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Abstract This paper introduces a novel experimental paradigm - Auditory High Entropy
Response (A-HER), which maximizes the information entropy of auditory stimulus sequences.
This allows us to study how the brain processes complex information, rather than isolated
individual events. Our analysis of the frequency response of the frontal theta rhythm induced by
A-HER indicated a significant increase in signal-to-noise ratio and repeatability compared to
zero-entropy Auditory Steady-State Response (A-SSR) and low-entropy mismatch negativity
(MMN). We further investigated whether the A-HER response was induced by stimulus sequence
differences or uncertainty, and studied its propagation rules. Different principles between
evoked and entrained were found in A-HER and A-SSR. In conclusion, the A-HER paradigm, by
maximizing stimulus sequence uncertainty, offers a new approach to analyzing how the brain
processes uncertain information. It has potential for diagnosing and researching neurological
and mental diseases, and for brain-computer interfaces, thus potentially impacting neuroscience,
cognitive science, and psychology.

Introduction

The quest to unravel how the human brain grapples with uncertain information stands as a cor-
nerstone in the field of cognitive neuroscience studies (Hsu et al., 2005; White et al., 2019; Sum-
merfield, 2022; Soltani and Izquierdo, 2019; Mulders et al., 2023). Conventional experimental
paradigms have historically centered around scrutinizing isolated events or solely stimulation se-
quences, thereby limiting our comprehension of the brain’s intricate operations amidst complexity
and uncertainty. For instance, in auditory experiment, Auditory Evoked Potentials (AEPs) (Burkard
et al., 2007) isolate and examine single stimuli, restricting the exploration of higher-level cognitive
processes linked to uncertainty. While Mismatch Negativity (MMN) (Garrido et al., 2009) detects
deviations in auditory sequences, its capacity to unravel the brain’s comprehensive response to
uncertainty within diverse sequences remains constrained. The usefulness of the Auditory Steady-
State Response (A-SSR) (Spencer et al., 2008; Korczak et al., 2012) in studying auditory entrainment
is notable, yet its limitations are evident in capturing the brain’s dynamic intricacies when facing
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varying uncertainty levels within sequences. Thus, broadening experimental methodologies be-
yond isolated events and solely stimulation sequences is crucial for a more comprehensive under-
standing of how the human brain navigates uncertain information scenarios.

In neuroengineering, the Steady-State Response (SSR) (Herrmann, 2001; Spencer et al., 2008)
represents a significant event-related potential (ERP) evoked by continuous sensory stimuli, widely
employed for assessing sensory function and diagnosing processing dysfunctions (Vialatte et al.,
2010; Thuné et al., 2016; Korczak et al., 2012). Notably, the Visual Steady-State Response (V-SSR),
or Steady-State Visual Evoked Potential (SSVEP), stands out in Brain-Computer Interface (BCl) appli-
cations due to its impressive Signal-to-Noise Ratio (SNR) and high Information Transfer Rate (ITR)
(Chen et al., 2015; Nakanishi et al., 2017). However, the fatigue induced by SSVEP-based BCls can
lead to user discomfort, signal quality deterioration, system performance degradation, and po-
tentially increase the risk of photosensitive epileptic seizures, thus significantly constraining their
use(Vialatte et al., 2010). Therefore, exploring non-visual paradigms within BCl research is imper-
ative. Despite demonstrations of selective attention effects in auditory information processing,
the limited magnitude and extended trial time (> 40 sec) of A-SSR hinder its viability in BCI (Kim
et al., 2011; Lopez et al., 2009). Enhancing the SNR in auditory stimuli responses remains a critical
objective for advancing auditory-driven BCls (Akcakaya et al., 2013).

Emerging from the quest for a more comprehensive understanding of uncertain information
processing in brain, the Auditory High Entropy Response (A-HER) paradigm is proposed as a pi-
oneering approach in this work. Unlike previous methods, which focused on isolated events or
solely stimulus sequences, A-HER deliberately maximizes information entropy within auditory stim-
uli. This deliberate emphasis offers a promising avenue to delve into the brain’s handling of intri-
cate, uncertain, and information-rich auditory scenarios. Furthermore, the newly proposed A-HER
paradigm shows potential in averting Repetition Suppression (RS) (Todorovic et al., 2011) effects
and enhancing the SNR, thereby amplifying its relevance in neuroengineering applications.

Auditory High Entropy Response (A-HER)

Entropy is a scientific concept as well as a measurable physical property that is commonly associ-
ated with a state of disorder, or randomness (Clausius, 1865; Dugdale, 2018). In information theory,
Shannon entropy (Lin, 1991) is a measurement of the uncertainty of a sequence. Considering two
types of stimuli in a sequence, like the standard (§) and deviant (D) stimuli for oddball paradigm,
the entropy can be calculated as

H(p) = —plogp—(1—-p)logl —p m

in which pis the prior probability for stimulus S) in the sequence. Based on the definition of entropy
in Eq.(1), we can calculate the entropy for different types of sequences, as illustrated in Fig. 1.

