P ($p_{b_i} \neq P$), then
419 $\forall_j x_{P_{ij}} = 0$; otherwise $\sum_{j=0}^K x_{P_{ij}} = 1$ and $x_{P_{ij}} = 0$ if f_i does not align to t_j . We assume that x_{P_i} is
420 distributed according to a multinomial distribution with success probability π_P . Intuitively, x_{ij}
421 represents our confidence that f_i was generated by transcript t_j . The complete data likelihood
422 across all pools is

$$423 L(\boldsymbol{\pi}, \boldsymbol{\theta} | \mathbf{x}, \mathbf{q}, \mathbf{y}, \mathbf{P}) \propto \prod_P^P \prod_{i=1}^N \prod_{j=0}^K [\pi_{P_j} \theta_{P_j}^{y_i} q_{ij}]^{x_{P_{ij}}}$$

424 **PBMC datasets**

425 To validate the efficacy of the Stellarscope workflow we obtained and analyzed three publicly
426 available PBMCs scRNA-seq datasets from 10x Genomics corresponding to a healthy female
427 donor aged 25-30. Cells were sequenced by 10x Genomics using the Chromium Next GEM
428 Single Cell 3' HT Reagent Kit v3.1.

429 **HERV annotations**

430 A Stellarscope analysis requires an annotation that defines the transcriptional unit of each TE to
431 be quantified. For HERV proviruses, the prototypical transcriptional unit contains an internal
432 protein-coding region flanked by LTR regulatory regions. Existing annotations, such as those
433 identified by RepeatMasker²⁴ (using the RepBase database²⁵ or Dfam²⁶ identify sequence
434 regions matching TE families but do not seek to annotate transcriptional units. Both databases
435 represent the internal region and corresponding LTRs using separate models, and the regions

436 identified are sometimes discontinuous. In these annotations a HERV transcriptional unit is
437 likely to appear as a collection of nearby annotations from the same HERV subfamily.

438 We defined transcriptional units for HERV proviruses by combining RepeatMasker
439 annotations belonging to the same HERV subfamily that are also located in adjacent or nearby
440 genomic regions. Briefly, repeat families from the same HERV subfamily (internal region plus
441 flanking LTRs) were identified using the RepBase database²⁵. RepeatMasker annotations for
442 each repeat subfamily were downloaded using the UCSC table browser²⁷ and converted to GTF
443 format, merging nearby annotations from the same repeat subfamily. Next, LTRs flanking
444 internal regions were identified and grouped using BEDtools²⁸. HERV transcriptional units
445 containing internal regions were assembled using custom python scripts. Each putative locus
446 was categorized according to provirus organization; loci that did not conform to expected HERV
447 organization or conflicted with other loci were visually inspected using IGV²⁹ and manually
448 curated.

449 As validation, we compared our annotations to the HERV-K(HML-2) annotations published by
450 Subramanian et al.³⁰ the two annotations were concordant. Final annotations were output as
451 GTF (S1 File); all annotations, scripts, and supporting documentation are available at
452 https://github.com/mlbendall/telescope_annotation_db.

453

454 **Raw data/alignment**

455 The PBMCs scRNA-seq data was publicly available and re-analyzed in this study. Raw reads
456 were aligned to the GRCh38 reference genome using STARsolo to produce a Binary Alignment
457 Map (BAM) file containing cell barcodes for each sequenced individual cell and for each of
458 them, the set of possible locations their reads align to. Parameters that allow multiple
459 alignments per read and a range score were used to retain the set of best possible alignments
460 for each read.

461

462 **Preprocessing**

463 Quality control was performed on the data at the cell level. Scater³¹ functions were used to
464 identify outliers in the percentage of mitochondrial reads, total number of features, and total
465 number of molecules detected, distributions and remove cells using these adaptive thresholds.
466 Cell type identity was assigned to each cell using the Azimuth³² PBMCs reference
467 transcriptome. Multiplets were detected using Scrublet³³ and removed. The list of cell barcodes
468 from cells that passed these filters was subsequently used for the Stellarscope analysis.

469 **Fragment Reassignment for Single-Cell Transcriptomics**

470 The alignment from STARsolo and the list of filtered Cell Barcodes were input to Stellarscope
471 and the BAM file alignments for valid cells were sorted using Stellarscope Cellsort. Then,
472 Stellarscope was used in the pooling mode ‘celltype’ to reassign ambiguous reads overlapping
473 the regions from the TE annotation and obtain a TE counts matrix compatible with the Canonical
474 Genes counts matrix.

475 **Downstream analysis**

476 A merged matrix was created from the canonical genes counts matrix and the TE counts matrix
477 and subsequent analyses were performed using Seurat version 4³⁴. Cell types were annotated,
478 and raw counts were processed using the ‘sctransform’ method to normalize the data and
479 stabilize the variance with the aim of removing technical variability and retaining biological
480 variability.

481 **Principal Component Analysis (PCA)**

482 PCA was performed on batch-corrected Seurat data to generate a lower-dimensional
483 representation. The data were reduced to their top 50 principal components using the “RunPCA”
484 Seurat function.

485 **Clustering**

486 Putative cell types in the three PBMC datasets were annotated by 10x Genomics. We used the
487 50-component PCA representation of each dataset to generate neighbour graphs and then used
488 the Seurat function to perform the hierarchical clustering (“BuildClusterTree”).

489 **Differential Gene Expression**

490 The MAST³⁵ function in Seurat was applied to the single-cell PBMC datasets to identify
491 differentially expressed genes across clusters (add parameters). MAST is a generalized linear
492 model (GLM) framework that treats cellular detection rate as a covariate and identifies enriched
493 genes whilst correcting for covariates and gene-gene correlations.

494 **Visualization**

495 2D Uniform Manifold Approximation Projections (UMAPs) were created from the PCA matrix
496 of the top 50 components using the “RunUMAP” function in Seurat.

497 **Code availability**

498 <https://github.com/nixonlab/stellarscope>

499

500

501 **Funding**

502 The work was supported in part by US National Institutes of Health (NIH) grants CA260691,
503 CA206488, HG011513 and UM1AI164559. MLB is supported in part by the Department of
504 Medicine Fund for the Future program at Weill Cornell Medicine sponsored by the Elsa Miller
505 Foundation. JLM was supported in part by a Medical Scientist Training Program grant to the
506 Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program (T32GM007739).

507 **Acknowledgments**

508 We thank Cedric Feschotte , Ethel Cesarman, Ulrike Lange, and members of their labs for many
509 discussions about transposable elements.

510 **Disclosure Declaration**

511 The authors declare no conflict of interest. The funders had no role in the design of the study; in
512 the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
513 decision to publish the results.

