

1 **Ultrastructural, metabolic and genetic determinants of the acquisition of macrolide**
2 **resistance by *Streptococcus pneumoniae***
3

4 Xueqing Wu^{a,b, #}, Babek Alibayov^{h, #}, Xi Xiang^c, Santiago M. Lattar^e, Fuminori Sakai^e, Austin A.
5 Medders^h, Brenda Antezana^d, Lance Keller^h, Ana G. J. Vidal^h, Yih-Ling Tzeng^d, D. Ashley
6 Robinson^h, David Stephens^d, Yunsong Yu^{a,b,*}, and Jorge E. Vidal^{h,*}
7

8 ^aDepartment of Infectious Diseases, Regional Medical Center for National Institute of
9 Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University,
10 Hangzhou 310052, China;

11 ^bKey Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou
12 310052, China.

13 ^cDepartment of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of
14 Medicine, Jinhua 321000, China;

15 ^dDepartment of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United
16 States.

17 ^eHubert Department of Global Health, Rollins School of Public Health, Emory University,
18 Atlanta GA 30322, United States.

19 ^fGraduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta GA
20 30322, United States.

21 ^gProgram in Population Biology Ecology and Evolution, Emory University, Atlanta GA 30322,
22 United States.

23 ^hDepartment of Microbiology and Immunology, University of Mississippi Medical Center,
24 Jackson MS 39056, United States.

25
26 Running Head: Mechanism of acquisition of macrolide resistance by Spn

27 [#]Author contributed equally to this work.

28 *Address correspondence to:
29 Jorge E. Vidal and Yunsong Yu.
30 Jorge E. Vidal, PhD, jvidal@umc.edu
31 University of Mississippi Medical Center,
32 Jackson MS 39056, United States
33 Phone: +1-601-984-1711, Fax: +1-601-984-1708.
34 Yunsong Yu, MD
35 Email: yvys119@zju.edu.cn
36

37 **Abstract**

38 **Aim:** *Streptococcus pneumoniae* (Spn) acquires genes for macrolide resistance, MEGA or *ermB*,
39 in the human host. These genes are carried either in the chromosome, or on integrative
40 conjugative elements (ICEs). Here, we investigated molecular determinants of the acquisition of
41 macrolide resistance. **Methods and Results:** Whole genome analysis was conducted for 128
42 macrolide-resistant pneumococcal isolates to identify the presence of MEGA (44.5%, 57/128) or
43 *ermB* (100%), and recombination events in Tn916-related elements or in the locus *comCDE*
44 encoding competence genes. Confocal and electron microscopy studies demonstrated that, during
45 the acquisition of macrolide resistance, pneumococcal strains formed clusters of varying size,
46 with the largest aggregates having a median size of \sim 1600 μm^2 . Remarkably, these
47 pneumococcal aggregates comprise both encapsulated and nonencapsulated pneumococci,
48 exhibited physical interaction, and spanned extracellular and intracellular compartments. We
49 assessed the recombination frequency (rF) for the acquisition of macrolide resistance by a
50 recipient D39 strain, from pneumococcal strains carrying MEGA (\sim 5.4 kb) in the chromone, or
51 in large ICEs (>23 kb). Notably, the rF for the acquisition of MEGA, whether in the
52 chromosome or carried on an ICE was similar. However, the rF adjusted to the acquisition of the
53 full-length ICE (\sim 52 kb), compared to that of the capsule locus (\sim 23 kb) that is acquired by
54 transformation, was three orders of magnitude higher. Finally, metabolomics studies revealed a
55 link between the acquisition of ICE and the metabolic pathways involving nicotinic acid and
56 sucrose. **Conclusions:** Extracellular and intracellular pneumococcal clusters facilitate the
57 acquisition of full-length ICE at a rF higher than that of typical transformation events, involving
58 distinct metabolic changes that present potential targets for interventions.

60 **Introduction**

61 *Streptococcus pneumoniae* (Spn), a Gram-positive opportunistic pathogen, is a leading
62 cause of community-acquired pneumonia, meningitis, and otitis media^{1, 2}. The treatment for
63 pneumococcal disease has been challenged in recent years due to the rise of antibiotic resistance,
64 including resistance to macrolides and β -Lactams in pneumococcal strains³⁻⁵. While the
65 incidence of pneumococcal disease has decreased after the introduction of pneumococcal
66 conjugate vaccines^{6, 7}, vaccine escape strains are emerging as a public health threat due to
67 serotype replacement^{7, 8}.

68 Despite causing disease, Spn asymptotically colonizes the nasopharynx during
69 childhood, forming biofilms (i.e., bacteria aggregates) and sharing this niche with several other
70 streptococci species⁹⁻¹³. Pneumococci forming nasopharyngeal biofilms enter a dormant stage
71 that slows down their metabolism thus allowing persistent colonization that often lasts for
72 months^{12, 14}. Persistent colonization is accompanied by a concomitant reduction of the expression
73 of virulence factors, such as the capsular polysaccharide instead forming a biofilm structure
74 made of extracellular DNA, proteins, lipids, and polysaccharides that facilitate asymptomatic
75 carriage^{10, 12, 13}. We and others have demonstrated that pneumococcal strains form biofilm
76 consortia on abiotic surfaces as well as on human nasopharyngeal cells¹⁵⁻¹⁸. Furthermore, human
77 nasopharyngeal cells, cultivated in a bioreactor system, facilitated the swift, nature-like
78 acquisition of antibiotic resistance genes between two Spn strains with a high recombination
79 frequency (rF)^{15, 19, 20}.

80 Macrolide resistance in Spn is mainly attributed to modification of the macrolide target in
81 the bacterial ribosome and to active efflux mediated by the macrolide efflux genetic assembly
82 (MEGA) element⁵. The most common mechanism altering the bacterial ribosome target involves
83 the methylation of the 23S rRNA by methyltransferases encoded by *ermB* and rarely by *ermTR*²¹.

84 Point mutations in the 23S rRNA or L4 or L22 ribosomal protein genes *rplD* and *rplV*,
85 respectively, have also been associated with non-susceptibility to macrolides^{22, 23}. Another
86 mechanism conferring macrolide resistance to Spn strains is the two-component (MEGA) efflux
87 pump²⁴. MEGA is encoded by a ~5.5 kb, or 5.4 kb, element carrying the *mef(E)* and *mel* (listed
88 also as *msrD*) operon^{24, 25}. Spn strains carrying MEGA are resistant to 14- and 15-membered
89 macrolides but they are susceptible to lincosamides and streptogramin B, known as the M
90 phenotype²⁶.

91 The *mef(E)/mel* genes and/or *ermB* are carried in large integrative conjugative elements
92 (ICEs) of the Tn916-related family and Tn5253-related family, which also often carry the *tetM*
93 gene for resistance to tetracycline²⁷⁻²⁹. The Tn916-related elements carrying MEGA inserted into
94 *orf6* are termed Tn2009^{28, 30}. Tn916-related elements were identified in macrolide-resistant Spn
95 strains isolated in the late 1960s³¹ but their prevalence has significantly increased in the last few
96 years. Invasive and nasopharyngeal Spn strains carrying Tn916-related ICEs, including Tn2009
97 and other ICEs, have been identified in China, Italy, Venezuela, USA, Spain, and the UK^{28, 29, 32,}
98 ³³. Moreover, ~90% of emergent Spn vaccine escape strains of serotype 35B and 35D, isolated in
99 Japan, carry macrolide and tetracycline resistance determinants in Tn916-related ICEs; of these
100 75% Spn strains carried MEGA in Tn2009³⁴. Vaccine escape serotype 3 strains clonal complex
101 (CC180) clade II, isolated in the USA and Hong Kong, carry *ermB* and *tetM* in a 36.7 kb Tn916-
102 related ICE³⁵.

103 In other Gram-positive species, the transfer of Tn916-related elements relies in the
104 conjugation machinery (i.e., a type IV secretion system, T4SS), self-encoded in these ICEs³⁶.
105 The molecular mechanism by which ICEs are acquired by Spn strains has been debated for over
106 25 years. However, the most common hypothesis suggests that acquisition occurs via

107 transformation^{26, 28, 30}. This hypothesis was based on the observation that conjugative insertion of
108 Tn2009 or Tn2010 in Spn strains were infrequent^{28, 29}, that *in vitro* conjugation assays has been
109 unsuccessful to generate transconjugants^{26, 30} or that the conjugative transference of Tn916 or
110 Tn916-related ICEs, when it has been observed, it has occurred at a low ($<10^{-6}$) conjugation
111 frequency³⁷. In recent years, we developed in our laboratories a life-like bioreactor system that
112 facilitates the natural transference of mutation-mediated resistance¹⁵, as well as macrolide
113 resistance carried in ICEs among Spn strains^{19, 20}. Using the bioreactor system, we demonstrated
114 that the transformation machinery, specifically the Com system, facilitates the acquisition of
115 MEGA, carried in Tn916-related elements, at a recombination frequency (rF) as high as 10^{-3} . In
116 the absence of either a functional Com system or a functional transformation apparatus, the rF of
117 the acquisition of Tn916-related ICEs fell to $<10^{-7}$,¹⁹.

118 Competence development is a physiological state that is tightly regulated by certain
119 environmental cues and cellular determinants. Although acquisition of antibiotic resistance
120 naturally occurred whole strains colonize the human host, the host cell determinants are largely
121 unknown. These host cells-derived molecules are mimicked in the bioreactor system, as
122 pneumococci becomes naturally competent, release extracellular DNA and acquire DNA at a
123 high recombination frequency when cultured in the bioreactor^{15, 19}. This occurs even in the
124 absence of antibiotic pressure, and within a few hours of incubation. At present, important
125 molecular events, cellular factors, and the cellular dynamics of ICE transfer among Spn strains
126 have remained unexplored.

127 In a recent study, we isolated and whole genome sequenced Spn strains from
128 pneumococcal disease cases in China. The prevalence of macrolide resistance in these Spn
129 strains was 99.2% (127/128). Therefore, in the current study we begin by conducting a thorough

130 genomic analysis of genetic elements conferring macrolide resistance in these strains and aimed
131 to identify potential hotspots and other genetic characteristics in the chromosome of these strains,
132 that are linked to the acquisition of macrolide resistance. Subsequently, we performed a detailed
133 investigation of cells, and metabolic determinants leading to the acquisition of macrolide
134 resistance.

135

136 **Results**

137 **Identification of macrolide resistance determinants and recombination in erythromycin-
138 resistant pneumococcal strains.** To identify the mechanism leading to macrolide resistance we
139 performed whole-genome sequence analysis of 127 clinical isolates that were resistant to
140 erythromycin ($\text{MIC} \geq 128 \mu\text{g/ml}$)³⁸. All these isolates belonged to 20 different serotypes (S) (Fig.
141 1A). Pneumococcal strains belonging to S19F were more prevalent (n=43), followed by S19A
142 strains (n=16). Our genomic analysis found that the MEGA element was carried by S19F and
143 S19A strains that phylogenetically belong to clone complex (CC) 271. The gene *ermB* was
144 detected in all analyzed strains. Both MEGA and *ermB* were present in *Tn916*-related elements.
145 Consequently, we performed an analysis of recombination events within the *Tn916*-related
146 elements and the genomic region carrying genes of the competence locus *comCDE*.

147 The most common recombination hotspots were located in genes encoding the
148 conjugation apparatus, including those within *ermB*, which is inserted within *orf20* carried by
149 CC271 strains (Fig. 1B). Recombination events downstream of the T4SS genes were not
150 identified in these Spn CC271 strains that carry MEGA. In other strains, recombination hotspots
151 were identified in random positions of the *Tn916*-related elements including in the accessory
152 genes' region located downstream the genes encoding the T4SS (Fig. 1B). Most Spn strains

153 belonging to serotype 14 and 23F did not show evidence of recombination hotspots in their
154 *Tn916*-related elements.

155 We analyzed recombination hotspots in the locus *comCDE*, which encodes genes for the
156 competence-stimulating peptide (CSP) and its cognate two-component regulatory system³⁹.
157 Surprisingly, hotspots within the *comCDE* region were only identified in serotype 14 and 23F
158 strains, which do not carry recombination hotspots in genes within their *Tn916*-related elements
159 (Fig. 1C). In the majority of all other strains, genes encoding the Com system were conserved
160 with no evidence of recombination (Fig. 1B). Collectively, strains harboring *Tn916*-related
161 elements were observed to possess recombination hotspots either within the genes encoding the
162 conjugative machinery of *Tn916* or within the locus that regulates pneumococcal competence for
163 DNA uptake but not in both.

164

165 **Spatial localization of pneumococcal strains within nasopharyngeal biofilm consortia.**
166 Acquisition of these *Tn916*-related elements leading to resistance to macrolides has been
167 observed in pneumococcal strains isolated throughout the world^{38, 40}, we next investigated the
168 mechanism behind the acquisition of macrolide resistance genes. We initially studied the fitness,
169 colonization dynamics, and ultrastructure of various pneumococcal strains, including strains
170 carrying *Tn916*-related elements, during co-colonization in a simulated nasopharyngeal
171 environment using an *ex-vivo* bioreactor system. This system mimics the human nasopharynx
172 and facilitates gene transfer among strains^{17, 41, 42}. Mixtures of pneumococcal strains were
173 inoculated in the bioreactor including reference strain TIGR4, and Spn strain 8655 that carry the
174 macrolide resistance gene *ermB* in a *Tn3872*-element (8655^{Tn3872})^{18, 43}, or TIGR4 and strain D39.
175 The growth rate of TIGR4 and 8655^{Tn3872}, or TIGR4 and D39, when inoculated separately in

176 Todd-Hewitt broth (THY) was similar (not shown). When strains colonized together the
177 simulated human pharyngeal epithelium, the density of 8655^{Tn3872} biofilms ($\sim 10^8$ cfu/ml) was
178 significantly higher than that of TIGR4 ($\sim 10^7$ cfu/ml) (Fig. 2A) while the density of D39 when
179 co-inoculated with TIGR4 was similar (Fig. 3A). Given that a rF of $\sim 1 \times 10^{-3}$ has been
180 demonstrated to occur in the nasopharynx *in vivo* or *ex vivo*^{15, 44}, these results suggest that
181 vaccine and non-vaccine type pneumococci, when co-colonizing human pharyngeal cells at a
182 bacterial density $> 10^6$ cfu/ml, are prone to recombination via transformation.

183 We then tested the hypothesis that while forming a biofilm consortium, the two
184 pneumococcal strains will be in such physical proximity to enhance the efficiency of gene
185 transfer. To visualize individual strains within the biofilm consortium, we stained pneumococci
186 with fluorescence-labeled serotype-specific antibodies, and the DNA with DAPI. Preparations
187 were then analyzed with both a confocal microscope and a super-resolution confocal microscope.
188 A biofilm consortium formed by a mixture of TIGR4 and 8655^{Tn3872} (Fig. 2C) or TIGR4 and
189 D39 (Fig. 3B) was observed attached to human pharyngeal cells forming bacterial aggregates.
190 Structural confocal analysis of the XZ plane, XZ and XY optical sections, and a XZ optical
191 section of a 3D reconstruction showed intracellular TIGR4 and 8655^{Tn3872} pneumococci (Fig.
192 2C). Optical XY sections, each spaced 0.1 μm apart from the top and bottom of the projection,
193 revealed that the aggregate made by TIGR4 and 8655^{Tn3872} locates on top but enters pharyngeal
194 cells and these pneumococci are positioned on the same focal plane as that of cell nuclei (Fig.
195 2C). Remarkably, intracellular pneumococci consisted of both encapsulated and
196 nonencapsulated bacteria (Fig. 2C, arrow). Quantification of the median fluorescence intensity,
197 from each channel, was significantly higher for 8655^{Tn3872} compared with TIGR4 (Fig. 2B). The

198 median area of the largest bacterial aggregates of 8655^{Tn3872} was 1684 μm^2 while that of TIGR4
199 was 155 μm^2 (not shown).

200 Super-resolution microscopy (Fig. 2D) and colocalization analysis shown in Fig. 3B
201 (arrows) identified physical contact between pneumococci within biofilm consortia. Physical
202 contact spanned over \sim 1.2 μm of capsule-capsule interaction (Fig. 2D, dotted line) with 3D
203 analysis showing the embedding of both capsules (Fig. 2D, arrow).

204

205 **Pneumococci form localized aggregates on pharyngeal cells when the acquisition of**
206 **resistance via transformation occurs.** We next performed ultrastructural studies using scanning
207 electron microscopy (SEM) and transmission electron microscopy (TEM). These studies showed
208 that pneumococci, when transformation had already occurred in the bioreactor¹⁵ (i.e., 6 h post-
209 inoculation, explained in the next section), are organized in localized clusters of bacterial
210 aggregates attached to pharyngeal cells (Fig. 3C, delimited). Pneumococci were also observed
211 inside the cells, evidenced by disrupted membrane structures observed at various magnifications,
212 resembling holes (Fig. 3D and 3E, arrows). Under SEM, extracellular pneumococci within
213 clusters appear elongated (Fig. 3F-3H) and structures compatible with the type IV pili (T4P)
214 were observed (Fig. 3F and 3H, white arrows). T4P were also evident bacterial clusters observed
215 in micrographs collected by TEM (Fig. 3I, arrows). Within each cluster, some pneumococcal
216 cells were observed lysed, which was characterized by the presence of bacteria with a disrupted
217 cell wall (Fig. 3F and 3H, black arrows). Each cluster of pneumococci was surrounded by
218 pharyngeal cells that appeared intoxicated such as those detached from the substratum or with a
219 compromised cell membrane (Fig. 3D-G, stars).

220

221 **MEGA can be transferred in an *ex vivo* nasopharyngeal environment from disease isolates**
222 **or engineered pneumococci.** Infection of pharyngeal cells by pneumococci, in the bioreactor
223 system, provides an ideal microenvironment for horizontal transfer of macrolide resistance. We
224 therefore investigated the acquisition of the MEGA which is encoded by the *mefE* and *mel*
225 genes^{24, 25, 28}. To assess this, we inoculated in the *ex vivo* bioreactor model a pair of strains
226 including a Spn strain isolated from pneumococcal disease carrying MEGA in the chromosome,
227 MEGA-1.III (GA17570) or MEGA-2.II (GA41688)²⁵, and a recipient D39 carrying resistance to
228 Tet and streptomycin (D39^{Str-Tet}). The recombination frequency (rF) of D39^{Str-Tet} to acquire
229 MEGA from GA17570, or from GA41688, was 2.44×10^{-7} or 1.18×10^{-5} respectively (Fig. 4A, and
230 4B). The colonization density (cfu/ml) of the recipient D39^{tr-Tet} when co-inoculated with either
231 donor strain was similar thereby the differences cannot be attributed to a decreased population of
232 the recipient (Figs. 4A and 4B, right panels). Tetracycline resistance was acquired by MEGA-
233 carrying strains (i.e., from D39^{Str-Tet}) at a rF of 7.59×10^{-5} (GA17545, Fig. 4A), or 8.15×10^{-5}
234 (GA41688, Fig. 4B).