+ A-SSR: With the prior probability of the standard stimulus p = 1, the entropy H(p) = Oindicates
that A-SSR is evoked in a fully deterministic sequence with zero-entropy.

+ A-ALR: Auditory Alternative Response (A-ALR) is another deterministic sequence. Both two
types of stimuli still termed § and D, come alternately with the prior probability p = 0, or 1.
Hence, A-ALR is evoked in a zero-entropy sequence with H(p) = 0.

* MMN: With a random uneven probability appeared with the stimulus § (p = 0.95)and D (1-p =
0.05), for example. MMN is evoked in a low-entropy sequence with H(p) = 0.29.

+ A-HER: If the stimuli § and D appear randomly with the same probability p = 0.5, the stimulus
sequence with the highest entropy H(p) = 1, achieves the largest uncertainty.

Experiment design
A total of 23 healthy subjects (13 women; mean age 24.9 years, ranging from 22 to 39 years) par-
ticipated in the three experiments. All participants are non-musicians and right-handed. And all
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Figure 1. The auditory stimulus sequences in A-HER, MMN, A-ALR, and A-SSR paradigm with their entropies.
For A-SSR, with the prior probability p=1 for the standard stimulus, we have the entropy of the whole
sequence H(X) = 0. For A-ALR, with two types of stimuli appearing alternatively, the whole sequence is also
deterministic with the entropy H(X) = 0. For MMN, the standard stimuli occur with a larger probability

p = 0.95, so the entropy of the whole sequence is also small H(X) = 0.29. For A-HER, two types of stimuli occur
with the equal probability p = 0.5, so the entropy reaches the maximum H(X) = 1.

0951

reported normal hearing, normal or corrected to normal vision, and no history of neurological or
psychiatric disease (as indicated in a self-report).

Before the experiment, all subjects were informed of the experimental procedure and signed
informed consent documents. Ethical approval of the study was obtained from the Medical Ethics
Committee of the Health Science Center, Shenzhen University (No. PN_2021-035).

For the newly proposed A-HER paradigm, three experiments were designed to answer the fol-
lowing three questions:

1. Can high-entropy stimulus sequences in A-HER alleviate the repetition suppression effect
and bring a higher response than A-SSR? If so, what are the characteristics of its frequency
response and the distribution of its topographic map?

2. Within the A-HER paradigm, the crucial factor driving maximal response is the discrepancy
among stimuli or the inherent uncertainty?

3. Comparing the induction methods of A-HER and A-SSR, what would be the differences in their
induction principles?

The details of the three experiment paradigms were illustrated in Fig. 2.

Experiment 1: With different stimulation frequencies, the temporal, spatial, and frequency
distribution characteristics of A-HER are investigated as compared with A-SSR, and MMN. For each
block of A-SSR, MMN and A-HER, 11 types of stimulation frequencies, including 0.5, 1, 2, 3, 4, 5, 6,
7, 8,10, and 12 Hz, are applied in random order. The stimulation durations corresponding to the
stimulation frequencies are 80, 40, 20, 20, 20, 20, 20, 20, 20, 20, and 20 seconds, respectively. For
low-frequency (0.5 Hz and 1 Hz) stimulation, the duration of the stimulation is set to be longer to
ensure that there were at least 20 stimuli for each stimulation frequency in a block. Hence, the
total stimulation duration of each block is 300 seconds. The blocks of A-SSR, MMN, and A-HER are
arranged in random order and repeated two times. The subjects could have a rest as they wish
between two blocks.

Experiment 2: A-HER was compared with A-SSR and A-ALR to examine whether A-HER is evoked
by the difference or uncertainty among the stimuli. The stimulus frequency was fixed at 6 Hz. The
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Figure 2. The auditory stimulus sequences in A-HER, MMN, A-ALR, and A-SSR paradigm with their entropies.
For A-SSR, with the prior probability p=1 for the standard stimulus S, we have the entropy of the whole
sequence H(X) = 0. For A-ALR, with two types of stimuli appearing alternatively, the whole sequence is also
deterministic with the entropy H(X) = 0. For MMN, the standard stimuli § occur with a larger probability

p = 0.95, so the entropy of the whole sequence is also small H(X) = 0.29. For A-HER, two types of stimuli occur
with the equal probability p = 0.5, so the entropy reaches the maximum H(X) = 1.

blocks of A-SSR, A-ALR and A-HER were delivered in a 60-second period. The three types of blocks
were arranged in random order and repeated three times.

Experiment 3: Auditory stimulation of pure tone bursts (Tone) in Experiments 1 and 2 were
compared with amplitude modulated (AM) stimulation patterns. For the AM-based auditory stim-
ulation, carrier frequency was set as 524 Hz or 262 Hz for standard (S) or deviant (D) stimuli, mod-
ulation frequency was set as 6 Hz or 44 Hz in different blocks of A-SSR and A-HER. Similarly, the
blocks of A-SSR and A-HER were delivered within during of 60 seconds. The four types of blocks
were arranged in random order and repeated three times.