514 References

- 515 1. Goodwin, J., Laslett, A.L., and Rugg-Gunn, P.J. (2020). The application of cell surface
516 markers to demarcate distinct human pluripotent states. *Exp. Cell Res.* 387, 111749.
517 10.1016/j.yexcr.2019.111749.
- 518 2. Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., Luo, T., Xu, L., Liao, G., Yan, M.,
519 et al. (2019). CellMarker: a manually curated resource of cell markers in human and
520 mouse. *Nucleic Acids Res.* 47, D721–D728. 10.1093/nar/gky900.
- 521 3. Panina, Y., Karagiannis, P., Kurtz, A., Stacey, G.N., and Fujibuchi, W. (2020). Human Cell
522 Atlas and cell-type authentication for regenerative medicine. *Exp. Mol. Med.* 52, 1443–
523 1451. 10.1038/s12276-020-0421-1.
- 524 4. Ianevski, A., Giri, A.K., and Aittokallio, T. (2022). Fully-automated and ultra-fast cell-type
525 identification using specific marker combinations from single-cell transcriptomic data. *Nat.*
526 *Commun.* 13, 1246. 10.1038/s41467-022-28803-w.
- 527 5. Doppkins, N., and Nixon, D.F. (2023). Activation of human endogenous retroviruses and its
528 physiological consequences. *Nat. Rev. Mol. Cell Biol.* 10.1038/s41580-023-00674-z.
- 529 6. Kassiotis, G. (2023). The Immunological Conundrum of Endogenous Retroelements. *Annu.*
530 *Rev. Immunol.* 41, 99–125. 10.1146/annurev-immunol-101721-033341.
- 531 7. Dittmer, U., Sutter, K., Kassiotis, G., Zelinskyy, G., Bánki, Z., Stoiber, H., Santiago, M.L.,
532 and Hasenkrug, K.J. (2019). Friend retrovirus studies reveal complex interactions between
533 intrinsic, innate and adaptive immunity. *FEMS Microbiol. Rev.* 43, 435–456.
534 10.1093/femsre/fuz012.
- 535 8. Fueyo, R., Judd, J., Feschotte, C., and Wysocka, J. (2022). Roles of transposable elements
536 in the regulation of mammalian transcription. *Nat. Rev. Mol. Cell Biol.* 23, 481–497.
537 10.1038/s41580-022-00457-y.
- 538 9. Göke, J., and Ng, H.H. (2016). CTRL+INSERT: retrotransposons and their contribution to
539 regulation and innovation of the transcriptome. *EMBO Rep.* 17, 1131–1144.
540 10.15252/embr.201642743.
- 541 10. Mager, D.L., and Stoye, J.P. (2015). Mammalian Endogenous Retroviruses. *Microbiol*
542 *Spectr* 3, MDNA3-0009–2014. 10.1128/microbiolspec.MDNA3-0009-2014.
- 543 11. Jern, P., and Coffin, J.M. (2008). Effects of retroviruses on host genome function. *Annu.*
544 *Rev. Genet.* 42, 709–732. 10.1146/annurev.genet.42.110807.091501.
- 545 12. Jansz, N., and Faulkner, G.J. (2021). Endogenous retroviruses in the origins and treatment
546 of cancer. *Genome Biol.* 22, 147. 10.1186/s13059-021-02357-4.
- 547 13. Bendall, M.L., de Mulder, M., Iñiguez, L.P., Lecanda-Sánchez, A., Pérez-Losada, M.,
548 Ostrowski, M.A., Jones, R.B., Mulder, L.C.F., Reyes-Terán, G., Crandall, K.A., et al. (2019).
549 *Telescope: Characterization of the retrotranscriptome by accurate estimation of*
550 *transposable element expression.* *PLoS Comput. Biol.* 15, e1006453.
551 10.1371/journal.pcbi.1006453.

552 14. Yang, W.R., Ardeljan, D., Pacyna, C.N., Payer, L.M., and Burns, K.H. (2019). SQuIRE
553 reveals locus-specific regulation of interspersed repeat expression. *Nucleic Acids Res.* **47**,
554 e27. 10.1093/nar/gky1301.

555 15. Jin, Y., and Hammell, M. (2018). Analysis of RNA-Seq Data Using TEtranscripts. *Methods*
556 *Mol. Biol.* **1751**, 153–167. 10.1007/978-1-4939-7710-9_11.

557 16. Smith, C.C., Beckermann, K.E., Bortone, D.S., De Cubas, A.A., Bixby, L.M., Lee, S.J.,
558 Panda, A., Ganesan, S., Bhanot, G., Wallen, E.M., et al. (2018). Endogenous retroviral
559 signatures predict immunotherapy response in clear cell renal cell carcinoma. *J. Clin.*
560 *Invest.* **128**, 4804–4820. 10.1172/JCI121476.

561 17. Tokuyama, M., Kong, Y., Song, E., Jayewickreme, T., Kang, I., and Iwasaki, A. (2018).
562 ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses.
563 *Proceedings of the National Academy of Sciences*, 201814589. 10.1073/pnas.1814589115.

564 18. Lanciano, S., and Cristofari, G. (2020). Measuring and interpreting transposable element
565 expression. *Nature Reviews Genetics* **21**, 721–736. 10.1038/s41576-020-0251-y.

566 19. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
567 Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner.
568 *Bioinformatics* **29**, 15–21. 10.1093/bioinformatics/bts635.

569 20. HuBMAP Consortium (2019). The human body at cellular resolution: the NIH Human
570 Biomolecular Atlas Program. *Nature* **574**, 187–192. 10.1038/s41586-019-1629-x.

571 21. Shao, W., and Wang, T. (2021). Transcript assembly improves expression quantification of
572 transposable elements in single-cell RNA-seq data. *Genome Res.* **31**, 88–100.
573 10.1101/gr.265173.120.

574 22. Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of single-
575 cell RNA-seq data using regularized negative binomial regression. *Genome Biol.* **20**, 296.
576 10.1186/s13059-019-1874-1.

577 23. Zhou, Y., Huang, Y., Chen, X., Chen, T., Hu, W., Hou, W., Zhang, Q., and Xiong, Y. (2023).
578 Transcriptomic study reveals changes of lncRNAs in PBMCs from HIV-1 patients before
579 and after ART. *Sci. Rep.* **13**, 22493. 10.1038/s41598-023-49595-z.

580 24. Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive
581 elements in genomic sequences. *Curr. Protoc. Bioinformatics Chapter 4*, Unit 4.10.
582 10.1002/0471250953.bi0410s25.

583 25. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J.
584 (2005). Repbase Update, a database of eukaryotic repetitive elements. *Cytogenet.*
585 *Genome Res.* **110**, 462–467. 10.1159/000084979.

586 26. Wheeler, T.J., Clements, J., Eddy, S.R., Hubley, R., Jones, T.A., Jurka, J., Smit, A.F.A.,
587 and Finn, R.D. (2013). Dfam: a database of repetitive DNA based on profile hidden Markov
588 models. *Nucleic Acids Res.* **41**, D70-82. 10.1093/nar/gks1265.

589 27. Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D., and
590 Kent, W.J. (2004). The UCSC Table Browser data retrieval tool. *Nucleic Acids Res.* 32,
591 D493-6. 10.1093/nar/gkh103.

592 28. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing
593 genomic features. *Bioinformatics* 26, 841–842. 10.1093/bioinformatics/btq033.