235 Whole genome sequencing confirmed that in strain D39^{Mega/GA17570} the MEGA element
236 was located in the same chromosome region as that in the donor GA17570, in a region between
237 the capsular polysaccharide biosynthesis protein *capD* gene (SPD_0099, D39 nomenclature) and
238 SPD_1001, a gene encoding for a putative hydrolase (Fig. 4C).

239 To investigate if the location of MEGA in the chromosome influences the rF, we assessed
240 the transfer of MEGA using strains with the same genetic background. To this purpose, TIGR4
241 strains were engineered to carry MEGA class 1.I, 1.III, 2.II, or 2.IVc in the chromosome (Table
242 1). A recipient D39^{Str-Tet} was incubated in the bioreactor with a TIGR4^{MEGA} strain and the rF was
243 investigated. D39^{Str-Tet} recombinants carrying now macrolide resistance in a MEGA element

244 (D39^{Str-Tet/MEGA}) were obtained at a similar rF >2.01x10⁻³ (Fig. 4D). Using a qPCR approach, we
245 confirmed that >90% of D39^{Str-Tet/MEGA} recombinant strains carried capsules genes for serotype 2
246 (Fig. 4E). Acquisition of MEGA by D39^{Str-Tet} was inhibited by treatment with DNaseI indicating
247 that this genetic element (≥ 5.4 kb) conferring macrolide resistance was acquired by
248 transformation (Fig. 4D). Taken together, the acquisition of MEGA by a recipient pneumococcal
249 strain is not influenced by the chromosomal region where this genetic element is located.

250

251 **Similar recombination frequency for the acquisition of macrolide resistance encoded in the**
252 **chromosome or in large ICEs.** We have demonstrated that acquisition of large ICEs by *S.*
253 *pneumoniae* occurs in the bioreactor and that it is facilitated by the transformation machinery¹⁹,
254²⁰. We therefore sought to compare, under the same culture conditions of the bioreactor, the rF
255 for the acquisition of macrolide resistance encoded in genetic elements of varying sizes (~1, ~5.5,
256 ~23.5, or ~51 kb). To this end, we engineered, or selected, pneumococcal strains carrying
257 macrolide resistance genes *ermB* (TIGR4 ^{$\Omega ermB$}) or *mef(E)/mel* (i.e., MEGA) either inserted in the
258 chromosome, (TIGR4^{Mega1.I} or TIGR4^{Mega2.IVc}) or carried within transposons Tn2009 (GA16833)
259 (Fig. 5A) or TnMeg (GA17545). Since Tn2009 carries macrolide resistance and the *tetM* for
260 tetracycline resistance, we utilized a recipient strain D39 carrying mutations ~800 bp apart in the
261 *rpsL* and *folA* gene, conferring resistance to streptomycin and trimethoprim (D39^{Str-Tmp}),
262 respectively. Mutations and genes associated with resistance were confirmed in the recipient and
263 donor strains by whole genome sequencing¹⁹.

264 The rF of recipient D39^{Str-Tmp} acquiring macrolide resistance from the engineered TIGR4
265 donor strains and that carried either a ~1 kb ($\Omega ermB$), ~5.4 (MEGA1.I), or ~5.5 kb
266 (MEGA2.IVc) occurred at a similar rF with a median of 5.03x10⁻⁵ (Fig. 5B). The donor strain,

267 TIGR4^{QermB}, TIGR4^{Mega1.I} or TIGR4^{Mega2.IVc} did not acquire streptomycin or trimethoprim
268 resistance (not shown) from recipient D39^{Str-Tmp} under the bioreactor incubation condition¹⁵.

269 Remarkably, the rF for the acquisition of MEGA carried in Tn2009 (~23.5 kb) or TnMeg
270 (~53 kb), from donor strain GA16833, or GA17545, respectively, was similar to that yielded by
271 engineered TIGR4 strains, with a median rF of 5.47×10^{-5} , or rF= 3.50×10^{-4} , respectively (Fig. 5C
272 and 5D). Unlike TIGR4 that did not acquire resistance from the recipient strain, donor strains
273 GA16833 (Tn2009) and GA17545 (TnMeg), acquired streptomycin resistance from D39^{Str-Tmp} at
274 a rF of 9.65×10^{-5} or 5.89×10^{-5} , respectively, thereby confirming the micro-environment of the
275 bioreactor allowed for bidirectional exchange of DNA.

276 We then conducted PCR analysis to confirm that *ermB*, or the MEGA element, was
277 acquired by the recipient. PCR analysis of ten different transformants confirmed that in D39^{QermB}
278 the *ermB* gene was located downstream *dexB* in the same location as that of the donor strain
279 TIGR4^{QermB} but absent in the recipient D39^{Str-Tmp} (Fig. 5F). For example, PCR using primers
280 SL1-SL2 amplified a ~4.3 kb fragment in both TIGR4^{QermB} and D39^{QermB} but a ~2 kb fragment in
281 D39^{Str-Tmp} due to the absence of *ermB* and SP0343 (Fig. 5A and 5F). The MEGA element,
282 *mef(E)/mel*, was also amplified from ten D39^{Mega1.I} transformants and PCR analysis located the
283 insertion within the same region of the chromosome (not shown).

284 PCR reactions amplified similar PCR products using DNA from both GA16833 and
285 D39^{Tn2009} that were absent when the DNA template was purified from D39^{Str-Tmp} (Fig. 5E, listed
286 as F2, F3, and F4). Two PCR products (F1 and F5), amplified using DNA from D39^{Str-Tmp} were
287 absent in GA16833 and D39^{Tn2009} (Fig. 5E). These results revealed that the acquisition of
288 macrolide resistance occurs at a similar frequency in strain D39 whether MEGA and/or *ermB* are
289 carried within an ICE or in the chromosome, and regardless of the molecular size of the ICE.

290

291 **Metabolomics studies during the acquisition of pneumococcal ICEs.** To gain further insight
292 into the mechanism by which macrolide-resistant carrying ICEs are acquired by Spn, we
293 conducted metabolomics studies. Supernatants from bioreactors that had been left uninfected,
294 infected with D39 and GA16833 or infected with D39 Δ comD (SPJV31) and GA16833 were
295 harvested and analyzed. Supernatants were collected for 60 min, between 1 and 2 h post-
296 inoculation (labeled as 2 h), or 3 and 4 h post-inoculation (labeled as 4 h). First, partial least
297 squares discriminant analysis (PLSDA) was conducted to investigate if the groups were
298 separable. After merging the two time points of each infection condition, the overall error rate
299 using centroid distance demonstrated that metabolites in cells infected with D39 and GA16833
300 were more different than the other two groups (Fig. 6A). PLSDA further identified metabolites
301 from pharyngeal cells incubated with D39 and GA16833 for 2 h as the most distinct (Fig. 6B).

302 When the relative abundance of the metabolites was assessed, those from cells incubated
303 with D39 and GA16833 for 2 h exhibited the most significant differences compared with
304 metabolites in uninfected cells (Fig. 6C and Table 2). Three known metabolites and nine unknown
305 molecules were differentially identified (Table 2). Whether infected with D39 and GA16833, or
306 with D39 Δ comD and GA16833, and incubated either 2 h or 4 h, nicotinic acid and sucrose were
307 significantly reduced compared with uninfected cells incubated in the bioreactor under the same
308 culture conditions (Table 2). We conducted a comparison between the metabolites found in the
309 supernatants from pharyngeal cells infected with D39 and GA16833 and those from cells
310 infected with D39 Δ comD and GA16833. Nine known molecules including nicotinic acid (~8-
311 fold increase) and sucrose (~11-fold increase) were enriched in supernatants from cells infected
312 with D39 Δ comD and GA16833. Together, metabolomics studies indicate that the transformation

313 capacity of the recipient, strain D39, causes a significant alteration of metabolites involved in
314 nucleic acid synthesis and sucrose metabolism (**Table 2**).

315 Nicotinic acid (vitamin B complex or niacin) is a precursor of NAD (Nicotinamide
316 Adenine Dinucleotide) and NADP, two molecules important for bacterial physiology. Since the
317 role of nicotinic acid in the acquisition of resistance by Spn is unknown, we conducted a protein
318 interaction network analysis using STRING. A conserved hypothetical protein, nicotinate
319 phosphoribosyltransferase (Spr1277, R6 nomenclature)⁴⁵ that catalyzes the first step in the
320 biosynthesis of NAD from nicotinic acid yielded 25 edges and 11 nodes in the STRING
321 database. The proteins shown in **Fig. 6D** are biologically connected. As expected, Spr1277
322 showed direct interaction with NAD biogenesis proteins such as NanC, NadD, NadE, and NadK.
323 Besides these proteins, a direct STRING interaction was obtained with the competence induced
324 protein A (CinA). No interactions were observed in STRING when sucrose-6-phosphate
325 hydrolase (ScrB), which enables bacteria to metabolize sucrose, was used to analyze the network
326 against all other enzymes derived from the metabolomics analysis, i.e., Spr1277, NanC, or CinA.

327

328 **Enhanced transformation frequency for the acquisition of pneumococcal transposon**
329 **compared to acquisition of the capsule locus.** The similar rF obtained in **Fig. 5** experiments
330 prompted us to further investigate if the entire ICE was acquired by most macrolide-resistant
331 recombinants. Because the acquisition of pneumococcal transposon is facilitated by the
332 transformation machinery¹⁹, we compared the rF of the large TnMeg, ~52 kb (Supplemental
333 information 1) against that for the acquisition of the capsule *cps* locus (~23 kb), whose genes are
334 acquired via transformation. To assess this, we took advantage that TIGR4^{Ω ermB} had been
335 engineered to carry *ermB* ~5 kb upstream the first gene of the *cps* locus, *cps4A*. Given that there

336 is high homology in the *cps* locus of the donor TIGR4^{QermB} and the recipient strain D39, but
337 Tn*Meg* carries ~52 kb of heterologous DNA (Fig. 7A), we would have expected a higher rF for
338 the acquisition of the *cps* locus compared with that of the acquisition of the full-length Tn*Meg*.

339 To identify transformants that had acquired the full-length Tn*Meg* (~52 kb), we first
340 extracted DNA from D39^{Tn*Meg*} transformants (N=100), and we performed eight PCR reactions
341 with primers spanning Tn*Meg* (Fig. 7B). Figure 5C shows representative PCR reactions of
342 D39^{Tn*Meg*} acquiring full-length Tn*Meg* or those that only acquired MEGA and short pieces of
343 DNA either or both upstream and downstream. Whole genome sequencing confirmed the
344 acquisition of Tn*Meg* by D39 (Fig. 7D). Notably, 54% of D39^{Tn*Meg*} transformants acquired the
345 ~52 kb Tn*Meg*. Having obtained the percentage of D39^{Tn*Meg*} carrying full-length Tn*Meg*, we re-
346 calculated the rF to now reflect true acquisition of the entire ICE and the adjusted rF was
347 1.95×10^{-4} (Fig. 7E). There was, however, no statistical significance when we compared the rF
348 for the acquisition of MEGA (i.e., transformants growing on erythromycin plates) compared with
349 that for acquiring the full-length Tn*Meg*.

350 We preformed experiments in parallel with donor TIGR4^{QermB} and recipient D39^{Str-Tmp}
351 and obtained a rF= 3.84×10^{-5} (Fig. 7F). Because the *cps* locus is highly similar between TIGR4
352 and D39 and conventional PCR mapping is not possible, we utilized qPCR assays that
353 differentiate serotype 2 from serotype 4^{46,47} thereby D39^{QermB} transformants with a *cps4* positive
354 qPCR reaction represented D39 acquiring capsule genes from TIGR4. Only 12% of these
355 colonies (8/66) yielded a qPCR positive reaction for serotype 4. Conventional PCR using D39-
356 specific primers (Fig. 7G) and wgs (Fig. 7D) confirmed that transformants were D39^{QermB} that
357 carried the *cps* from TIGR4 (D39^{QermB-cps4}). A mixture of anti-capsule antibodies against serotype
358 2 or serotype 4 capsule (anti-S2A555 and anti-S4A488) demonstrated that all eight D39^{QermB-cps}

359 expressed serotype 4 capsule whereas D39^{Q_{ermB}} strains with a negative PCR reaction for *cps4*
360 expressed serotype 2 capsule (Fig. 7H). As a control, a mixture of donor and recipient showed
361 that antibodies are specific for each capsular type (Fig. 7H). The adjusted rF for the acquisition
362 of the *ermB-cps4* capsule locus (rF=3.77x10⁻⁷) was significantly different to that of the
363 acquisition of *ermB* (rF=3.84x10⁻⁵) (Fig. 7F). We then deleted the *comCDE* locus in TIGR4^{Q_{ermB}}
364 and we confirmed that TIGR4Δ*comCDE*^{Q_{ermB}} had a significant transformation defect compared
365 with the parent strain (not shown). This new TIGR4Δ*comCDE*^{Q_{ermB}} capsule donor strain was
366 incubated along with the recipient D39^{Str-Tmp} in the bioreactor and transformants with the
367 genotype D39^{Str-Tmp/Ery} were harvested. The adjusted rF for the acquisition of the capsule locus
368 from TIGR4Δ*comCDE*^{Q_{ermB}} into strain D39^{Str-Tmp} was again significantly different than that of the
369 acquisition of *ermB* (not shown).

370 Taken together, we demonstrated that the rF for acquiring TnMeg (~52 kb) by recipient
371 D39^{Str-Tmp} was three orders of magnitude higher than that to acquire a homologous *ermB-cps4*
372 locus indicating that the mechanism of acquisition of this large ICE is further facilitated by other
373 components outside the transformation machinery.

374

375 **Discussion**

376 We demonstrated in the current study structural, metabolic and genetic characteristics
377 occurring during the acquisition of macrolide resistance by pneumococcal strains. Spn strains
378 form highly dynamic nasopharyngeal biofilm consortia, with pneumococci fused into “islets” of
379 ~20 μm while maintaining their own identity (i.e., capsule expression). Importantly, the close
380 proximity within the pneumococcal islets facilitated rapid acquisition of antibiotic resistance
381 carried in an ICE or chromosomally encoded within the MEGA element. Macrolide resistance

382 elements, named MEGA or *ermB*, were transferred at a high frequency in the bioreactor without
383 selective pressure. Moreover, supplementing the bioreactor with sub-MIC erythromycin did not
384 significantly alter the rF for the acquisition of Tn2009 by Spn (not shown). Plasmid transfer
385 frequency of the conjugation plasmid encoding the tetracycline-efflux pump TetA, in
386 *Escherichia coli*, remains unchanged despite the presence of tetracycline^{48, 49}. In contrast, the
387 presence of cell wall targeting antibiotics affected the transformation efficiency of the SCCmec
388 cassette, encoding methicillin resistance in *Staphylococcus aureus*⁵⁰. Overall, this evidence has
389 important implications for our understanding of the mechanism of antibiotic resistance
390 dissemination among pneumococci, and perhaps other streptococci.

391 Acquisition of genes in the nasopharyngeal microenvironment by recombination via
392 transformation has driven the spread of drug resistance, and the acquisition of capsule genes
393 from pneumococcal vaccine and vaccine-escape strains^{51, 52}. Current methods for studying the rF
394 for the acquisition of large genetic elements carrying antibiotic resistant genes, in most cases,
395 skew the analysis of frequencies toward the antibiotic selection utilized. Our study included PCR
396 mapping of >200 transformants that acquired macrolide resistance carried either upstream the
397 capsule locus (~28 kb), or in a large ICE (~53 kb). To our surprise, the adjusted rF for the
398 acquisition of the full-length ICE was three orders of magnitude higher than that to acquire the
399 capsule locus. Accordingly, our molecular studies revealed that >60% of D39^{TnMeg} transformants
400 acquired the full-length TnMeg, whereas <20% transformants screened acquired the full-length
401 capsule locus. Elegant *in vitro* transformation studies demonstrated that the single largest
402 recombination event in Spn resulted in the acquisition of 30 kb⁵³. Therefore, acquisition of the
403 entire TnMeg at such different rF, compared with the acquisition of transformation-driven
404 capsule locus, may suggest that additional elements are involved. Recent evidence showing that

405 the acquisition of a ~60 kb *SCCmec* cassette driving the spread of methicillin resistance in *S.*
406 *aureus* supports the above hypothesis. Acquisition of *SCCmec* was shown to occurs through
407 transformation but it required additional elements including the CcrAB-mediated
408 excision/integration system encoded within *SCCmec*⁵⁰.

409 We recently provided evidence that the transformation machinery facilitates the transfer
410 of large ICEs in *Spn*¹⁹. Spontaneous natural competence develops in the bioreactor at a high
411 frequency (~10⁻⁴) that all elements necessary for the acquisition of ICEs occurred. The absence
412 of human pharyngeal cells, for instance, causes a reduced rF of ~10⁻⁷ (not shown and¹⁵). Thus, an
413 orchestrated machinery driven the spread of macrolide resistance involves both bacterial and host
414 cell factors. We have at least two hypotheses to explain why the competence system facilitates
415 these acquisition events. In the first one, we suggest that the competence regulon affects the
416 formation of the DNA exchange islets on human cells, or the proximity of pneumococci within
417 the biofilms. In support to this, competence development has been associated to early events
418 during the attachment of *Spn* to host cells^{17, 54}. Whereas the density of *com* mutants was similar
419 as that of the wt strains in dual strain biofilms¹⁹, early events required for the acquisition ICEs
420 may have been perturbed. A second hypothesis relates to the metabolite host response against a
421 functional competence system, and therefore to the absence of a metabolite(s) or the absence of
422 metabolic routes to process an essential molecule(s), required to trigger the acquisition of an
423 ICE. We are currently assessing these hypotheses in our laboratories.