Results

Experiment 1

To investigate the frequency response features of the newly proposed A-HER paradigm, the EEG
responses of A-HER, A-SSR, and MMN in Experiment 1 were compared in both the time domain
and frequency domain (Fig. 3).

Time-domain response

The time-domain responses of standard (S) and deviant (D) stimuli, as depicted in paradigms A-HER,
A-SSR, and MMN at channel FCz, are illustrated in Fig. 3A. As the stimulation frequencies fluctuate
from 0.5 to 12 Hz, the stimulus onset synchrony (SOA) diminishes from 2 to 0.083 seconds.

For the standard stimuli (S), a paired two-sample t-test showed no significant difference be-
tween the peak-to-peak responses of A-HER (13.31 V) and MMN (13.51 uV, p = 0.53), as well as
A-SSR (13.22 uV, p = 0.40) at 0.5 Hz. As the stimulation frequency escalates, all three paradigms
display changes in the magnitude of the peak-to-peak response, albeit with unique trends. For in-
stance, at a stimulation frequency of 6 Hz, the magnitude of A-HER (4.09 uV) is significantly higher
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Figure 3. The grand averaged time domain response of A-HER, A-SSR, and MMN in Experiment 1. (A) The ERP response of A-HER(S), A-HER(D),
A-SSR(S), MMN(S), and MMN(D) with different stimulation frequencies from 0.5 to 12 Hz. “TP" indicates the temporal probability, which is the
average number of times for one type of stimulus occurring in one second. “S” and "D indicates standard and deviant stimuli. (B) The
peak-to-peak magnitude of these five types of ERP with different stimulation frequencies (C) The detail of the time domain response of the five
types of ERP response at the stimulation frequencies 6 Hz, with their topographies of their peaks and troughs.
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than that of MMN (2.43 uV, p = 2.95x1078) and A-SSR (1.31 uV, p = 2.66 x 107°). Similarly, at a stimu-
lation frequency of 12 Hz, A-HER (1.62 uV) significantly exceeds MMN (1.20 uV, p = 7.53 x 10”7) and
A-SSR (0.83 uV, p = 7.50 x 1071%) in magnitude.

For the deviant stimuli (D), the peak-to-peak response at 0.5 Hz is 19.92 uV for A-HER and 20.86
uV for MMN, which are significantly larger than the magnitude for the standard stimuli (§) with the
paired two-sample t-test p-value p = 5.37 x 10~° and p = 8.28 x 10~® respectively. As the stimulation
frequency increases, the magnitude of the deviant stimuli (D) in MMN reduces to 19.84 4V at 6 Hz,
and further to 15.91 uV at 12 Hz, which are significantly larger than the magnitude for the standard
stimuli (S) in MMN with the p-value p = 5.45x 1072 and p = 6.16 x 10~13, respectively. For A-HER,
the average magnitude decreases to 4.26 'V at 6 Hz, and 1.75 uV at 12 Hz for the deviant stimuli
(D). Compared with the magnitude for the standard stimuli (S) in A-HER, there is no significant
difference (p = 0.20 at 6 Hz and p = 0.13 at 12 Hz) in the paired two-sample t-tests.

Furthermore, it should be noticed that with the same temporal probability TP=0.5, the magni-
tude of deviant stimuli (D) in MMN at 10 Hz is 17.23 uV, which is significantly larger than that of
standard stimuli (§) 13.22 uV in A-SSR at 0.5 Hz (p = 1.83 x 1077).

Frequency-domain response

The frequency domain responses of A-HER, A-SSR, and MMN paradigms with different stimulation
frequencies at channel FCz is shown in Fig. 3B. Different from ERP analysis, the frequency domain
Fourier Transform is unable to discriminate between the standard (§) and deviant (D) stimuli's re-
sponses. For low stimulation frequencies, such as 0.5 Hz, 1 Hz, and 2 Hz, the large SOAs prevent
the establishment of a stationary modulation of the EEG rhythm. The spectra of the responses ob-
served in the frequency domain are predominantly characterized by the frequency characteristics
of their ERPs, which concentrate mainly in the delta and theta frequency bands. As illustrated in
Fig. 3B, the magnitudes at their respective fundamental frequencies appear similar. As stimula-
tion frequency increases, A-HER demonstrates a higher response than A-SSR and MMN. All three
paradigms reach a local maximum at theta band, a result that aligns with the time domain response
in Fig. 3A.

Fig. 3C presents the frequency domain response of A-HER, A-SSR, and MMN with a stimulation
frequency of 6 Hz. The paired-sample t-test result reveals that the magnitude of A-HER is signif-
icantly higher than that of A-SSR (p = 1.46 x 1073) and MMN (p = 3.16 x 10~*) at the fundamental
frequency of 6 Hz. At the harmonic frequency of 12 Hz, the magnitude of A-HER is also significantly
greater than A-SSR (p = 2.85 x 10™*) and MMN (p = 1.21 x 107%). All three paradigms display similar
topographies centered around FCz, albeit with different magnitudes.