594 29. Thorvaldsdóttir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative Genomics Viewer
595 (IGV): high-performance genomics data visualization and exploration. *Brief. Bioinform.* 14,
596 178–192. 10.1093/bib/bbs017.

597 30. Subramanian, R.P., Wildschutte, J.H., Russo, C., and Coffin, J.M. (2011). Identification,
598 characterization, and comparative genomic distribution of the HERV-K (HML-2) group of
599 human endogenous retroviruses. *Retrovirology* 8, 90. 10.1186/1742-4690-8-90.

600 31. McCarthy, D.J., Campbell, K.R., Lun, A.T.L., and Wills, Q.F. (2017). Scater: pre-processing,
601 quality control, normalization and visualization of single-cell RNA-seq data in R.
602 *Bioinformatics* 33, 1179–1186. 10.1093/bioinformatics/btw777.

603 32. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk,
604 A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data.
605 *Cell* 184, 3573-3587.e29. 10.1016/j.cell.2021.04.048.

606 33. Wolock, S.L., Lopez, R., and Klein, A.M. (2019). Scrublet: Computational Identification of
607 Cell Doublets in Single-Cell Transcriptomic Data. *Cell Syst* 8, 281-291.e9.
608 10.1016/j.cels.2018.11.005.

609 34. Hao, Y., Stuart, T., Kowalski, M.H., Choudhary, S., Hoffman, P., Hartman, A., Srivastava,
610 A., Molla, G., Madad, S., Fernandez-Granda, C., et al. (2023). Dictionary learning for
611 integrative, multimodal and scalable single-cell analysis. *Nat. Biotechnol.* 10.1038/s41587-
612 023-01767-y.

613 35. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K., Miller,
614 H.W., McElrath, M.J., Prlic, M., et al. (2015). MAST: a flexible statistical framework for
615 assessing transcriptional changes and characterizing heterogeneity in single-cell RNA
616 sequencing data. *Genome Biol.* 16, 278. 10.1186/s13059-015-0844-5.

617 36. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao,
618 Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-
619 Cell Data. *Cell* 177, 1888-1902.e21. 10.1016/j.cell.2019.05.031.

620 **Figure Legends**

621 **Figure 1. Stellarscope – Single cell Transposable Element Locus Level Analysis of** 622 **scRNA Sequencing.**

623 STELLARSCOPE SETUP. (A) Alignments are filtered according to a user-provided list of
624 passing barcodes ("whitelist"). (B) The cell barcode (CB) and unique molecular identifier (UMI)
625 from valid fragments are stored internally. (C) Initial weight matrix with fragments as rows and
626 candidate assigned features as columns. (D) Values for the initial weight matrix setup result
627 from intersecting each fragment's alignment(s) with the TE features annotation and selecting the
628 best alignment score for each fragment for each locus.

629 MULTIMAPPER-AWARE UMI DEDUPLICATION. (E) fragments that contain the same CB+UMI
630 combination (i.e. duplicates) and their alignment positions are identified. (F) An undirected
631 weighted graph is built for each CB+UMI combination with fragments as nodes and shared
632 alignments as edge weights. For each component the most informative read according to
633 alignment quality and ambiguity criteria is selected as representative. This method identifies and
634 corrects non obvious duplicates (e.g. f1-f2, and f1-f3).

635 MODEL FITTING. Stellarscope fits a Bayesian mixture model to the deduplicated weight matrix
636 using an expectation maximization algorithm for each cell (G), for all cells (H), and for each cell
637 type (I) in pooling modes Individual, Pseudobulk, and Celltype, respectively.

638 REASSIGNMENT. Once the model is fitted and parameters are estimated, Stellarscope uses
639 the posterior probability matrix to reassign ambiguous fragments to their final generating locus.

640 Stellarscope provides a variety of reassignment strategies (J) including filtering based on a
641 threshold, excluding fragments with multiple optimal alignments, and randomly selecting from
642 multiple optimal alignments; these criteria result in a different number of excluded alignments
643 (shaded in grey). The output from Stellarscope (K) includes an umi-tracking file with the graphs
644 and representative reads selection; a log file with the fitted models, the number of observations

645 and parameters estimated, and a log likelihood for the fitted model; an updated BAM file; and a
646 sparse single-cell counts matrix compatible with all the generally used analysis tools.

647

648 **Figure 2. Stellarscope determines the retrotranscriptome of human PBMCs at single cell
649 resolution.**

650 (A) Schematic representation of the stepwise analytical pipeline employed to obtain the scRNA-
651 seq matrix counts for the PBMCs. Alignment: reads are aligned to the hg38 reference genome
652 retaining multimappers and alignments of varying quality. Cell quality control: outlier cells are
653 identified and excluded using adaptive thresholds on the number of features detected, total
654 number of molecules detected, and percentage of mitochondrial reads. Celltype annotation:
655 scRNA-seq data is projected onto the Azimuth reference atlas for PBMCs ³⁶. Doublet filtering:
656 doublets are detected and removed using Scrublet³³ to obtain the final list of cell barcodes that
657 are input to Stellarscope for reassignment of ambiguous reads and counting of TE features. (B)
658 Violin plots showing the distribution of detected TE features in the PBMCs (left panel), and
659 detected HERV features and L1 features (Y axes) by PBMC cell type (X axes). (C) Violin plots
660 showing the distribution of the percentage of reads by cell that is contributed by TE loci in the
661 PBMCs (left panel), the percentage of reads by cell that is contributed by HERV loci and L1 loci
662 (Y axes) by PBMC cell type (X axes). (D) Violin plots showing comparable distributions of
663 detected HERV features number in Dendritic Cells (upper panel) and a significant difference in
664 the percentage of reads by cell that are contributed by HERV loci in plasmacytoid Dendritic
665 Cells. (cDC1s: Conventional type 1 dendritic cells) (E) Measurements of TE expression from
666 true bulk RNA-seq data for 157 PBMC samples (gray) and from pseudobulk aggregation of the
667 PBMCs scRNA-seq data by cell type (blue) and by total cells (red). (F-I) Biological variability of
668 expression values for different sets of transcripts by biotype showing matching patterns for TE
669 (HERV and L1) transcripts and biologically relevant noncoding trancscripts (ncRNAs). Features

670 with a rv value higher than 1 show relevant variation across the cells. Triangles in canonical
671 transcripts indicate marker genes determined by the reference transcriptome.

672

673 **Figure 3: Transposable element features inform novel cell relationships and subtypes.**

674 (A) UMAP based on all identified highly variable features (HVF), including canonical genes
675 (CG), HERV, and L1. Cells are colored according to predicted celltype based on reference
676 mapping to the HuBMAP human PBMC reference, celltype.I2 annotation, using Azimuth. UMAP
677 is based on the top 40 principal components for 11,750 highly variable features. (B) UMAP
678 based only on CG HVFs. Cells are colored as in (A), based on 40 principal components for
679 10,982 highly variable features. (C) UMAP based only on HERV HVFs. Cells are colored as in
680 (A), based on 45 principal components for 120 highly variable features. (D) UMAP based only
681 on L1 HVFs. Cells are colored as in (A), based on 44 principal components for 648 highly
682 variable features. (E) UMAP based only on CG HVFs, as in (B). Cells are colored according to
683 unsupervised cluster label using resolution = 1. (F) UMAP based only on HERV HVFs, as in (C).
684 Cells are colored according to unsupervised cluster label using resolution = 1. (G) UMAP based
685 only on L1 HVFs, as in (D). Cells are colored according to unsupervised cluster label using
686 resolution = 1.