424 Recent ultrastructural studies have shown that the Gram-positive bacterium *Bacillus*
425 *subtilis* produces membranous nanotubes, enabling the exchange of molecules among bacterial
426 cells⁵⁵. The ultrastructure of pneumococci at the time of the exchange of genetic material have
427 not been investigated, in part because of the lack of a nature-like model. We demonstrated here

428 that pneumococci produce abundant TIV pili at the time of the acquisition of resistance and some
429 vesicle-like structures were observed. The fact that treatment with DNaseI inhibited the
430 acquisition of chromosomally-encoded MEGA and ICE , in the bioreactor, suggest that
431 nanotubes or membrane vesicles are not required to transfer macrolide resistance.

432 A challenge to recreate persistence nasopharyngeal colonization is the irreversible
433 pneumococcal autolysis triggered at 8 h post-inoculation of biofilms in a microplate model ^{17, 56}.
434 We have used a circulated bioreactor system with human nasopharyngeal cell monolayer to
435 mimic the *in vivo* nasopharynx environment, in which pneumococcal strain would colonize
436 human cells without autolysis. In the simulated pneumococcus natural niche, resistance to
437 tetracycline, streptomycin, erythromycin, trimethoprim, or beta lactams such as ampicillin and
438 cefuroxime (not shown) was transferred very rapidly, in less than 8 h of co-culture. Whereas we
439 demonstrated that the acquisition was mediated by transformation, as we would expect,
440 transformation did not occur when strains were incubated together for 8 h in micro-titer plates
441 whether or not pharyngeal cells were seeded on those plates. We therefore proposed that in the
442 absence of autolysis human pharyngeal cells trigger pneumococcal transformation leading to the
443 stochastic acquisition of resistances at a high rF of $\sim 10^4$.

444 Moreover, recombination via transformation or mosaic acquisitions that can affect
445 capsular expression, including serotype switching between pneumococcal strains ⁵⁷. For
446 example, Yang Baek, et al. (2018) reported a capsule switching from S11A to S15A via
447 recombination in an extensively drug-resistant *S. pneumoniae* strain ⁵⁸. Our whole genome
448 sequencing data from macrolide resistant clinical isolates showed that high frequency
449 recombination occurred around Tn916-like elements and capsule expression region, while no
450 serotype switch event was detected in all tested strains. It was interested us whether the

451 transference of antibiotic resistance genes occur independently or along with *cps* genes
452 transformation. Therefore, we inserted an *ermB* gene near the capsule locus of TIGR4 strain for
453 transformation assays on human nasopharyngeal cells. Our results revealed that the majority of
454 D39 transformants (75%), carried only pieces of the capsule locus from TIGR4, and not the
455 entire capsule locus. We located some of these DNA fragments in an intergenic region between
456 the *clpL* and *mraY* genes and ending within the *csp2A* gene without affecting the capsule
457 expression of recombinants (not shown). This may explain the observation we made in our
458 clinical strains indicating that the *cps* locus is a hotspot for recombination but serotype switch
459 was not detected. Our studies conducted after the introduction of the pneumococcal vaccine
460 demonstrated a phenomenon called serotype replacement, where vaccine strains are replaced by
461 vaccine escape clones ⁵⁹. A recent study showed that distinctive pneumococcal lineages
462 exhibited same non-vaccine serotypes and dissimilar antibiotic resistance profiles⁶⁰. Taken
463 together, the evident replacement of serotypes (capsule genes transfer or expression) seems to
464 have no association with the acquisition of macrolide resistance as observed in clinical strains
465 and in our *ex vivo* bioreactor experiments.

466

467 **Material and Methods**

468 **Bacterial strains, culture media, and antibiotics.** In total 41 clinical isolated multidrug
469 resistant (MIC of penicillin \geq 8 μ g/ml, erythromycin \geq 128 μ g/ml) *S. pneumoniae* strains were
470 sequenced and used for *in silico* multilocus sequence typing (MLST), phylogenetic tree
471 construction, and recombination prediction. Serotyping of those clinical isolated were carried out
472 using Latex and Quellung reaction (Statens Serum Institute, Copenhagen, Denmark).
473 Pneumococcal strains were used for biofilm formation and antibiotic resistance transfer

474 experiments are listed in Table 1. Strains were routinely cultured on blood agar plates (BAP), or
475 grown in Todd Hewitt broth containing 0.5% (w/v) yeast extract (THY), at 37°C with a 5% CO₂
476 atmosphere. Where indicated, streptomycin (200 µg/ml), trimethoprim (10 µg/ml), tetracycline
477 (1 µg/ml), or/and erythromycin (1 µg/ml) was added to BAP. All antibiotics were purchased
478 from Merck (Darmstadt, Germany).

479 **DNA Extraction and whole genome sequencing analysis.** Genomic DNA of all tested
480 pneumococcal isolates was extracted using a DNA mini kit (Qiagen, Valencia, CA, USA) and
481 sent to whole genome sequencing (WGS) utilizing the Illumina HiSeq2000TM platform.
482 Sequence reads (Accession: PRJNA795524) were then mapped to a reference strain 19A-19339
483 (Accession: CP071917) to make single nucleotide polymorphism (SNP) calls using Snippy
484 (v4.4.5)⁶¹ and recombination prediction was then conducted via Gubbins (v2.4.1)⁶² with the
485 minimum number of 3 for base substitutions required to identify a recombination event. A
486 paired-end fastq file for each tested strain was assembled by Shovill⁶³, with a minimal length
487 and coverage of 200 bp and 10x, respectively. The assemblies of selected recombinants were
488 used to mapping against the complete sequence of strain D39 (NC_008533) in BRIG 0.95⁶⁴.

489 D39 transformants were whole-genome sequenced using the NextSeq500 platform,
490 targeting an average of 20M reads/sample (50X coverage) for the captured samples. The raw
491 Illumina sequence reads were quality-tested by FastQC and trimmed by Trim Galore. Paired-end
492 FastQ files were assembled using SPAdes (v3.11.1). The assembled capsule switch strain was
493 annotated onto the closed genome sequence of the reference strain D39 (CP000410) and
494 D39^{Tn17545} against GA17545 (AFGA01000000) using the online web-based RAPT and Genome
495 Assembly Service tools. Annotated whole-genome sequences have been deposited in NCBI
496 GenBank under BioProject no. PRJNA1055520.

497 **Inoculum preparation.** The inoculum was prepared as previously described ¹⁷. Briefly, an
498 overnight BAP culture was used to prepare a cell suspension in THY broth to an OD₆₀₀ of ~0.08.
499 This suspension was incubated at 37°C in a 5% CO₂ atmosphere until the culture reached an
500 OD₆₀₀ of ~0.2 (early log phase), and then glycerol was added to a final 10% (vol/vol) and stored
501 at -80°C until used. A frozen aliquot from each batch was removed to obtain the density (cfu/ml)
502 by serial dilution and plating.

503 **Cell cultures.** Human pharyngeal Detroit 562 cells (ATCC CCL-138) were cultured in Gibco™
504 Minimum Essential Media (MEM) (Thermo Fisher Scientific, Waltham, MA) supplemented with
505 10% non-heat-inactivated fetal bovine serum (FBS) (Atlanta biologicals), 1% nonessential amino
506 acids (Sigma), 1% glutamine (Sigma), penicillin (10,000 U/ml)-streptomycin (10,000 µg/ml),
507 and HEPES (10 mM) (Gibco). For the seeding, cells were harvested with 0.25% trypsin (Gibco),
508 resuspended in the cell culture medium at a ratio of 1:5 and incubated at 37°C in a 5% CO₂
509 humidified atmosphere.

510 **Bioreactor system.** Detroit 562 cells were grown on Snapwell™ filters (Corning, USA); these
511 filters have a polyester membrane (0.4 µm) supported by a detachable ring. Once polarized (7-9
512 days), Snapwell-containing pharyngeal cells were immediately placed in a sterile vertical
513 diffusion chamber (i.e., bioreactor) ¹⁷. Bioreactor chambers were perfused as detailed in our
514 previous publication ¹⁵. Chambers were then inoculated with ~1x10⁸ cfu/ml of each
515 pneumococcal strain and incubated at ~34°C under a sterile environment. At the end of the
516 incubation Snapwell inserts were removed and pneumococci attached to human cells were
517 washed once with PBS to remove planktonic cells. These pneumococci were harvested by
518 sonication for 15 s in a Bransonic ultrasonic water bath (Branson, Danbury, CT), followed by
519 extensive pipetting to remove all attached bacteria. An aliquot was used to obtain the density of

520 each strain in the biofilm consortium, by serial dilution and plating on BAP containing the
521 appropriate antibiotic, and another aliquot was plated onto BAP containing two, or three,
522 antibiotics, to harvest recombinants.

523 **Confocal analysis of nasopharyngeal pneumococcal biofilm consortia.** To visualize biofilm
524 consortia by super-resolution and confocal microscopy, we installed a glass coverslip inside the
525 SnapwellTM filters prior to seeding human pharyngeal cells. Once pharyngeal cells became
526 polarized, the Snapwell was installed in the bioreactor and inoculated as above. At the end of the
527 incubation, the coverslip containing pharyngeal cells with pneumococcal biofilms were washed
528 twice with PBS and fixed with 2% PFA for 15 min at room temperature. Once the fixative agent
529 was removed, biofilms were washed with PBS and blocked with 2% bovine serum albumin
530 (BSA) for 1 h at room temperature. These cells containing biofilms were simultaneously
531 incubated with serotype-specific polyclonal antibodies (Statens Serum Institute, Denmark) (~ 40
532 µg/ml), and wheat germ agglutinin (WGA) conjugated with Alexa Fluor (488 or 555,
533 Invitrogen), for 1 h at room temperature. Antibodies had been previously labeled with Alexa-488
534 (anti-S4/A488) or Alexa-555 (anti-S2/A555 and anti-S6B/A555) following the manufacturer
535 recommendations (Molecular Probes)^{15, 18}. Stained preparations were finally washed two times
536 with PBS and mounted with ProLong Diamond Antifade mountant with DAPI (Molecular
537 Probes). Super-resolution confocal images were obtained using an Olympus FV1000 confocal
538 microscope. Confocal micrographs were analyzed with ImageJ version 1.49k (National
539 Institutes of Health, USA) or with the Imaris software 10.1.0 (Bitplane AG).

540 **Electron microscopy studies.** Electron microscopy was used to visualize the detailed spatial
541 localization of pneumococcal strains within nasopharyngeal biofilm consortia and their
542 interactions. Instead of a glass coverslip as described above, we installed a square chip inside the

543 SnapwellTM, or a Thermanox coverslip (Fisher scientific), and then cells were grown and then
544 infected as detailed in the previous section. At the end of incubation, the square silicon chip, or
545 Thermanox coverlis, was removed from the bioreactor culture chamber and processed as detailed
546 below. Silicon chips, or Thermanox, were immediately fixed with a 2.5% glutaraldehyde
547 solution in 0.1 M cacodylate buffer pH 7.4 overnight and then washed with the same buffer.
548 Preparations were processed for scanning electron microscopy (SEM) as follows: post fixed with
549 1% osmium tetroxide and 1.5% potassium ferrocyanide in 0.1 M cacodylate buffer for one hour.
550 They were subsequently rinsed with de-ionized water, followed by dehydration through an
551 ethanol series ending with three exchanges of absolute ethanol. The samples were then placed
552 into individual ventilated processing vessels in fresh absolute ethanol and placed into a Polaron
553 E3000 critical point drying unit where the ethanol was exchanged for liquid CO₂. This liquid
554 CO₂ was eventually brought to its critical point of 1073 psi at 31°C and allowed to slowly vent.
555 Dried samples were then secured to labeled aluminum SEM stubs and coated with approximately
556 15 nm of chromium with a Denton DV-602 Turbo Magnetron Sputter coater. Samples were then
557 viewed with a Topcon DS130F field emission scanning electron microscope using 5 kV
558 accelerating voltage. Transmission electron microscopy (TEM). Preparations on Thermanox
559 were infiltrated and embedded in Eponate 12 resin. Ultrathin sections were cut on a RMC
560 PowerTome XL ultramicrotome at 70 nm, stained with 5% aqueous uranyl acetate and 2% lead
561 citrate, and examined on a JEOL IEM-1400 transmission electron microscope equipped with
562 Gatan UltraScan US1000.894 and Orius SC1000.832 CCD cameras.

563 **PCR studies of transformants.**

564

565 **DNA Extraction and serotype-specific qPCR reactions.** DNA was extracted from 200 μ l of a
566 fresh suspension of pneumococcal strains or a pool of recovered recombinants with the QIAamp
567 DNA Minikit according to the manufacturer's instructions. Final elution was done with 100 μ l of
568 elution buffer, DNA preps were quantified using a NanodropTM2000 spectrophotometer (Thermo
569 Fisher, Wilmington, Delaware, USA). DNA preps were utilized as template for serotype-specific
570 quantitative PCR reactions with primers and probes listed in Table 2 to identify the serotype of
571 each strain as well as recombinants as detailed in our previous studies^{15, 47, 65}.

572 **Insertion of *ermB* near the capsule locus of strain TIGR4.** The *ermB* gene was PCR amplified
573 using DNA template from SPJV10¹⁷ and primers Ery-L-XbaI and Ery-R-XhoI listed in¹⁷. This
574 *ermB* PCR product was purified using the QIAquick PCR Purification Kit (Qiagen, Valencia
575 CA) and then digested with restriction enzyme XbaI. Simultaneously two ~1.5 kb PCR products,
576 to be cloned flanking *ermB*, were PCR amplified using DNA from strain TIGR4 as a template
577 and primers JVS95L and JVS96R, to generate an upstream fragment, or JVS97L and JVS98R to
578 generate a downstream. PCR products were purified as above and digested with XbaI (upstream)
579 or XhoI (downstream), respectively. The XbaI-digested upstream fragment was first ligated
580 using T4 DNA ligase and the ligated product used as a template in PCR reactions using primers
581 JVS95L and Ery-R-XhoI. This purified PCR product was digested with XhoI and ligated to the
582 XhoI-digested downstream fragment as mentioned. The final ligated fragment was used as a
583 template in PCR reactions with primers JVS95L and JVS98R, purified as indicated above and
584 sequenced at Eurofins to confirm the construct. This cassette containing sequences downstream
585 the capsule locus was transformed (~100 ng) into competent cells of strain TIGR4 wt. A
586 transformant recovered in BAP with erythromycin (1 μ g/ml), named SPJV24, was serotyped
587 with Quellung antisera (Statens Serum Institute, Copenhagen, Denmark) to confirm expression

588 of serotype 4 capsule, and then DNA extracted to confirm the *ermB* was located upstream the
589 capsule locus, as detailed in the Results section.

590 **Construction of a TIGR4^{ΩermB}Δ*comCDE* mutant.** The mutation was prepared by replacing the
591 operon *comCDE* in TIGR4^{ΩermB} with a truncated fragment containing the *catP* gene. This
592 fragment was amplified from a GA16833Δ*comCDE* mutant (SPJV37) by PCR with primers
593 JVS0413 and JVS0414 (Table 3). The mutants were selected on BAP containing
594 chloramphenicol (3 µg/ml). The mutation was confirmed by PCR in the resulting
595 chloramphenicol-resistant clones.

596 **Primary metabolism analysis of mixtures of *S. pneumoniae* strains infecting human
597 pharyngeal cells.** D39 and GA16833 or D39Δ*comD* and GA16833, were infected into the
598 bioreactor as previous detailed, and infected cells were incubated at 37°C. The influx coming off
599 the bioreactor chamber (i.e., supernatant and planktonic bacteria) was collected for 60 min after
600 the first h of incubation, or after 3 h of incubation. Supernatants were filter sterilized with a 0.4
601 µm syringe filter and immediately frozen at -80°C. Primary metabolism by gas chromatography-
602 time of flight mass spectrometry (GC-TOF MS) was performed at the West Coast Metabolomics
603 Center, UC Davis. Briefly, samples extracted using 1ml of 3:3:2 ACN:IPA:H₂O (v/v/v). Half of
604 the sample was dried to completeness and then derivatized using 10 µl of 40 mg/ml of
605 methoxyamine in pyridine. They were shaken at 30°C for 1.5 h. Then 91 µl of MSTFA +
606 FAMEs to each sample and they were shaken at 37°C for 0.5 h to finish derivatization. Samples
607 were then vailed, capped, and injected onto the instrument. We use a 7890A GC coupled with a
608 LECO TOF. 0.5 µl of derivatized sample is injected using a splitless method onto a RESTEK
609 RTX-5SIL MS column with an Intergra-Guard at 275°C with a helium flow of 1 ml/min. The
610 GC oven is set to hold at 50°C for 1 min then ramp to 20°C/min to 330°C and then hold for 5

611 min. The transferline was set to 280°C while the EI ion source was set to 250°C. The Mass spec
612 parameters collect data from 85m/z to 500m/z at an acquisition rate of 17 spectra/sec. Raw data
613 were processed by LECO ChromaTOF version 4.5 for baseline subtraction, deconvolution and
614 peak detection, while BinBase was used for annotation and reporting⁶⁶.

615 **Statistical analysis.** We performed one-way analysis of variances (ANOVA) followed by
616 Dunnet's multiple comparison test, when more than two groups were compared or the Student *t*
617 test to compare two groups, as indicated. All statistical analysis was performed using the
618 software Graph Pad Prism (version 8.3.1).

619 **Declaration of interests**

620 We declare no competing interests.

621

622 **Acknowledgements**

623 This study was primarily supported by National Institutes of Health (NIH; R21AI112768-01A1),
624 the National Natural Science Foundation of China (No. 32000092) to XW, and the Jinhua
625 Science and Technology Research Key program (No. 2021-3-07) to XX. JEV is also supported
626 by a grant from NIGMS through the Molecular Center of Health and Disease (1P20GM144041-
627 01A1 7651). The work performed through the UMMC Molecular and Genomics Facility is
628 supported, in part, by funds from the NIGMS, including the Mississippi INBRE
629 (P20GM103476) and Obesity, Cardiorenal and Metabolic Diseases-COBRE (P30GM149404).
630 Special thanks to Dr. Lesley McGee and Dr. Bernard Beall from the Centers for Disease Control
631 and Prevention (CDC) for providing pneumococcal invasive isolates, and to Dr Shanshan Zhao
632 for provide clinical multidrug resistant pneumococci. We thank Dr. Hong Yi, and Dr. Jeannette
633 Taylor for their assistance with electron microscopy at the Robert P. Apkarian Integrated

634 Electron Microscopy Core in Emory University. Authors appreciate the assistance of Dr. Neil
635 Anthony, from Emory University School of Medicine, with confocal microscopy, and Dr.
636 Veronique Parrot for her assistance on preparing some figures.