Reliability analysis

The reliability test was conducted on the EEG responses from two separate runs using Spearman
correlation analysis for all three paradigms depicted in Fig. 3D. For the MMN paradigm, the differ-
ence between the responses to the deviant (D) and standard (S) stimuli at 0.5 Hz was found to have
a correlation coefficient of r=0.11 (p = 0.61). For the A-SSR and A-HER paradigms, the frequency re-
sponses at their fundamental frequency of 6 Hz revealed correlation coefficients of r=0.18 (p = 0.40)
and r=0.58 (p = 0.004) respectively. As a result, the frequency domain response of A-HER at 6 Hz,
with stimulation durations of 20s, demonstrated higher reliability than the frequency domain re-
sponse of A-SSR at 6 Hz with the same stimulation durations, and the time domain response of
MMN at 0.5 Hz with stimulation durations of 80 seconds.

Experiment 2

A-HER compared with A-ALR and A-SSR

In contrast to A-SSR, A-HER utilizes two types of stimuli, termed as standard (S) and deviant (D), in
its paradigm. The purpose of Experiment 2 is to discern whether the response of A-HER is evoked
by the discrepancy among stimuli or the inherent uncertainty in the stimulus sequence. To achieve
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Figure 4. The response of A-HER, A-ALR, and A-SSR with the stimulation frequency of 6 Hz from both (A) time
domain and (B) frequency domain in Experiment 2.

this, a deterministic sequence known as Auditory Alternative Response (A-ALR), characterized by
maximum discrepancy, is utilized for comparison against A-HER (exhibiting maximum uncertainty)
and A-SSR (featuring zero discrepancy and zero uncertainty). The stimulation frequency has been
fixed at 6 Hz.

The time domain responses of A-HER are compared with both A-ALR and A-SSR in Fig. 4A. The
averaged peak-to-peak amplitudes of A-HER, A-ALR, and A-SSR are 3.91 uV, 3.11 uV, and 2.09 uV
respectively. The amplitude of A-HER is nearly twice as large as that of A-SSR, while the amplitude
of A-ALR falls between A-HER and A-SSR. The paired-sample t-test results indicate a significantly
larger amplitude for A-HER than A-ALR (p = 2.01 x 1075), and for A-ALR than A-SSR (p = 2.85 x 107#).

The frequency domain analysis, as depicted in Fig. 4B, corroborates these findings. At the
fundamental frequency of 6 Hz, the magnitude of A-HER is significantly larger than A-ALR (p =
4.94x 107*), and A-ALR is significantly larger than A-SSR (p = 4.54 x 10~*). For the harmonic frequency
at 12 Hz, there is no significant difference between A-HER and A-ALR (p = 0.91). However, both A-
HER and A-ALR are significantly larger than A-SSR with corresponding p-values of p = 1.17x10™* and
p =239x107%, respectively. No observable response is detected at 3 Hz for A-ALR. The topographies
in Fig. 4B indicate that the responses of A-HER, A-ALR, and A-SSR are primarily concentrated on
the channel FCz at both 6 Hz and 12 Hz.

Traveling wave analysis

The theta band responses across all channels were portrayed in Fig. 5A. A-SSR manifests a distinct
pattern emerging from the occipital lobe and advancing towards the frontal lobe subsequent to
auditory stimulation. The topographical map details reveal that at channel FCz in the frontal lobe
region (highlighted in red), there is a trough of -0.27uV at 129 ms and peaks at 0.22uV at 217 ms.
Conversely, at channel Oz in the occipital lobe region (depicted in blue), there is a trough of -0.09uV
at 78 ms and peaks at 0.12uV at 180 ms.

In contrast, A-HER lacks these specific traits. Both the peak and trough across all channels occur
simultaneously, centralized around the central frontal area near channel FCz. The topographical
map delineates that at channel FCz in the frontal lobe region (depicted in red), there is a trough of
-0.93uV at 128 ms and a peak of 0.78uV at 219 ms, while at channel Oz in the occipital lobe region
(depicted in blue), there is a trough of -0.16uV at 126 ms and peaks at 0.15uV at 192 ms. The
simultaneous occurrence of peak and trough across all channels is confirmed by visual inspection,
showcasing their maximum and minimum values at the central frontal area around channel FCz.
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Figure 5. Traveling wave analysis for the theta band in A-SSR and A-HER with the simulation frequency of 6Hz in Experiment 2. (A) The theta
band response of A-SSR and A-HER with the 4-8Hz bandpass filter on the EEG signal. The topographies of the peak and trough from 90 - 251 ms
are also shown at the top and bottom of the curves. The black triangles "a" indicate the time points of the auditory stimulation. (B) The
normalized 2D-map of A-SSR and A-HER, overlaying data from seven electrodes spanning from the occipital lobe to the frontal lobe (Oz, POz, Pz,
CPz, Cz, FCz, Fz). (C) Quantifying traveling wave. Conduculations on the 2D map within the period of -0.5 to 1.5 s. The maximum values in the
upper-left and lower-left quadrants respectively indicate the presence of forward (FW) and backward (BW) waves.
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Table 1. The frequency response of A-SSR and A-HER with different stimulation patterns (AM for amplitude
modulated and Tone for pure-tone bursts) and stimulation frequencies (6 Hz, 6 Hz, and 44 Hz) in Experiment
3.