687

688 **Figure 4. Expression of locus specific HERV features characterizes PBMC subsets.**

689 (A) Feature plots showing the relative expression in each cell for 27 HERV features with
690 significant differential expression in one or more cell subset comparisons. Each plot is titled with
691 the feature name; within each plot, every cell is colored according to the scaled HERV
692 expression detected in that cell, see legend. Cells where there was no detection are colored
693 gray. The position of cells is identical in all plots and in Fig. 3A: the cells are plotted in UMAP
694 space calculated using all highly variable features (CG+HERV+ L1). The identity of the cell

695 subset (or subsets) in which each HERV is significantly upregulated is annotated in the lower
696 left of each plot with the average log2 fold change in parentheses; HERV features that were
697 significantly upregulated in more than three cell subsets, only the top three significance tests are
698 shown, as ranked by adjusted p-value. Annotation text is colored according to the celltype color
699 palettes in the legend. (B) Two dimensional heatmap showing the relative expression in each
700 cell for 27 HERV features with significant differential expression in one or more cell subset
701 comparisons. Each row represents a HERV feature with the names along the Y axis. Each
702 column represents one cell with the predicted cell subset shown above the plot, colored
703 according to the celltype color palette. Features are ordered by hierarchical clustering of the
704 heatmap data. Cells are first grouped according to cell subset, then ordered by hierarchical
705 clustering within each subset.

706

707

708

709

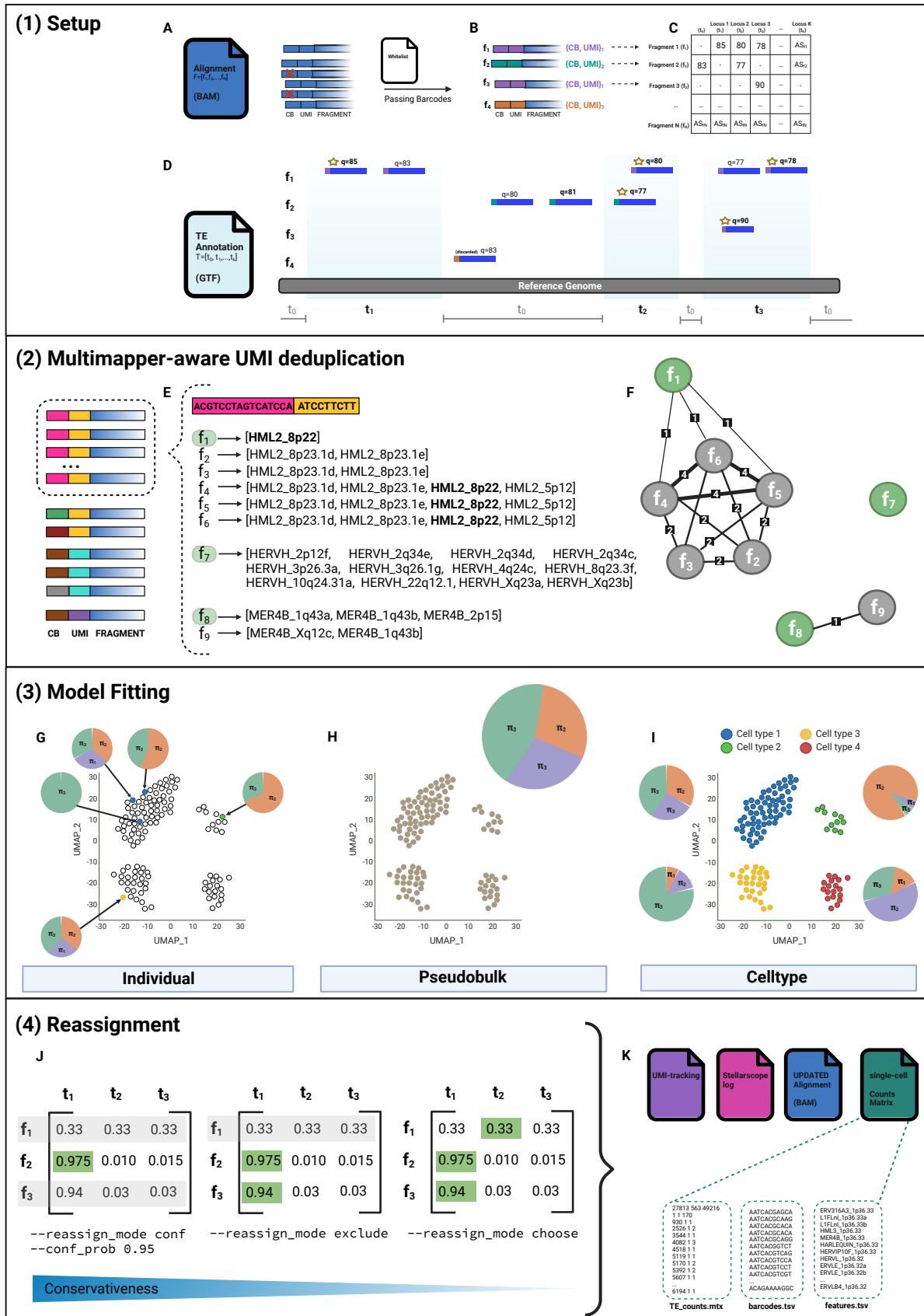


Figure 1: StellarScope quantifies TE transcripts at locus resolution in single-cell RNA-seq datasets

Figure 1. Stellarscope – Single cell Transposable Element Locus Level Analysis of scRNA Sequencing.

STELLARSCOPE SETUP. (A) Alignments are filtered according to a user-provided list of passing barcodes ("whitelist"). (B) The cell barcode (CB) and unique molecular identifier (UMI) from valid fragments are stored internally. (C) Initial weight matrix with fragments as rows and candidate assigned features as columns. (D) Values for the initial weight matrix setup result from intersecting each fragment's alignment(s) with the TE features annotation and selecting the best alignment score for each fragment for each locus.

MULTIMAPPER-AWARE UMI DEDUPLICATION. (E) fragments that contain the same CB+UMI combination (i.e. duplicates) and their alignment positions are identified. (F) An undirected weighted graph is built for each CB+UMI combination with fragments as nodes and shared alignments as edge weights. For each component the most informative read according to alignment quality and ambiguity criteria is selected as representative. This method identifies and corrects non obvious duplicates (e.g. f1-f2, and f1-f3).

MODEL FITTING. Stellarscope fits a Bayesian mixture model to the deduplicated weight matrix using an expectation maximization algorithm for each cell (G), for all cells (H), and for each cell type (I) in pooling modes Individual, Pseudobulk, and Celltype, respectively.