637

638 **References**

639 1. Rodgers GL, Klugman KP. The future of pneumococcal disease prevention. *Vaccine*.
640 2011;29 Suppl 3:C43-8. Epub 2011/09/16. doi: 10.1016/j.vaccine.2011.07.047. PubMed PMID:
641 21896352.

642 2. Weiser JN. The pneumococcus: why a commensal misbehaves. *J Mol Med (Berl)*.
643 2010;88(2):97-102. Epub 2009/11/10. doi: 10.1007/s00109-009-0557-x. PubMed PMID:
644 19898768.

645 3. Malisova L, Urbaskova P, Jakubu V, Spanelova P, Kozakova J, Musilek M, Zemlickova
646 H. Surveillance of antibiotic resistance of *Streptococcus pneumoniae* in the Czech Republic,
647 respiratory study results, 2010-2017. *Epidemiol Mikrobiol Imunol*. 2019;68(2):75-81. Epub
648 2019/08/11. PubMed PMID: 31398980.

649 4. Aliberti S, Cook GS, Babu BL, Reyes LF, A HR, Sanz F, Soni NJ, Anzueto A, Faverio P,
650 Sadud RF, Muhammad I, Prat C, Vendrell E, Neves J, Kaimakamis E, Feneley A, Swarnakar R,
651 Franzetti F, Carugati M, Morosi M, Monge E, Restrepo MI, investigators G. International
652 prevalence and risk factors evaluation for drug-resistant *Streptococcus pneumoniae* pneumonia. *J
653 Infect*. 2019. Epub 2019/07/13. doi: 10.1016/j.jinf.2019.07.004. PubMed PMID: 31299410.

654 5. Kim L, McGee L, Tomczyk S, Beall B. Biological and Epidemiological Features of
655 Antibiotic-Resistant *Streptococcus pneumoniae* in Pre- and Post-Conjugate Vaccine Eras: a

656 United States Perspective. *Clin Microbiol Rev.* 2016;29(3):525-52. doi: 10.1128/CMR.00058-15.

657 PubMed PMID: 27076637; PMCID: PMC4861989.

658 6. von Gottberg A, de Gouveia L, Tempia S, Quan V, Meiring S, von Mollendorf C, Madhi

659 SA, Zell ER, Verani JR, O'Brien KL, Whitney CG, Klugman KP, Cohen C, Investigators G-S.

660 Effects of vaccination on invasive pneumococcal disease in South Africa. *The New England*

661 *journal of medicine.* 2014;371(20):1889-99. Epub 2014/11/12. doi: 10.1056/NEJMoa1401914.

662 PubMed PMID: 25386897.

663 7. Ladhani SN, Collins S, Djennad A, Sheppard CL, Borrow R, Fry NK, Andrews NJ,

664 Miller E, Ramsay ME. Rapid increase in non-vaccine serotypes causing invasive pneumococcal

665 disease in England and Wales, 2000-17: a prospective national observational cohort study.

666 *Lancet Infect Dis.* 2018;18(4):441-51. Epub 2018/02/06. doi: 10.1016/S1473-3099(18)30052-5.

667 PubMed PMID: 29395999.

668 8. Makwana A, Ladhani SN, Kapatai G, Campion E, Fry NK, Sheppard C. Rapid Spread of

669 Pneumococcal Nonvaccine Serotype 7C Previously Associated with Vaccine Serotype 19F,

670 England and Wales. *Emerg Infect Dis.* 2018;24(10):1919-22. Epub 2018/09/19. doi:

671 10.3201/eid2410.180114. PubMed PMID: 30226184; PMCID: PMC6154145.

672 9. Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, Mershon WJ,

673 Johnson C, Hu FZ, Stoodley P, Ehrlich GD, Post JC. Characterization of biofilm matrix,

674 degradation by DNase treatment and evidence of capsule downregulation in *Streptococcus*

675 *pneumoniae* clinical isolates. *BMC microbiology.* 2008;8:173. doi: 10.1186/1471-2180-8-173.

676 PubMed PMID: 18842140; PMCID: PMC2600794.

677 10. Gilley RP, Orihuela CJ. Pneumococci in biofilms are non-invasive: implications on
678 nasopharyngeal colonization. *Front Cell Infect Microbiol.* 2014;4:163. Epub 2014/11/22. doi:
679 10.3389/fcimb.2014.00163. PubMed PMID: 25414838; PMCID: PMC4222220.

680 11. Chao Y, Marks LR, Pettigrew MM, Hakansson AP. *Streptococcus pneumoniae* biofilm
681 formation and dispersion during colonization and disease. *Front Cell Infect Microbiol.*
682 2014;4:194. doi: 10.3389/fcimb.2014.00194. PubMed PMID: 25629011; PMCID: PMC4292784.

683 12. Shak JR, Vidal JE, Klugman KP. Influence of bacterial interactions on pneumococcal
684 colonization of the nasopharynx. *Trends in microbiology.* 2013;21(3):129-35. Epub 2013/01/01.
685 doi: 10.1016/j.tim.2012.11.005. PubMed PMID: 23273566.

686 13. Simell B, Auranen K, Kayhty H, Goldblatt D, Dagan R, O'Brien KL. The fundamental
687 link between pneumococcal carriage and disease. *Expert review of vaccines.* 2012;11(7):841-55.
688 Epub 2012/08/24. doi: 10.1586/erv.12.53. PubMed PMID: 22913260.

689 14. Weiser JN, Ferreira DM, Paton JC. *Streptococcus pneumoniae*: transmission,
690 colonization and invasion. *Nat Rev Microbiol.* 2018;16(6):355-67. Epub 2018/03/31. doi:
691 10.1038/s41579-018-0001-8. PubMed PMID: 29599457; PMCID: PMC5949087.

692 15. Lattar SM, Wu X, Brophy J, Sakai F, Klugman KP, Vidal JE. A Mechanism of
693 Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal
694 Pneumococcal Biofilm Consortia. *MBio.* 2018;9(3). doi: 10.1128/mBio.00561-18. PubMed
695 PMID: 29764945; PMCID: PMC5954218.

696 16. Vidal JE, Ludewick HP, Kunkel RM, Zahner D, Klugman KP. The LuxS-dependent
697 quorum-sensing system regulates early biofilm formation by *Streptococcus pneumoniae* strain
698 D39. *Infect Immun.* 2011;79(10):4050-60. doi: 10.1128/IAI.05186-11. PubMed PMID:
699 21825061; PMCID: PMC3187250.

700 17. Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP. Quorum-sensing systems
701 LuxS/autoinducer 2 and Com regulate *Streptococcus pneumoniae* biofilms in a bioreactor with
702 living cultures of human respiratory cells. *Infect Immun.* 2013;81(4):1341-53. doi:
703 10.1128/IAI.01096-12. PubMed PMID: 23403556; PMCID: PMC3639605.

704 18. Wu X, Jacobs NT, Bozio C, Palm P, Lattar SM, Hanke CR, Watson DM, Sakai F, Levin
705 BR, Klugman KP, Vidal JE. Competitive Dominance within Biofilm Consortia Regulates the
706 Relative Distribution of Pneumococcal Nasopharyngeal Density. *Appl Environ Microbiol.*
707 2017;83(16). doi: 10.1128/AEM.00953-17. PubMed PMID: 28576759; PMCID: PMC5541221.

708 19. Antezana BS, Lohsen S, Wu X, Vidal JE, Tzeng YL, Stephens DS. Dissemination of
709 Tn916-Related Integrative and Conjugative Elements in *Streptococcus pneumoniae* Occurs by
710 Transformation and Homologous Recombination in Nasopharyngeal Biofilms. *Microbiol Spectr.*
711 2023;11(2):e0375922. Epub 20230313. doi: 10.1128/spectrum.03759-22. PubMed PMID:
712 36912669; PMCID: PMC10101023.

713 20. Vidal AGJ, Alibayov B, Frame IJ, Murin L, Creel A, Hu D, Wu X, Vidal JE. Induction of
714 the macrolide-resistance efflux pump Mega inhibits intoxication of *Staphylococcus aureus*
715 strains by *Streptococcus pneumoniae*. *Microbiol Res.* 2022;263:127134. Epub 20220716. doi:
716 10.1016/j.micres.2022.127134. PubMed PMID: 35905580.

717 21. Leclercq R, Courvalin P. Resistance to macrolides and related antibiotics in
718 *Streptococcus pneumoniae*. *Antimicrob Agents Chemother.* 2002;46(9):2727-34. doi:
719 10.1128/AAC.46.9.2727-2734.2002. PubMed PMID: 12183222; PMCID: PMC127415.

720 22. Davies TA, Bush K, Sahm D, Evangelista A. Predominance of 23S rRNA mutants among
721 non-erm, non-mef macrolide-resistant clinical isolates of *Streptococcus pneumoniae* collected in

722 the United States in 1999-2000. *Antimicrob Agents Chemother*. 2005;49(7):3031-3. doi:
723 10.1128/AAC.49.7.3031-3033.2005. PubMed PMID: 15980393; PMCID: PMC1168632.

724 23. Dong W, Chochua S, McGee L, Jackson D, Klugman KP, Vidal JE. Mutations within the
725 *rplD* Gene of Linezolid-Nonsusceptible *Streptococcus pneumoniae* Strains Isolated in the United
726 States. *Antimicrob Agents Chemother*. 2014;58(4):2459-62. doi: 10.1128/AAC.02630-13.
727 PubMed PMID: 24492357; PMCID: PMC4023712.

728 24. Gay K, Stephens DS. Structure and dissemination of a chromosomal insertion element
729 encoding macrolide efflux in *Streptococcus pneumoniae*. *J Infect Dis*. 2001;184(1):56-65. Epub
730 20010531. doi: 10.1086/321001. PubMed PMID: 11398110.

731 25. Schroeder MR, Lohsen S, Chancey ST, Stephens DS. High-Level Macrolide Resistance
732 Due to the Mega Element [mef(E)/mel] in *Streptococcus pneumoniae*. *Front Microbiol*.
733 2019;10:868. Epub 2019/05/21. doi: 10.3389/fmicb.2019.00868. PubMed PMID: 31105666;
734 PMCID: PMC6491947.

735 26. Del Grosso M, Camilli R, Iannelli F, Pozzi G, Pantosti A. The *mef(E)*-carrying genetic
736 element (mega) of *Streptococcus pneumoniae*: insertion sites and association with other genetic
737 elements. *Antimicrob Agents Chemother*. 2006;50(10):3361-6. doi: 10.1128/AAC.00277-06.
738 PubMed PMID: 17005818; PMCID: PMC1610078.

739 27. Del Grosso M, Camilli R, Libisch B, Fuzi M, Pantosti A. New composite genetic element
740 of the Tn916 family with dual macrolide resistance genes in a *Streptococcus pneumoniae* isolate
741 belonging to clonal complex 271. *Antimicrob Agents Chemother*. 2009;53(3):1293-4. Epub
742 20081222. doi: 10.1128/AAC.01066-08. PubMed PMID: 19104015; PMCID: PMC2650554.

743 28. Chancey ST, Agrawal S, Schroeder MR, Farley MM, Tettelin H, Stephens DS.
744 Composite mobile genetic elements disseminating macrolide resistance in *Streptococcus*

745 pneumoniae. *Front Microbiol.* 2015;6:26. Epub 2015/02/25. doi: 10.3389/fmicb.2015.00026.

746 PubMed PMID: 25709602; PMCID: PMC4321634.

747 29. Santoro F, Vianna ME, Roberts AP. Variation on a theme; an overview of the
748 Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci.

749 *Front Microbiol.* 2014;5:535. Epub 2014/10/20. doi: 10.3389/fmicb.2014.00535. PubMed PMID:
750 25368607; PMCID: PMC4202715.

751 30. Del Grosso M, Scotto d'Abusco A, Iannelli F, Pozzi G, Pantosti A. Tn2009, a Tn916-like
752 element containing *mef(E)* in *Streptococcus pneumoniae*. *Antimicrob Agents Chemother.*
753 2004;48(6):2037-42. Epub 2004/05/25. doi: 10.1128/AAC.48.6.2037-2042.2004. PubMed
754 PMID: 15155196; PMCID: PMC415626.

755 31. Wyres KL, van Tonder A, Lambertsen LM, Hakenbeck R, Parkhill J, Bentley SD,
756 Brueggemann AB. Evidence of antimicrobial resistance-conferring genetic elements among
757 pneumococci isolated prior to 1974. *BMC Genomics.* 2013;14:500. Epub 2013/07/24. doi:
758 10.1186/1471-2164-14-500. PubMed PMID: 23879707; PMCID: PMC3726389.

759 32. Nikolaou E, Hubbard ATM, Botelho J, Marschall TAM, Ferreira DM, Roberts AP.
760 Antibiotic Resistance Is Associated with Integrative and Conjugative Elements and Genomic
761 Islands in Naturally Circulating *Streptococcus pneumoniae* Isolates from Adults in Liverpool,
762 UK. *Genes (Basel).* 2020;11(6). Epub 2020/06/06. doi: 10.3390/genes11060625. PubMed PMID:
763 32517221; PMCID: PMC7348760.

764 33. Domenech A, Ardanuy C, Grau I, Calatayud L, Pallares R, Fenoll A, Brueggemann AB,
765 Linares J. Evolution and genetic diversity of the Spain23F-ST81 clone causing adult invasive
766 pneumococcal disease in Barcelona (1990-2012). *J Antimicrob Chemother.* 2014;69(4):924-31.
767 Epub 2013/12/08. doi: 10.1093/jac/dkt473. PubMed PMID: 24324223; PMCID: PMC3956375.

768 34. Shinohara K, Fujisawa T, Chang B, Ito Y, Suga S, Matsumura Y, Yamamoto M, Nagao
769 M, Ohnishi M, Sugai M, Nakano S. Frequent Transmission of *Streptococcus pneumoniae*
770 Serotype 35B and 35D, Clonal Complex 558 Lineage, across Continents and the Formation of
771 Multiple Clades in Japan. *Antimicrob Agents Chemother.* 2023;67(2):e0108322. Epub
772 20230118. doi: 10.1128/aac.01083-22. PubMed PMID: 36651739; PMCID: PMC9933736.

773 35. Azarian T, Mitchell PK, Georgieva M, Thompson CM, Ghouila A, Pollard AJ, von
774 Gottberg A, du Plessis M, Antonio M, Kwambana-Adams BA, Clarke SC, Everett D, Cornick J,
775 Sadowy E, Hryniwicz W, Skoczynska A, Moisi JC, McGee L, Beall B, Metcalf BJ, Breiman
776 RF, Ho PL, Reid R, O'Brien KL, Gladstone RA, Bentley SD, Hanage WP. Global emergence
777 and population dynamics of divergent serotype 3 CC180 pneumococci. *PLoS Pathog.*
778 2018;14(11):e1007438. Epub 20181126. doi: 10.1371/journal.ppat.1007438. PubMed PMID:
779 30475919; PMCID: PMC6283594.

780 36. Johnson CM, Grossman AD. Integrative and Conjugative Elements (ICEs): What They
781 Do and How They Work. *Annu Rev Genet.* 2015;49:577-601. Epub 20151014. doi:
782 10.1146/annurev-genet-112414-055018. PubMed PMID: 26473380; PMCID: PMC5180612.

783 37. Watson DA, Musher DM. Interruption of capsule production in *Streptococcus pneumoniae*
784 serotype 3 by insertion of transposon Tn916. *Infect Immun.* 1990;58(9):3135-8. doi:
785 10.1128/iai.58.9.3135-3138.1990. PubMed PMID: 2167295; PMCID: PMC313622.

786 38. Wu X, Zhao S, Jiang Y, Xiang X, Ge L, Chen Q, Wang Y, Vidal JE, Yu Y. Effect of
787 pneumococcal conjugate vaccine availability on *Streptococcus pneumoniae* infections and
788 genetic recombination in Zhejiang, China from 2009 to 2019. *Emerg Microbes Infect.*
789 2022;11(1):606-15. doi: 10.1080/22221751.2022.2040921. PubMed PMID: 35135440; PMCID:
790 PMC8865111.

791 39. Claverys JP, Martin B, Polard P. The genetic transformation machinery: composition,
792 localization, and mechanism. *FEMS Microbiol Rev.* 2009;33(3):643-56. Epub 20090218. doi:
793 10.1111/j.1574-6976.2009.00164.x. PubMed PMID: 19228200.

794 40. D'Aeth JC, van der Linden MP, McGee L, de Lencastre H, Turner P, Song JH, Lo SW,
795 Gladstone RA, Sa-Leao R, Ko KS, Hanage WP, Breiman RF, Beall B, Bentley SD, Croucher NJ,
796 Consortium GPS. The role of interspecies recombination in the evolution of antibiotic-resistant
797 pneumococci. *Elife.* 2021;10. Epub 20210714. doi: 10.7554/eLife.67113. PubMed PMID:
798 34259624; PMCID: PMC8321556.

799 41. Shak JR, Ludewick HP, Howery KE, Sakai F, Yi H, Harvey RM, Paton JC, Klugman KP,
800 Vidal JE. Novel role for the *Streptococcus pneumoniae* toxin pneumolysin in the assembly of
801 biofilms. *MBio.* 2013;4(5):e00655-13. doi: 10.1128/mBio.00655-13. PubMed PMID: 24023386;
802 PMCID: PMC3774193.

803 42. Angulo-Zamudio UA, Vidal JE, Nazmi K, Bolscher JGM, Leon-Sicairos C, Antezana
804 BS, Canizalez-Roman A, Leon-Sicairos N. Lactoferrin Disaggregates Pneumococcal Biofilms
805 and Inhibits Acquisition of Resistance Through Its DNase Activity. *Front Microbiol.*
806 2019;10:2386. Epub 2019/11/05. doi: 10.3389/fmicb.2019.02386. PubMed PMID: 31681240;
807 PMCID: PMC6813537.

808 43. McDougal LK, Tenover FC, Lee LN, Rasheed JK, Patterson JE, Jorgensen JH, LeBlanc
809 DJ. Detection of Tn917-like sequences within a Tn916-like conjugative transposon (Tn3872) in
810 erythromycin-resistant isolates of *Streptococcus pneumoniae*. *Antimicrob Agents Chemother.*
811 1998;42(9):2312-8. doi: 10.1128/AAC.42.9.2312. PubMed PMID: 9736555; PMCID:
812 PMC105825.