Magnitude at FCz (dB)

Stimulation Stimulation :
Pattern Freq uency A-SSR (zero-entropy) A-HER (high-entropy)
(AM or Tone) (H2) R RS ot
- o 1 o o &1

“mm““m AM 44 -11.82 -17.80
“ AM 6 -5.75 -5.60

Tone 6 -5.89 -0.46

Fig. 5B illustrates the normalized time domain signals of the theta band in both A-SSR and A-
HER, arranging electrodes from the occipital lobe to the frontal lobe (Oz, POz, Pz, CPz, Cz, FCz, Fz2)
to generate a 2D map. Across time, the peaks and troughs of A-SSR display a pronounced tilted
angle, while A-HER demonstrates a relatively stable vertical orientation.

To quantify the directional spread of these responses, 2D-FFT was calculated for the 2D map.
In Fig. 5C, the maximum value in the upper-left quadrant (depicted in the blue box) represents
FW, while the maximum value in the lower-left quadrant (depicted in the blue box) represents BW.
The logarithmic ratio of these values provides a measure of the overall wave direction, with positive
values primarily indicating FW waves and negative values indicating BW waves. The 2D-FFT analysis
depicted in Fig. 5C reveals a pronounced amplification of the signal at frequencies 6Hz and 12Hz,
with the maximum values concentrated at the 6Hz frequency. A-SSR demonstrates a markedly
higher FW value compared to the BW value, as evidenced by a log-ratio of 0.29 (FW = 1.60, BW =
1.20). In contrast, A-HER exhibits comparable FW and BW amplitudes, reflected in a log-ratio of
0.04 (FW = 1.63, BW = 1.57).

Experiment 3

Table 1 illustrated the magnitude of the frequency responses in A-HER and A-SSR with different
stimulation patterns and frequencies in Experiment 3. The gamma band 44 Hz AM-based stimula-
tion elicited a brain response of -11.82 dB for A-SSR at channel FCz, which was significantly higher
than the -17.80 dB for A-HER (p = 1.58 x 10~%). With the theta band 6 Hz AM-based stimulation, the
magnitudes of A-SSR and A-HER were -5.75 dB and -5.60 dB, respectively. The paired-sample t-test
revealed no significant difference between them (p = 0.85). However, when using Tone-based stim-
ulation instead of AM-based stimulation, the response of A-SSR (-5.89 dB) remained the same with
no statistically significant difference (p = 0.89) at 6 Hz, while A-HER increased to -0.46 dB, which
was significantly higher than A-SSR (p = 1.52 x 10~°). When compared to the conventional A-SSR re-
sponse of -11.82 dB with 44 Hz AM-based stimulation, the proposed A-HER paradigm could elevate
the brain rhythm response to -0.46 dB with 6 Hz Tone-based stimulation (p = 8.07 x 1078).

Discussion

Conclusion

The novel experimental paradigm, Auditory High Entropy Response (A-HER), introduced in this
study represents a significantadvancementin investigating uncertain information processing within
the brain. By prioritizing holistic responses to auditory stimulus sequences with maximized infor-
mation entropy, A-HER transcends the limitations of conventional paradigms. Our findings reveal
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that A-HER elicits a substantial frontal theta band response in both the time and frequency do-
mains, markedly enhancing SNR and response reliability compared to traditional zero-entropy
A-SSR and low-entropy MMN paradigms. This heightened reliability and SNR position A-HER as
a valuable tool for potential applications in neuroengineering, particularly in diagnosing and re-
searching neurological and mental diseases, as well as in advancing brain-computer interfaces.
Furthermore, our exploration underscores that the increased magnitude of A-HER response is in-
fluenced by both stimulus sequence differences and uncertainties. Notably, while A-HER exhibits
alarger amplitude than A-SSR, our research identifies distinct propagation rules and differing prin-
ciples between evoked and entrained responses. These observations point toward distinct infor-
mation processing mechanisms for certainty and uncertainty in the brain. In summary, the A-HER
paradigm, by surmounting traditional experimental boundaries, provides a pivotal pathway to un-
raveling how the brain navigates uncertainty in dynamic and unpredictable real-world information
scenarios.