REASSIGNMENT. Once the model is fitted and parameters are estimated, Stellarscope uses the posterior probability matrix to reassign ambiguous fragments to their final generating locus. Stellarscope provides a variety of reassignment strategies (J) including filtering based on a threshold, excluding fragments with multiple optimal alignments, and randomly selecting from multiple optimal alignments; these criteria result in a different number of excluded alignments (shaded in grey). The output from Stellarscope (K) includes an umi-tracking file with the graphs and representative reads selection; a log file with the fitted models, the number of observations and parameters estimated, and a log likelihood for the fitted model; an updated BAM file; and a sparse single-cell counts matrix compatible with all the generally used analysis tools.

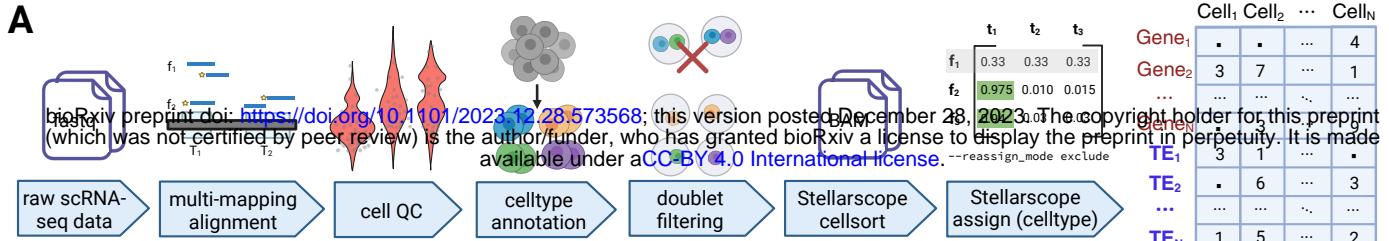
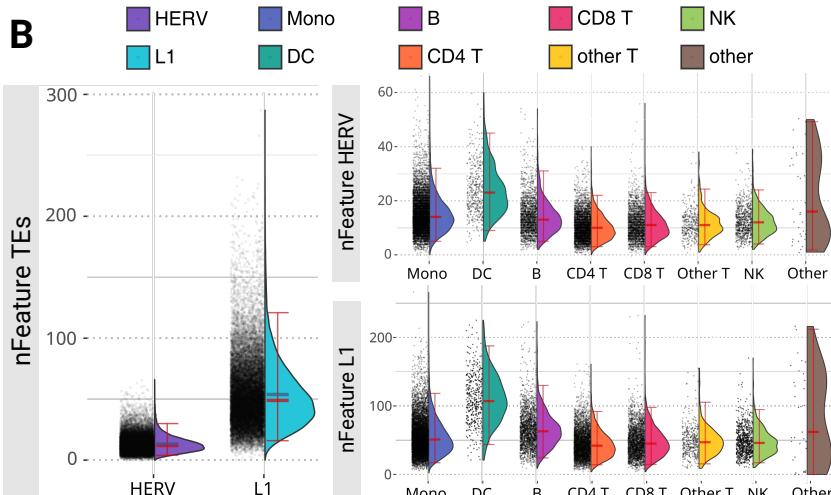
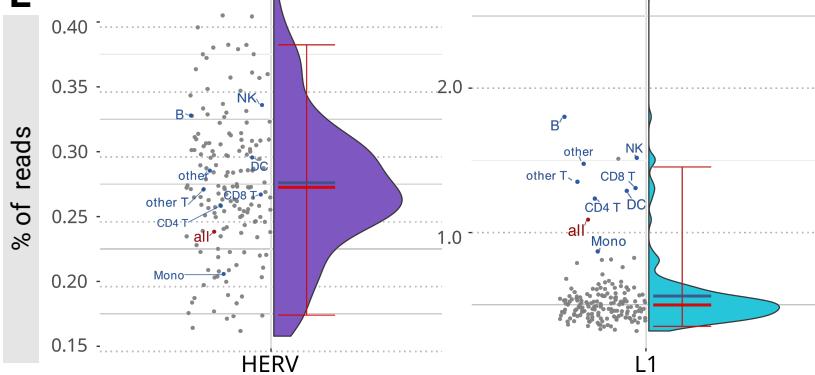
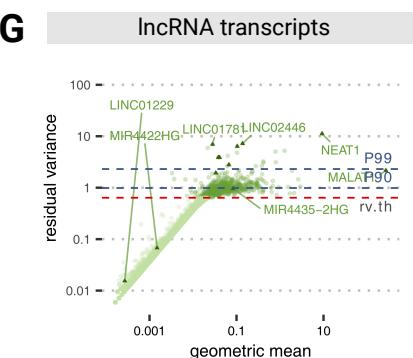
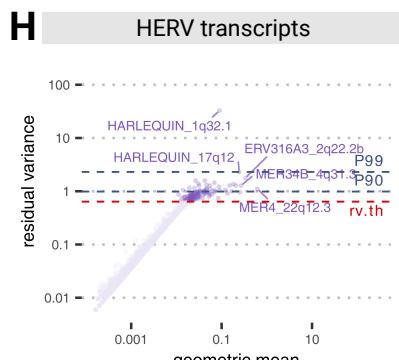
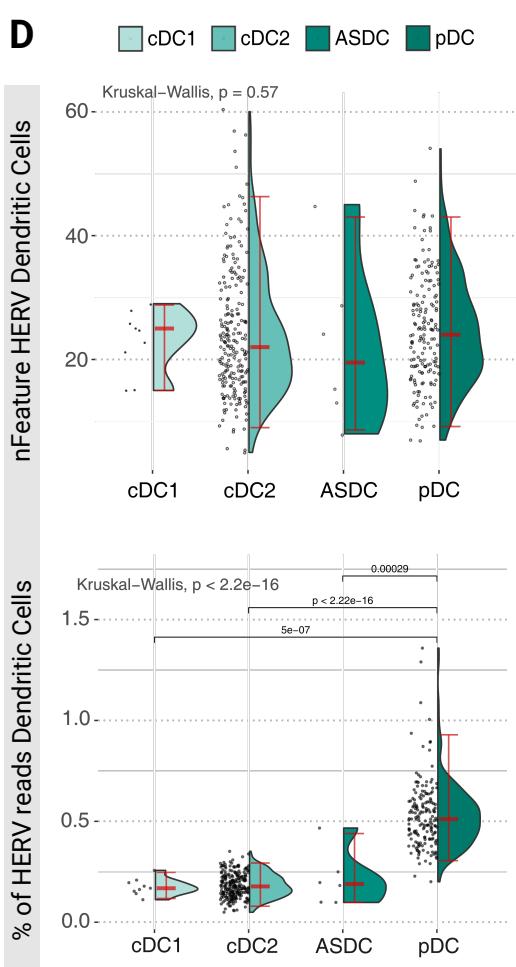
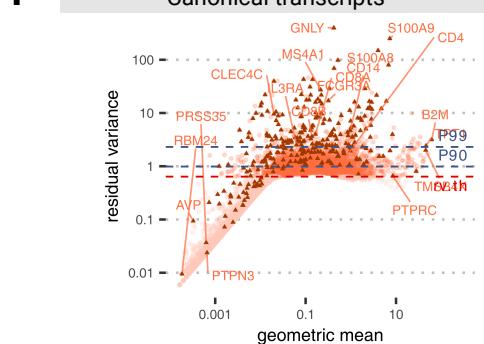
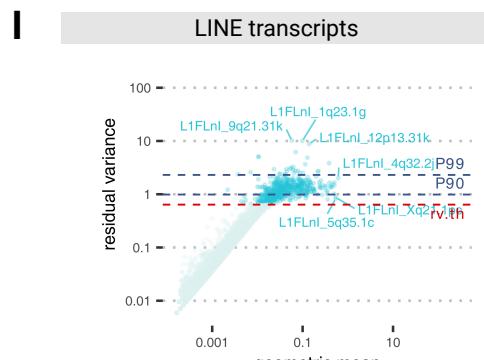
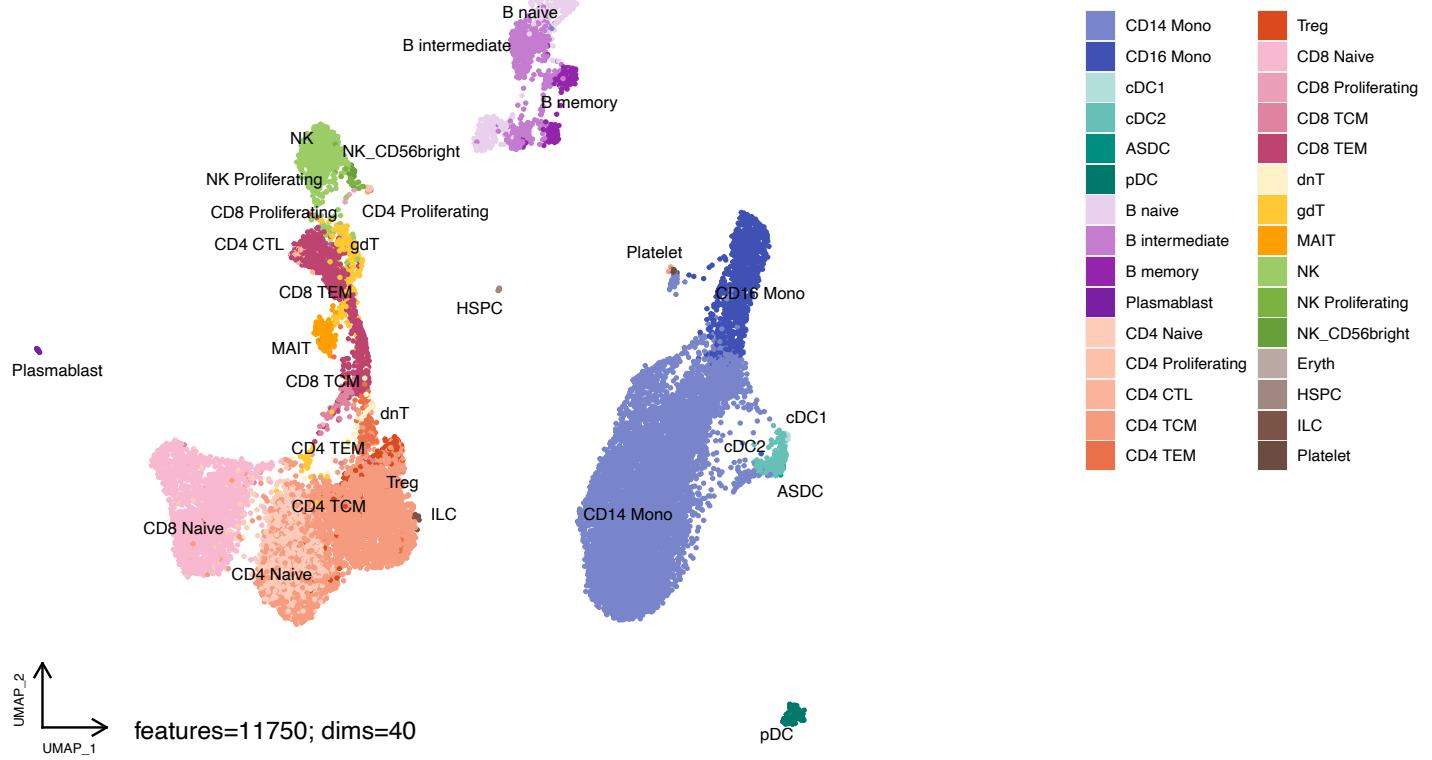
A**B****C****E****G****H****D****F****I**