813 44. Marks LR, Reddinger RM, Hakansson AP. High levels of genetic recombination during
814 nasopharyngeal carriage and biofilm formation in *Streptococcus pneumoniae*. *mBio*. 2012;3(5).
815 Epub 2012/09/28. doi: 10.1128/mBio.00200-12. PubMed PMID: 23015736; PMCID:
816 PMC3448161.

817 45. French JB, Cen Y, Sauve AA, Ealick SE. High-resolution crystal structures of
818 *Streptococcus pneumoniae* nicotinamidase with trapped intermediates provide insights into the
819 catalytic mechanism and inhibition by aldehydes. *Biochemistry*. 2010;49(40):8803-12. Epub
820 2010/09/20. doi: 10.1021/bi1012436. PubMed PMID: 20853856; PMCID: PMC3006156.

821 46. Pimenta FC, Roundtree A, Soysal A, Bakir M, du Plessis M, Wolter N, von Gottberg A,
822 McGee L, Carvalho Mda G, Beall B. Sequential triplex real-time PCR assay for detecting 21
823 pneumococcal capsular serotypes that account for a high global disease burden. *J Clin Microbiol*.
824 2013;51(2):647-52. Epub 2012/12/12. doi: 10.1128/JCM.02927-12. PubMed PMID: 23224094;
825 PMCID: PMC3553924.

826 47. Sakai F, Chochua S, Satzke C, Dunne EM, Mulholland K, Klugman KP, Vidal JE.
827 Single-plex quantitative assays for the detection and quantification of most pneumococcal
828 serotypes. *PLoS One*. 2015;10(3):e0121064. doi: 10.1371/journal.pone.0121064. PubMed
829 PMID: 25798884; PMCID: PMC4370668.

830 48. Nolivos S, Cayron J, Dedieu A, Page A, Delolme F, Lesterlin C. Role of AcrAB-TolC
831 multidrug efflux pump in drug-resistance acquisition by plasmid transfer. *Science*.
832 2019;364(6442):778-82. doi: 10.1126/science.aav6390. PubMed PMID: 31123134.

833 49. Lopatkin AJ, Huang S, Smith RP, Srimani JK, Sysoeva TA, Bewick S, Karig DK, You L.
834 Antibiotics as a selective driver for conjugation dynamics. *Nat Microbiol*. 2016;1(6):16044.

835 Epub 20160411. doi: 10.1038/nmicrobiol.2016.44. PubMed PMID: 27572835; PMCID: 836 PMC5010019.

837 50. Maree M, Thi Nguyen LT, Ohniwa RL, Higashide M, Msadek T, Morikawa K. Natural 838 transformation allows transfer of SCCmec-mediated methicillin resistance in *Staphylococcus* 839 *aureus* biofilms. *Nat Commun.* 2022;13(1):2477. Epub 20220505. doi: 10.1038/s41467-022- 840 29877-2. PubMed PMID: 35513365; PMCID: PMC9072672.

841 51. Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, Pessia A, 842 Aanensen DM, Mather AE, Page AJ, Salter SJ, Harris D, Nosten F, Goldblatt D, Corander J, 843 Parkhill J, Turner P, Bentley SD. Dense genomic sampling identifies highways of pneumococcal 844 recombination. *Nat Genet.* 2014;46(3):305-9. Epub 2014/02/11. doi: 10.1038/ng.2895. PubMed 845 PMID: 24509479; PMCID: PMC3970364.

846 52. Scherer EM, Beall B, Metcalf B. Serotype-Switch Variant of Multidrug-Resistant 847 *Streptococcus pneumoniae* Sequence Type 271. *Emerg Infect Dis.* 2021;27(6):1689-92. Epub 848 2021/04/30. doi: 10.3201/eid2706.203629. PubMed PMID: 33915076; PMCID: PMC8153891.

849 53. Cowley LA, Petersen FC, Junges R, Jimson DJM, Morrison DA, Hanage WP. Evolution 850 via recombination: Cell-to-cell contact facilitates larger recombination events in *Streptococcus* 851 *pneumoniae*. *PLoS Genet.* 2018;14(6):e1007410. Epub 2018/06/14. doi: 852 10.1371/journal.pgen.1007410. PubMed PMID: 29897968; PMCID: PMC6016952.

853 54. Marks LR, Parameswaran GI, Hakansson AP. Pneumococcal interactions with epithelial 854 cells are crucial for optimal biofilm formation and colonization in vitro and in vivo. *Infect* 855 *Immun.* 2012;80(8):2744-60. Epub 2012/05/31. doi: 10.1128/IAI.00488-12. PubMed PMID: 856 22645283; PMCID: PMC3434590.

857 55. Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication.

858 Cell. 2011;144(4):590-600. doi: 10.1016/j.cell.2011.01.015. PubMed PMID: 21335240.

859 56. Wei H, Havarstein LS. Fratricide Is Essential for Efficient Gene Transfer between

860 Pneumococci in Biofilms. Applied and environmental microbiology. 2012;78(16):5897-905.

861 Epub 2012/06/19. doi: 10.1128/AEM.01343-12. PubMed PMID: 22706053; PMCID: 3406168.

862 57. Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, Konradsen HB,

863 Nahm MH. Pneumococcal Capsules and Their Types: Past, Present, and Future. Clin Microbiol

864 Rev. 2015;28(3):871-99. doi: 10.1128/CMR.00024-15. PubMed PMID: 26085553; PMCID:

865 PMC4475641.

866 58. Yang Baek J, Kim SH, Kang CI, Chung DR, Peck KR, Song JH, Ko KS. Emergence of

867 an extensively drug-resistant (XDR) *Streptococcus pneumoniae* serotype 15A by capsular

868 switching. Int J Med Microbiol. 2018;308(8):986-9. Epub 2018/08/26. doi:

869 10.1016/j.ijmm.2018.08.004. PubMed PMID: 30143394.

870 59. Olibu G, Collins S, Djennad A, Sheppard CL, Fry NK, Andrews NJ, Borrow R, Ramsay

871 ME, Ladhami SN. Effect of Pneumococcal Conjugate Vaccines on Pneumococcal Meningitis,

872 England and Wales, July 1, 2000-June 30, 2016. Emerg Infect Dis. 2019;25(9):1708-18. Epub

873 2019/08/24. doi: 10.3201/eid2509.180747. PubMed PMID: 31441745.

874 60. Lo SW, Gladstone RA, van Tonder AJ, Lees JA, du Plessis M, Benisty R, Givon-Lavi N,

875 Hawkins PA, Cornick JE, Kwambana-Adams B, Law PY, Ho PL, Antonio M, Everett DB,

876 Dagan R, von Gottberg A, Klugman KP, McGee L, Breiman RF, Bentley SD, Global

877 Pneumococcal Sequencing C. Pneumococcal lineages associated with serotype replacement and

878 antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an

879 international whole-genome sequencing study. *Lancet Infect Dis.* 2019;19(7):759-69. Epub
880 2019/06/15. doi: 10.1016/S1473-3099(19)30297-X. PubMed PMID: 31196809.

881 61. Snippy [cited 2020 December 1]. Available from: <https://github.com/tseemann/snippy>.

882 62. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris
883 SR. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome
884 sequences using Gubbins. *Nucleic Acids Res.* 2015;43(3):e15. Epub 2014/11/22. doi:
885 10.1093/nar/gku1196. PubMed PMID: 25414349; PMCID: PMC4330336.

886 63. Shovill [cited 2020 December 2]. Available from: <https://github.com/tseemann/shovill>.

887 64. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator
888 (BRIG): simple prokaryote genome comparisons. *BMC Genomics.* 2011;12:402. Epub
889 20110808. doi: 10.1186/1471-2164-12-402. PubMed PMID: 21824423; PMCID: PMC3163573.

890 65. Sakai F, Sonaty G, Watson D, Klugman KP, Vidal JE. Development and characterization
891 of a synthetic DNA, NUversa, to be used as a standard in quantitative polymerase chain reactions
892 for molecular pneumococcal serotyping. *FEMS Microbiol Lett.* 2017;364(17). doi:
893 10.1093/femsle/fnx173. PubMed PMID: 28903467; PMCID: PMC5812490.

894 66. Skogerson K, Wohlgemuth G, Barupal DK, Fiehn O. The volatile compound BinBase
895 mass spectral database. *BMC Bioinformatics.* 2011;12:321. Epub 20110804. doi: 10.1186/1471-
896 2105-12-321. PubMed PMID: 21816034; PMCID: PMC3199763.

897 67. Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ,
898 Tettelin H, Glass JI, Winkler ME. Genome sequence of Avery's virulent serotype 2 strain D39 of
899 *Streptococcus pneumoniae* and comparison with that of unencapsulated laboratory strain R6.
900 *Journal of bacteriology.* 2007;189(1):38-51. PubMed PMID: 17041037.

901 68. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy
902 RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD,
903 Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM,
904 Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK,
905 Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead
906 SK, Fraser CM. Complete genome sequence of a virulent isolate of *Streptococcus pneumoniae*.
907 *Science*. 2001;293(5529):498-506. Epub 2001/07/21. doi: 10.1126/science.1061217. PubMed
908 PMID: 11463916.

909 69. Clinical and Laboratory Standards Institute, (CLSI). Performance Standards for
910 Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. CLSI document
911 M100-S23. 2013.

912 70. Carvalho Mda G, Tondella ML, McCaustland K, Weidlich L, McGee L, Mayer LW,
913 Steigerwalt A, Whaley M, Facklam RR, Fields B, Caralone G, Ades EW, Dagan R, Sampson JS.
914 Evaluation and improvement of real-time PCR assays targeting *lytA*, *ply*, and *psaA* genes for
915 detection of pneumococcal DNA. *J Clin Microbiol*. 2007;45(8):2460-6. Epub 2007/06/01. doi:
916 10.1128/JCM.02498-06. PubMed PMID: 17537936; PMCID: PMC1951257.

917 71. Azzari C, Moriondo M., Indolfi, G., Cortimiglia, M., Canessa, C., Becciolini, L., Lippi,
918 F., de Martino, M. and M. Resti. Realtime PCR Is More Sensitive than Multiplex PCR for
919 Diagnosis and Serotyping in Children with Culture Negative Pneumococcal Invasive Disease.
920 *PLoS One*. 2010;5(2): e9282. doi:10.1371/journal.pone.0009282.

921
922

923 **Figure legends**

924 **Fig. 1. The phylogenetic tree and recombination events in macrolide-resistant clinical**
925 **pneumococcal isolates.** The left panel presents the phylogenetic tree of macrolide-resistant
926 pneumococcal isolates (N=128, Accession: PRJNA795524) that was constructed in FastTree
927 (<http://www.microbesonline.org/fasttree/>) using SNP calling data from Snippy
928 (<https://github.com/tseemann/snippy>) (A). The metadata of serotype (different color strips) and
929 the presence of the *ermB* gene and MEGA element (grey: positive; blank: negative) for each of
930 the pneumococcal isolates were marked at the tip of the tree. The branches with light red shades
931 emphasize the carrying of the MEGA element in those strains. The right panel displays the
932 visualized recombination prediction in the region of *Tn916*-like (B) or *comCDE* (C) which were
933 mapped against an annotated chromosome of the reference pneumococcal strain 19A-19339
934 (Accession: CP071917) using Snippy and Gubbins (<https://github.com/nickjcroucher/gubbins>),
935 respectively. Red blocks represent the recombination blocks in each clone complex on an
936 internal branch, which are therefore shared by multiple isolates, while blue blocks represent the
937 recombination that occurred on terminal branches, which are unique to individual isolates. The
938 whole data set was visualized with RCandy (<https://github.com/ChrispinChagusa/RCandy>) in
939 RStudio (Version 2023.09.1+494).

940

941 **Fig. 2. Competitive dynamics of pneumococcal strains during acquisition of resistance.** (A)
942 *S. pneumoniae* strain TIGR4 (SPJV23), and strain 8655^{Tn3872} (S6B) were co-inoculated into a
943 bioreactor with human pharyngeal cells, and incubated for 6 h after which biofilms were
944 collected, serially diluted, and plated onto different BAP with specific antibiotics to count. The
945 error bars represent the standard error of the means calculated using data from at least three

946 independent experiments. (B-C) Strains were stained with an anti-S4/A488 (green) and an anti-
947 S6B/A555 (red) antibodies while the DNA was stained with DAPI (blue). Micrographs were
948 obtained with a confocal microscope and analyzed with the Imaris software. (B) The
949 fluorescence intensity in arbitrary units (AU) obtained from each channel was graphed. The error
950 bars represent the standard error of the means calculated using data from two independent
951 experiments. **** $p <0.0001$. (C) Confocal micrographs. Left panels: the projection, the XZ
952 plane, both Z and XY planes, and XZ plane of a 3D reconstruction are shown. Middle panle and
953 riught penale: XY optical sections of 0.1 um each sliced from from the top and the bottom are
954 shown. Delimited region show the are manigified in the bottom panels. The arrow point out
955 intracelualr pneumococci. (D) Imaging analysis using the Imaris software analyzed micrographs
956 obtained by super-resolution microscopy. Arrows point (top and bottom panel) out the area of
957 physical colocalization.

958

959 **Fig. 3. Pneumococcal biofilm consortia on human pharyngeal cells.** (A) *S. pneumoniae*
960 TIGR4 (SPJV24) and D39 (SPJV22) derivatives were co-inoculated into a bioreactor with
961 human pharyngeal cells, and incubated for 6 h after which biofilms consortia were harvested,
962 serially diluted, and plated onto different BAP with specific antibiotics to count. The error bars
963 represent the standard error of the means calculated using data from at least three independent
964 experiments. (B) Pneumococcal strains were incubated as above and then biofilms were stained
965 with an anti-S4/A488 (green), an anti-S2/A555 (red) antibodies and the DNA was stained with
966 DAPI (blue). Bar=5 μ m. Preparations were analyzed by confocal microscopy. xy optical sections
967 from the top, middle, or bottom sections, the xy projection, and yz optical sections, are shown.
968 (C-I) Strains were incubated as above in the bioreactor after which pneumococcal strains were

969 fixed and submitted to SEM (C-H) or TEM (I) image acquisition. In (C-H) white dotted
970 line=microcolony, arrowheads=intracellular pneumococci, stars=human pharyngeal cells, black
971 arrows=lysed pneumococci, white arrows=nanotube-like structures connecting pneumococci. In
972 (I) black dotted line=surface of epithelial cell, arrowheads=pili-like structures.

973

974 **Fig. 4. Transference of macrolide resistance carried in MEGA.** (A) *S. pneumoniae* D39
975 (SPJV54) and GA17570, or (B) SPJV54 and GA41688 were co-inoculated into the bioreactor
976 and incubated for 6 h after which biofilms were collected, serially diluted, and plated onto blood
977 agar plates containing the appropriate antibiotic mixture to count each parent strain, or
978 transformants from each lineage. The recombination frequency (rF) was calculated (left panels)
979 and density of each strain in also shown (right panels). (C) Recipient strain D39 and transformant
980 D39^{Mega17570} were mapped against donor strain GA17570. Insertion of MEGA (*mefE/mel*) into
981 D39^{Mega17570} and a fragment of at least ~9 kb from donor are shown. (D) D39 (SPJV22) was
982 inoculated in the bioreactor along with TIGR4 carrying MEGA 1.I, MEGA 1.III, MEGA 2.II, or
983 MEGA 2.IVc, and incubated for 6 h. In parallel experiments performed with each pair of strains,
984 the culture medium was supplemented with DNase I. Biofilms were harvested and the rF was
985 calculated as above. (E) SPJV22 recombinants (i.e., carrying MEGA) were pooled, the DNA was
986 extracted and used in serotype specific qPCR reactions to detect the total copies of serotype 2
987 (SPJV22) or serotype 4 (TIGR4-MEGA derivative). The percentage of SPJV22 (D39 lineage)
988 was used to construct the graph. In panels (A, B, D and E) the error bars represent the standard
989 error of the means calculated using data from at least three independent experiments.

990

991 **Fig. 5. Transference of macrolide and tetracycline resistance carrying transposon Tn2009.**

992 (A) Genomic context of the insertion of *ermB* in TIGR4^{Ω_{ermB}}, or MEGA (*mefE/mel*) in
993 TIGR4^{Ω_{Mega1.I}}. Primers SL2, eryR, eryF and SL1, underneath the top panel were utilized below.
994 The map of Tn2009 from GA16833 is shown, indicating the location of genes encoding for the
995 relaxase, and ATPase, of the putative type IV secretion apparatus, and genes *tetM*, *mefE* and *mel*.
996 (B-D) D39 (SPJV33) was inoculated in the bioreactor along with (B) TIGR4^{Ω_{ermB}},
997 TIGR4^{Ω_{Mega1.I}}, or TIGR4^{Ω_{Mega2.IV}} or (C) GA16833, or (D) GA17455. Experiments were
998 incubated for 6 h and biofilm bacteria were harvested from the bioreactor, diluted and plated
999 onto blood agar plates containing the appropriate antibiotics to investigate the recombination
1000 frequency (rF). The error bars represent the standard error of the means calculated using data
1001 from at least three independent experiments. NS=no significant. (E) DNA was purified from
1002 SPJV22 (D39^{Str-Tmp}), D39^{Tn2009}, or GA16833, and utilized as template in PCR reactions with pair
1003 of primers F1-F5. (F) DNA was purified from TIGR4^{Ω_{ermB}} (T4Ω_{ermB}), SPJV33 (D39^{Str-Tmp}) or
1004 SPJV33^{Ω_{ermB}} (DΩ_{ermB}) and used as template in PCR reactions with primer pairs listed below.
1005

1006 **Fig. 6 Primary metabolism analysis of molecules from pneumococci and pharyngeal cells**

1007 **during the acquisition of a pneumococcal ICE.** The bioreactor was inoculated with D39
1008 (SPJV22) and GA16833 or D39Δ*comD* and GA16833, and incubated at 37°C. Supernatants
1009 coming off the bioreactor chamber were collected for 60 min between 1 and 2 h, or 3 and 4 h,
1010 post inoculation. Primary metabolism analysis was performed to sterilized supernatants. (A)
1011 PCA biplot of the first two components extracted from a principal components analysis; group
1012 membership is indicated, and normal data ellipses for each group. (B) Biplots of the first two
1013 components extracted from a partial least squares discriminant analysis, group membership is

1014 indicated, and normal data ellipses for each group is shown. (C) Heatmap for the identified
1015 compounds. Each column is a pairwise comparison between two groups. Each row is a chemical
1016 compound. Asterisks indicates statistical significance from Mann Whitney U test. The color bar
1017 on the side indicates the chemical superclass from the class column. (D) STRING protein
1018 interaction network analysis of Nicotinate phosphoribosyltransferase (Spr1733). Shown are 25
1019 edges (interactions) linking 11 proteins (nodes). The average local clustering coefficient was
1020 0.858 and protein-protein interaction enrichment *p* value was 2.24×10^{-4} demonstrating a potential
1021 biological interaction among proteins.