The response of A-HER

The A-SSR has diverse applications in clinical, research, and technological domains, offering in-
sights into auditory function and brain processing mechanisms. While employed for hearing thresh-
old assessment, auditory processing disorders diagnosis, neuroscience studies, and objective hear-
ing screening and BCI applications, A-SSR faces limitations due to its small SNR. This constraint
impedes its effectiveness in detecting subtle neural responses amidst background noise, posing
challenges in reliable brain activity interpretation, potentially limiting its utility in precision diagnos-
tics and neuroengineering.

With the newly proposed A-HER paradigm, the larger time domain and frequency domain re-
sponse in frontal lobe with theta band stimulation is the main contribution in this work. Com-
pared to the conventional A-SSR response (44 Hz, AM), the proposed A-HER paradigm (6 Hz, Tone)
increased the brain rhythm response from -11.82 dB to -0.46 dB in Experiment 3 (Table 1). The
significant 11dB enhancement facilitates quicker detection, leading to notably higher reliability (r =
0.58) within a 20-second stimulus duration when contrasted with both the 20-second A-SSR stimu-
lus and the conventional 80-second MMN test observed in Experiment 1 (Fig. 3). The considerable
improvement in SNR observed in A-HER holds promise for its practical application in enhancing
neural signal detection and processing. Whether the magnitude can be compared with V-SSR still
needs further optimization and validation.

The evoking of A-HER

Evoked responses and neural entrainment

A-SSR relies on amplitude modulation (AM) at 44 Hz, inducing a neural response in the brain that
synchronizes with this rhythmic external stimulus. The relatively robust brain response (-11.82 dB),
reflected in the measured dB level, indicates the brain’s ability to align and synchronize with this
specific regular modulation pattern—a classical manifestation of "neural entrainment".

Conversely, A-HER, devoid of a regular external rhythmic stimulus, exhibits a comparatively
weaker brain response (-17.80 dB, Table 1). Notably, as the stimulation frequency shifts from the
gamma band (44 Hz) to the theta band (6 Hz), both A-SSR (-5.60 dB) and A-HER (-5.75 dB) demon-
strate similar responses with amplitude modulation. For this reason, we can infer that this phe-
nomenon of neural entrainment occurs mainly in the gamma frequency band.

Moreover, the transition from amplitude modulation (AM) to pure tone burst (Tone) fails to
enhance the A-SSR response, while significantly improving A-HER's response from -5.75 dB to -0.46
dB. This highlights a distinction: A-SSR relies on neural entrainment to a rhythmic pattern, while
A-HER's response is more evoked by individual events within an uncertain sequence. However, this
event-driven processing is influenced by the uncertainty of the entire stimulus sequence, indicating
a more intricate neural mechanism. This complexity delineates A-HER's neural response from AEP
evoked by isolated stimuli and A-SSR, wherein neural rhythms are synchronized.
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Uncertainty and discrepancy

The findings from Experiment 2 (Fig. 2) indicate that the amplified amplitude in the A-HER com-
pared to the A-SSR can be linked to two factors: discrepant stimuli and uncertainty. Regarding the
A-ALR, it was observed that deterministic discrepant stimuli successfully heightened the amplitude.
However, in the case of the A-HER, despite a stimulus difference of less than half compared to the
A-ALR, there was a notable enhancement in the stimulus’'s amplitude response.

A more in-depth analysis suggests that within the A-HER context, even with a smaller stimulus
difference, the amplitude response saw further improvement. This might suggest that the A-HER
exhibits heightened sensitivity to both stimulus disparities and uncertainty. Moreover, the role of
uncertainty might hold more significance in the A-HER scenario, where even a smaller stimulus
difference might lead to a higher cognitive load, consequently amplifying the amplitude response.
Nevertheless, further experiments and analysis are essential to validate and elucidate these differ-
ences between A-HER and A-ALR.

The propagation of A-HER
In Experiment 2, discernible differences emerged between A-HER and A-SSR responses, not solely
in their magnitudes but also in their propagation patterns.

The first possible explanation comes from the propagation model for travel waves and standing
waves (Gonzalez-Castillo, 2022). According to the definition, a standing wave can form when two
waves of equal amplitude and frequency are traveling in opposite directions; and a traveling wave,
as the name implies, is a wave that is moving. Hence, the traveling wave-like results in A-SSR imply
that the response of A-SSR has only one source, which may mainly come from STG as the primary
auditory area (Halder et al., 20719). But why the propagation direction is from posterior to frontal is
still hard to explain. While the standing traveling wave-like results in A-HER imply that the response
of A-HER may be composed of the propagation of signals from at least two brain sources. Inspired
by MMN (Doeller et al., 2003; Garrido et al., 2008; Tse et al., 2006) , the two possible brain sources
would be Heschl's gyrus located in the posterior portion of the STG as the primary auditory area,
and the inferior frontal gyrus (IFG), which is involved in establishing a prediction model for detecting
unexpected changes (Lui et al., 2021). One counterargument against this propagation model is that
if A-SSR adheres to this propagation law, a propagation time of around 40ms from a peak at Oz
(180ms) to a peak at FCz (217ms) appears relatively sluggish.