Figure 2: Single-cell transcriptional landscape of transposable elements in healthy human peripheral blood mononuclear cells

Figure 2. Stellarscope determines the retrotranscriptome of human leukocytes at single cell resolution.

(A) Schematic representation of the stepwise analytical pipeline employed to obtain the scRNA-seq matrix counts for the PBMCs. Alignment: reads are aligned to the hg38 reference genome retaining multimappers and alignments of varying quality. Cell quality control: outlier cells are identified and excluded using adaptive thresholds on the number of features detected, total number of molecules detected, and percentage of mitochondrial reads. Celltype annotation: scRNA-seq data is projected onto the Azimuth reference atlas for PBMCs (PMID: 31178118). Doublet filtering: doublets are detected and removed using Scrublet (PMID: 30954476) to obtain the final list of cell barcodes that are input to Stellarscope for reassignment of ambiguous reads and counting of TE features. (B) Violin plots showing the distribution of detected TE features in the PBMCs (left panel), and detected HERV features and L1 features (Y axes) by PBMC cell type (X axes). (C) Violin plots showing the distribution of the percentage of reads by cell that is contributed by TE loci in the PBMCs (left panel), the percentage of reads by cell that is contributed by HERV loci and L1 loci (Y axes) by PBMC cell type (X axes). (D) Violin plots showing comparable distributions of detected HERV features number in Dendritic Cells (upper panel) and a significant difference in the percentage of reads by cell that are contributed by HERV loci in plasmacytoid Dendritic Cells. (cDC1s: Conventional type 1 dendritic cells) (E) Measurements of TE expression from true bulk RNA-seq data for 157 PBMC samples (gray) and from pseudobulk aggregation of the PBMCs scRNA-seq data by cell type (blue) and by total cells (red). (F-I) Biological variability of expression values for different sets of transcripts by biotype showing matching patterns for TE (HERV and L1) transcripts and biologically relevant noncoding transcripts (ncRNAs). Features with a rv value higher than 1 show relevant variation across the cells. Triangles in canonical transcripts indicate marker genes determined by the reference transcriptome.