1022

1023 **Fig. 7. Recombination frequency for the acquisition of TnMeg or the capsule locus by**
1024 **recipient D39.** (A) Diagram representing homologs (blue) and heterologous (red) DNA regions
1025 where macrolide resistance genes (black), *ermB* or *mefE/mel* are carried in donor strains
1026 TIGR4^{Ω*ermB*}, or GA17545, as compared to the recipient D39. (B) Schematic map of TnMeg from
1027 GA17545. Genes utilized as targets in PCR are shown underneath. (C) DNA was extracted from
1028 transformants D39^{TnMeg} and utilized as template in PCR reactions amplifying the genes shown.
1029 (D) Mapping of D39^{TnMeg} and D39^{Ω*ermB* -cps4} against recipient D39. (E) D39 (SPJV33) and
1030 GA17545 were inoculated in the bioreactor and incubated for 6 h. Biofilm bacteria were
1031 harvested from the bioreactor, diluted and plated onto blood agar plates (BAP) containing the
1032 appropriate antibiotics to investigate the recombination frequency (rF). (E) The rF of all
1033 transformants (D39^{TnMeg}) growing on BAP containing streptomycin, trimethoprim and
1034 erythromycin is shown as (MEGA). Those D39^{TnMeg} carrying the full-length MEGA, as
1035 confirmed by PCR, were utilized to adjust the rF and that is shown as (TnMeg). (F) D39
1036 (SPJV33) and TIGR4^{Ω*ermB*} were inoculated in the bioreactor and incubated for 6 h. Biofilm

1037 bacteria were harvested from the bioreactor, diluted and plated onto blood agar plates (BAP)
1038 containing the appropriate antibiotics to investigate the recombination frequency (rF). The rF of
1039 all transformants ($D39^{\Omega ermB}$) growing on BAP containing streptomycin, trimethoprim and
1040 erythromycin is shown as ($ermB$). Those $D39^{\Omega ermB}$ carrying the capsule locus from TIGR4, were
1041 utilized to adjust the rF and that is shown as ($ermB-cps$). (G) $D39^{\Omega ermB-cps4}$ transformants were
1042 DNA extracted and this DNA was used as a template in PCR reactions amplifying the D39 gene
1043 SPD_1584, encoding a putative ABC transporter, permease protein. (H) $D39^{\Omega ermB}$, $D39^{\Omega ermB-}$
1044 $cps4$ or a mixture of D39 and TIGR4 $^{\Omega ermB}$ was stained with an anti-S2 antibody labeled with
1045 Alexa555, and an anti-S4 antibody labeled with Alexa488. Preparations were analyzed by
1046 confocal microscopy. Arrows= D39, arrowheads= TIGR4 $^{\Omega ermB}$. In all panels Bar=3 μ m.

1047

1048
1049

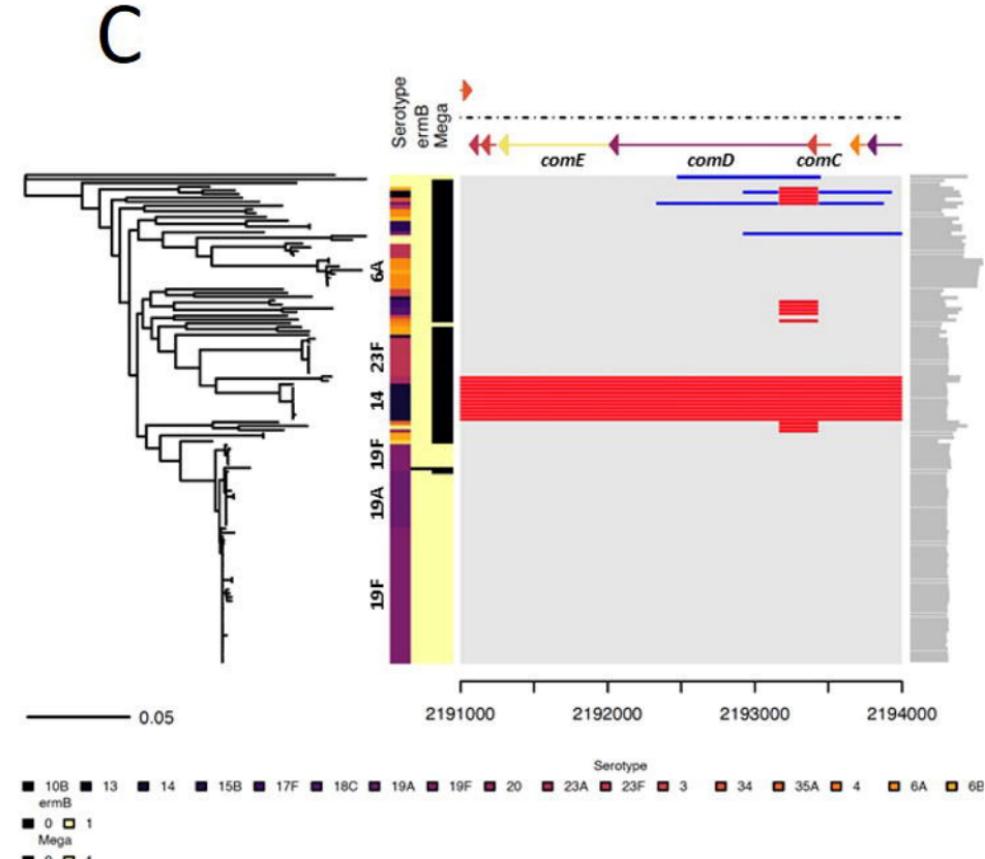
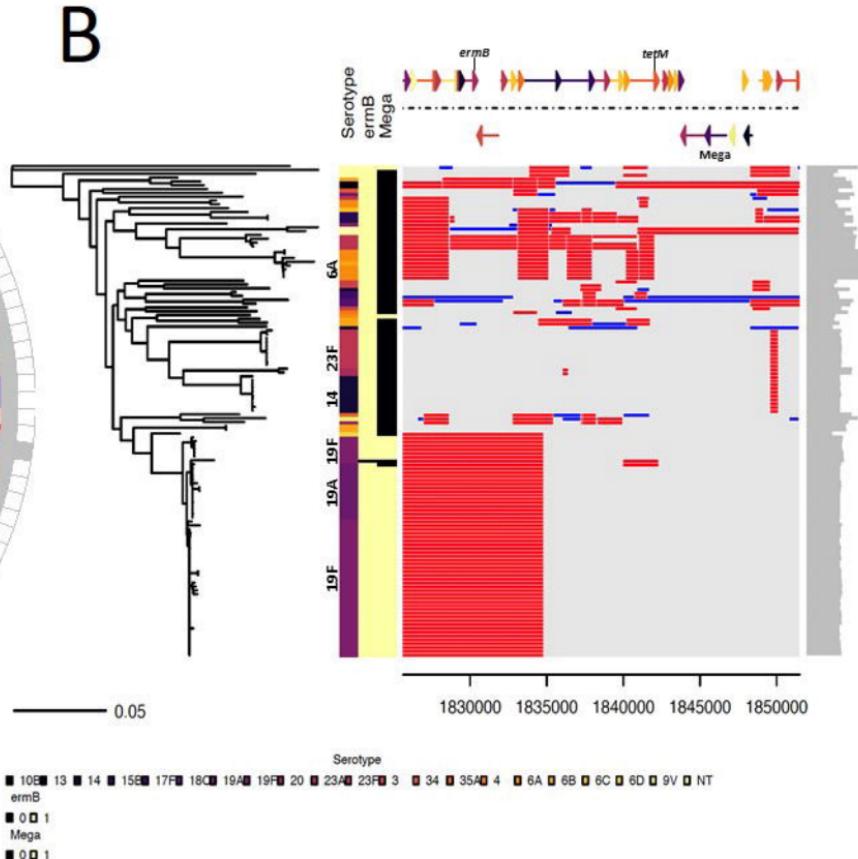
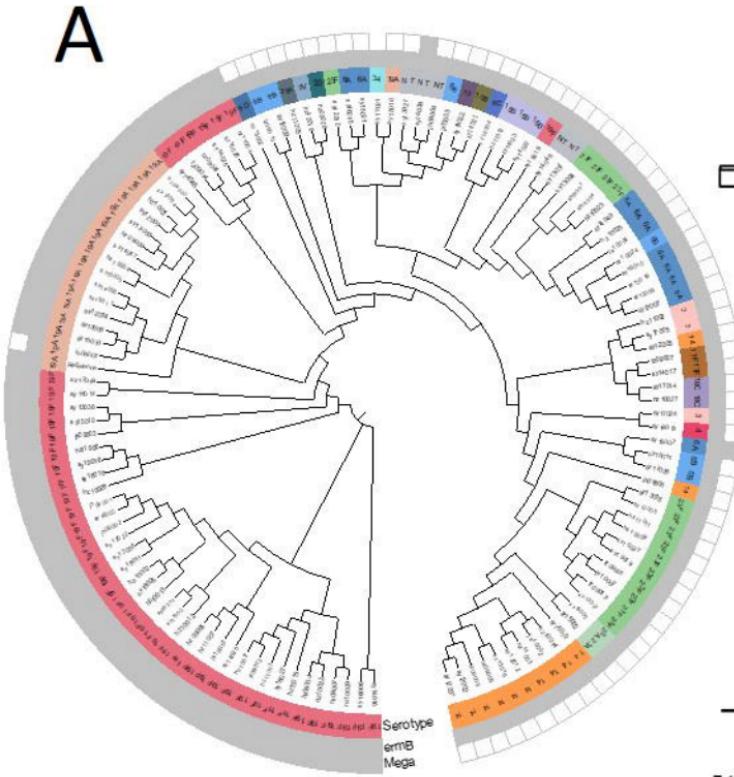
Table 1. *Streptococcus pneumoniae* strains utilized in this study.

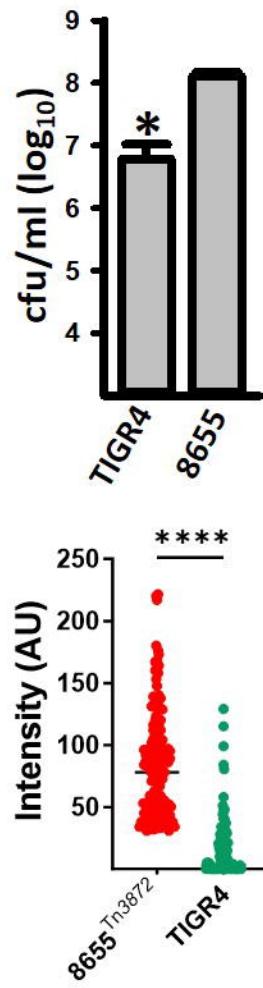
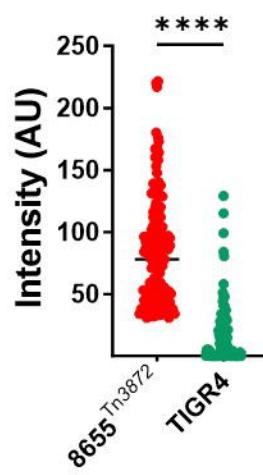
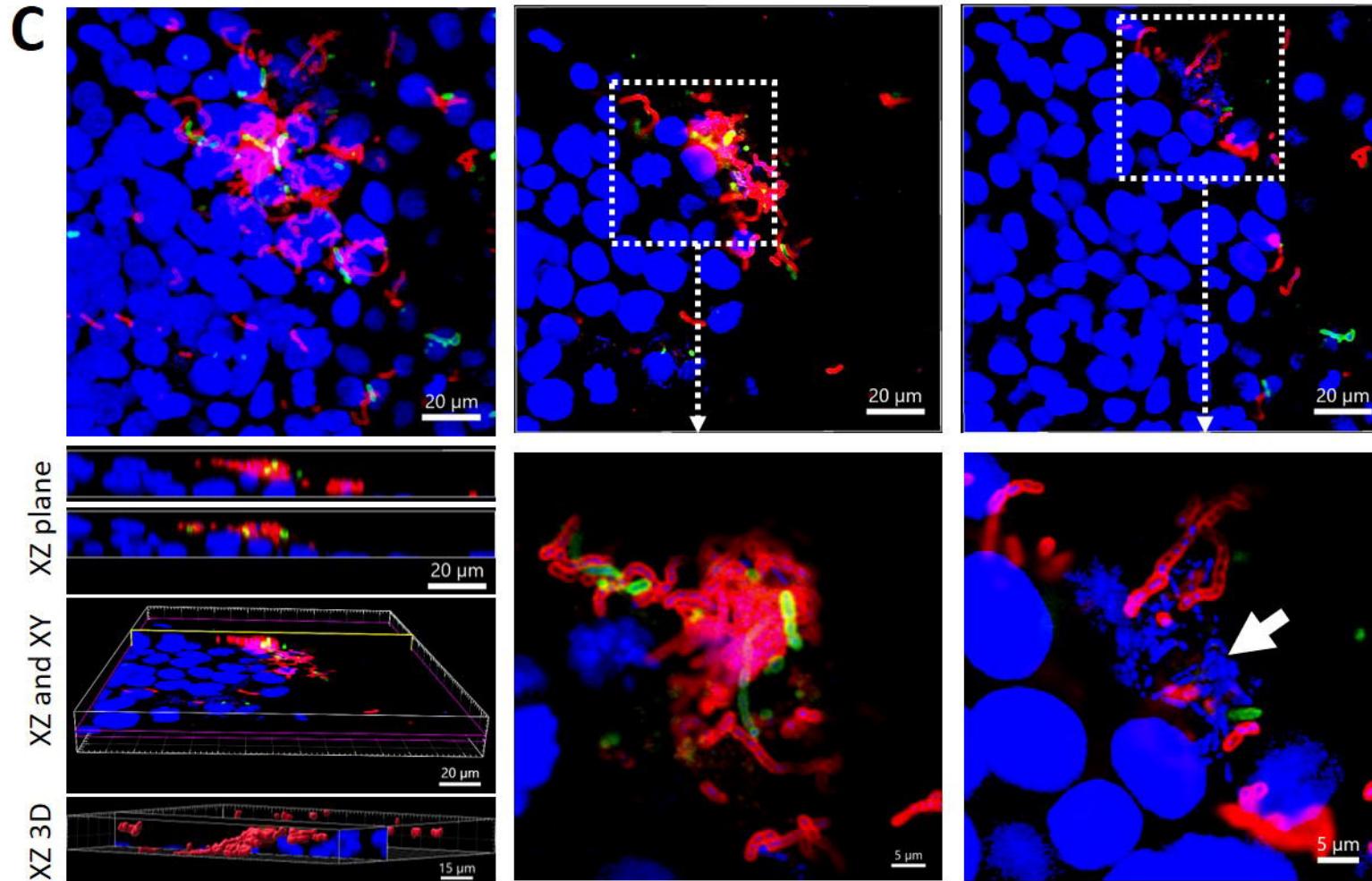
<i>S. pneumoniae</i> Strain	Serotype	Description	Reference
D39	2	Avery's virulent strain, isolated in 1916, CSP1	⁶⁷
SPJV10	2	D39Δ <i>comC</i> , generated with and insertion/deletion of <i>ermB</i> . Ery ^R	¹⁷
SPJV22	2	D39 Str ^R	¹⁵
SPJV31	2	D39 with an insertion/deletion within the <i>comD</i> with the <i>cat</i> gene, Cm ^R	This study
SPJV33	2	D39 Str ^R , Tmp ^R	²⁰
SPJV54	2	SPJV22-derivative transformed with plasmid pPP2 carrying <i>tetM</i> . Str ^R Tet ^R	This study
TIGR4	4	Invasive isolate from blood of 30-year-old male in Norway, CSP2	⁶⁸
SPJV09	4	TIGR4 encoding pMV158gfp, Tet ^R	⁴¹
SPJV24	4	TIGR4 with an insertion of <i>ermB</i> between SP0342 and SP0343, Ery ^R	This study
TIGR4 ^{Mega-1.I}	4		This study
TIGR4 ^{Mega-1.III}	4		This study
TIGR4 ^{Mega-2.II}	4		This study
TIGR4 ^{MEGA-2.IVc}	4	TIGR4 carrying Mega-2.IVc from GA17545	This study
SPJV23	4	'	
SPJV60		SPJV24 with an insertion-deletion within the <i>comCDE</i> locus using a <i>catP</i> cassette; Ery ^R , Cm ^R	This study
<i>S. pneumoniae</i> ATCC 49619	19F	Reference strain recommended by CLSI [#] for antimicrobial susceptibility testing	⁶⁹
R6Ami9	2	R6-derivative, Str ^R	
<i>S. pneumoniae</i> 8655	6B	Invasive isolate (blood), serotype 6B, CSP2; Pen ^R , Ery ^R , Cli ^R , Trm ^R , Tet ^R	⁴⁷
GA17545	19F	Invasive clinical isolate, serotype 19F, resistant to Cfx, Ery and Tmp. Carry Mega-2. IVc	²⁵
GA17570	19V	Invasive clinical isolate, serotype 9V, resistant to Cfx, Ery and Tmp	²⁵
GA16833	19F	Resistant to Cfx, Tet, and Ery	²⁵
SPJV37	19F	GA16833 with an insertion-deletion within the <i>comCDE</i> locus using a <i>catP</i>	²⁰