An alternative interpretation proposes that neither A-SSR nor A-HER distinctly exhibit spatial
propagation in their theta rhythm responses. Instead, both concurrently involve components from
the occipital and frontal lobes. The variation lies in A-HER's stronger frontal lobe amplitude com-
pared to A-SSR. Both display similar occipital lobe responses without notable divergence. Evidence
from channel FCz supports this, with A-HER showing similar peak and trough latencies as A-SSR,
albeit with significantly higher amplitudes. At channel Oz, peak amplitudes and latencies in both
A-HER and A-SSR align, but the frontal lobe’s influence notably affects trough amplitudes and laten-
cies. A possible reason for channel Oz's unaffected peak could be its latency aligning near channel
FCZ's zero-crossing point, experiencing comparatively less influence. Nonetheless, this interpreta-
tion struggles to explain why, as seen in Fig. 5B, A-SSR's waveform continues propagating forward
post-peak at channel FCz.

It's possible that both explanations oversimplify the scenario. Further investigation, possibly
using neuroimaging or localization techniques, is essential to validate these hypotheses. Gaining
a deeper understanding of how both STG and IFG contribute to generating the A-HER response
could provide a more comprehensive insight into the intricate mechanisms involved in auditory
processing.

Limitation
Firstly, in this study, the pitch of stimuli has not been strictly controlled. It should be noticed that
in Fig. 3(A), the response of deviant stimuli D is always higher than the standard stimuli § with all
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stimulation frequencies in A-HER. In Experiment 1, the pitch of stimuli § and D is 524 Hz and 262
Hz correspondingly. The result could be explained by the global effect of MMN in the experiment.
While we did not switch pitches of stimuli in this experiment for strict control. As a result, the local
and global impacts of MMN have not been thoroughly examined, which does not alter our results
for investigation of A-HER.

Secondly, in the experiment, 6 Hz was used as the representative stimulation frequency in theta
band for the experiment design and EEG signal analysis, which is determined by the results of pre-
experiments with a small group of subjects. However, the results of Experiment 1 indicated the
response of 7 Hz is larger than 6 Hz. But the analysis of the EEG signal is still focused on 6 Hz. But
whether the frequency is 6Hz or 7Hz, the response is focused in the theta band and its features
remain constant.

Future work

Firstly, for brain source localization, further analysis should be done on the comparison of A-HER,
A-SSR, and MMN. In this work, A-HER is proposed by using a high uncertainty stimulus sequence to
induce alarger frequency response than A-SSR. According to our knowledge of MMN, this response
is not only caused by the auditory primary sensory cortex, but also reflects higher cognitive func-
tions are most likely involved in the cognitive processing of this stimulus sequence. Hence, further
work on brain source localization is in progress, and we hope that the sEEG and MEG results will
provide more evidence about the origins of A-HER.

Second, numerous approaches for increasing the entropy of the stimulus sequence should
be explored in order to boost the response of A-HER. In fact, this work just demonstrated the
feasibility of A-HER. The result in Fig. 8 demonstrates the larger magnitude of A-HER than A-SSR,
but the magnitude is still smaller than the well-studied V-SSR. Several methods can be used to
further improve the magnitude of A-HER. On one side, considering inter-stimulus variability rather
than stimulus intensity as the main cause of MMN, we can further deliver the two types of stimuli
in A-HER paradigm with larger differences in the scale of pitch, intensity, and timbre. On the other
side, considering more types of stimuli would lead to a higher entropy in Eq. (1). Multiple types of
stimuli should be included in the paradigm to improve the uncertainty of the sequence.

Thirdly, the large response magnitude would make A-HER an ideal paradigm for the clinical func-
tional assessment and engineering applications. 1) The large frequency response of A-HER allows
us to potentially develop a more valuable tool for auditory function assessment than A-SSR. 2) The
processing of uncertain information in A-HER would make the A-HER paradigm suitable for cogni-
tive function assessment and mental illness diagnosis. In the case of schizophrenia, multiple stim-
uli with short ISI allow A-HER potentially provide more rapid and accurate diagnostic results than
MMN. 3) In the field of BCI application, A-HER provides us with a non-visual interaction paradigm.
Furthermore, the stimulation of A-SSR could effectively avoid the sensory fatigue caused by V-SSR,
because the response of A-HER does not depend on the stimulus intensity itself but on the differ-
ence and uncertainty between stimuli. 4) Considering that uncertainty and surprise would evoke
musical pleasure (Cheung et al., 2019), the proposed A-HER could potentially be used in music
therapy (Chen et al., 2021; Han et al., 2021).