A

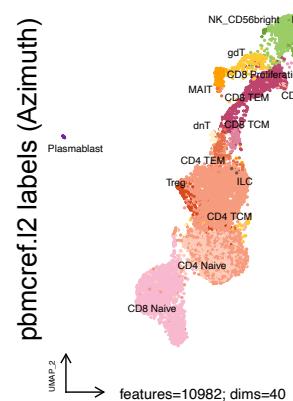


CG

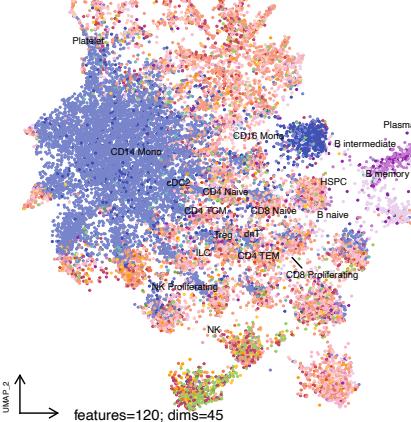
HERV

L1

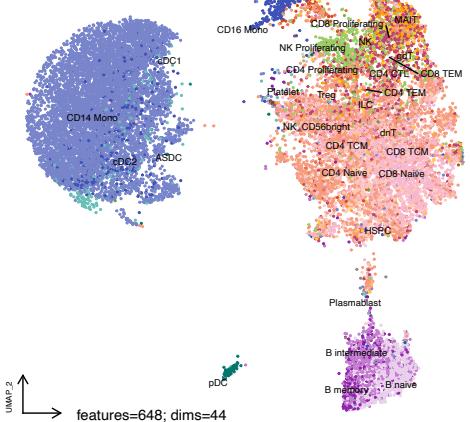
B



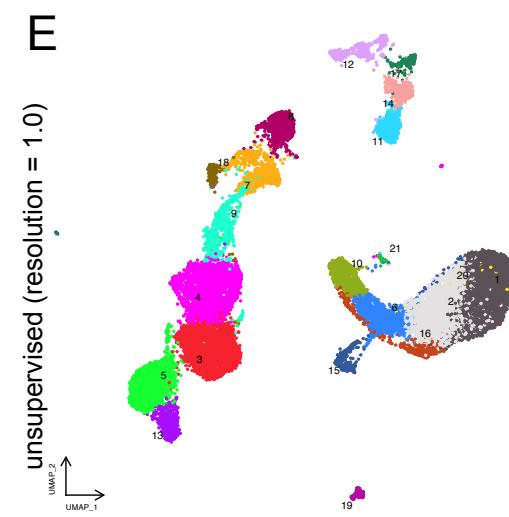
C



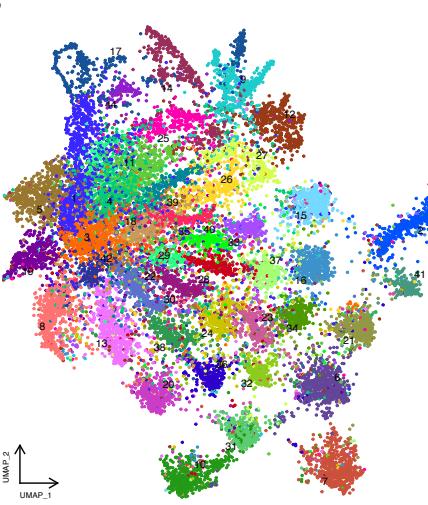
D



E



F



G

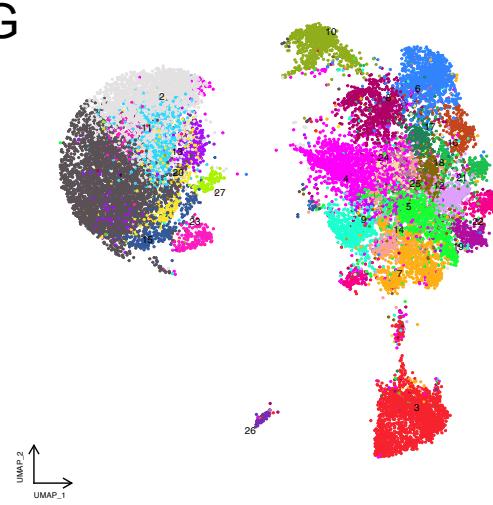


Figure 3: Transposable element features inform novel cell relationships and subtypes.

(A) UMAP based on all identified highly variable features (HVF), including canonical genes (CG), HERV, and L1. Cells are colored according to predicted celltype based on reference mapping to the HuBMAP human PBMC reference, celltype.I2 annotation, using Azimuth. UMAP is based on the top 40 principal components for 11,750 highly variable features. (B) UMAP based only on CG HVFs. Cells are colored as in (A), based on 40 principal components for 10,982 highly variable features. (C) UMAP based only on HERV HVFs. Cells are colored as in (A), based on 45 principal components for 120 highly variable features. (D) UMAP based only on L1 HVFs. Cells are colored as in (A), based on 44 principal components for 648 highly variable features. (E) UMAP based only on CG HVFs, as in (B). Cells are colored according to unsupervised cluster label using resolution = 1. (F) UMAP based only on HERV HVFs, as in (C). Cells are colored according to unsupervised cluster label using resolution = 1. (G) UMAP based only on L1 HVFs, as in (D). Cells are colored according to unsupervised cluster label using resolution = 1.