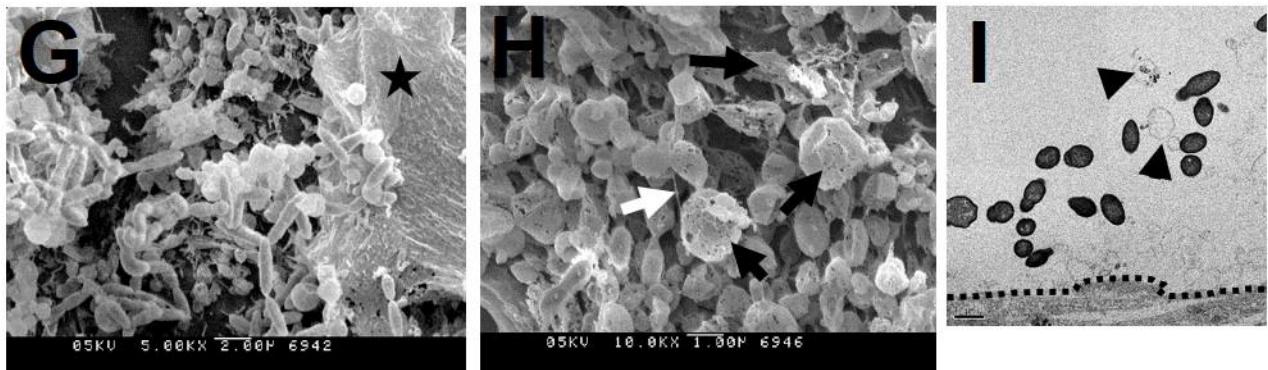
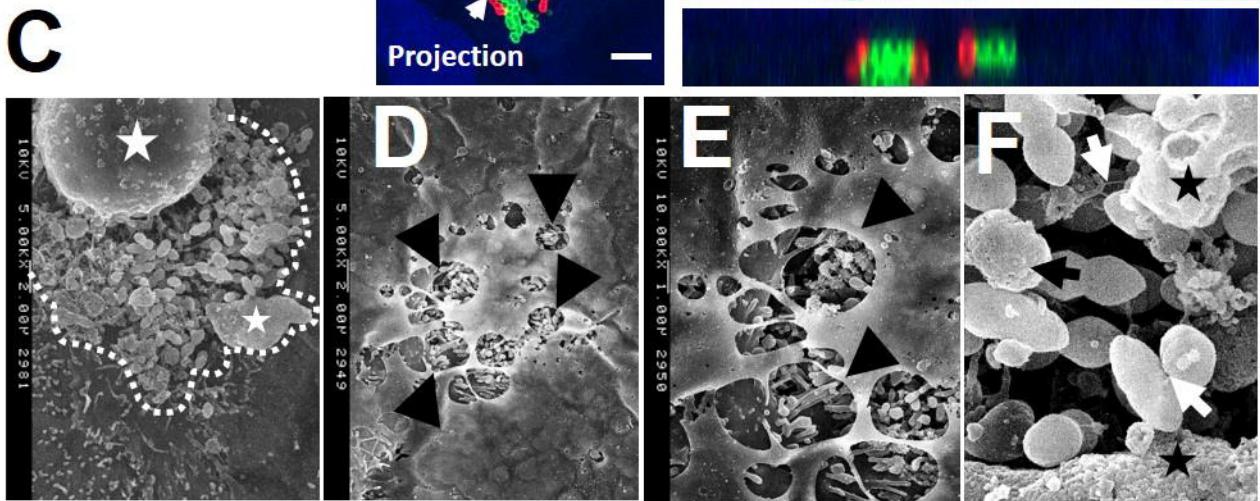
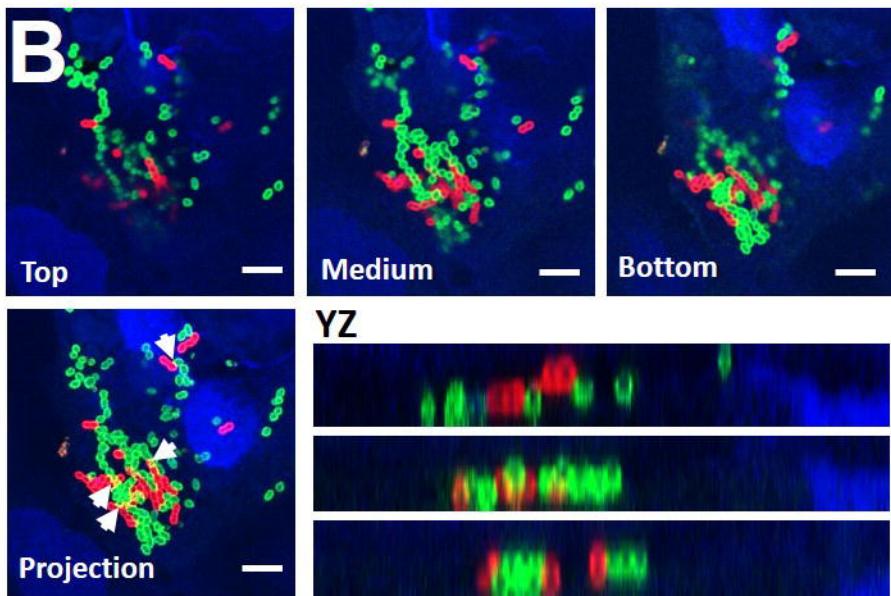
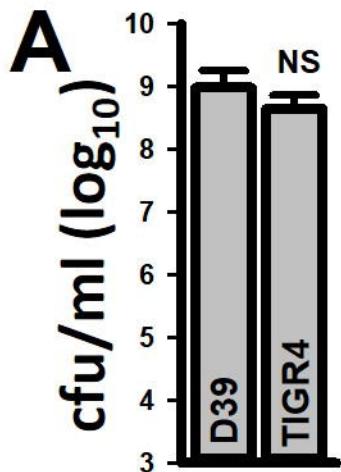
		cassette, Cm ^R	
GA41688	14	Invasive clinical isolate, resistant to Ery	²⁸

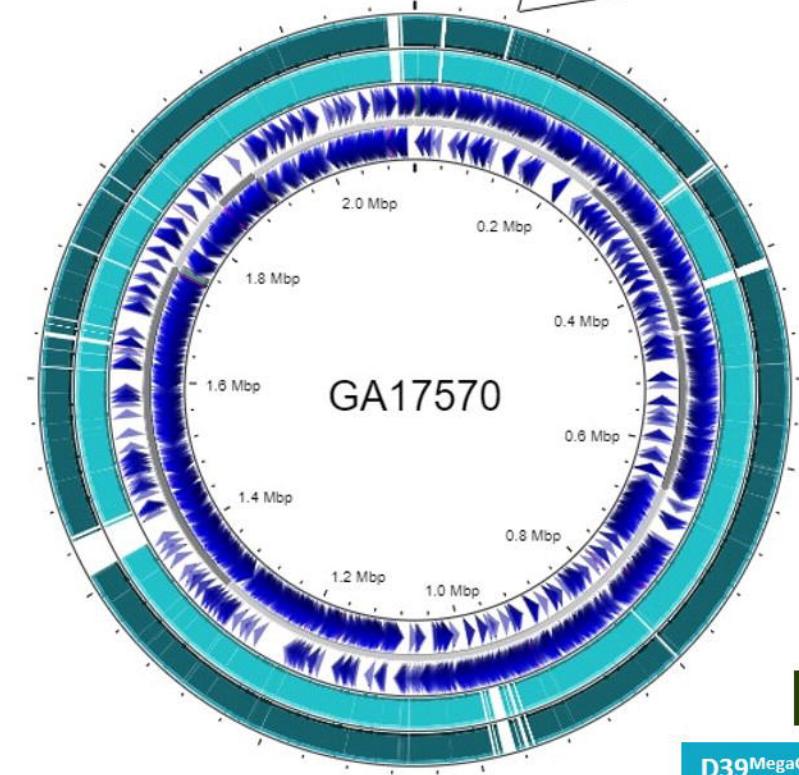
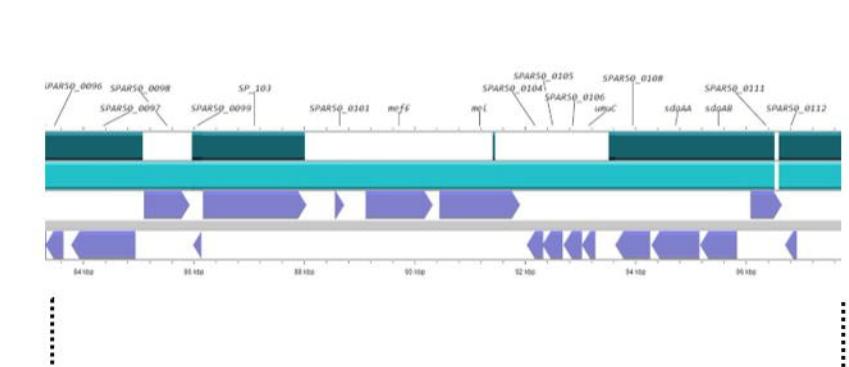
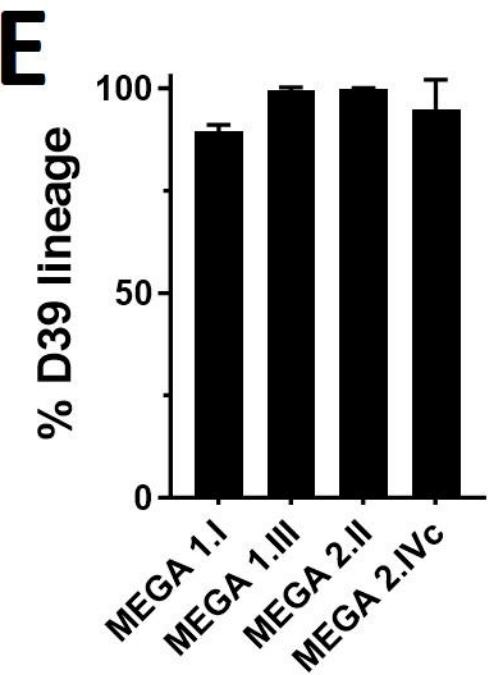
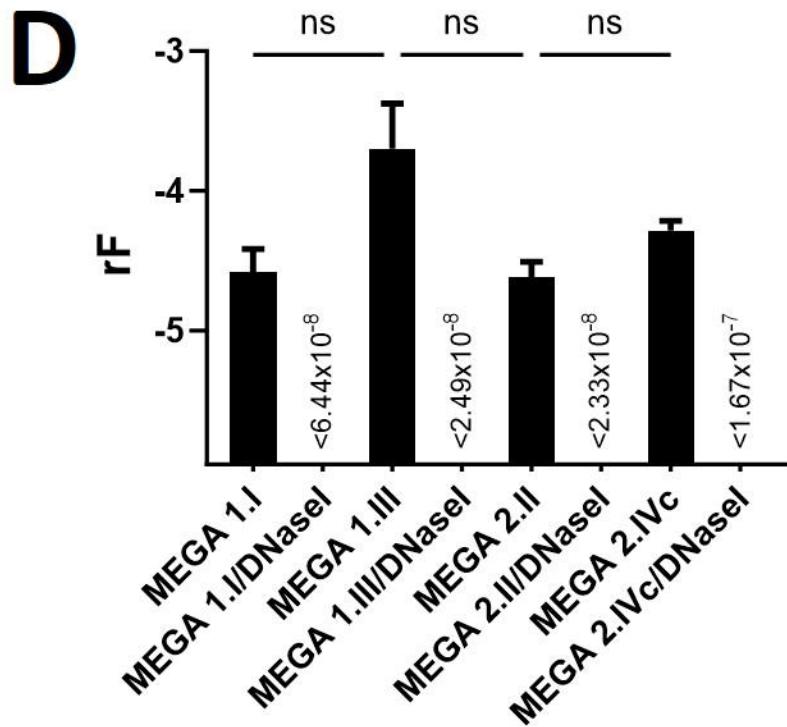
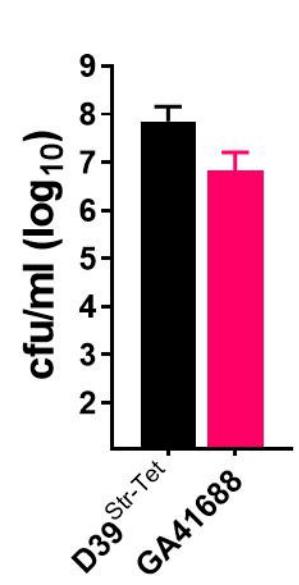
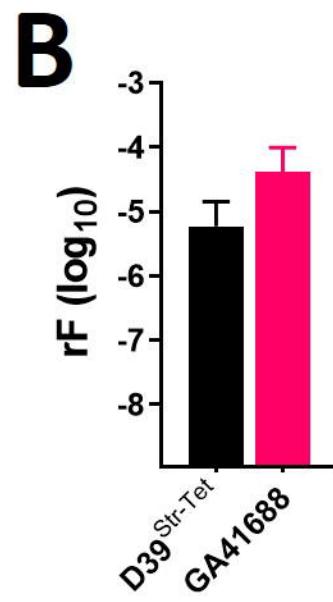
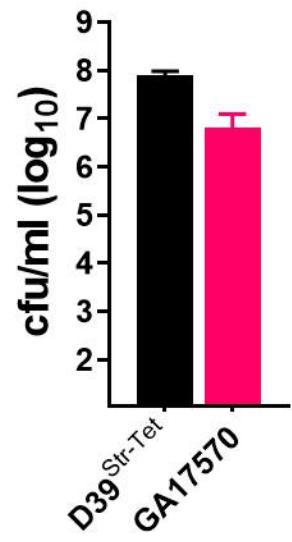
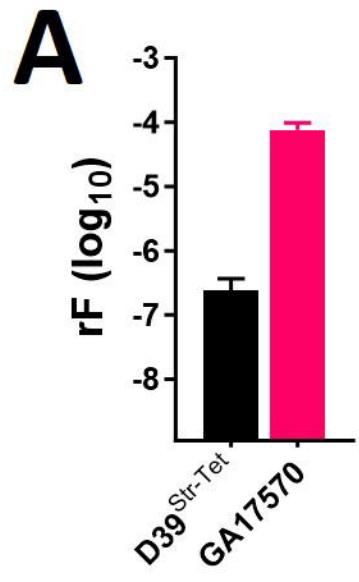
1050 *CSP, competence stimulating peptide type; [#]Clinical and Laboratory Standards Institute.
1051 Ery (erythromycin), Str (streptomycin), Pen (penicillin), Cli (clindamycin),Tmp (trimethoprim),
1052 Tet (tetracycline), Cm (chloramphenicol). R=resistant
1053
1054
1055

1056
1057

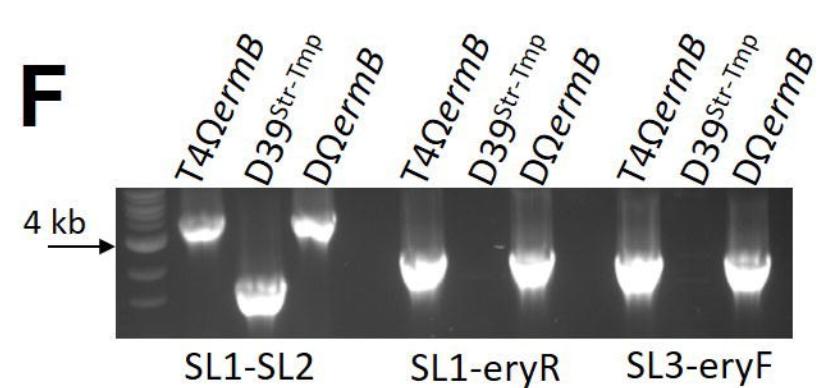
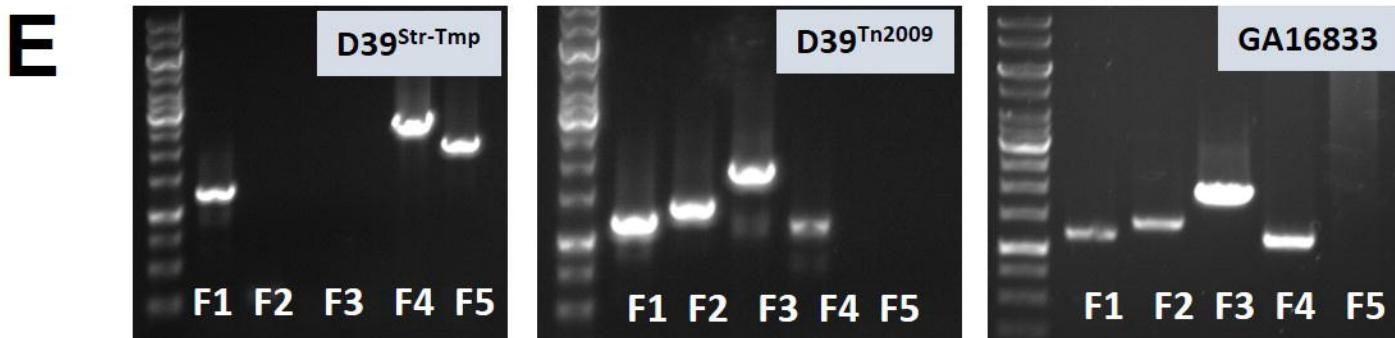
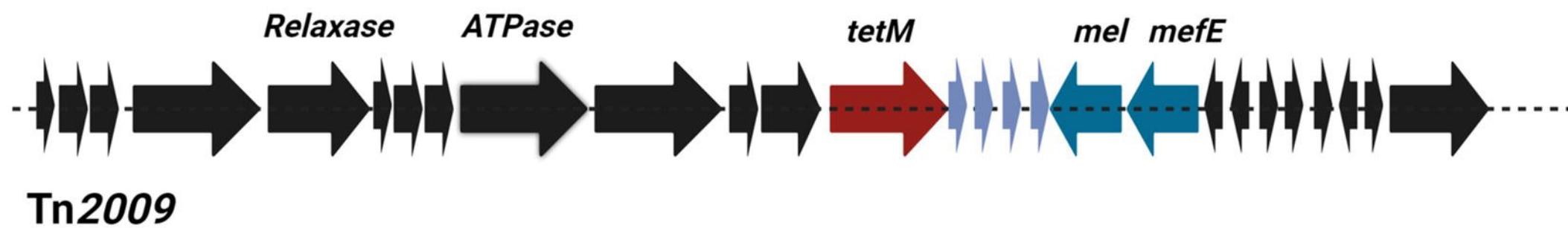
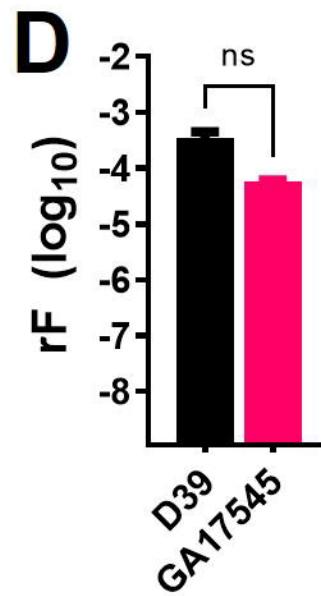
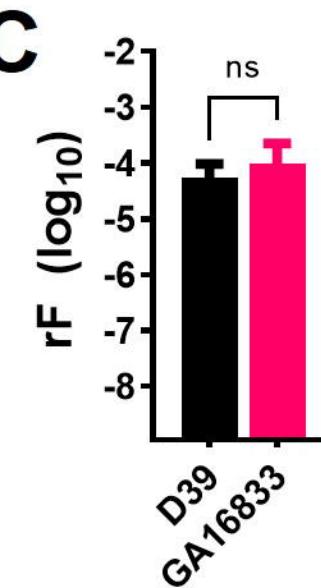
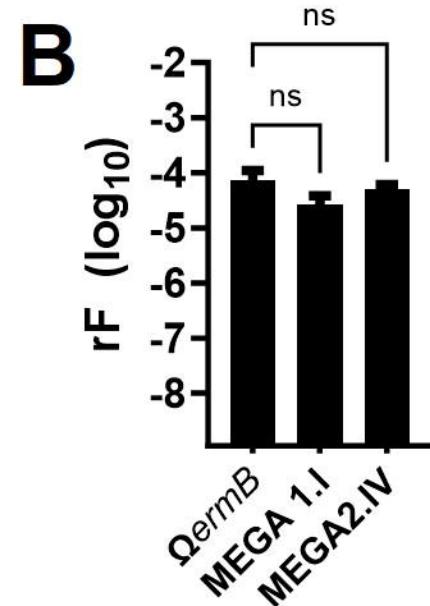
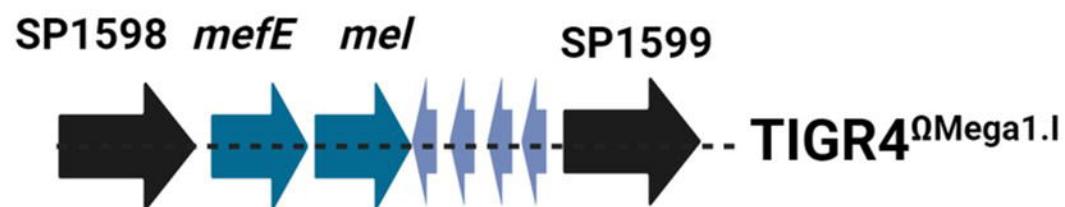
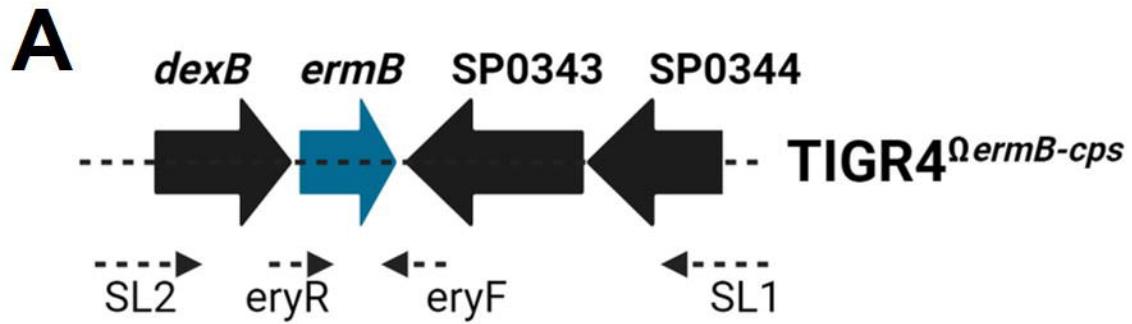