Methods and Materials

Experimental platform

During the experiment, the subjects were seated in a comfortable chair, which is about one meter
from the screen and the speaker, and were asked to fixate on a cross at the center of the screen
during the experiment with auditory stimulation. We did not ask the subject to pay attention to the
auditory stimuli. A speaker (EDIFIER MR4, Edifier Technology Co Ltd. Shenzhen, China) was used to
present auditory stimuli. The intensity was set at a comfortable level (75 dB SPL on average) for all
subjects as measured by a digital sound level meter (Victor 824, Double King Industrial Holdings Co.,
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Ltd. Shenzhen, China). A 24.5-inch screen (1920x1080) with a 360-Hz refreshing rate (Alienware
AW2521H, Miami, USA) was used to present the visual cues.

In Experiment 1 and Experiment 2, Arduino Uno was programmed to release pure-tone bursts
(Tone) auditory stimulation for the accurate marker of each burst and avoid the delay on Windows
PC. The duration for each Tone stimulus was 40ms. In Experiment 3, amplitude modulated (AM)
auditory stimulation and visual stimulation were implemented by Matlab (The MathWorks Inc.,
Natick, USA), since only frequency domain analysis has performance in Experiment 3 which is not
sensitive to the stimulation delay. All three experimental sequences were presented to subjects
by Matlab.

For auditory stimulation, 524 Hz (the C one octave higher than the middle C) and 262 Hz (the
middle C) sinusoidal signal was used as standard and deviant stimuli. It should be noted that the
terms of standard (S) and deviant (D) stimuli are from the paradigm of MMN. For A-SSR, there are
only standard stimuli. For A-HER and A-ALR, both two types of stimuli were presented with the
same probability of 50% , but we still termed them as standard (S) and deviant (D) stimuli.

The continuous EEG signals were recorded using an EEG amplifier (BrainAmp, Brain Products
GmbH, Germany) and multichannel EEG caps (64 Channel, Easycap). The signals were recorded at a
sampling rate of 1000 Hz by 64 electrodes, placed in the standard 10-20 positions. The electrodes
FCz and AFz served as reference and ground, respectively. Before data acquisition, the contact
impedance between the EEG electrodes and the scalp was calibrated to be lower than 10 kQ to
ensure the quality of EEG signals during the experiments.

Signal Processing

Signal pre-processing

For EEG pre-processing, the signal was firstly re-reference to TP9/TP10. A 0.1 to 99 Hz 4th-order
Butterworth zero-phase filters were applied as the bandpass filtering and a notch filtering was
applied for 50 Hz power-line artifact. Then, artifacts produced by eye blinks or eye movements
were identified and removed manually by Independent Component Analysis (ICA).

Time domain analysis

After signal pre-processing, a 0.4 — 30 Hz 4th-order Butterworth zero-phase filter was applied for
time domain analysis. After that, the EEG signals were segmented by the markers of the standard
(8) and deviant (D) stimuli from -500 ms to 1000 ms to obtain the Event-Related Potential (ERP) for
each subject. The maximum and minimum values from the interval of 50 ms to 250 ms of the ERP
signal were extracted for further statistical analysis. Compared with the conventional ERP analysis,
the SOA in this work was shorter than the interval for segmentation. The overlap between the two
successive stimuli existed commonly for the time domain analysis. Hence, the pre-stimulus ERP
is also informative, which could not be treated as the conventional baseline. Hence, we did not
perform baseline correction in the time domain analysis. With the bandpass filter of 0.4 — 30 Hz,
the DC component has been removed effectively.

Frequency domain analysis

Considering the different durations for each condition from Experiment 1 to Experiment 3, the
pre-processed EEG signal with a duration longer than 20 seconds was first segmented into the
segment of 20 seconds with no overlap. Then Fast Fourier Transform (FFT) was performed on these
EEG segments. The FFT results from the same conditions and the same stimulus frequency from
different blocks were averaged. The magnitudes of the foundational frequency and their second
harmonics frequency (2 x foundational frequency) were extracted for further statistical analysis.

Traveling wave analysis
To quantify the directional propagation of EEG signals, we adopted a wave quantification method
Alamia and VanRullen (2019). Given the limited number of electrodes, zero-padding was applied
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to enhance frequency resolution Kim and Im (2018). This operation not only increased the number
of data points but also facilitated spatial interpolation Gao et al. (2022), enabling a more detailed
examination of spatial relationships between electrodes.

Specifically, based on the time domain analysis results of Experiment 2, we conducted a 4-8Hz
bandpass filter on the data corresponding to ASSR and AHER. Subsequently, both sets of data
were normalized to mitigate amplitude effects, allowing for clearer observation of spatial signal
characteristics. We sequentially stacked the EEG signals from seven electrodes (Oz, POz, Pz, CPz, Cz,
FCz, Fz) to generate a 2D-map. To conduct traveling wave analysis, zero-padding was implemented
outside the electrode region, expanding the matrix width from 7 to 101. Subsequently, a 2D-FFT
transformation was performed on the 2D-map, yielding temporal frequencies along the horizontal
axis and spatial frequencies along the vertical axis.
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