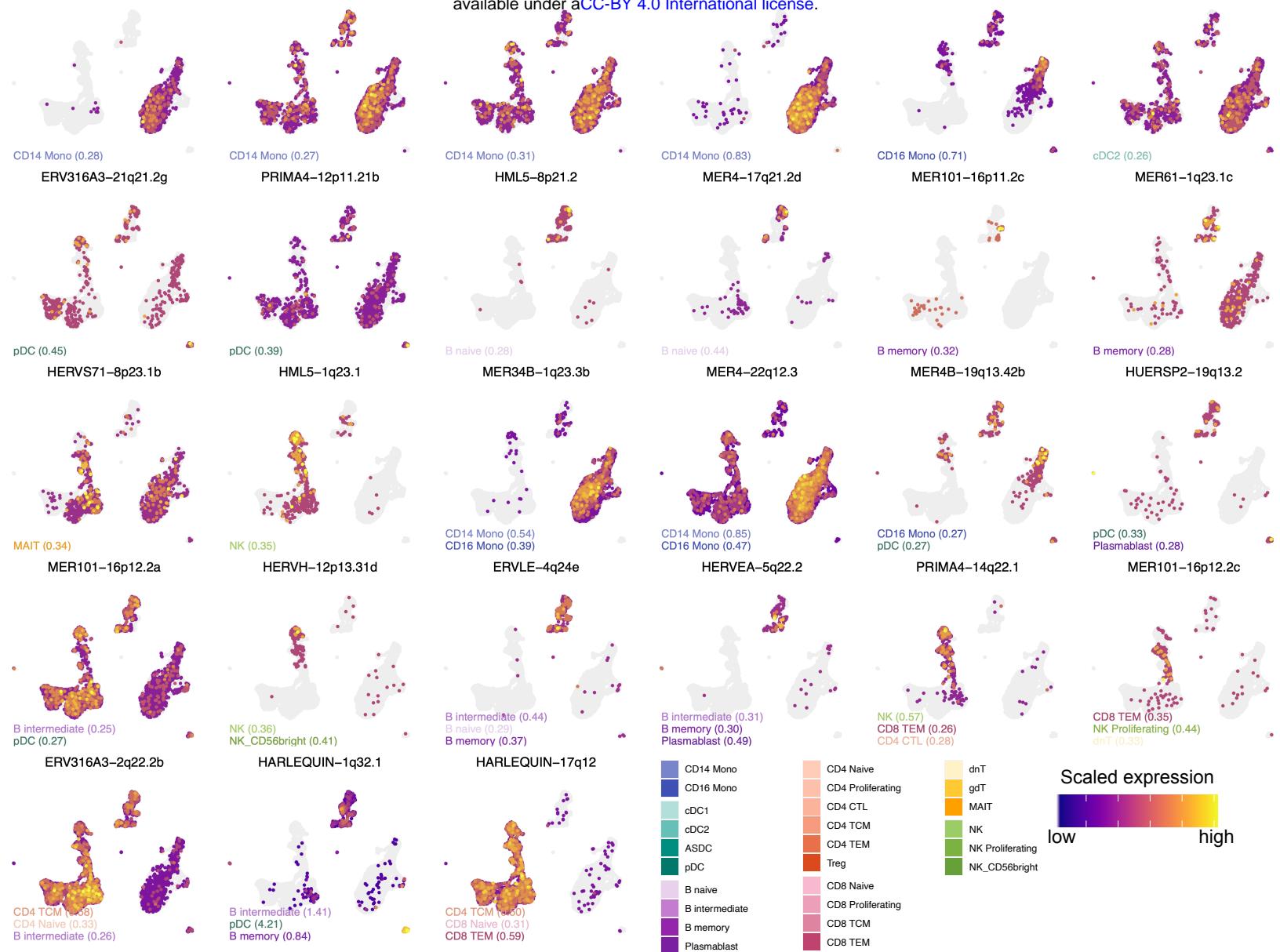
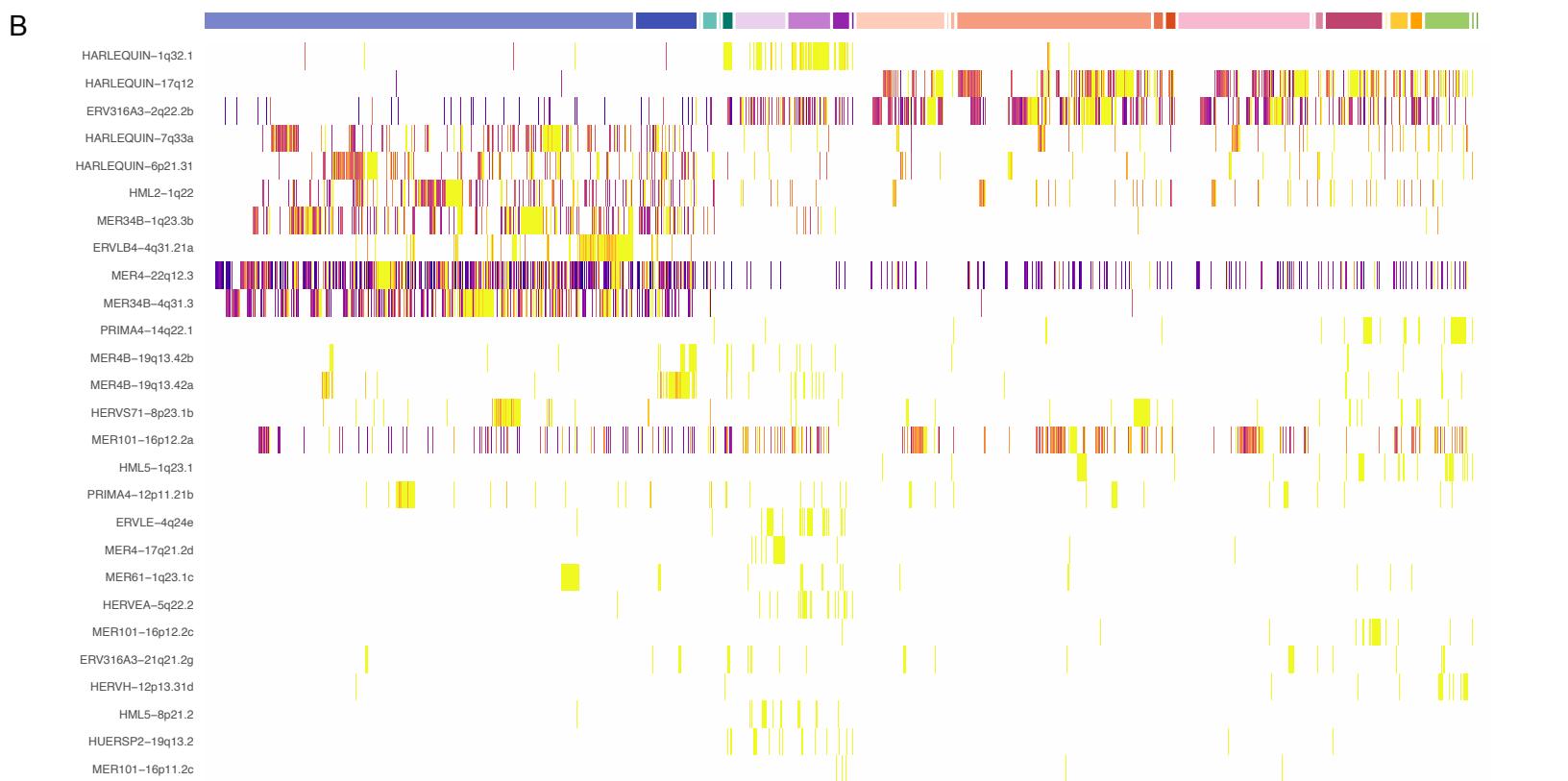


Figure 4. Expression of locus specific HERV features characterizes leukocyte subsets.

(A) Feature plots showing the relative expression in each cell for 27 HERV features with significant differential expression in one or more cell subset comparisons. Each plot is titled with the feature name; within each plot, every cell is colored according to the scaled HERV expression detected in that cell, see legend. Cells where there was no detection are colored gray. The position of cells is identical in all plots and in Fig. 3A: the cells are plotted in UMAP space calculated using all highly variable features (CG+HERV+ L1). The identity of the cell subset (or subsets) in which each HERV is significantly upregulated is annotated in the lower left of each plot with the average log₂ fold change in parentheses; HERV features that were significantly upregulated in more than three cell subsets, only the top three significance tests are shown, as ranked by adjusted p-value. Annotation text is colored according to the celltype color palettes in the legend. (B) Two dimensional heatmap showing the relative expression in each cell for 27 HERV features with significant differential expression in one or more cell subset comparisons. Each row represents a HERV feature with the names along the Y axis. Each column represents one cell with the predicted cell subset shown above the plot, colored according to the celltype color palette. Features are ordered by hierarchical clustering of the heatmap data. Cells are first grouped according to cell subset, then ordered by hierarchical clustering within each subset.