Table 3. Quantitative PCR assays and primers utilized in this study.

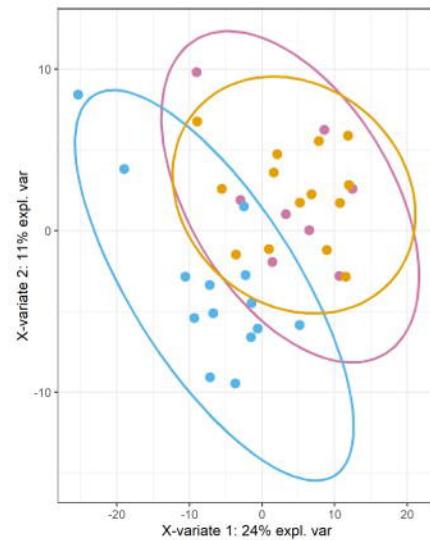
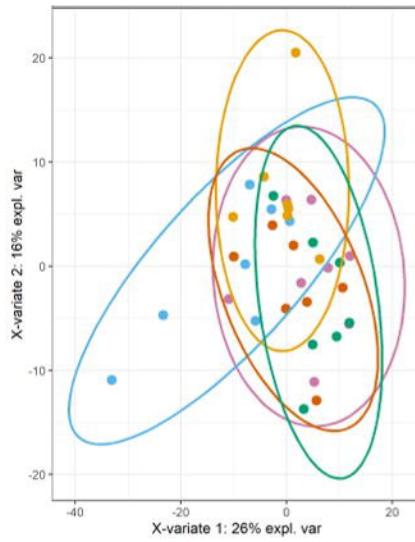
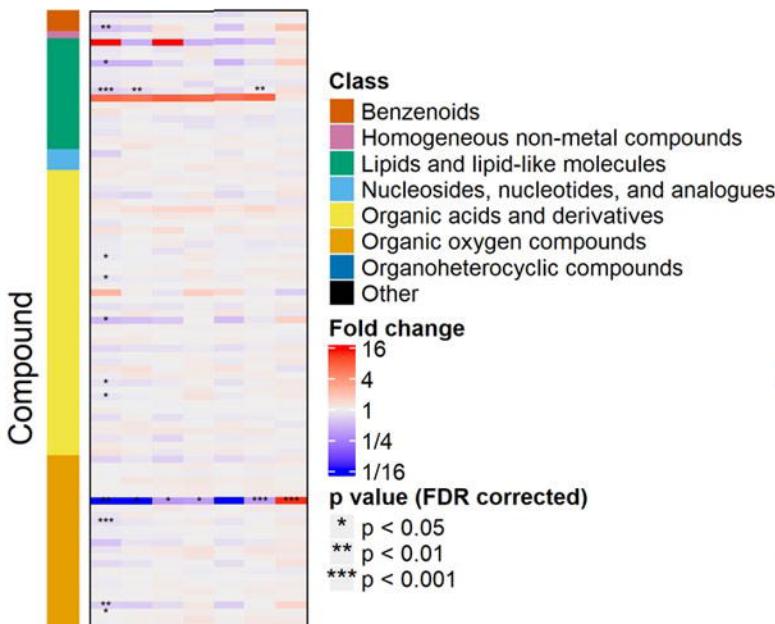
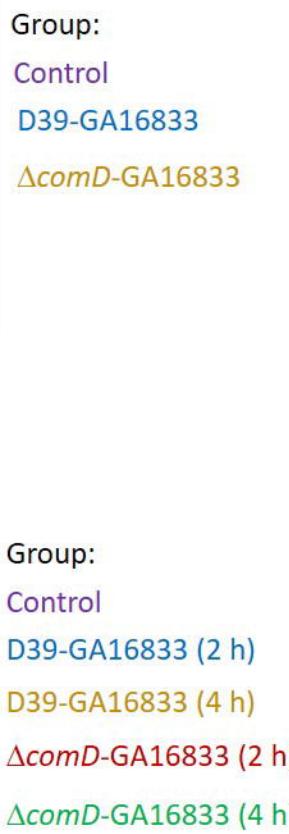
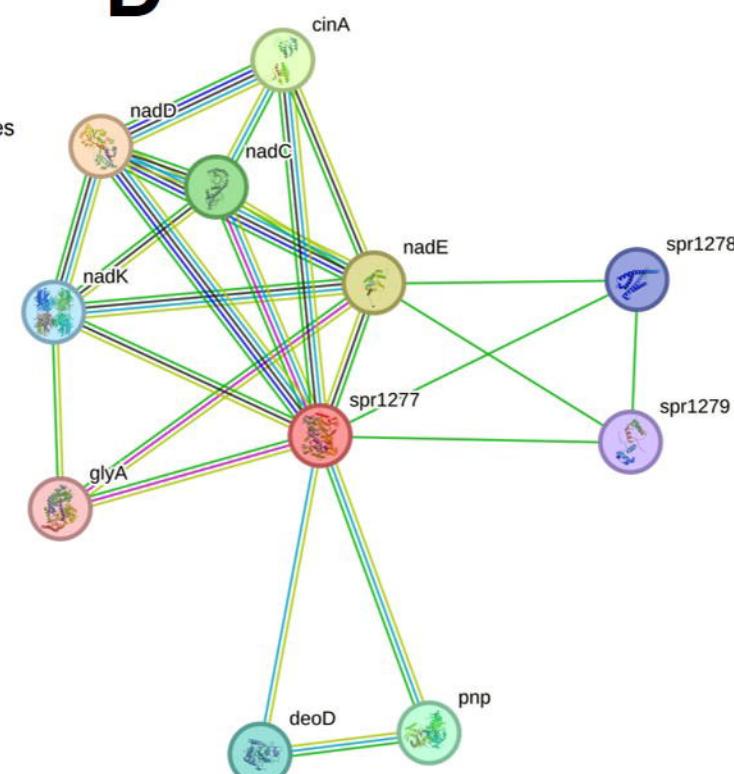



qPCR assays*		
Target	Primer (F and R) and Probe (5' – 3')	Reference
<i>lytA</i>	F-ACGCAATCTAGCAGATGAAGCA R-TCGTGCGTTTAATTCCAGCT FAM-GCCGAAAACGCTTGATACAGGGAG	70
Serotype 2	F- TTATGGACTGGCTGATGGTTCTC R-AAATCCTGACCCAATAATAGCCTTT FAM-AGGTCAACGTATTGGAACCTTAGAAATTGGGAAA	71
Serotype 4	F-TGGGATGACATTCTACGCACTA R-CCGTCGCTGATGCTTATCA FAM-TCCTATTGGATGGTTAGTTGGTGA	71
Serogroup 6	F-AAGTTTGCACTAGAGTATGGAAAGGT R-ACATTATGTCCRTGTCTCGATACAAG FAM-TGTTCTGCCCTGAGCACTGG	71
Serotype 19F	F-GGTCAATGCGAGATACGACAGAA R-TCCTCATCAGTCCCAACCAATT FAM-ACCTGAAGGAGTAGCTGCTGGAACGTTG	71
Primers		
JVS71L	CCTTACAAATAAAATGGTAACGTGT	This study
JVS72R	AATGCTCTATCCAGCTGAGCTAT	This study
JVS95L	GACATTCTGATCATCATGGACTT	This study
JVS96R	CAGTCTAGACGCTTCTTATGTTCATCTTCTT	This study
JVS97L	TTTCTCGAGTTACCCAAATCATTACACCTC	This study
JVS98R	CCAAAACAAGTCTTTACCAAC	This study
JVS0413	GCGTTTACACCTGATGCAAT	This study
JVS0414	TGCGAAACCAAGACCTCTA	This study
JVS0415	CCACCTTGCCTCATACCACAT	This study
JVS0416	CCAGTTGTACGTCCCTGGT	This study

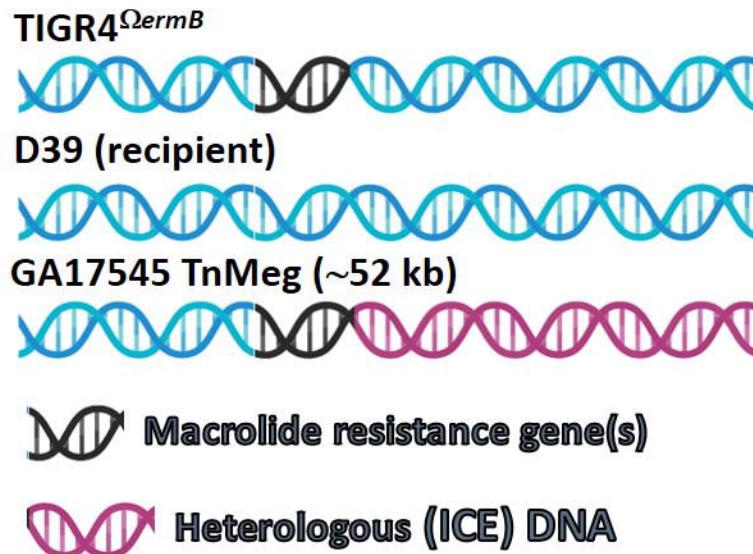
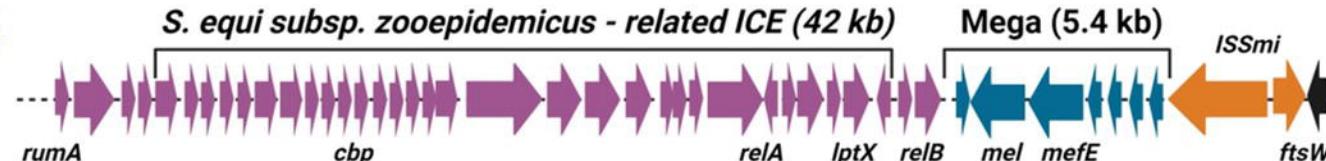
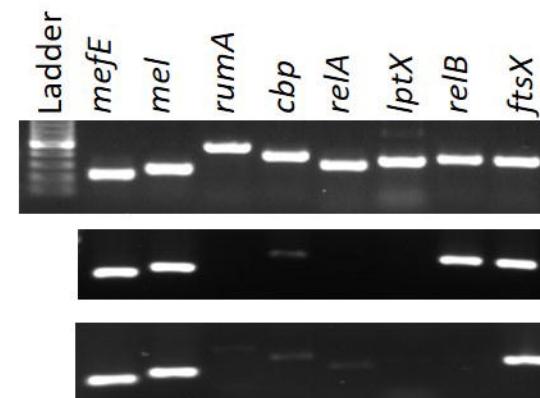
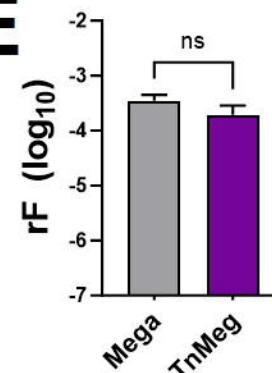
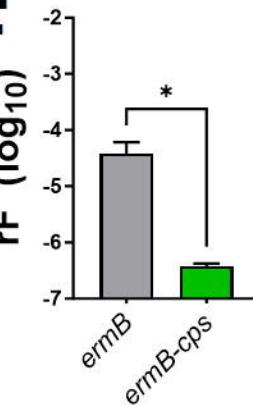
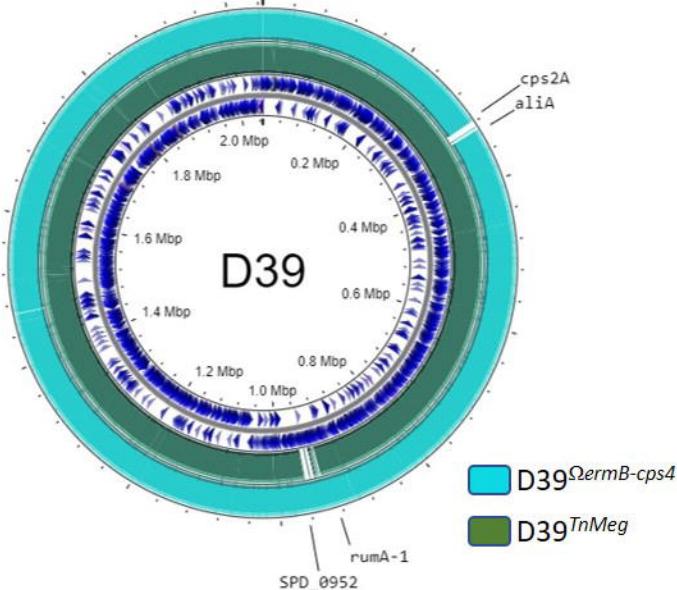
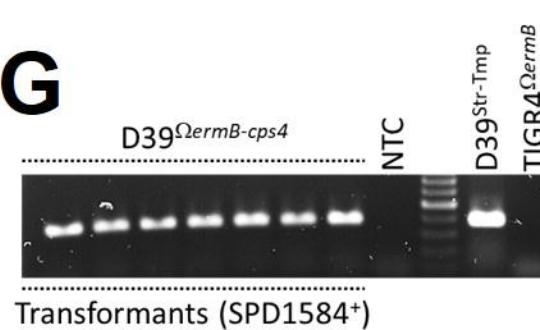
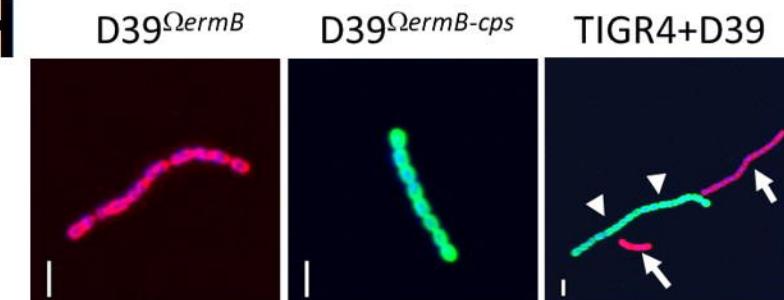




1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068









*qPCR was conducted using primer and probe concentrations of 100 nM each for *lytA* qPCR, and 200 nM each for serotype-specific qPCR. Forward (F), or reverse (R), primer. All probes were labeled at 5' with FAM (6-carboxyfluorescein) and contained at 3' the black hole quencher 1 (BHQ1).

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078






A**B****Projection****XY=0.1 μm (top)****XY=0.1 μm (bottom)****TIGR4+8655 Tn^{3872}**

D39

A**B****C****D**

1. Uninfected/D39+GA16833 (2 h)
2. Uninfected/D39+GA16833 (4 h)
3. Uninfected/D39 $\Delta comD$ +GA16833 (2 h)
4. Uninfected/D39 $\Delta comD$ +GA16833 (4 h)
5. Uninfected/D39+GA16833 (2 h and 4 h)
6. Uninfected/D39 $\Delta comD$ +GA16833 (2 h and 4 h)
7. D39+GA16833/D39 $\Delta comD$ +GA16833

A**B****C****E****F****D****G****H**